JP2011051137A - Combined molding - Google Patents

Combined molding Download PDF

Info

Publication number
JP2011051137A
JP2011051137A JP2009199859A JP2009199859A JP2011051137A JP 2011051137 A JP2011051137 A JP 2011051137A JP 2009199859 A JP2009199859 A JP 2009199859A JP 2009199859 A JP2009199859 A JP 2009199859A JP 2011051137 A JP2011051137 A JP 2011051137A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
crimped
crimped long
thermocompression bonding
long fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009199859A
Other languages
Japanese (ja)
Inventor
Hirobumi Iwasaki
岩崎  博文
Yukimasa Kuroda
幸政 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Fibers Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Fibers Corp filed Critical Asahi Kasei Fibers Corp
Priority to JP2009199859A priority Critical patent/JP2011051137A/en
Publication of JP2011051137A publication Critical patent/JP2011051137A/en
Pending legal-status Critical Current

Links

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a combined molding which has flame retardancy, prevents an expansion-molded resin from exuding to the surface of a reinforcing material, the reinforcing material of which has flexibility and which prevents the generation of an abnormal sound. <P>SOLUTION: The combined molding has the expansion-molded resin and a crimped filament-spunbonded nonwoven fabric being the reinforcing material of the expansion-molded resin. The crimped filament-spunbonded nonwoven fabric is formed by using, at the least, a polypropylene-based crimped filament having 0.5-10 dtex fineness and 2-40 pieces/25 mm number of crimps, is thermocompression-bonded at 2-15% partial thermocompression bonding rate, and has 50-200 g/m<SP>2</SP>basis weight, 0.5-2.0 mm thickness, 0.1-150 cm<SP>3</SP>/cm<SP>2</SP>/second air permeability and ≥20 oxygen index (LOI) when measured according to JIS-K-7201. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発泡成型樹脂と、該発泡成型樹脂の補強材である捲縮長繊維スパンボンド不織布とを有する複合成型体に関する。本発明は、更に詳しくは、自動車、家具等のシート、クッション成型体等として使用でき、該補強材が発泡成型用の凹凸金型に馴染み易い柔軟性を有するとともに発泡成型樹脂の補強材表面への染み出しを防止できるものであり、更に、複合成型体と取付鋼材との間の摩擦等による異音発生を防止できる、複合成型体に関する。   The present invention relates to a composite molded body having a foam molding resin and a crimped long fiber spunbond nonwoven fabric which is a reinforcing material for the foam molding resin. More specifically, the present invention can be used as a sheet for automobiles, furniture and the like, a cushion molded body, etc., and the reinforcing material has flexibility that can be easily adapted to a concavo-convex mold for foam molding and to the surface of the reinforcing material of foam molded resin. Further, the present invention relates to a composite molded body that can prevent the generation of abnormal noise due to friction between the composite molded body and the mounting steel material.

従来、自動車、家具等のシート用クッション体としては、弾性、保湿性、軽量性等に優れたポリウレタンフォームが用いられている。ポリウレタンフォームは、例えば、成型用凹凸金型にポリウレタン樹脂原液を注入し、発泡成型して得られる。得られたクッション体は、バネ、フレーム、パイプ等の取付鋼材に取付けられるが、使用時の振動や着座時に、クッション体と取付鋼材との摩擦等により異音が発生するという問題があった。このような異音の発生を防止するため、成型時にフェルト、不織布等を使用してこれらの取付鋼材をクッション体の表面に一体化させる方法が提案されている。   Conventionally, polyurethane foams excellent in elasticity, moisture retention, light weight and the like have been used as cushion bodies for seats of automobiles and furniture. The polyurethane foam is obtained, for example, by injecting a polyurethane resin stock solution into a molding concavo-convex mold and foam molding. The obtained cushion body is attached to a mounting steel material such as a spring, a frame, and a pipe. However, there is a problem that abnormal noise is generated due to vibration during use and friction between the cushion body and the mounting steel material. In order to prevent the generation of such abnormal noises, a method has been proposed in which these mounting steel materials are integrated with the surface of the cushion body using felt, nonwoven fabric or the like during molding.

特許文献1には、粗の構造の不織布と緻密な構造の不織布とからなる積層物を用いる方法が提案され、特許文献2には、目付110〜800g/m2の高目付の不織布を用いる方法が提供されている。 Patent Document 1 proposes a method using a laminate composed of a nonwoven fabric having a coarse structure and a nonwoven fabric having a dense structure, and Patent Document 2 discloses a method using a nonwoven fabric having a high basis weight of 110 to 800 g / m 2. Is provided.

上記方法では、不織布表面への樹脂液の染み出しを防止でき、またクッション体に剛性を付与することはできる。しかし、上記方法では、不織布が凹凸金型に馴染みにくく、また異音発生防止効果が低い等の問題があった。   In the above method, it is possible to prevent the resin liquid from oozing out to the surface of the nonwoven fabric and to impart rigidity to the cushion body. However, the above method has problems that the nonwoven fabric is not easily adapted to the concavo-convex mold and that the effect of preventing abnormal noise is low.

特許文献3には、部分熱圧着した捲縮長繊維不織布を発泡成型用補強材基布として用いる技術が提供されている。この技術は発泡成型に用いる樹脂の染み出しの抑制を目的とするが、発泡成型用補強材基布が、特に自動車内装材等の用途で求められる難燃性を有さない等の問題がある。   Patent Document 3 provides a technique of using a crimped long fiber nonwoven fabric that has been partially thermocompression bonded as a reinforcing material base fabric for foam molding. Although this technology aims to suppress the seepage of the resin used for foam molding, there is a problem that the reinforcing material base for foam molding does not have the flame retardancy particularly required for applications such as automobile interior materials. .

特開平6−171003号公報JP-A-6-171003 特開平2−258332号公報JP-A-2-258332 特開2000−62061号公報JP 2000-62061 A

本発明は、上記の課題を解決し、発泡成型樹脂と該発泡成型樹脂の補強材である不織布との複合成型体であって、難燃性であるとともに、発泡成型樹脂の補強材表面への染み出しが防止されており、補強材が発泡成型用の凹凸金型に馴染み易い柔軟性を有し、且つ、複合成型体と該複合成型体の取付鋼材との摩擦等による異音発生を防止できる複合成型体を提供することを目的とする。   The present invention solves the above-described problems, and is a composite molded body of a foam molded resin and a nonwoven fabric that is a reinforcing material for the foam molded resin. Exudation is prevented, and the reinforcing material is flexible enough to fit into the rugged mold for foam molding, and prevents abnormal noise due to friction between the composite molded product and the mounting steel of the composite molded product An object of the present invention is to provide a composite molding that can be produced.

本発明者らは、前記の課題を解決するため鋭意検討した結果、嵩高性及び柔軟性に富む捲縮長繊維が部分圧着されてなる不織布を用いることにより、上記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明は、以下の通りである。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by using a non-woven fabric in which crimped long fibers rich in bulkiness and flexibility are used. The invention has been completed. That is, the present invention is as follows.

