JP2011051821A - Method for producing compound semiconductor fine particle - Google Patents

Method for producing compound semiconductor fine particle Download PDF

Info

Publication number
JP2011051821A
JP2011051821A JP2009201317A JP2009201317A JP2011051821A JP 2011051821 A JP2011051821 A JP 2011051821A JP 2009201317 A JP2009201317 A JP 2009201317A JP 2009201317 A JP2009201317 A JP 2009201317A JP 2011051821 A JP2011051821 A JP 2011051821A
Authority
JP
Japan
Prior art keywords
compound semiconductor
temperature
semiconductor fine
solution
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009201317A
Other languages
Japanese (ja)
Other versions
JP5333069B2 (en
Inventor
Kiichi Fujihira
紀一 藤平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2009201317A priority Critical patent/JP5333069B2/en
Publication of JP2011051821A publication Critical patent/JP2011051821A/en
Application granted granted Critical
Publication of JP5333069B2 publication Critical patent/JP5333069B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a compound semiconductor fine particle whose particle diameter distribution does not spread and capable of producing a compound semiconductor fine particle having a desired particle diameter. <P>SOLUTION: The method for producing a compound semiconductor fine particles includes a nucleation reaction step S21, a cooling step S22 and a nuclear growth reaction step S23. The nucleation reaction step forms a nucleus by reacting a plurality of solutions in which a raw material containing elements which compose a compound semiconductor and an organic compound are dissolved in a solvent and passing through a first capillary maintained at a first temperature at a first flow rate, and the cooling step cools the temperature of the solution containing the nucleus formed by the nucleation reaction step from the first temperature to a second temperature which is higher than the temperature wherein the organic compound deposits from the solution and lower than the temperature wherein the nucleus grows. The nuclear growth reaction step grows up the nucleus to a compound semiconductor fine particle by passing the solution which is cooled to the second temperature by the cooling step through a second capillary maintained at a third temperature at a second flow rate. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、化合物半導体微粒子の製造方法に関し、特に、化合物半導体を構成する元素を含む原料を溶媒に溶かした複数の溶液を反応させて、細管に流通させることで化合物半導体微粒子を製造する方法に関する。   The present invention relates to a method for producing compound semiconductor fine particles, and in particular, relates to a method for producing compound semiconductor fine particles by reacting a plurality of solutions in which a raw material containing an element constituting a compound semiconductor is dissolved in a solvent and circulating the solution through a capillary tube. .

化合物半導体微粒子は、粒径により吸収する光の波長、発光する光の波長が異なる等の特徴を有する材料である。既に、化合物半導体微粒子は、ディスプレイ、発光ダイオード等の発光材料として広く利用することができる。また、化合物半導体微粒子は、発光帯の波長の半値幅が狭いという特徴を有しているので、蛍光免疫分析のマーカー、発光性の生物学的分析試薬としても利用することができ、顔料等の色材としても利用することができる。   Compound semiconductor fine particles are materials having characteristics such as different wavelengths of light to be absorbed and different wavelengths of light to be emitted depending on the particle size. Already, compound semiconductor fine particles can be widely used as light emitting materials such as displays and light emitting diodes. In addition, since compound semiconductor fine particles have a feature that the half-value width of the wavelength of the emission band is narrow, it can be used as a marker for fluorescent immunoassay and a luminescent biological analysis reagent, such as a pigment. It can also be used as a coloring material.

特許文献1及び2には、化合物半導体微粒子の製造方法が開示されている。特許文献1に開示されている化合物半導体微粒子の製造方法では、周期表の第11〜13族の元素を含有する原料と、周期表の第15〜17族の元素を含有する原料とを独立して、細管を備える流通反応器に流通させて、化合物半導体微粒子を製造する方法が開示されている。   Patent Documents 1 and 2 disclose a method for producing compound semiconductor fine particles. In the method for producing compound semiconductor fine particles disclosed in Patent Document 1, a raw material containing an element belonging to Groups 11 to 13 of the periodic table and a raw material containing an element belonging to Groups 15 to 17 of the periodic table are independently provided. Thus, a method of producing compound semiconductor fine particles by flowing in a flow reactor equipped with a thin tube is disclosed.

特許文献2に開示されている化合物半導体微粒子の製造方法では、化合物半導体微粒子の核を形成する反応と、核を化合物半導体微粒子に成長させる反応とを段階的に行い化合物半導体微粒子を製造する方法が開示されている。化合物半導体微粒子の核を形成する反応には、連続式の反応装置を用い、核を化合物半導体微粒子に成長させる反応には、回分式の反応装置を用いている。   In the method for producing compound semiconductor fine particles disclosed in Patent Document 2, there is a method for producing compound semiconductor fine particles by performing stepwise a reaction for forming nuclei of compound semiconductor fine particles and a reaction for growing nuclei into compound semiconductor fine particles. It is disclosed. A continuous reaction apparatus is used for the reaction for forming the nuclei of the compound semiconductor fine particles, and a batch reaction apparatus is used for the reaction for growing the nuclei into the compound semiconductor fine particles.

特開2003−160336号公報JP 2003-160336 A 特開2007−224233号公報JP 2007-224233 A

しかし、特許文献1に開示されている化合物半導体微粒子の製造方法では、流通反応器内で、化合物半導体微粒子の核を形成する反応と、核を成長させる反応とを一緒に行うため、製造された化合物半導体微粒子に、化合物半導体微粒子の核と、核から成長した化合物半導体微粒子とが混在することになり、化合物半導体微粒子の粒径分布を狭くすることができないという問題があった。   However, the compound semiconductor fine particle manufacturing method disclosed in Patent Document 1 is manufactured because a reaction for forming nuclei of compound semiconductor fine particles and a reaction for growing nuclei are performed together in a flow reactor. The compound semiconductor fine particles have a mixture of compound semiconductor fine particles and compound semiconductor fine particles grown from the nuclei, resulting in a problem that the particle size distribution of the compound semiconductor fine particles cannot be narrowed.

また、特許文献2に開示されている化合物半導体微粒子の製造方法では、化合物半導体微粒子の核を形成する反応と、核を成長させる反応とを段階的に行うため、化合物半導体微粒子の核と、核から成長した化合物半導体微粒子とが混在するおそれはない。しかし、核を成長させる反応を回分式の反応装置で行うため、回分式の反応装置内で温度ムラが生じると化合物半導体微粒子の粒径分布を狭くすることができないという問題があった。   In addition, in the method for producing compound semiconductor fine particles disclosed in Patent Document 2, since the reaction for forming the nuclei of the compound semiconductor fine particles and the reaction for growing the nuclei are performed in stages, the nuclei of the compound semiconductor fine particles, There is no possibility of mixing with compound semiconductor fine particles grown from the above. However, since the reaction for growing the nuclei is performed in a batch reactor, there is a problem that the particle size distribution of the compound semiconductor fine particles cannot be narrowed if temperature unevenness occurs in the batch reactor.

本発明は、上記事情に鑑みてなされたものであり、化合物半導体微粒子の粒径分布が狭く、所望の粒径の化合物半導体微粒子を製造することが可能な化合物半導体微粒子の製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a method for producing compound semiconductor fine particles capable of producing compound semiconductor fine particles having a desired particle size with a narrow particle size distribution of the compound semiconductor fine particles. With the goal.