[1]発泡成型樹脂と、該発泡成型樹脂の補強材である捲縮長繊維スパンボンド不織布とを有する複合成型体であって、
該捲縮長繊維スパンボンド不織布が、繊度0.5〜10dtex及び捲縮数2〜40個/25mmであるポリプロピレン系捲縮長繊維を少なくとも用いて構成されており、
該捲縮長繊維スパンボンド不織布が、部分熱圧着率2〜15%で熱圧着されており、
該捲縮長繊維スパンボンド不織布が、目付50〜200g/m2、厚み0.5〜2.0mm、通気性0.1〜150cm3/cm2/sec、及びJIS−K−7201に従って測定される酸素指数(LOI)20以上を有する、複合成型体。
[2]上記捲縮長繊維スパンボンド不織布が、難燃剤を0.1〜10質量%含有する、上記[1]に記載の複合成型体。
[3]上記捲縮長繊維スパンボンド不織布中の上記ポリプロピレン系捲縮長繊維の含有率が、70〜100質量%である、上記[1]又は[2]に記載の複合成型体。
[4]上記捲縮長繊維スパンボンド不織布が剛軟度15cm以下を有する、上記[1]〜[3]のいずれかに記載の複合成型体。
[5]上記捲縮長繊維スパンボンド不織布が、破断伸度70%以上を有する、上記[1]〜[4]のいずれかに記載の複合成型体。
[6]上記発泡成型樹脂が、ウレタン発泡成型樹脂である、上記[1]〜[5]のいずれかに記載の複合成型体。
[1] A composite molded body having a foam molding resin and a crimped long fiber spunbond nonwoven fabric that is a reinforcing material of the foam molding resin,
The crimped long fiber spunbonded nonwoven fabric is composed of at least a polypropylene-based crimped long fiber having a fineness of 0.5 to 10 dtex and a number of crimps of 2 to 40 pieces / 25 mm,
The crimped long fiber spunbond nonwoven fabric is thermocompression bonded with a partial thermocompression bonding rate of 2 to 15%,
The crimped long fiber spunbond nonwoven fabric is measured according to a basis weight of 50 to 200 g / m 2 , a thickness of 0.5 to 2.0 mm, a gas permeability of 0.1 to 150 cm 3 / cm 2 / sec, and JIS-K-7201. A composite molded article having an oxygen index (LOI) of 20 or more.
[2] The composite molded body according to [1], wherein the crimped long fiber spunbonded nonwoven fabric contains 0.1 to 10% by mass of a flame retardant.
[3] The composite molded article according to the above [1] or [2], wherein the content of the polypropylene-based crimped long fibers in the crimped long-fiber spunbonded nonwoven fabric is 70 to 100% by mass.
[4] The composite molded body according to any one of [1] to [3], wherein the crimped long fiber spunbonded nonwoven fabric has a bending resistance of 15 cm or less.
[5] The composite molded body according to any one of [1] to [4], wherein the crimped long fiber spunbonded nonwoven fabric has a breaking elongation of 70% or more.
[6] The composite molded body according to any one of [1] to [5], wherein the foam molding resin is a urethane foam molding resin.

本発明の複合成型体は難燃性であり、嵩高性及び柔軟性に富む捲縮長繊維を用いて補強材を構成しているため該補強材が発泡成型用凹凸金型に馴染み易く、更に、発泡成型樹脂の補強材表面への染み出しが防止されている。また、本発明によれば、発泡成型シート、クッション体等として形成される本発明の複合成型体と、該複合成型体の取付鋼材との摩擦等による異音の発生を防止できる。従って、本発明の複合成型体は、例えば車両用内装材等の広い用途に好適に利用できる。   The composite molded body of the present invention is flame retardant, and since the reinforcing material is formed using crimped long fibers having high bulkiness and flexibility, the reinforcing material is easy to fit into the concavo-convex mold for foam molding, Further, seepage of the foam molding resin to the reinforcing material surface is prevented. Moreover, according to this invention, generation | occurrence | production of the noise by the friction etc. with the composite molding body of this invention formed as a foaming molding sheet | seat, a cushion body, etc., and the attachment steel material of this composite molding body can be prevented. Therefore, the composite molded body of the present invention can be suitably used for a wide range of applications such as vehicle interior materials.

本発明は、発泡成型樹脂と、該発泡成型樹脂の補強材である捲縮長繊維スパンボンド不織布とを有する複合成型体であって、該捲縮長繊維スパンボンド不織布が、繊度0.5〜10dtex及び捲縮数2〜40個/25mmであるポリプロピレン系捲縮長繊維を少なくとも用いて構成されており、該捲縮長繊維スパンボンド不織布が、部分熱圧着率2〜15%で熱圧着されており、該捲縮長繊維スパンボンド不織布が、目付50〜200g/m2、厚み0.5〜2.0mm、通気性0.1〜150cm3/cm2/sec、及びJIS−K−7201に従って測定される酸素指数(LOI)20以上を有する、複合成型体を提供する。本発明において補強材として用いられる捲縮長繊維スパンボンド不織布は、以下で詳述するように、難燃性を有し、柔軟性及び嵩高性に優れている。 The present invention is a composite molded body having a foam molding resin and a crimped long fiber spunbond nonwoven fabric that is a reinforcing material of the foam molding resin, wherein the crimped long fiber spunbond nonwoven fabric has a fineness of 0.5 to It is composed of at least a polypropylene-based crimped long fiber having 10 dtex and 2-40 crimps / 25 mm, and the crimped long fiber spunbond nonwoven fabric is thermocompression bonded at a partial thermocompression rate of 2-15%. The crimped long fiber spunbond nonwoven fabric has a basis weight of 50 to 200 g / m 2 , a thickness of 0.5 to 2.0 mm, a gas permeability of 0.1 to 150 cm 3 / cm 2 / sec, and JIS-K-7201. A composite molded body having an oxygen index (LOI) of 20 or more measured according to the above is provided. The crimped long fiber spunbonded nonwoven fabric used as a reinforcing material in the present invention has flame retardancy and is excellent in flexibility and bulkiness as described in detail below.

捲縮長繊維スパンボンド不織布(本明細書において「捲縮長繊維不織布」ともいう)を構成するポリプロピレン系捲縮長繊維においては、繊度が0.5〜10dtex、好ましくは、1〜6dtexである。上記繊度が0.5dtex未満の場合、樹脂液の補強材表面への染み出しは少なくなるが、捲縮長繊維不織布の強度、伸度等の物性が低下し、またコスト高となる。一方上記繊度が10dtexを超える場合は、樹脂液の補強材表面への染み出しが生じ易く、剛軟度が大きくなり、硬い風合いで発泡成型用の凹凸金型に馴染み難く、成型加工性が低下し、クッション体等として形成される複合成型体の剛性が大きくなる等の問題が生じる。なお上記繊度は、顕微鏡で500倍の拡大写真を撮影し、繊維20本の数平均繊維径から算出される値である。   In the polypropylene-based crimped long fibers constituting the crimped long-fiber spunbonded nonwoven fabric (also referred to as “crimped long-fiber nonwoven fabric” in the present specification), the fineness is 0.5 to 10 dtex, preferably 1 to 6 dtex. . When the fineness is less than 0.5 dtex, exudation of the resin liquid to the surface of the reinforcing material is reduced, but physical properties such as strength and elongation of the crimped long fiber nonwoven fabric are lowered, and the cost is increased. On the other hand, when the fineness exceeds 10 dtex, the resin liquid is likely to ooze out to the surface of the reinforcing material, and the bending resistance becomes large. However, problems such as an increase in rigidity of the composite molded body formed as a cushion body or the like arise. The fineness is a value calculated from a number average fiber diameter of 20 fibers obtained by taking a 500 times magnified photograph with a microscope.

ポリプロピレン系捲縮長繊維は、ポリプロピレン構造を50質量%超含むものであればよい。ポリプロピレン系捲縮長繊維は紡糸性に優れるという利点を有する。ポリプロピレン系捲縮長繊維は、ポリプロピレンを含む芯鞘型複合繊維、サイドバイサイド型複合繊維等であってもよい。   The polypropylene-based crimped long fiber only needs to include a polypropylene structure exceeding 50% by mass. Polypropylene-based crimped continuous fibers have the advantage of excellent spinnability. The polypropylene-based crimped continuous fiber may be a core-sheath type composite fiber containing polypropylene, a side-by-side type composite fiber, or the like.

捲縮長繊維不織布はポリプロピレン系捲縮長繊維のみを用いて構成されてもよいが、本発明の効果を損なわない範囲で他の構成成分を含んでもよい。他の構成成分としては、溶融紡糸可能なポリマーからなる繊維として、ポリエステル系繊維(例えばポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリメチレンテレフタレート)、脂肪酸ポリエステル系繊維(例えばポリ乳酸)、ポリアミド繊維(例えばナイロン6、ナイロン610、ナイロン66)及びこれらポリマーの共重合体からなる繊維、ポリフェニレンサルファイド繊維等を材料とする捲縮長繊維及び非捲縮長繊維が挙げられる。より具体的には、例えばカーボンニュートラル比率向上の目的で、上記他の構成成分としてポリ乳酸繊維を含有させることができる。   The crimped long fiber nonwoven fabric may be formed using only the polypropylene-based crimped long fiber, but may contain other components as long as the effects of the present invention are not impaired. Other components include polyester fibers (for example, polyethylene terephthalate, polybutylene terephthalate, polymethylene terephthalate), fatty acid polyester fibers (for example, polylactic acid), polyamide fibers (for example, nylon 6). , Nylon 610, nylon 66) and fibers made of a copolymer of these polymers, and crimped long fibers and non-crimped long fibers made of polyphenylene sulfide fibers. More specifically, for example, for the purpose of improving the carbon neutral ratio, a polylactic acid fiber can be contained as the other component.

捲縮長繊維不織布中のポリプロピレン系捲縮長繊維の含有率は、70〜100質量%であることが好ましい。上記含有率が70質量%未満である場合、ポリプロピレン系捲縮長繊維を用いることによる柔軟性付与の効果が小さい傾向がある。上記含有率は、より好ましくは80〜100質量%、更に好ましくは90〜100質量%である。上記含有率は、捲縮長繊維不織布の製造時に、該不織布を構成する各成分の質量比を調整することにより実現できる。   The content of the polypropylene-based crimped long fibers in the crimped long-fiber nonwoven fabric is preferably 70 to 100% by mass. When the said content rate is less than 70 mass%, there exists a tendency for the effect of the softness | flexibility provision by using a polypropylene-type crimped continuous fiber to be small. The content is more preferably 80 to 100% by mass, and still more preferably 90 to 100% by mass. The said content rate is realizable by adjusting the mass ratio of each component which comprises this nonwoven fabric at the time of manufacture of a crimped continuous fiber nonwoven fabric.

また、ポリプロピレン系捲縮長繊維の繊維断面は、丸形断面若しくはY形、V形、U形、I形、C形、十字形、星形等の異形断面又はこれらの組合せであることができる。嵩高性、柔軟性及び立体障害性による樹脂の染み出し防止効果が良好に得られ、且つ、同一紡糸速度域で紡糸した場合に丸型断面形状では実現困難な5%中間応力の低減を実現可能であるという観点から、繊維断面は異形断面であることが好ましい。特に、ポリプロピレン樹脂に難燃剤、安定剤等を添加し、且つ、繊維断面を異型にすることにより、生産性を低下させることなく、同一紡糸速度領域において丸型断面形状では見られない5%中間応力の低減を実現できる。5%中間応力を低減できる理由は明確でないが、難燃剤、安定剤等を添加するとともに異型断面にすることにより、紡糸工程における繊維断面の構造差が発現しやすくなり、その結果、5%中間応力を低減できるものと推察される。繊維断面形状は、特に好ましくはL形及びV形である。   In addition, the fiber cross section of the polypropylene-based crimped long fiber may be a round cross section or an irregular cross section such as a Y shape, a V shape, a U shape, an I shape, a C shape, a cross shape, a star shape, or a combination thereof. . Resins are prevented from seeping out due to bulkiness, flexibility and steric hindrance, and 5% reduction in intermediate stress, which is difficult to achieve with a round cross-section, is possible when spinning at the same spinning speed range. From the viewpoint of being, it is preferable that the fiber cross section is an irregular cross section. In particular, by adding flame retardants, stabilizers, etc. to polypropylene resin and making the fiber cross section atypical, a 5% intermediate that is not seen in the round cross section shape in the same spinning speed region without reducing productivity. Reduction of stress can be realized. The reason why the 5% intermediate stress can be reduced is not clear, but by adding flame retardants, stabilizers, etc. and making it atypical cross section, it becomes easy to express the structural difference of the fiber cross section in the spinning process. It is assumed that the stress can be reduced. The fiber cross-sectional shape is particularly preferably L-shaped and V-shaped.

樹脂染み出し防止効果、5%中間応力低減効果、及び形状追随性が良好である点で、異型断面の周長は、異型断面と同一面積の丸断面の周長の1.3倍以上であることが好ましく、1.4倍以上であることがより好ましく、また、異型断面形状に外接する長方形の短辺に対する長辺の比で表される扁平度が好ましくは1.3以上、より好ましくは1.4以上、更に好ましくは、1.5以上である。   The perimeter of the irregular cross section is 1.3 times or more of the perimeter of the round cross section having the same area as the atypical cross section in that the resin seepage preventing effect, the 5% intermediate stress reduction effect, and the shape followability are good. It is preferably 1.4 times or more, and the flatness expressed by the ratio of the long side to the short side of the rectangle circumscribing the irregular cross-sectional shape is preferably 1.3 or more, more preferably 1.4 or more, more preferably 1.5 or more.

上記の断面の周長及び扁平度は、光学顕微鏡又は走査型電子顕微鏡(SEM)による断面写真から、画像解析、又は断面写真上に糸を貼り付けた後に糸長を計測することによる周長計測法等により算出できる。   The circumference and flatness of the above-mentioned cross section are measured by measuring the yarn length from image analysis or pasting the yarn on the cross-section photo from the cross-sectional photo by an optical microscope or scanning electron microscope (SEM). It can be calculated by law.

ポリプロピレン系捲縮長繊維としては、単一の種類又は繊度のものを用いてもよいが、異種又は異なる繊度のものを混合し、又は後述のように積層して用いてもよい。ポリプロピレン系捲縮長繊維は、紡糸性、生産性等のコストの観点から単一ポリマー成分で構成されることが好ましい。また、嵩高性、柔軟性等の観点から、該捲縮長繊維を積層して用いることが好ましい。   As the polypropylene-based crimped long fibers, those of a single type or fineness may be used, but those of different or different finenesses may be mixed or laminated as described later. The polypropylene-based crimped continuous fiber is preferably composed of a single polymer component from the viewpoint of costs such as spinnability and productivity. Moreover, it is preferable to laminate | stack and use this crimped continuous fiber from viewpoints, such as bulkiness and a softness | flexibility.

捲縮は、紡糸時に冷却域において繊維断面の構造差を形成することにより発現させることが可能である。また、ポリプロピレン系捲縮長繊維として潜在性捲縮長繊を用いて捲縮を発現させてもよい。   Crimping can be manifested by forming structural differences in the fiber cross section in the cooling zone during spinning. Moreover, you may express a crimp using a latent crimped staple as a polypropylene-type crimped continuous fiber.

ポリプロピレン系捲縮長繊維の捲縮数は、2〜40個/25cmである。上記捲縮数は、部分熱圧着前、外部からの拘束力の無い状態で、2mg/dtexの加重下で観察される値である。ポリプロピレン系捲縮長繊維における捲縮は典型的には螺旋状である。上記捲縮数は、好ましくは、5〜30個/25mmである。上記捲縮数が2個/25cm以上であることにより、本発明における捲縮長繊維不織布の嵩高性が良好であり、クッション体等の複合成型体と、取付鋼材との摩擦により発生する異音の抑制効果及び樹脂の染み出し抑制効果を得ることができるとともに、柔軟性が良好で、成型金型に対する形状追随性が良好である。一方、上記捲縮数が40個/25cm以下であることにより、紡糸時の糸切れが減少し安定して生産できるという効果が得られる。   The number of crimps of the polypropylene-based crimped long fibers is 2 to 40/25 cm. The number of crimps is a value observed under a load of 2 mg / dtex before partial thermocompression bonding and without external restraining force. The crimp in the polypropylene-based crimped long fiber is typically helical. The number of crimps is preferably 5 to 30 pieces / 25 mm. When the number of crimps is 2/25 cm or more, the bulkiness of the crimped long-fiber nonwoven fabric in the present invention is good, and abnormal noise generated by friction between a composite molded body such as a cushion body and a mounting steel material In addition, it is possible to obtain the effect of suppressing the resin and the effect of suppressing the seepage of the resin, the flexibility is good, and the shape following property to the molding die is good. On the other hand, when the number of crimps is 40 pieces / 25 cm or less, the yarn breakage at the time of spinning is reduced, and an effect of stable production can be obtained.

ポリプロピレン系捲縮長繊維がらせん状に捲縮されている場合、らせん捲縮径は、0.5〜1.0mmであることが好ましく、0.6〜1.0mmであることがより好ましい。上記らせん捲縮径が0.5mm未満である場合、捲縮の発現のための繊維断面における構造差が大きく強度が低下する傾向がある。一方、上記らせん捲縮径が1.0mmを超える場合、嵩高性が低下する傾向がある。   When the polypropylene-based crimped long fiber is crimped in a spiral shape, the spiral crimp diameter is preferably 0.5 to 1.0 mm, and more preferably 0.6 to 1.0 mm. When the helical crimp diameter is less than 0.5 mm, the structural difference in the fiber cross section for the expression of crimp is large and the strength tends to decrease. On the other hand, when the helical crimp diameter exceeds 1.0 mm, the bulkiness tends to decrease.