上記目的を達成するために第1発明に係る化合物半導体微粒子の製造方法は、少なくとも化合物半導体を構成する元素を含む原料と有機化合物とを溶媒に溶かした複数の溶液を反応させて、第1温度に保った第1細管に第1流速で流通させることで核を形成する核形成反応ステップと、該核形成反応ステップで形成した核を含む溶液の温度を、前記第1温度から、前記有機化合物が溶液から析出する温度より高く、核が成長する温度より低い第2温度に冷却する冷却ステップと、該冷却ステップで前記第2温度に冷却した溶液を、第3温度に保った第2細管に第2流速で流通させることで核を化合物半導体微粒子に成長させる核成長反応ステップとを含む。   In order to achieve the above object, a method for producing compound semiconductor fine particles according to the first invention comprises reacting a plurality of solutions in which a raw material containing at least an element constituting a compound semiconductor and an organic compound are dissolved in a solvent, to thereby obtain a first temperature. A nucleation reaction step for forming nuclei by flowing at a first flow rate through a first capillary tube maintained at a temperature, and a temperature of a solution containing the nuclei formed in the nucleation reaction step from the first temperature, the organic compound Cooling to a second temperature higher than the temperature at which the solution precipitates from the solution and lower than the temperature at which the nuclei grow, and the solution cooled to the second temperature in the cooling step into the second capillary tube maintained at the third temperature A nuclear growth reaction step of growing nuclei into compound semiconductor fine particles by flowing at a second flow rate.

また、第2発明に係る化合物半導体微粒子の製造方法は、第1発明において、前記冷却ステップで前記第2温度に冷却した溶液を、前記第2温度に保った容器に貯蔵する貯蔵ステップを含み、前記核成長反応ステップは、前記冷却ステップで冷却して、前記第2温度に保った前記容器に貯蔵した溶液を前記第2細管に流通させる。   Further, the method for producing compound semiconductor fine particles according to the second invention includes a storage step of storing the solution cooled to the second temperature in the cooling step in a container kept at the second temperature in the first invention, In the nucleus growth reaction step, the solution stored in the vessel cooled at the cooling step and kept at the second temperature is circulated through the second capillary.

また、第3発明に係る化合物半導体微粒子の製造方法は、第1又は第2発明において、前記核成長反応ステップで前記第2細管に流通させた溶液を用いて、前記核成長反応ステップを繰り返す。   In the method for producing compound semiconductor fine particles according to the third invention, in the first or second invention, the nucleus growth reaction step is repeated using the solution circulated through the second capillary in the nucleus growth reaction step.

また、第4発明に係る化合物半導体微粒子の製造方法は、第1乃至第3発明のいずれか一つにおいて、前記第2細管の管断面積及び/又は管長が前記第1細管とは異なる。   In the method for producing compound semiconductor fine particles according to the fourth invention, in any one of the first to third inventions, a tube cross-sectional area and / or a tube length of the second capillary is different from that of the first capillary.

第1発明では、第1温度に保った第1細管に第1流速で流通させて形成した核を含む溶液を第1温度から第2温度に冷却するので、核が形成された段階で核の成長が停止し、化合物半導体微粒子の核と、核から成長した化合物半導体微粒子とが混在することがない。また、第2温度に冷却した核を含む溶液を、第3温度に保った第2細管に第2流速で流通させて化合物半導体微粒子を成長させるので、核を成長させる第2細管内で溶液に温度ムラが生じず、粒径分布が狭い化合物半導体微粒子を製造することができる。   In the first aspect of the invention, the solution containing the nuclei formed by circulating the first tubule at the first temperature at the first flow rate is cooled from the first temperature to the second temperature. The growth is stopped and the nuclei of the compound semiconductor fine particles and the compound semiconductor fine particles grown from the nuclei are not mixed. Further, since the compound semiconductor fine particles are grown by allowing the solution containing the nucleus cooled to the second temperature to flow through the second capillary maintained at the third temperature at the second flow rate to grow the compound semiconductor fine particles, the solution is formed in the second capillary for growing the nucleus. Compound semiconductor fine particles having a narrow particle size distribution without temperature unevenness can be produced.

第2発明では、冷却した溶液を、第2温度に保った容器に貯蔵するので、第2細管の第2流速が第1細管の第1流速より遅い場合でも、化合物半導体の核が成長したり、有機化合物が溶液から析出したりすることなく、核成長反応ステップを順次行うことができ、粒径分布が狭い化合物半導体微粒子を製造することができる。   In the second invention, since the cooled solution is stored in a container kept at the second temperature, even when the second flow rate of the second capillary is slower than the first flow rate of the first capillary, the compound semiconductor nucleus grows. The nuclear growth reaction step can be sequentially performed without causing the organic compound to precipitate from the solution, and the compound semiconductor fine particles having a narrow particle size distribution can be produced.

第3発明では、核成長反応ステップで第2細管に流通させた溶液を用いて、核成長反応ステップを繰り返し行うことで、所望の粒径の化合物半導体微粒子を製造することができる。   In the third invention, compound semiconductor fine particles having a desired particle diameter can be produced by repeatedly performing the nucleus growth reaction step using the solution circulated in the second capillary tube in the nucleus growth reaction step.

第4発明では、第1細管と第2細管とは管断面積及び/又は管長が異なるので、核から成長する化合物半導体微粒子の大きさを制御して、所望の粒径の化合物半導体微粒子を製造することができる。   In the fourth invention, the first capillary and the second capillary have different tube cross-sectional areas and / or tube lengths, so that the size of the compound semiconductor particles growing from the nucleus is controlled to produce compound semiconductor particles having a desired particle size. can do.

本発明に係る化合物半導体微粒子の製造方法は、化合物半導体を構成する元素を含む原料を溶媒に溶かした複数の溶液を反応させて、第1温度に保った第1細管に第1流速で流通させることで核を形成する核形成反応ステップと、核形成反応ステップで形成した核を含む溶液の温度を、第1温度から、有機化合物が溶液から析出する温度より高く、核が成長する温度より低い第2温度に冷却する冷却ステップと、冷却ステップで第2温度に冷却した溶液を、第3温度に保った第2細管に第2流速で流通させることで核を化合物半導体微粒子に成長させる核成長反応ステップとを含むので、化合物半導体微粒子の核と、核から成長した化合物半導体微粒子とが混在することがなく、粒径分布が狭い化合物半導体微粒子を製造することができる。   In the method for producing compound semiconductor fine particles according to the present invention, a plurality of solutions in which a raw material containing an element constituting a compound semiconductor is dissolved in a solvent are reacted, and distributed at a first flow rate through a first capillary maintained at a first temperature. The temperature of the nucleation reaction step for forming nuclei and the temperature of the solution containing the nuclei formed in the nucleation reaction step is higher from the first temperature than the temperature at which the organic compound is precipitated from the solution and lower than the temperature at which the nuclei grow. Cooling step for cooling to the second temperature, and nucleus growth for growing nuclei into compound semiconductor fine particles by circulating the solution cooled to the second temperature in the cooling step through the second capillary maintained at the third temperature at the second flow rate Since the reaction step is included, the compound semiconductor fine particles having a narrow particle size distribution can be manufactured without mixing the nuclei of the compound semiconductor fine particles and the compound semiconductor fine particles grown from the nuclei.

本発明の実施の形態に係る化合物半導体微粒子の製造方法に用いる製造装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the manufacturing apparatus used for the manufacturing method of the compound semiconductor fine particle concerning embodiment of this invention. 本発明の実施の形態に係る化合物半導体微粒子の製造方法を説明するためのフローチャートである。It is a flowchart for demonstrating the manufacturing method of the compound semiconductor fine particle concerning embodiment of this invention. 本発明の実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子のTEM写真の例示図である。It is an illustration figure of the TEM photograph of the compound semiconductor fine particle of CdSe manufactured with the manufacturing method of the compound semiconductor fine particle concerning embodiment of this invention. 本発明の実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子の別のTEM写真の例示図である。It is an illustration figure of another TEM photograph of the compound semiconductor fine particle of CdSe manufactured with the manufacturing method of the compound semiconductor fine particle concerning embodiment of this invention. 本発明の実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子のフォトルミネッセンススペクトルの例示図である。It is an illustration figure of the photoluminescence spectrum of the compound semiconductor fine particle of CdSe manufactured with the manufacturing method of the compound semiconductor fine particle concerning embodiment of this invention. 比較例として別の製造方法で製造したCdSeの化合物半導体微粒子のフォトルミネッセンススペクトルの例示図である。It is an illustration figure of the photoluminescence spectrum of the compound semiconductor fine particle of CdSe manufactured with another manufacturing method as a comparative example.

以下、本発明の実施の形態における化合物半導体微粒子の製造方法について、図面を用いて具体的に説明する。以下の実施の形態は、特許請求の範囲に記載された発明を限定するものではなく、実施の形態の中で説明されている特徴的事項の組み合わせの全てが解決手段の必須事項であるとは限らないことは言うまでもない。   Hereinafter, a method for producing compound semiconductor fine particles in an embodiment of the present invention will be specifically described with reference to the drawings. The following embodiments do not limit the invention described in the claims, and all combinations of characteristic items described in the embodiments are essential to the solution. It goes without saying that it is not limited.

本発明の実施の形態に係る化合物半導体微粒子の製造方法は、熱分解性の化合物半導体原料を高温の配位性有機化合物に注入して化合物半導体結晶を成長させる方法である。図1は、本発明の実施の形態に係る化合物半導体微粒子の製造方法に用いる製造装置の構成を示す模式図である。図1に示すように、化合物半導体微粒子の製造装置Aは、化合物半導体(例えば、CdSe)を構成する元素(例えば、Cd)を含む原料と有機化合物(例えば、ステアリン酸(界面活性剤)、トリオクチルホスフィンオキシド、オクタデシルアミン等)とを溶媒に溶かした第1溶液の容器1と、化合物半導体を構成する元素(例えば、Se)を含む原料と有機化合物(例えば、ステアリン酸(界面活性剤)、トリオクチルホスフィンオキシド、オクタデシルアミン等)とを溶媒に溶かした第2溶液の容器2と、第1溶液と第2溶液とを反応させた第3溶液を細管(第1細管)に流通させることで化合物半導体微粒子の核を形成する核形成反応器3とを備えている。さらに、化合物半導体微粒子の製造装置Aは、核形成反応器3で形成した核を含む第3溶液を回収・貯蔵する容器4と、核を含む第3溶液を細管(第2細管)に流通させることで、核を化合物半導体微粒子に成長させる核成長反応器5と、核成長反応器5で形成した化合物半導体微粒子を含む第3溶液を回収する容器6とを備える。なお、第1溶液及び第2溶液において、化合物半導体を構成する元素を含む原料に有機化合物を加えるのは、溶液中での化合物半導体を構成する元素を含む原料の溶媒に対する溶解安定化や、形成する化合物半導体微粒子に配位して分散安定性を向上させるためである。   The method for producing compound semiconductor fine particles according to the embodiment of the present invention is a method for growing a compound semiconductor crystal by injecting a thermally decomposable compound semiconductor raw material into a high-temperature coordination organic compound. FIG. 1 is a schematic diagram showing the configuration of a manufacturing apparatus used in the method for manufacturing compound semiconductor fine particles according to the embodiment of the present invention. As shown in FIG. 1, a compound semiconductor fine particle manufacturing apparatus A includes a raw material containing an element (for example, Cd) constituting a compound semiconductor (for example, CdSe), an organic compound (for example, stearic acid (surfactant), A container 1 of a first solution in which octylphosphine oxide, octadecylamine, and the like are dissolved in a solvent, a raw material containing an element (for example, Se) constituting a compound semiconductor, and an organic compound (for example, stearic acid (surfactant)), A second solution container 2 in which trioctylphosphine oxide, octadecylamine, etc.) are dissolved in a solvent, and a third solution obtained by reacting the first solution and the second solution is circulated through the narrow tube (first narrow tube). And a nucleation reactor 3 for forming nuclei of compound semiconductor fine particles. Furthermore, the compound semiconductor fine particle manufacturing apparatus A allows the third solution containing the nuclei formed in the nucleation reactor 3 to be collected and stored, and the third solution containing the nuclei to flow through the narrow tube (second thin tube). Thus, a nuclear growth reactor 5 for growing nuclei into compound semiconductor fine particles and a container 6 for collecting the third solution containing the compound semiconductor fine particles formed in the nuclear growth reactor 5 are provided. In the first solution and the second solution, the organic compound is added to the raw material containing the element constituting the compound semiconductor because the dissolution and stabilization of the raw material containing the element constituting the compound semiconductor in the solution in the solvent This is to improve the dispersion stability by coordination with the compound semiconductor fine particles.

容器1には、第1溶液の温度を調節するための温度調節器11を、容器2には、第2溶液の温度を調節するための温度調節器21を、容器4には、核を含む第3溶液の温度を調節するための温度調節器41を、容器6には、化合物半導体微粒子を含む第3溶液の温度を調節するための温度調節器61を、それぞれ設けている。また、核形成反応器3は、第3溶液を所定の流速で流通させる細管(第1細管)と、該細管に流通させる第3溶液の温度を調節するための温度調節器31とを有し、核成長反応器5は、核を含む第3溶液を所定の流速で流通させる細管(第2細管)と、該細管に流通させる核を含む第3溶液の温度を調節するための温度調節器51とを有している。なお、核形成反応器3及び核成長反応器5の細管は、例えば管断面積が0.0009cm2 、管長が120cmであり、該細管を核形成反応器3及び核成長反応器5は複数本有している。但し、核成長反応器5の細管(第2細管)の管断面積及び/又は管長は、核形成反応器3の細管(第1細管)の管断面積及び/又は管長と同じ場合に限定されるものではなく、核から成長した化合物半導体微粒子が所望の粒径を有するように、核形成反応器3の細管(第1細管)と核成長反応器5の細管(第2細管)とは管断面積及び/又は管長が異なっても良い。 The container 1 includes a temperature controller 11 for adjusting the temperature of the first solution, the container 2 includes a temperature controller 21 for adjusting the temperature of the second solution, and the container 4 includes a nucleus. A temperature controller 41 for adjusting the temperature of the third solution is provided, and the container 6 is provided with a temperature controller 61 for adjusting the temperature of the third solution containing the compound semiconductor fine particles. Further, the nucleation reactor 3 has a narrow tube (first thin tube) that allows the third solution to flow at a predetermined flow rate, and a temperature controller 31 that adjusts the temperature of the third solution that flows through the narrow tube. The nuclear growth reactor 5 includes a narrow tube (second thin tube) that allows the third solution containing the nucleus to flow at a predetermined flow rate, and a temperature controller for adjusting the temperature of the third solution that includes the nucleus that flows through the narrow tube. 51. Note that the tubules of the nucleation reactor 3 and the nucleation growth reactor 5 have, for example, a tube cross-sectional area of 0.0009 cm 2 and a tube length of 120 cm. Have. However, the tube cross-sectional area and / or tube length of the thin tube (second thin tube) of the nuclear growth reactor 5 is limited to the case where the tube cross-sectional area and / or tube length of the thin tube (first thin tube) of the nucleation reactor 3 is the same. The tubule of the nucleation reactor 3 (first tubule) and the tubule of the nucleus growth reactor 5 (second tubule) are tubes so that the compound semiconductor fine particles grown from the nucleus have a desired particle size. The cross-sectional area and / or the tube length may be different.