なお上記捲縮数及びらせん捲縮径は、不織布を部分熱圧着前に採取し、その中から20cmの単糸10本を変形させない様に採取した後、単糸の片方に繊維2mg/dtexの加重を吊り下げた状態で、25mmの間の捲縮数及び捲縮している部分の外径を拡大鏡を用いて数え、n=10の平均値として求められる値である。上記の捲縮数及びらせん捲縮径は、測定容易性の点から光学顕微鏡又は拡大鏡によって好ましく計測できる。   Note that the number of crimps and the spiral crimp diameter are as follows: the nonwoven fabric is collected before partial thermocompression bonding, and 10 fibers of 20 cm are collected from the nonwoven fabric so as not to be deformed. In a state where the load is suspended, the number of crimps between 25 mm and the outer diameter of the crimped portion are counted using a magnifying glass, and are obtained as an average value of n = 10. The number of crimps and the spiral crimp diameter can be preferably measured by an optical microscope or a magnifier from the viewpoint of ease of measurement.

本発明において、捲縮長繊維不織布は部分熱圧着率が2〜15%となるように熱圧着されている。部分熱圧着率は、好ましくは3〜12%である。本明細書において、捲縮長繊維不織布の部分熱圧着率は、不織布の表面の単位面積当たりの熱圧着部分の面積比率である。該部分熱圧着率が2%未満では繊維相互の熱圧着頻度が少なく、取扱い性及び強度が十分得られない。一方、部分熱圧着率が15%を超えると、繊維相互の熱圧着頻度が多く、剛軟度が大きく硬い風合いで凹凸金型に形状追随し難い。上記部分熱圧着率は、不織布表面の光学顕微鏡若しくは走査型電子顕微鏡(SEM)による表面写真から、画像解析により直接的に熱圧着部分と非圧着部分との和に対する熱圧着部分の面積の百分率を求める方法、又は表面写真にて熱圧着されている部分を切り抜き熱圧着部分と非熱圧着部分との質量和に対する熱圧着部分の質量の百分率を求める方法により測定される値である。   In the present invention, the crimped continuous fiber nonwoven fabric is thermocompression bonded so that the partial thermocompression bonding rate is 2 to 15%. The partial thermocompression bonding rate is preferably 3 to 12%. In this specification, the partial thermocompression bonding rate of the crimped continuous fiber non-woven fabric is the area ratio of the thermocompression bonding per unit area of the surface of the non-woven fabric. If the partial thermocompression bonding rate is less than 2%, the frequency of thermocompression bonding between fibers is small, and sufficient handling and strength cannot be obtained. On the other hand, when the partial thermocompression bonding rate exceeds 15%, the thermocompression bonding frequency between the fibers is high, and it is difficult to follow the shape of the concavo-convex mold with a high bending resistance and a hard texture. The partial thermocompression bonding ratio is the percentage of the area of the thermocompression bonding part to the sum of the thermocompression bonding part and the non-crimping part directly by image analysis from the surface photograph of the nonwoven fabric surface by an optical microscope or scanning electron microscope (SEM). It is a value measured by a method for obtaining, or a method for obtaining a percentage of the mass of the thermocompression bonding portion relative to the mass sum of the thermocompression bonding portion and the non-thermocompression bonding portion by cutting out the portion thermocompression bonded in the surface photograph.

なお、上記熱圧着部分の1箇所当たりの面積は0.1〜5.0mm2であることが好ましく、0.2〜3.0mm2であることがより好ましい。上記面積が0.1mm2未満である場合、繊維同士の結合が少なく、摩擦強度等の物理強度が低い傾向があり、5.0mm2を超える場合、熱圧着部分の面積が多く、風合いが硬い傾向がある。また熱圧着部分の最小間隔は1〜10mmであることが好ましく、2〜8mmであることがより好ましい。上記最小間隔が1mm未満である場合、熱圧着部分が多く風合いが硬い傾向があり、10mmを超える場合、繊維同士の結合が少なく、摩擦強度等の物理強度が低い傾向がある。また熱圧着部分は、不織布表面の全面に均等に分布させることが好ましい。 In addition, it is preferable that the area per location of the said thermocompression bonding part is 0.1-5.0 mm < 2 >, and it is more preferable that it is 0.2-3.0 mm < 2 >. When the area is less than 0.1 mm 2 , there is less fiber-to-fiber bonding and physical strength such as friction strength tends to be low, and when it exceeds 5.0 mm 2 , the area of the thermocompression bonding portion is large and the texture is hard. Tend. Moreover, it is preferable that the minimum space | interval of a thermocompression bonding part is 1-10 mm, and it is more preferable that it is 2-8 mm. When the minimum distance is less than 1 mm, there is a tendency that the thermocompression bonding portions are many and the texture is hard. Moreover, it is preferable to distribute a thermocompression bonding part uniformly on the whole surface of a nonwoven fabric surface.

熱圧着部分の凹部(すなわち熱エンボスロール加工等による熱圧着によって形成される窪み)の深さは0.2〜2.0mmであることが好ましく、0.3〜1.5mmであることがより好ましい。上記深さが0.2mm未満である場合、熱圧着部分の結合が少ない傾向があり、2.0mmを超える場合、エンボスロール等による加工が難しい傾向がある。   The depth of the concave portion of the thermocompression bonding portion (that is, the depression formed by thermocompression bonding by hot embossing roll processing or the like) is preferably 0.2 to 2.0 mm, more preferably 0.3 to 1.5 mm. preferable. When the depth is less than 0.2 mm, there is a tendency that the bonding of the thermocompression bonding portion is small, and when the depth exceeds 2.0 mm, processing by an embossing roll or the like tends to be difficult.

上記の熱圧着部分の面積は、不織布表面の光学顕微鏡若しくは走査型電子顕微鏡(SEM)による表面写真から、画像解析により熱圧着部分の面積を求める方法、又は表面写真にて熱圧着されている部分を切り抜き質量測定から換算する方法により測定される値である。一方、最小間隔は、光学顕微鏡又は走査型電子顕微鏡(SEM)による不織布の表面写真から、1つの熱圧着部分と、その周りに存在する別の熱圧着部分との距離の内、最も間隔の短いものを求めるという方法で測定される値である。また、上記の凹部深さは、光学顕微鏡又は走査型電子顕微鏡(SEM)による、熱圧着部分の最小厚み部分(通常は熱圧着部分の中心部)を含む不織布断面の写真から、熱圧着部分の最小厚みと非熱圧着部分の厚みとの差の絶対値を求めることにより測定される値である。   The area of the above-mentioned thermocompression bonding part is a method of obtaining the area of the thermocompression bonding part by image analysis from a surface photograph of the nonwoven fabric surface by an optical microscope or a scanning electron microscope (SEM), or a part that is thermocompression bonded by the surface photograph. Is a value measured by a method of converting from cutout mass measurement. On the other hand, the minimum interval is the shortest of the distances between one thermocompression bonding part and another thermocompression bonding part existing around it from a surface photograph of the nonwoven fabric by an optical microscope or a scanning electron microscope (SEM). It is a value measured by the method of finding things. Further, the depth of the concave portion is determined from the photograph of the cross section of the nonwoven fabric including the minimum thickness portion (usually the center portion of the thermocompression bonding portion) of the thermocompression bonding portion by an optical microscope or a scanning electron microscope (SEM). It is a value measured by determining the absolute value of the difference between the minimum thickness and the thickness of the non-thermocompression bonded portion.

熱圧着部の上記の面積、最小間隔及び凹部深さを実現するための方法としては、上記熱圧着部のサイズ及び形状に対応するサイズ及び形状の凸部を有するエンボスロールを用いた熱圧着を典型的に採用できる。   As a method for realizing the above-mentioned area, minimum interval, and recess depth of the thermocompression bonding portion, thermocompression bonding using an embossing roll having a convex portion having a size and a shape corresponding to the size and shape of the thermocompression bonding portion. Typically employable.