容器1と核形成反応器3との間には、容器1から核形成反応器3へ第1溶液を供給するための送液ポンプ13を、容器2と核形成反応器3との間には、容器2から核形成反応器3へ第2溶液を供給するための送液ポンプ23をそれぞれ設けてある。また、容器4と核成長反応器5との間には、容器4から核成長反応器5へ核を含む第3溶液を供給するための送液ポンプ45を設けてある。さらに、核形成反応器3と容器4との間には、容器4で回収・貯蔵する核を含む第3溶液の温度及び容器4の温度を調節するための温度調節器34を設けてある。   Between the container 1 and the nucleation reactor 3, a liquid feed pump 13 for supplying the first solution from the container 1 to the nucleation reactor 3 is provided between the container 2 and the nucleation reactor 3. A liquid feed pump 23 for supplying the second solution from the container 2 to the nucleation reactor 3 is provided. Further, a liquid feed pump 45 for supplying a third solution containing nuclei from the container 4 to the nucleus growth reactor 5 is provided between the container 4 and the nucleus growth reactor 5. Furthermore, a temperature controller 34 is provided between the nucleation reactor 3 and the container 4 for adjusting the temperature of the third solution containing the nuclei collected and stored in the container 4 and the temperature of the container 4.

次に、化合物半導体微粒子の製造装置Aを用いて、CdSeの化合物半導体微粒子を製造する方法について説明する。図2は、本発明の実施の形態に係る化合物半導体微粒子の製造方法を説明するためのフローチャートである。図2に示すように、まず、核形成反応ステップS21では、CdSeの化合物半導体を構成するCd元素を含む原料と有機化合物とを溶媒に溶かした第1溶液と、Se元素を含む原料と有機化合物とを溶媒に溶かした第2溶液とを反応させた第3溶液を、第1温度に保った核形成反応器3の細管(第1細管)に第1流速で流通させることでCdSeの化合物半導体微粒子の核を形成する。具体的に、酸化カドミウム(CdO)1g、オクタデセン(溶媒)160g、ステアリン酸(界面活性剤)10g、トリオクチルホスフィンオキシド20g、オクタデシルアミン60gを容器1に投入し、減圧下において100℃で30分脱気処理を行って生成した第1溶液を、温度調節器11を用いて280℃(第1温度)に加熱する。   Next, a method for producing CdSe compound semiconductor fine particles using the compound semiconductor fine particle production apparatus A will be described. FIG. 2 is a flowchart for explaining the method for producing compound semiconductor fine particles according to the embodiment of the present invention. As shown in FIG. 2, first, in the nucleation reaction step S21, a first solution in which a raw material containing a Cd element and an organic compound constituting a compound semiconductor of CdSe are dissolved in a solvent, a raw material containing an Se element, and an organic compound The CdSe compound semiconductor is made to flow at a first flow rate through the third tube (first tube) of the nucleation reactor 3 maintained at the first temperature with the third solution obtained by reacting the second solution in which the solution is dissolved in a solvent. Form nuclei of fine particles. Specifically, 1 g of cadmium oxide (CdO), 160 g of octadecene (solvent), 10 g of stearic acid (surfactant), 20 g of trioctylphosphine oxide, and 60 g of octadecylamine are put into the container 1, and 30 minutes at 100 ° C. under reduced pressure. The first solution produced by the deaeration process is heated to 280 ° C. (first temperature) using the temperature controller 11.

セレン6g、オクタデセン(溶媒)110g、トリブチルホスフィン20gを容器2に投入し、窒素雰囲気下で100℃に加熱して約2時間かけてセレンをオクタデセンに溶解させて生成した第2溶液を、温度調節器21を用いて室温(25℃)まで冷却する。   6 g of selenium, 110 g of octadecene (solvent), and 20 g of tributylphosphine are put into the container 2, heated to 100 ° C. in a nitrogen atmosphere and dissolved in octelecene for about 2 hours, and the second solution produced is controlled in temperature. Cool to room temperature (25 ° C.) using vessel 21.

容器1の第1溶液を、送液ポンプ13を用いて、6.7ml/sの流速で核形成反応器3に供給し、容器2の第2溶液を、送液ポンプ23を用いて、3.4ml/sの流速で核形成反応器3に供給する。核形成反応器3に供給された第1溶液及び第2溶液を、核形成反応器3の細管(第1細管)内で反応させた第3溶液を細管に所定の流速(第1流速)で流通させる。核形成反応器3の細管に、温度調節器31を用いて280℃(第1温度)に加熱した第3溶液を所定の流速で流通させることで、第3溶液中にCdSeの化合物半導体微粒子の核が形成される。なお、所定の流速(第1流速)は、第1溶液を核形成反応器3に供給する流速(6.7ml/s)と第2溶液を核形成反応器3に供給する流速(3.4ml/s)とにより決まる流速である。また、第1溶液の流速及び第2溶液の流速を調整することで、第1溶液と第2溶液とを反応させる割合を調整することができる。   The first solution in the container 1 is supplied to the nucleation reactor 3 at a flow rate of 6.7 ml / s using the liquid feed pump 13, and the second solution in the container 2 is supplied to the nucleation reactor 3 using the liquid feed pump 23. Feed to nucleation reactor 3 at a flow rate of 4 ml / s. The third solution obtained by reacting the first solution and the second solution supplied to the nucleation reactor 3 in the tubule (first tubule) of the nucleation reactor 3 is passed through the tubule at a predetermined flow rate (first flow rate). Circulate. The third solution heated to 280 ° C. (first temperature) using the temperature controller 31 is passed through the tubule of the nucleation reactor 3 at a predetermined flow rate so that the compound semiconductor fine particles of CdSe are contained in the third solution. Nuclei are formed. The predetermined flow rate (first flow rate) includes a flow rate for supplying the first solution to the nucleation reactor 3 (6.7 ml / s) and a flow rate for supplying the second solution to the nucleation reactor 3 (3.4 ml). / S). Moreover, the ratio with which the 1st solution and the 2nd solution are made to react can be adjusted by adjusting the flow rate of a 1st solution and the flow rate of a 2nd solution.

次に、冷却ステップS22は、核形成反応ステップS21で形成した核を含む第3溶液の温度を、280℃(第1温度)から、有機化合物(例えば、ステアリン酸(界面活性剤)、トリオクチルホスフィンオキシド、オクタデシルアミン等)が第3溶液から析出する温度より高く、核が成長する温度より低い60℃(第2温度)に冷却する。具体的に、核形成反応器3で形成した核を含む第3溶液を、核形成反応器3から容器4へ供給する際、温度調節器34を用いて60℃に冷却する。核を含む第3溶液を60℃に冷却することで、核の成長は停止する。なお、核を含む第3溶液を冷却する温度は、60℃に限定されるものではなく、有機化合物が第3溶液から析出する温度より高く、核が成長する温度より低い温度の範囲であればいずれの温度でも良い。核を含む第3溶液を、温度調節器34を用いて60℃に冷却した後、窒素を充填して、60℃(第2温度)に保った容器4に回収・貯蔵する。   Next, in the cooling step S22, the temperature of the third solution containing the nuclei formed in the nucleation reaction step S21 is changed from 280 ° C. (first temperature) to an organic compound (for example, stearic acid (surfactant), trioctyl). Phosphine oxide, octadecylamine, etc.) are cooled to 60 ° C. (second temperature), which is higher than the temperature at which the third solution precipitates and lower than the temperature at which the nuclei grow. Specifically, when the third solution containing nuclei formed in the nucleation reactor 3 is supplied from the nucleation reactor 3 to the container 4, the third solution is cooled to 60 ° C. using the temperature controller 34. By cooling the third solution containing the nuclei to 60 ° C., the growth of the nuclei is stopped. The temperature at which the third solution containing nuclei is cooled is not limited to 60 ° C., as long as the temperature is higher than the temperature at which the organic compound precipitates from the third solution and lower than the temperature at which the nuclei grow. Any temperature is acceptable. The third solution containing the nucleus is cooled to 60 ° C. using the temperature controller 34, and then is collected and stored in the container 4 filled with nitrogen and kept at 60 ° C. (second temperature).

次に、核成長反応ステップS23は、冷却ステップS22で容器4に回収・貯蔵した60℃(第2温度)に冷却した核を含む第3溶液を、250℃(第3温度)に保った核成長反応器5の細管(第2細管)に0.2ml/s(第2流速)で流通させることで、核をCdSeの化合物半導体微粒子に成長させる。具体的に、容器4に回収・貯蔵した核を含む第3溶液を、送液ポンプ45を用いて、0.2ml/sの流速で核成長反応器5に供給する。核成長反応器5の細管に、温度調節器51を用いて250℃に加熱した核を含む第3溶液を0.2ml/sの流速で流通させることで、第3溶液に含まれている核が、所望の粒径を有する化合物半導体微粒子に成長する。核成長反応器5から供給された、化合物半導体微粒子を含む第3溶液を、容器6に回収する。   Next, in the nucleus growth reaction step S23, the third solution containing the nucleus cooled to 60 ° C. (second temperature) collected and stored in the container 4 in the cooling step S22 is maintained at 250 ° C. (third temperature). The nucleus is grown into CdSe compound semiconductor fine particles by flowing through the thin tube (second thin tube) of the growth reactor 5 at 0.2 ml / s (second flow rate). Specifically, the third solution containing the nuclei collected and stored in the container 4 is supplied to the nucleation growth reactor 5 at a flow rate of 0.2 ml / s using the liquid feed pump 45. The third solution containing the nuclei heated to 250 ° C. using the temperature controller 51 is circulated through the thin tube of the nuclear growth reactor 5 at a flow rate of 0.2 ml / s, so that the nuclei contained in the third solution. Grow into compound semiconductor fine particles having a desired particle size. The third solution containing compound semiconductor fine particles supplied from the nuclear growth reactor 5 is collected in the container 6.

ここで、温度調節器34を用いて冷却した核を含む第3溶液を、直接核成長反応器5に供給せずに、一旦容器4に回収・貯蔵することで、核を含む第3溶液を核形成反応器3の細管に流通させる流速に影響を与えることなく、核形成反応器3の細管に流通させる流速に比べて遅い流速で核を含む第3溶液を核成長反応器5の細管に流通させることができる。つまり、容器4は、核形成反応器3から供給される核を含む第3溶液を核成長反応器5の細管に順次流通させることができるように調整するためのバッファとして機能している。なお、核形成反応器3の細管に流通させる流速と、核成長反応器5の細管に流通させる流速との間に差がない場合や、核形成反応器3から供給される核を含む第3溶液を、複数の核成長反応器5の細管に流通させる場合には、容器4を設ける必要はない。   Here, the third solution containing the nuclei cooled by using the temperature controller 34 is temporarily collected and stored in the container 4 without directly supplying the nucleation growth reactor 5, so that the third solution containing the nuclei is obtained. The third solution containing nuclei is transferred to the tubule of the nucleation reactor 5 at a lower flow rate than the flow rate circulated to the tubule of the nucleation reactor 3 without affecting the flow rate of the nucleation reactor 3. It can be distributed. That is, the container 4 functions as a buffer for adjusting the third solution containing the nuclei supplied from the nucleation reactor 3 so that the third solution can be sequentially passed through the tubules of the nucleation growth reactor 5. It should be noted that there is no difference between the flow rate flowing through the tubule of the nucleation reactor 3 and the flow rate flowing through the tubule of the nucleus growth reactor 5, or the third including the nuclei supplied from the nucleation reactor 3. When the solution is circulated through the thin tubes of the plurality of nuclear growth reactors 5, it is not necessary to provide the container 4.

また、本発明の実施の形態に係る化合物半導体微粒子の製造方法では、核を含む第3溶液を核成長反応器5の細管に一度流通させるだけではなく、所望の粒径の化合物半導体微粒子に成長させるために、容器6に回収した化合物半導体微粒子を含む第3溶液を、核成長反応器5の細管に繰り返し流通させる。つまり、容器6に回収した化合物半導体微粒子を含む第3溶液を、容器4に戻し、核成長反応器5の細管に、温度調節器51を用いて250℃に加熱した第3溶液を0.2ml/sの流速で再度流通させることで、第3溶液に含まれている化合物半導体微粒子が所望の粒径となるように成長させる。なお、核成長反応器5の細管を再度流通させた第3溶液を容器6で回収し、容器6に回収した第3溶液を、トルエン240mlで希釈する。   In the method for producing compound semiconductor fine particles according to the embodiment of the present invention, the third solution containing nuclei is not only passed through the capillary tube of the nuclear growth reactor 5 but once grown into compound semiconductor fine particles having a desired particle size. For this purpose, the third solution containing the compound semiconductor fine particles recovered in the container 6 is repeatedly circulated through the narrow tube of the nuclear growth reactor 5. That is, the third solution containing the compound semiconductor fine particles recovered in the container 6 is returned to the container 4, and 0.2 ml of the third solution heated to 250 ° C. using the temperature controller 51 is placed in the thin tube of the nuclear growth reactor 5. By flowing again at a flow rate of / s, the compound semiconductor fine particles contained in the third solution are grown so as to have a desired particle size. In addition, the 3rd solution which distribute | circulated the thin tube of the nuclear growth reactor 5 again is collect | recovered with the container 6, and the 3rd solution collect | recovered in the container 6 is diluted with 240 ml of toluene.

希釈した第3溶液から取り出したCdSeの化合物半導体微粒子を観察するために、TEM(透過型電子顕微鏡)を用いる。なお、CdSeの化合物半導体微粒子をTEMで観察するためには、希釈した第3溶液をTEM用炭素膜付きCuメッシュに滴下して乾燥する必要がある。図3は、本発明の実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子のTEM写真の例示図である。図4は、本発明の実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子のTEM写真の別の例示図である。図3は、59,000倍に拡大したCdSeの化合物半導体微粒子であり、黒い顆粒に見えるそれぞれがCdSeの化合物半導体微粒子である。図4は、590,000倍に拡大したCdSeの化合物半導体微粒子であり、丸印が一つのCdSeの化合物半導体微粒子を示している。TEM写真より、本発明の実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子の粒径がほぼ揃っており、粒径が約4nm程度であることが分かる。   In order to observe the CdSe compound semiconductor fine particles taken out from the diluted third solution, a TEM (transmission electron microscope) is used. In order to observe the CdSe compound semiconductor fine particles with TEM, it is necessary to drop the diluted third solution onto a Cu mesh with a carbon film for TEM and dry it. FIG. 3 is an exemplary TEM photograph of CdSe compound semiconductor fine particles produced by the method for producing compound semiconductor fine particles according to the embodiment of the present invention. FIG. 4 is another exemplary view of a TEM photograph of CdSe compound semiconductor fine particles produced by the method for producing compound semiconductor fine particles according to the embodiment of the present invention. FIG. 3 shows CdSe compound semiconductor fine particles magnified 59,000 times, and each of the CdSe compound semiconductor fine particles appearing as black granules is a CdSe compound semiconductor fine particle. FIG. 4 shows CdSe compound semiconductor fine particles magnified 590,000 times, and a circle indicates one CdSe compound semiconductor fine particle. From the TEM photograph, it can be seen that the compound semiconductor fine particles of CdSe produced by the method for producing compound semiconductor fine particles according to the embodiment of the present invention have almost the same particle size, and the particle size is about 4 nm.