捲縮長繊維不織布の目付は、50〜200g/m2である。上記目付が50g/m2未満では、クッション体等の複合成型体を形成する場合に、樹脂液の染み出しが生じ易く、クッション体の補強材効果が少ない。また目付が200g/m2を超えると、樹脂液の染み出しは生じ難いが、成型用の凹凸金型に形状追随し難く、成型加工性に劣り、クッション体の剛性が大きくなる等の問題が生じる。上記目付は、好ましくは60〜150g/m2であり、より好ましくは、60〜100g/m2である。 The basis weight of the crimped long fiber nonwoven fabric is 50 to 200 g / m 2 . When the weight per unit area is less than 50 g / m 2 , when a composite molded body such as a cushion body is formed, the resin liquid is likely to ooze out and the cushion body has little reinforcing effect. If the basis weight exceeds 200 g / m 2 , it is difficult for the resin liquid to ooze out, but it is difficult to follow the shape of the mold for molding, the molding processability is inferior, and the cushion body has increased rigidity. Arise. The said basis weight becomes like this. Preferably it is 60-150 g / m < 2 >, More preferably, it is 60-100 g / m < 2 >.

捲縮長繊維不織布の厚みは、0.5〜2.0mmである。上記厚みが0.5mm未満では、樹脂液の染み出しが生じ易く、複合成型体の補強材効果が少ない。また2.0mmを超えると、樹脂液は染み出し難いが、成型用の凹凸金型に形状追随し難く、成型加工性に劣り、複合成型体の剛性が大きくなる等の問題が生じる。上記厚みは、好ましくは0.7〜1.5mmである。上記目付及び厚みは、JIS−L−1906で規定されている方法で測定される値である。   The thickness of the crimped long fiber nonwoven fabric is 0.5 to 2.0 mm. When the thickness is less than 0.5 mm, the resin liquid is likely to ooze out and the composite material has little reinforcing effect. On the other hand, when the thickness exceeds 2.0 mm, it is difficult for the resin liquid to ooze out, but it is difficult to follow the shape of the mold for molding, the molding processability is inferior, and the rigidity of the composite molded body increases. The thickness is preferably 0.7 to 1.5 mm. The said fabric weight and thickness are the values measured by the method prescribed | regulated by JIS-L-1906.

上記捲縮長繊維不織布は、例えば、公知のスパンボンド法で、紡口直下の冷却条件により発現させた捲縮長繊維ウェブを熱エンボスロールで部分熱圧着させることにより、又は潜在捲縮長繊維ウェブを熱処理により捲縮させて熱エンボスロールで部分熱圧着させることにより製造することができる。   The above-mentioned crimped long fiber non-woven fabric is obtained by, for example, partially crimping a crimped long fiber web expressed by a known spunbond method under cooling conditions directly under the spinning nozzle with a hot embossing roll, or latent crimped long fibers. The web can be produced by crimping by heat treatment and partially thermocompression bonding with a hot embossing roll.

捲縮長繊維不織布の通気性は、0.1〜150cm3/cm2/secであり、好ましくは0.5〜130cm3/cm2/secである。上記通気性が0.1cm3/cm2/sec未満である場合、樹脂液は染み出し難いが、不織布が緻密化され、硬い風合いとなる。一方、上記通気性が150cm3/cm2/secを超える場合、樹脂液が染み出し易くなる。上記通気性は、JIS−L−1906のフラジュール形法に準じて求められる値である。 The air permeability of the crimped long-fiber nonwoven fabric is 0.1 to 150 cm 3 / cm 2 / sec, preferably 0.5 to 130 cm 3 / cm 2 / sec. When the air permeability is less than 0.1 cm 3 / cm 2 / sec, the resin liquid is difficult to exude, but the nonwoven fabric is densified and has a hard texture. On the other hand, when the said air permeability exceeds 150 cm < 3 > / cm < 2 > / sec, it becomes easy to ooze out the resin liquid. The said air permeability is a value calculated | required according to the fragile form method of JIS-L-1906.

捲縮長繊維不織布は、JIS−K−7201に従って測定される酸素指数(LOI)が20以上であり、好ましくは21以上である。酸素指数が20未満では、自動車内装材料の燃焼試験(JIS D1201 FMVSS N0.302)の水平法の燃焼試験で不合格となる等、難燃性が十分でない。上記酸素指数の上限は特に限定されないが、生産性の観点から、上記酸素指数は40以下であることが好ましく、30以下であることがより好ましい。   The crimped continuous fiber nonwoven fabric has an oxygen index (LOI) measured according to JIS-K-7201 of 20 or more, preferably 21 or more. If the oxygen index is less than 20, the flame retardancy is not sufficient, such as failure in the horizontal combustion test of the combustion test of automobile interior materials (JIS D1201 FMVSS N0.302). The upper limit of the oxygen index is not particularly limited, but from the viewpoint of productivity, the oxygen index is preferably 40 or less, and more preferably 30 or less.

上記酸素指数を20以上にする手段としては、例えば、ポリプロピレン系捲縮長繊維中に難燃剤を含有させること、安定剤を含有させること、難燃剤と安定剤とを併用すること、等が挙げられる。捲縮長繊維不織布中の難燃剤の含有量、より好ましくはポリプロピレン系捲縮長繊維中の難燃剤の含有量は、それぞれ、好ましくは0.1〜10.0質量%、より好ましくは0.2〜5.0質量%、更に好ましくは0.3〜3.0質量%である。難燃剤を含有するポリプロピレン系捲縮長繊維は、例えば予め難燃剤を練り込んだ樹脂を紡糸すること、捲縮長繊維の表面に難燃剤を塗布すること等によって製造でき、これにより難燃性に優れる捲縮長繊維不織布層が得られる。難燃剤の上記含有量がそれぞれ0.1質量%未満である場合、難燃性が低い傾向があり、10.0質量%を超える場合、難燃性は高くなるが、繊維の強度が低下する傾向がある。   Examples of means for setting the oxygen index to 20 or more include, for example, containing a flame retardant in a polypropylene-based crimped continuous fiber, containing a stabilizer, and using a flame retardant and a stabilizer in combination. It is done. The content of the flame retardant in the crimped continuous fiber nonwoven fabric, more preferably the content of the flame retardant in the polypropylene-based crimped continuous fiber, is preferably 0.1 to 10.0% by mass, more preferably 0.00. It is 2-5.0 mass%, More preferably, it is 0.3-3.0 mass%. A polypropylene-based crimped long fiber containing a flame retardant can be produced, for example, by spinning a resin previously kneaded with a flame retardant, or by applying a flame retardant to the surface of the crimped long fiber. A crimped continuous fiber non-woven fabric layer having excellent resistance is obtained. When the above contents of the flame retardant are each less than 0.1% by mass, the flame retardancy tends to be low, and when it exceeds 10.0% by mass, the flame retardancy is increased, but the strength of the fiber is decreased. Tend.

難燃剤としては、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリフエニルホスフェート、トリクレジルホスフェート等の非ハロゲン系リン酸エステル類、脂肪族ポリホスフェート、芳香族ポリホスフェート等の特殊リン酸エステル類、含ハロゲンリン酸エステル類、デカブロモジフェニルオキサイド、オクタブロモジフェニルオキサイド等のデカブロ系等の臭素系難燃剤、メラミン系難燃剤、燐酸グアニジン誘導体、燐窒素系化合物、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム等の無機充填剤等の1種又は2種以上を使用できる。特に、過酸化処理した4―ブチルアミノ−2,2,6,6−テトラメチルペリジンと、2,4,6−トリクロロ−1,3,5−トリアジンとの反応生成物にシクロヘキサンを反応させて得た反応生成物と、N,N’−ビス(3−アミノプロピル)エチレンジアミンとの反応生成物、及び、1,3,5−トリアジン−2,4,6−(1H,3H,5H)トリオンと1,3,5−トリアジン2,4,6−トリアミンとの化合物、ポリリン酸メラミン等のメラミン系難燃剤が好ましく用いられる。更に、ポリプロピレン樹脂の分解を防止する安定剤として、例えば、NOR(N―アルコキシ)立体障害性アミン等の安定剤等を併用することによっても難燃性を向上させることができる。   Flame retardants include non-halogen phosphates such as trimethyl phosphate, triethyl phosphate, tributyl phosphate, triphenyl phosphate, tricresyl phosphate, special phosphate esters such as aliphatic polyphosphate, aromatic polyphosphate, and the like. Brominated flame retardants such as halogenated phosphoric acid esters, decabromodiphenyl oxide, octabromodiphenyl oxide, etc., melamine flame retardants, guanidine phosphate derivatives, phosphorous nitrogen compounds, aluminum hydroxide, magnesium hydroxide, calcium carbonate 1 type, or 2 or more types, such as inorganic fillers, etc. can be used. In particular, the reaction product of peroxidized 4-butylamino-2,2,6,6-tetramethylperidine and 2,4,6-trichloro-1,3,5-triazine is reacted with cyclohexane. Reaction product of N, N′-bis (3-aminopropyl) ethylenediamine and 1,3,5-triazine-2,4,6- (1H, 3H, 5H) A compound of trione and 1,3,5-triazine 2,4,6-triamine, and a melamine flame retardant such as melamine polyphosphate are preferably used. Furthermore, flame retardancy can also be improved by using, for example, a stabilizer such as NOR (N-alkoxy) sterically hindered amine as a stabilizer for preventing the polypropylene resin from being decomposed.