次に、本発明の実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子の粒径分布を調べるために、希釈した第3溶液のフォトルミネッセンススペクトルを測定する。フォトルミネッセンススペクトルは、希釈した第3溶液を積分球のサンプルホルダー内にセットし、キセノンランプの光源からモノクロメータを通して得た中心波長300nm(半値幅7nm以下)の紫外線をサンプルホルダーに照射し、励起光より発光した光をCCDセンサで測定することにより得ることができる。なお、測定したフォトルミネッセンススペクトルに基づいて、希釈した第3溶液が吸収した励起光のフォトン数(吸収光フォトン数)と、希釈した第3溶液が発光した光のフォトン数(発光フォトン数)の比を、量子効率(%)(=発光フォトン数/吸収光フォトン数×100)として算出した。   Next, in order to examine the particle size distribution of the CdSe compound semiconductor fine particles produced by the method for producing compound semiconductor fine particles according to the embodiment of the present invention, the photoluminescence spectrum of the diluted third solution is measured. For photoluminescence spectrum, the diluted third solution is set in the sample holder of the integrating sphere, and the sample holder is irradiated with UV light having a center wavelength of 300 nm (half-value width of 7 nm or less) obtained from the light source of the xenon lamp through the monochromator. It can be obtained by measuring light emitted from light with a CCD sensor. In addition, based on the measured photoluminescence spectrum, the number of photons of excitation light absorbed by the diluted third solution (number of absorbed light photons) and the number of photons of light emitted by the diluted third solution (number of emitted photons) The ratio was calculated as quantum efficiency (%) (= number of emitted photons / number of absorbed light photons × 100).

図5は、本発明の実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子のフォトルミネッセンススペクトルの例示図である。図5は、横軸が波長(nm)、縦軸がフォトルミネッセンス強度である。本実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子のフォトルミネッセンススペクトルは、ピーク波長が598.01nm、ピーク波長のフォトルミネッセンス強度が半分になるフォトルミネッセンス強度での波長差である半値幅が33.89nm、量子効率が48%である。   FIG. 5 is an exemplary diagram of a photoluminescence spectrum of CdSe compound semiconductor fine particles produced by the method for producing compound semiconductor fine particles according to the embodiment of the present invention. In FIG. 5, the horizontal axis represents wavelength (nm) and the vertical axis represents photoluminescence intensity. The photoluminescence spectrum of the compound semiconductor fine particles of CdSe produced by the method for producing compound semiconductor fine particles according to the present embodiment has a wavelength difference at a photoluminescence intensity at which the peak wavelength is 598.01 nm and the photoluminescence intensity at the peak wavelength is halved. The full width at half maximum is 33.89 nm and the quantum efficiency is 48%.

比較例として、容器4に回収・貯蔵した核を含む第3溶液を、送液ポンプ45を用いて核成長反応器5に供給することなく、容器4内で第3溶液に含まれている核を成長させて化合物半導体微粒子を製造した場合の化合物半導体微粒子のフォトルミネッセンススペクトルを測定する。具体的に、容器4内で第3溶液に含まれている核を成長させるために、容器4を温度調節器41を用いて250℃に加熱して、1時間保持し、その後60℃に冷却した第3溶液にトルエン240mlを加えて希釈する。なお、当該比較例の化合物半導体微粒子の製造方法は、特許文献2に開示されている化合物半導体微粒子の製造方法に近似している。   As a comparative example, the nuclei contained in the third solution in the container 4 without supplying the third solution containing the nuclei collected and stored in the container 4 to the nucleus growth reactor 5 using the liquid feed pump 45. Is grown to produce compound semiconductor fine particles, and the photoluminescence spectrum of the compound semiconductor fine particles is measured. Specifically, in order to grow nuclei contained in the third solution in the container 4, the container 4 is heated to 250 ° C. using the temperature controller 41, held for 1 hour, and then cooled to 60 ° C. The third solution is diluted with 240 ml of toluene. In addition, the manufacturing method of the compound semiconductor fine particle of the comparative example is similar to the manufacturing method of the compound semiconductor fine particle disclosed in Patent Document 2.

図6は、比較例として別の製造方法で製造したCdSeの化合物半導体微粒子のフォトルミネッセンススペクトルの例示図である。図6に示すように、比較例として別の化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子のフォトルミネッセンススペクトルは、ピーク波長が597.27nm、半値幅が63.92nm、量子効率が30%である。比較例として別の製造方法で製造したCdSeの化合物半導体微粒子のフォトルミネッセンススペクトルと、本発明の実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子のフォトルミネッセンススペクトルとを比べた場合、半値幅が約1.9倍広がっていることが分かる。つまり、本発明の実施の形態に係る化合物半導体微粒子の製造方法で製造したCdSeの化合物半導体微粒子の粒径分布は、比較例として別の製造方法で製造したCdSeの化合物半導体微粒子の粒径分布より狭いことが分かる。   FIG. 6 is an exemplary diagram of a photoluminescence spectrum of a CdSe compound semiconductor fine particle produced by another production method as a comparative example. As shown in FIG. 6, the photoluminescence spectrum of a CdSe compound semiconductor fine particle produced by another method for producing compound semiconductor fine particles as a comparative example has a peak wavelength of 597.27 nm, a half width of 63.92 nm, and a quantum efficiency of 30. %. As a comparative example, the photoluminescence spectrum of a compound semiconductor fine particle of CdSe produced by another production method is compared with the photoluminescence spectrum of a compound semiconductor fine particle of CdSe produced by the method of producing a compound semiconductor fine particle according to the embodiment of the present invention. It can be seen that the full width at half maximum is increased about 1.9 times. That is, the particle size distribution of the compound semiconductor fine particles of CdSe manufactured by the method of manufacturing compound semiconductor fine particles according to the embodiment of the present invention is larger than the particle size distribution of the compound semiconductor fine particles of CdSe manufactured by another manufacturing method as a comparative example. You can see that it is narrow.

以上のように、本発明の実施の形態に係る化合物半導体微粒子の製造方法では、第1溶液と第2溶液とを反応させた第3溶液を、第1温度に保った第1細管に第1流速で流通させることで核を形成し、核を含む第3溶液の温度を、第1温度から第2温度に冷却するので、化合物半導体の核と、核から成長した化合物半導体微粒子とが混在することがない。また、第2温度に冷却した第3溶液を、第3温度に保った第2細管に第2流速で流通させることで核を化合物半導体微粒子に成長させるので、核を成長させる第2細管内で第3溶液に温度ムラが生じず、粒径分布が狭い化合物半導体微粒子を製造することができる。   As described above, in the method for producing compound semiconductor fine particles according to the embodiment of the present invention, the third solution obtained by reacting the first solution and the second solution is placed in the first capillary tube maintained at the first temperature. Nuclei are formed by flowing at a flow rate, and the temperature of the third solution containing the nuclei is cooled from the first temperature to the second temperature, so that the compound semiconductor nuclei and the compound semiconductor fine particles grown from the nuclei coexist. There is nothing. Further, since the third solution cooled to the second temperature is allowed to flow at a second flow rate through the second capillary maintained at the third temperature at the second flow rate, the nucleus grows into the compound semiconductor fine particles. Compound semiconductor fine particles having a narrow particle size distribution without temperature unevenness in the third solution can be produced.