ポリプロピレン系捲縮長繊維は、通常ポリプロピレン樹脂に添加される各種の添加剤、例えばフェノール系、チオエーテル系等の酸化防止剤、光安定剤、熱安定剤、紫外線吸収剤、顔料、無機充填剤、有機充填剤等を本発明の目的を損なわない範囲で含有することができる。   Polypropylene crimped filaments are various additives usually added to polypropylene resins, such as phenolic and thioether-based antioxidants, light stabilizers, heat stabilizers, ultraviolet absorbers, pigments, inorganic fillers, An organic filler or the like can be contained within a range that does not impair the object of the present invention.

捲縮長繊維不織布は、目的に応じた所望の組成を有するポリプロピレン系樹脂組成物、及び、必要に応じて通常ポリプロピレン系樹脂に添加される前述の各種添加剤のそれぞれ所定量を、通常の混合装置、例えばスーパーミキサー、リボンブレンダー、バンバリミキサー等を用いて混合し、通常用いられる単軸押出機、2軸押出機、ブラベンダー又はロール等で、溶融混練温度150℃〜250℃、好ましくは180℃〜230℃で溶融混練ペレタイズすることにより得ることができる。   The crimped long fiber nonwoven fabric is prepared by mixing a predetermined amount of each of the above-mentioned various additives that are usually added to a polypropylene resin composition having a desired composition according to the purpose and, if necessary, a normal polypropylene resin. Mixing using an apparatus such as a super mixer, a ribbon blender, a Banbury mixer, etc., and using a commonly used single screw extruder, twin screw extruder, Brabender or roll, etc., a melt kneading temperature of 150 ° C. to 250 ° C., preferably 180 ° It can be obtained by melt-kneading pelletizing at a temperature of from 230C to 230C.

捲縮長繊維不織布の剛軟度は、15cm以下であることが好ましい。上記剛軟度が15cmを超える場合、硬い風合いとなり、補強材が発泡成型用の凹凸金型に馴染み難く、成型加工性及び複合成型体の剛性が低くなる傾向がある。上記剛軟度は、より好ましくは12cm以下であり、更に好ましくは10cm以下である。一方、取り扱い性の観点から、上記剛軟度は、好ましくは1cm以上、より好ましくは2cm以上、更に好ましくは3cm以上である。なお、上記剛軟度は、JIS−L−1960、45°カンチレバー法に準じて測定される値である。   The bending resistance of the crimped long fiber nonwoven fabric is preferably 15 cm or less. When the bending resistance exceeds 15 cm, the texture becomes hard and the reinforcing material is not easily adapted to the concavo-convex mold for foam molding, and the moldability and the rigidity of the composite molded body tend to be low. The bending resistance is more preferably 12 cm or less, still more preferably 10 cm or less. On the other hand, from the viewpoint of handleability, the bending resistance is preferably 1 cm or more, more preferably 2 cm or more, and further preferably 3 cm or more. The bending resistance is a value measured according to JIS-L-1960, 45 ° cantilever method.

捲縮長繊維不織布の破断伸度は、70%以上であることが好ましい。上記破断伸度が70%以上である場合、凹凸金型への形状追随性が良好である。上記破断伸度は、より好ましくは75%以上であり、更に好ましくは80%以上である。一方、上記破断伸度は、形態保持の観点から、好ましくは200%以下であり、より好ましくは150%以下であり、更に好ましくは130%以下である。   The breaking elongation of the crimped continuous fiber nonwoven fabric is preferably 70% or more. When the elongation at break is 70% or more, the shape following property to the concavo-convex mold is good. The breaking elongation is more preferably 75% or more, and further preferably 80% or more. On the other hand, the breaking elongation is preferably 200% or less, more preferably 150% or less, and still more preferably 130% or less from the viewpoint of maintaining the shape.

捲縮長繊維不織布の目付換算の5%中間応力値は、0.6N/5cm以下であることが好ましく、この場合凹凸金型への形状追随性が良好である。上記目付換算の5%中間応力値とは、引張強力測定における5%伸長時の中間応力を目付で除した値として求められる。上記目付換算の5%中間応力値は、より好ましくは0.55N/5cm以下であり、更に好ましくは0.5N/5cm以下である。目付換算の5%中間応力値は下式で表される。
{目付換算の5%中間応力値(N/5cm)=(5%中間応力(N/5cm))/(目付(g/m2))}
The 5% intermediate stress value in terms of basis weight of the crimped long fiber nonwoven fabric is preferably 0.6 N / 5 cm or less, and in this case, the shape following property to the concavo-convex mold is good. The above-mentioned basis weight converted 5% intermediate stress value is obtained as a value obtained by dividing the intermediate stress at 5% elongation in tensile strength measurement by the basis weight. The 5% intermediate stress value in terms of the basis weight is more preferably 0.55 N / 5 cm or less, and further preferably 0.5 N / 5 cm or less. The 5% intermediate stress value in terms of basis weight is expressed by the following equation.
{5% intermediate stress value in terms of basis weight (N / 5 cm) = (5% intermediate stress (N / 5 cm)) / (weight per unit area (g / m 2 ))}

捲縮長繊維不織布の上記破断伸度が70%以上であること、及び上記目付換算の5%中間応力値が0.6N/5cm以下であることは、補強材が成型金型の形状に馴染みやすく凹凸型に対する追従性に優れる点で、本発明の複合成型体を自動車の座席用ウレタンモールド成型の用途に用いる場合に特に好適である。   The fact that the above-mentioned breaking elongation of the crimped long-fiber non-woven fabric is 70% or more and that the above-mentioned basis weight conversion 5% intermediate stress value is 0.6 N / 5 cm or less is that the reinforcing material is familiar with the shape of the molding die. It is particularly suitable when the composite molded body of the present invention is used for urethane mold molding for automobile seats because it is easy to follow and conforms to the concavo-convex mold.

上記破断伸度及び5%中間応力値は、不織布のタテ方向(すなわち巻き取り方向すなわち不織布長さ方向)及びヨコ方向(すなわち該タテ方向に対して垂直の方向)の各々で、定長引張試験機を用いた引張強力測定により測定される値であり、破断伸度及び5%中間応力値の上記範囲は、タテ方向及びヨコ方向で測定される値の両者が上記範囲であることを意味する。   The elongation at break and the 5% intermediate stress value are constant length tensile tests in each of the warp direction (that is, the winding direction, that is, the length direction of the nonwoven fabric) and the transverse direction (that is, the direction perpendicular to the warp direction) of the nonwoven fabric. It is a value measured by tensile strength measurement using a machine, and the above ranges of elongation at break and 5% intermediate stress value mean that both the values measured in the vertical direction and the horizontal direction are within the above range. .

捲縮長繊維不織布の平均見かけ密度は、好ましくは、0.05〜0.18g/cm3であり、より好ましくは0.06〜0.15g/cm3である。上記平均見かけ密度が0.05g/cm3未満である場合、樹脂の染み出しが多くなる傾向があり、0.18g/cm3を超える場合、形状追従性が低下してしまう傾向がある。なお上記平均見かけ密度は、不織布の目付及び厚みから、下記式、
(平均見かけ密度)=(目付)/(厚み)
に従って算出される値である。平均見かけ密度は、繊維の繊度、捲縮数、目付等を変えることにより制御できる。
The average apparent density of Mekuchijimicho fiber nonwoven fabric is preferably a 0.05~0.18g / cm 3, more preferably 0.06~0.15g / cm 3. If the average apparent density is less than 0.05 g / cm 3, tend to resin exudation increases, if it exceeds 0.18 g / cm 3, there is a tendency that shape-formable decreases. The average apparent density is calculated from the following formula, from the basis weight and thickness of the nonwoven fabric:
(Average apparent density) = (weight per unit area) / (thickness)
Is a value calculated according to The average apparent density can be controlled by changing the fineness of the fiber, the number of crimps, the basis weight, and the like.