なお、本発明の実施の形態に係る化合物半導体微粒子の製造方法は、CdSeの化合物半導体微粒子の製造に限定されるものではなく、II(第12族)−VI(第16族)族化合物半導体微粒子(例えば、ZnTe、ZnSe、ZnS等)、III(第13族)−V(第15族)族化合物半導体微粒子(例えば、InAs等)などのあらゆる化合物半導体微粒子の製造に適用することができる。   The method for producing compound semiconductor particles according to the embodiment of the present invention is not limited to the production of CdSe compound semiconductor particles, but II (Group 12) -VI (Group 16) group compound semiconductor particles. (For example, ZnTe, ZnSe, ZnS, etc.), III (Group 13) -V (Group 15) group compound semiconductor fine particles (for example, InAs etc.) can be applied to the production of any compound semiconductor fine particles.

また、本発明の実施の形態に係る化合物半導体微粒子の製造方法において、所望の粒径の化合物半導体微粒子を製造する方法は、核成長反応器5の細管に第3溶液を複数回流通させる方法に限定されるものではなく、管断面積及び/又は管長を変更した核成長反応器5の細管に一回流通させる方法でも良い。核成長反応器5の細管の管断面積及び/又は管長は、製造する化合物半導体微粒子の所望の粒径により決定する。なお、管断面積及び/又は管長が異なる細管を有する核成長反応器5を複数備えることで、所望の粒径が異なる複数の化合物半導体微粒子を同じ工程で製造することができる。   Further, in the method for producing compound semiconductor fine particles according to the embodiment of the present invention, the method for producing compound semiconductor fine particles having a desired particle diameter is a method in which the third solution is circulated through the capillary of the nuclear growth reactor 5 a plurality of times. The method is not limited and may be a method in which the tube cross-sectional area and / or the tube length is changed once through the narrow tube of the nuclear growth reactor 5. The tube cross-sectional area and / or tube length of the thin tube of the nuclear growth reactor 5 is determined by the desired particle size of the compound semiconductor fine particles to be produced. It should be noted that a plurality of compound semiconductor fine particles having different desired particle diameters can be produced in the same step by providing a plurality of nuclear growth reactors 5 having thin tubes having different tube cross-sectional areas and / or tube lengths.

さらに、本発明の実施の形態に係る化合物半導体微粒子の製造方法は、核形成反応器3の細管と、核成長反応器5の細管とを別個独立に備える化合物半導体微粒子の製造装置Aで化合物半導体微粒子を製造する方法に限定されるものではなく、核形成反応器3の細管を核成長反応器5の細管として利用する化合物半導体微粒子の製造装置で化合物半導体微粒子を製造しても良い。つまり、図1に示す化合物半導体微粒子の製造装置Aにおいて、容器4に回収・貯蔵した核を含む第3溶液を、核形成反応器3の細管に第2流速で流通させるようにすることで、核成長反応器5を設けない構成とし、化合物半導体微粒子を製造することもできる。核形成反応器3の細管を核成長反応器5の細管として利用した安価な化合物半導体微粒子の製造装置でも、本発明の実施の形態に係る化合物半導体微粒子の製造方法を適用することができる。   Furthermore, the compound semiconductor fine particle manufacturing method according to the embodiment of the present invention is a compound semiconductor fine particle manufacturing apparatus A that includes the tubule of the nucleation reactor 3 and the thin tube of the nucleation growth reactor 5 independently. The method is not limited to the method for producing fine particles, and the compound semiconductor fine particles may be produced by a compound semiconductor fine particle production apparatus that uses the fine tube of the nucleation reactor 3 as the fine tube of the nuclear growth reactor 5. That is, in the compound semiconductor fine particle production apparatus A shown in FIG. 1, the third solution containing the nuclei collected and stored in the container 4 is circulated through the tubule of the nucleation reactor 3 at the second flow rate. It is also possible to produce compound semiconductor fine particles with a configuration in which the nuclear growth reactor 5 is not provided. The inexpensive method for producing compound semiconductor fine particles using the thin tube of the nucleation reactor 3 as the thin tube of the nuclear growth reactor 5 can also apply the method for producing the compound semiconductor fine particles according to the embodiment of the present invention.

1、2、4、6 容器
3 核形成反応器
5 核成長反応器
11、21、31、34、41、51、61 温度調節器
13、23、45 送液ポンプ
1, 2, 4, 6 Container 3 Nucleation reactor 5 Nucleation growth reactor 11, 21, 31, 34, 41, 51, 61 Temperature controller 13, 23, 45 Liquid feed pump

Claims (4)

少なくとも化合物半導体を構成する元素を含む原料と有機化合物とを溶媒に溶かした複数の溶液を反応させて、第1温度に保った第1細管に第1流速で流通させることで核を形成する核形成反応ステップと、
該核形成反応ステップで形成した核を含む溶液の温度を、前記第1温度から、前記有機化合物が溶液から析出する温度より高く、核が成長する温度より低い第2温度に冷却する冷却ステップと、
該冷却ステップで前記第2温度に冷却した溶液を、第3温度に保った第2細管に第2流速で流通させることで核を化合物半導体微粒子に成長させる核成長反応ステップと
を含むことを特徴とする化合物半導体微粒子の製造方法。
Nuclei that form nuclei by reacting a plurality of solutions in which a raw material containing an element constituting at least a compound semiconductor and an organic compound are dissolved in a solvent and circulating the solution through a first capillary maintained at a first temperature at a first flow rate. A formation reaction step;
A cooling step of cooling the temperature of the solution containing the nuclei formed in the nucleation reaction step from the first temperature to a second temperature higher than a temperature at which the organic compound precipitates from the solution and lower than a temperature at which the nuclei grow; ,
And a nucleus growth reaction step in which the solution cooled to the second temperature in the cooling step is passed through a second capillary maintained at the third temperature at a second flow rate to grow nuclei into compound semiconductor fine particles. A method for producing compound semiconductor fine particles.
前記冷却ステップで前記第2温度に冷却した溶液を、前記第2温度に保った容器に貯蔵する貯蔵ステップを含み、
前記核成長反応ステップは、前記冷却ステップで冷却して、前記第2温度に保った前記容器に貯蔵した溶液を前記第2細管に流通させることを特徴とする請求項1に記載の化合物半導体微粒子の製造方法。
Storing the solution cooled to the second temperature in the cooling step in a container maintained at the second temperature;
2. The compound semiconductor fine particle according to claim 1, wherein in the nuclear growth reaction step, the solution stored in the container that is cooled in the cooling step and maintained at the second temperature is circulated through the second capillary tube. Manufacturing method.
前記核成長反応ステップで前記第2細管に流通させた溶液を用いて、前記核成長反応ステップを繰り返すことを特徴とする請求項1又は請求項2に記載の化合物半導体微粒子の製造方法。   3. The method for producing compound semiconductor fine particles according to claim 1, wherein the nuclear growth reaction step is repeated using the solution circulated through the second capillary in the nuclear growth reaction step. 前記第2細管の管断面積及び/又は管長が前記第1細管とは異なることを特徴とする請求項1乃至請求項3のいずれか一項に記載の化合物半導体微粒子の製造方法。   4. The method for producing compound semiconductor fine particles according to claim 1, wherein a tube cross-sectional area and / or a tube length of the second capillary tube is different from that of the first capillary tube.
JP2009201317A 2009-09-01 2009-09-01 Method for producing compound semiconductor fine particles Active JP5333069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009201317A JP5333069B2 (en) 2009-09-01 2009-09-01 Method for producing compound semiconductor fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009201317A JP5333069B2 (en) 2009-09-01 2009-09-01 Method for producing compound semiconductor fine particles