本発明の捲縮長繊維不織布は、2層以上の捲縮長繊維不織布層からなる積層構造であってもよい。この場合、各層は、互いに、同種又は異種のポリマー成分で構成された同一又は異なる繊度のものであることができる。本発明の捲縮長繊維不織布が2層以上の捲縮長繊維不織布層からなる場合、層ごとに部分熱圧着率が異なってもよく、各層の部分圧着率が、好ましくは2〜15%、より好ましくは3〜13%、更に好ましくは5〜12%とされる。しかし熱圧着は、典型的には後述するように熱エンボスロール加工等により行い、2層以上の捲縮長繊維不織布層が積層された状態で積層物全体を熱圧着することが好ましい。この場合各層の部分熱圧着率は一致する。   The crimped long fiber nonwoven fabric of the present invention may have a laminated structure composed of two or more layers of crimped long fiber nonwoven fabric. In this case, each layer can be of the same or different fineness composed of the same or different polymer components. When the crimped long fiber nonwoven fabric of the present invention is composed of two or more layers of crimped long fiber nonwoven fabric, the partial thermocompression bonding rate may be different for each layer, and the partial crimping rate of each layer is preferably 2 to 15%, More preferably, it is 3 to 13%, and further preferably 5 to 12%. However, the thermocompression bonding is typically performed by hot embossing roll processing or the like as will be described later, and it is preferable that the entire laminate is thermocompression bonded in a state where two or more layers of crimped continuous fiber nonwoven fabrics are laminated. In this case, the partial thermocompression bonding rates of the respective layers are the same.

また、2層以上の捲縮長繊維不織布層の層間は、部分熱圧着率が2〜15%となるように熱圧着によって接合されていることが好ましい。上記部分熱圧着率が2%未満である場合、繊維相互の熱圧着頻度が少なく、取扱い性及び強度が低くなる傾向がある。一方上記部分熱圧着率が15%を超える場合、繊維相互の熱圧着頻度が多く、剛軟度が大きく硬い風合いで凹凸金型に形状追随し難い傾向がある。上記部分熱圧着率は、より好ましくは3〜13%であり、更に好ましくは5〜12%である。なお上記の層間の部分熱圧着は、典型的には、2層以上の捲縮長繊維不織布層が積層された積層物全体を熱圧着することにより、各層の部分熱圧着と同時に実現できる。   Moreover, it is preferable that the interlayer of two or more crimped long-fiber nonwoven fabric layers is joined by thermocompression bonding so that the partial thermocompression bonding rate is 2 to 15%. When the partial thermocompression bonding rate is less than 2%, the frequency of thermocompression bonding between fibers tends to be low, and the handleability and strength tend to be low. On the other hand, when the partial thermocompression bonding rate exceeds 15%, the frequency of thermocompression bonding between the fibers is high, and the shape tends to be difficult to follow the concave-convex mold with a high bending resistance and a hard texture. The partial thermocompression bonding ratio is more preferably 3 to 13%, still more preferably 5 to 12%. The partial thermocompression bonding between the layers can be realized simultaneously with the partial thermocompression bonding of each layer, typically by thermocompression bonding of the entire laminate in which two or more crimped long fiber nonwoven fabric layers are laminated.

2層以上の捲縮長繊維不織布層からなる積層構造は例えば粗密構造であることができる。例えば、平均見かけ密度が0.03〜0.12g/cm3の粗な構造の層と、平均見かけ密度が0.08〜0.35g/cm3で上記粗な構造よりも密な構造の層とが積層された2層構造を形成することができる。 The laminated structure composed of two or more crimped long-fiber nonwoven fabric layers can be, for example, a dense structure. For example, the average apparent a layer of coarse structure of density 0.03~0.12g / cm 3, a layer of dense structure than the coarse structure average apparent density of 0.08~0.35g / cm 3 Can be formed.

本発明の複合成型体における補強材は、上述の捲縮長繊維不織布の少なくとも一方の表面に積層された他の層を更に含むことができる。他の層としては、非捲縮長繊維不織布、合成樹脂フィルム等が挙げられる。非捲縮長繊維不織布は、発泡成型に用いる樹脂液の不織布表面への染み出しを抑制する効果を与える。非捲縮長繊維不織布を構成する非捲縮長繊維の繊度は、好ましくは0.5〜5dtex、より好ましくは0.7〜4dtexである。上記繊度が0.5dtex未満である場合は、柔軟性は高くなるが、嵩高性が低くなる傾向があり、5dtexを超える場合は、嵩高性が高くなるが、柔軟性が低くなる傾向がある。また、非捲縮長繊維の繊維断面は、密な構成とする観点から丸形断面であることが好ましい。   The reinforcing material in the composite molded body of the present invention can further include another layer laminated on at least one surface of the above-described crimped long fiber nonwoven fabric. Examples of other layers include non-crimped long-fiber nonwoven fabrics and synthetic resin films. The non-crimped long-fiber non-woven fabric gives an effect of suppressing the seepage of the resin liquid used for foam molding to the non-woven fabric surface. The fineness of the non-crimped long fibers constituting the non-crimped long-fiber nonwoven fabric is preferably 0.5 to 5 dtex, more preferably 0.7 to 4 dtex. When the fineness is less than 0.5 dtex, the flexibility is high, but the bulkiness tends to be low, and when it exceeds 5 dtex, the bulkiness is high, but the flexibility tends to be low. Further, the fiber cross section of the non-crimped long fiber is preferably a round cross section from the viewpoint of a dense configuration.

非捲縮長繊維は、繊維の分散性、繊維の緻密性等の観点から、成形加工時の樹脂の補強材表面への染み出し性を向上させる目的で用いることもできる。非捲縮長繊維は、捲縮を発現させない他は、前述の捲縮長繊維と同様の方法で製造できる。   Non-crimped long fibers can also be used for the purpose of improving the leachability of the resin to the reinforcing material surface during molding from the viewpoint of fiber dispersibility, fiber density, and the like. Non-crimped long fibers can be produced by the same method as the above-described crimped long fibers, except that crimps are not expressed.

本発明においては、捲縮長繊維不織布と非捲縮長繊維不織布とが前述したような粗密構造を形成していてもよく、例えば、捲縮長繊維不織布を上記粗な構造とし、非捲縮長繊維不織布を上記密な構造とすることができる。   In the present invention, the crimped continuous fiber non-woven fabric and the non-crimped continuous fiber nonwoven fabric may form the above-described dense structure. For example, the crimped continuous fiber nonwoven fabric has the above-mentioned rough structure, The long fiber nonwoven fabric can have the dense structure.

上記合成樹脂フィルムは、補強材表面への樹脂の染み出しをより良好に防ぐという利点を与える。合成樹脂フィルムとしては、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−α―オレフィン共重合体、その他のエチレン系樹脂、ポリプロピレン系樹脂、ポリブテン系樹脂、オレフィン系樹脂として、エチレン−アクリル酸共重合体、エチレン−アクリル酸メチル共重合体等の1種又は2種以上を組み合わせて用いることができる。更に、オレフィン系樹脂に炭酸カルシウム、硫酸カルシウム、硫酸バリウム等の無機充填剤を添加して延伸加工すること等により形成される微多孔質フィルム等も使用できる。   The synthetic resin film provides an advantage of better preventing the resin from exuding to the surface of the reinforcing material. Synthetic resin films include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ethylene-α-olefin copolymer, other ethylene resins, polypropylene As the resin, polybutene resin, and olefin resin, one or more of ethylene-acrylic acid copolymer and ethylene-methyl acrylate copolymer can be used in combination. Furthermore, a microporous film formed by adding an inorganic filler such as calcium carbonate, calcium sulfate, barium sulfate or the like to an olefin-based resin and drawing it can be used.