Publications (2)

Publication Number Publication Date
JP2011051821A true JP2011051821A (en) 2011-03-17
JP5333069B2 JP5333069B2 (en) 2013-11-06

Family

ID=43941237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009201317A Active JP5333069B2 (en) 2009-09-01 2009-09-01 Method for producing compound semiconductor fine particles

Country Status (1)

Country Link
JP (1) JP5333069B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017502526A (en) * 2013-10-04 2017-01-19 キング アブドゥラー ユニバーシティ オブ サイエンス アンド テクノロジー System and Method for Producing Quantum Dots <Priority Claim from Related Applications> This application was filed on Oct. 4, 2013, application number 61 / 886,837, “To make quantum dots” And claims priority from a co-pending US provisional application entitled “Systems and Methods”, which is incorporated herein by reference in its entirety. This application claims priority from a co-pending US provisional application filed Oct. 14, 2013 and having an application number of 61 / 890,536 entitled “Systems and Methods for Making Quantum Dots”. All of which are hereby incorporated by reference in their entirety. This application is filed with priority from a co-pending US provisional application filed July 15, 2014, filed 62 / 024,490 entitled "Systems and Methods for Making Quantum Dots". All of which are hereby incorporated by reference in their entirety.
JP2017171927A (en) * 2013-03-15 2017-09-28 ナノコ テクノロジーズ リミテッド Group iii-v/zinc chalcogenide-alloyed semiconductor quantum dots

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023704A1 (en) * 2003-09-04 2005-03-17 National Institute Of Advanced Industrial Science And Technology Process for producing composite microparticle, composite microparticle production apparatus and composite microparticle
JP2007069162A (en) * 2005-09-08 2007-03-22 National Institute Of Advanced Industrial & Technology Method for preparing nanoparticle
WO2008061632A1 (en) * 2006-11-21 2008-05-29 Bayer Technology Services Gmbh Process for the synthesis of nanosize metal-containing nanoparticles and nanoparticle dispersions
WO2009101091A1 (en) * 2008-02-11 2009-08-20 Centrum Für Angewandte Nanotechnologie (Can) Gmbh Reactor for the manufacture of nanoparticles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005023704A1 (en) * 2003-09-04 2005-03-17 National Institute Of Advanced Industrial Science And Technology Process for producing composite microparticle, composite microparticle production apparatus and composite microparticle
JP2007069162A (en) * 2005-09-08 2007-03-22 National Institute Of Advanced Industrial & Technology Method for preparing nanoparticle
WO2008061632A1 (en) * 2006-11-21 2008-05-29 Bayer Technology Services Gmbh Process for the synthesis of nanosize metal-containing nanoparticles and nanoparticle dispersions
WO2009101091A1 (en) * 2008-02-11 2009-08-20 Centrum Für Angewandte Nanotechnologie (Can) Gmbh Reactor for the manufacture of nanoparticles

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017171927A (en) * 2013-03-15 2017-09-28 ナノコ テクノロジーズ リミテッド Group iii-v/zinc chalcogenide-alloyed semiconductor quantum dots
US10351767B2 (en) 2013-03-15 2019-07-16 Nanoco Technologies Ltd. Group III-V/Zinc chalcogenide alloyed semiconductor quantum dots
JP2017502526A (en) * 2013-10-04 2017-01-19 キング アブドゥラー ユニバーシティ オブ サイエンス アンド テクノロジー System and Method for Producing Quantum Dots <Priority Claim from Related Applications> This application was filed on Oct. 4, 2013, application number 61 / 886,837, “To make quantum dots” And claims priority from a co-pending US provisional application entitled “Systems and Methods”, which is incorporated herein by reference in its entirety. This application claims priority from a co-pending US provisional application filed Oct. 14, 2013 and having an application number of 61 / 890,536 entitled “Systems and Methods for Making Quantum Dots”. All of which are hereby incorporated by reference in their entirety. This application is filed with priority from a co-pending US provisional application filed July 15, 2014, filed 62 / 024,490 entitled "Systems and Methods for Making Quantum Dots". All of which are hereby incorporated by reference in their entirety.
US10767110B2 (en) 2013-10-04 2020-09-08 King Abdullah University Of Science And Technology System and method for making quantum dots
US11518934B2 (en) 2013-10-04 2022-12-06 King Abdullah University Of Science And Technology System and method for making quantum dots

Also Published As

Publication number Publication date
JP5333069B2 (en) 2013-11-06

Similar Documents

Publication Publication Date Title
Xu et al. Rapid synthesis of highly luminescent InP and InP/ZnS nanocrystals
Sapra et al. Phosphine-free synthesis of monodisperse CdSe nanocrystals in olive oil
Fan et al. Solution-based synthesis of III–V quantum dots and their applications in gas sensing and bio-imaging
CN102292410B (en) Fabrication of nitride nanoparticles
Niu et al. One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells
JP5826908B2 (en) Semiconductor nanoparticles and method for producing semiconductor nanoparticles
Liu et al. Highly luminescent blue emitting CdS/ZnS core/shell quantum dots via a single-molecular precursor for shell growth
US10865109B2 (en) Method for preparation of magic-sized nano-crystalline substance
US8562939B2 (en) Semiconductor nanocrystal synthesis using a catalyst assisted two-phase reaction
JP2021035718A (en) Continuous flow synthesis of nanostructured materials
Fitzmorris et al. Structural and optical characterization of CuInS 2 quantum dots synthesized by microwave-assisted continuous flow methods
JP5333069B2 (en) Method for producing compound semiconductor fine particles
Guo et al. On-wire axial perovskite heterostructures for monolithic dual-wavelength laser
Chen et al. Synthesis of ultrasmall quantum dots by redirecting kinetics-based crystal growth to thermodynamics-based crystal dissolution
JP2022527219A (en) Nanocrystals
CN103059839A (en) Preparation of nanoparticles with narrow luminescence
Nga et al. Optical properties of normal and'giant'multishell CdSe quantum dots for potential application in material science
Chen et al. Synthesis spectrum properties of high-quality CdS quantum dots
Wang et al. Phosphine-Free Synthesis of CdSe Quantum Dots in a New Co-CappingLigand System
Dai et al. Synthesis of monodisperse CdSe nanocrystals directly open to air: Monomer reactivity tuned by the selenium ligand
Li et al. Facile synthesis and size-dependent luminescence of gadolinium compounds with multiform morphologies and tunable particle sizes
CN112940712A (en) Blue fluorescent core-shell structure quantum dot and preparation method thereof
Khan Synthesis, characterization and luminescence properties of zinc oxide nanostructures
US20220064531A1 (en) Systems and Methods for Quantum Dot on Nanoplatelet Heterostructures with Tunable Emission in the Shortwave Infrared
Lhuillier et al. Chemistry Nobel Prize Celebrates Colloidal Quantum Dots: Highly-Engineered, Spectrally Pure Light

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130715

R150 Certificate of patent or registration of utility model

Ref document number: 5333069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150