上記合成樹脂フィルムの厚みは、成形加工性の観点から、好ましくは20〜70μm、より好ましくは30〜60μmである。特に、好ましい熱シール加工を行うために、融点差が互いに10〜50℃である複数種のフィルムからなる積層フィルムを用いることが好ましい。積層フィルムとしては、例えば、低密度ポリエチレン樹脂、エチレン−酢酸ビニル共重合体樹脂、ポリアミド系樹脂等を含むものが用いられる。   The thickness of the synthetic resin film is preferably 20 to 70 μm, more preferably 30 to 60 μm, from the viewpoint of moldability. In particular, in order to perform a preferable heat sealing process, it is preferable to use a laminated film composed of a plurality of types of films having a melting point difference of 10 to 50 ° C. As a laminated | multilayer film, what contains a low density polyethylene resin, ethylene-vinyl acetate copolymer resin, a polyamide-type resin etc. is used, for example.

合成樹脂フィルムは、捲縮長繊維不織布及び/又は非捲縮長繊維不織布に接して積層できるが、金型追従性の観点から、好ましくは捲縮長繊維不織布に接して積層される。好ましい層構成としては、捲縮長繊維不織布/合成樹脂フィルム/非捲縮長繊維不織布の順で積層された構成が挙げられる。   The synthetic resin film can be laminated in contact with the crimped long fiber nonwoven fabric and / or the non-crimped long fiber nonwoven fabric, but is preferably laminated in contact with the crimped long fiber nonwoven fabric from the viewpoint of mold followability. As a preferable layer configuration, a configuration in which crimped long-fiber nonwoven fabric / synthetic resin film / non-crimped long-fiber nonwoven fabric are laminated in this order can be given.

捲縮長繊維不織布と、非捲縮長繊維不織布及び/又は合成樹脂フィルムとの複合シートは、樹脂押し出しラミネート法、タンデム押し出しラミネート法、ウレタン系樹脂、エステル系樹脂等のドライラミネート法、ホットメルトパウダー樹脂ラミネート法、ホットメルト系樹脂のカーテンスプレー法等、更に、加熱ロールを接触させることによる熱ラミネート法等により形成できる。捲縮長繊維不織布又は非捲縮長繊維不織布と、合成樹脂フィルムとの間の接着力は、好ましくは、10N/25mm以上、より好ましくは、15N〜100N/25mmである。なお上記接着力は、180度はく離試験方法での測定値である。   Composite sheets of crimped long-fiber non-woven fabric and non-crimped long-fiber non-woven fabric and / or synthetic resin film are resin extrusion laminating method, tandem extrusion laminating method, dry laminating method such as urethane resin and ester resin, hot melt It can be formed by a powder resin laminating method, a hot melt resin curtain spraying method or the like, and a heat laminating method by contacting a heating roll. The adhesive force between the crimped long fiber nonwoven fabric or the non-crimped long fiber nonwoven fabric and the synthetic resin film is preferably 10 N / 25 mm or more, more preferably 15 N to 100 N / 25 mm. The adhesive force is a value measured by a 180 degree peel test method.

本発明における発泡成型樹脂としては、ポリウレタン樹脂、ポリエステル樹脂、ポリ塩化ビニル樹脂、ポリエチレン樹脂等が挙げられ、柔軟性、耐久性、クッション性等の観点からウレタン発泡成型樹脂が特に好ましい。ウレタン発泡成型樹脂の具体例としては、ポリオール成分にイソシアネート類を100〜200℃の温度に加熱して反応させて発泡成型する等が挙げられる。   Examples of the foam molding resin in the present invention include polyurethane resin, polyester resin, polyvinyl chloride resin, polyethylene resin and the like, and urethane foam molding resin is particularly preferable from the viewpoints of flexibility, durability, cushioning properties and the like. Specific examples of the urethane foam molding resin include foam molding by reacting a polyol component with an isocyanate heated to a temperature of 100 to 200 ° C.

本発明の複合成型体は、捲縮長繊維不織布を発泡成型用金型の内側凹凸部に取付け、その後、ウレタン樹脂液等の発泡樹脂原液を注入して一体成型することにより、例えば自動車や家具等のシート用クッション体等として形成できる。本発明の複合成型体は、発泡成型樹脂、捲縮長繊維不織布、並びに任意の非捲縮長繊維不織布及び/又は合成樹脂フィルムのみで形成されてもよいし、用途に応じて他の部材が組み合わされたものでもよい。   The composite molded body of the present invention is obtained by attaching a crimped continuous fiber non-woven fabric to an inner concavo-convex portion of a foam molding die, and then injecting a foam resin stock solution such as a urethane resin solution into an integral molding, for example, for automobiles and furniture. It can be formed as a cushion body for a seat. The composite molded body of the present invention may be formed of only a foam molded resin, a crimped long fiber nonwoven fabric, and an arbitrary non-crimped long fiber nonwoven fabric and / or a synthetic resin film. It may be combined.

本発明を実施例に基づいて説明する。測定方法は以下のとおりである。   The present invention will be described based on examples. The measurement method is as follows.

(1)繊度(dtex):
顕微鏡で500倍の拡大写真を撮影し、繊維20本の数平均繊維径から繊度を算出した。
(1) Fineness (dtex):
A 500 times magnified photograph was taken with a microscope, and the fineness was calculated from the number average fiber diameter of 20 fibers.

(2)捲縮数及びらせん捲縮径:
不織布を部分熱圧着前に採取し、その中から20cmの単糸10本を変形させない様に採取した後、単糸の片方に繊維2mg/dtexの加重を吊り下げた状態で、25mmの間の捲縮数及び捲縮している部分の外径を拡大鏡を用いて数え、n=10の平均値を捲縮数及びらせん捲縮径として求めた。
(2) Number of crimps and spiral crimp diameter:
A non-woven fabric was sampled before partial thermocompression bonding, and 10 single yarns of 20 cm were collected from the nonwoven fabric so as not to be deformed. Then, a weight of 2 mg / dtex of fiber was suspended on one side of the single yarn, and the width was 25 mm. The number of crimps and the outer diameter of the crimped portion were counted using a magnifying glass, and the average value of n = 10 was determined as the number of crimps and the spiral crimp diameter.

(3)目付(g/m2):
縦20cm×横25cmの試料を3箇所切り取って質量を測定し、3箇所の平均値を単位当たりの質量に換算して求めた。(JIS−L−1906に準拠)
(3) Weight per unit area (g / m 2 ):
A sample of 20 cm in length and 25 cm in width was cut out at three places to measure the mass, and an average value at three places was converted into a mass per unit. (Conforms to JIS-L-1906)

(4)厚み(mm):
JIS−L−1906に準じて、直径10mmの加圧子で荷重10kPaにて10箇所測定して、その平均値を厚みとした。
(4) Thickness (mm):
According to JIS-L-1906, 10 places were measured with a load of 10 kPa with a pressurizer having a diameter of 10 mm, and the average value was taken as the thickness.

(5)部分熱圧着部1個当たりの面積、部分熱圧着部の間隔及び部分熱圧着率:
<部分熱圧着部1個当たりの面積及び部分熱圧着部の間隔>
キーエンス社製(VE−8800)走査型電子顕微鏡を用いた不織布表面の拡大写真から部分熱圧着部を1ずつn=10で切り出し、質量を測定した後に面積換算し平均値を部分熱圧着部1個の当たりの面積として計測した。一方、1つの部分熱圧着部と、その周りに存在する最も近い他の部分熱圧着部との最小距離を求め、これを、異なる部分熱圧着部に対してn=10で求め、その平均値を部分熱圧着部の間隔として計測した。
<部分熱圧着率>
キーエンス社製(VE−8800)走査型電子顕微鏡を用いた不織布表面の拡大写真から、30倍の視野で、不織布の全面積に対する部分熱圧着部分の面積の割合を算出した。
部分熱圧着率=(部分圧着部分の全面積)/(不織布の全面積)
(5) Area per partial thermocompression bonding part, interval between partial thermocompression bonding parts, and partial thermocompression bonding rate:
<The area per partial thermocompression bonding part and the space | interval of a partial thermocompression bonding part>
A partial thermocompression bonding part is cut out by n = 10 one by one from an enlarged photograph of the nonwoven fabric surface using a Keyence Co. (VE-8800) scanning electron microscope, and the mass is measured. It was measured as the area per piece. On the other hand, the minimum distance between one partial thermocompression bonding part and the nearest other partial thermocompression bonding part existing around it is obtained, and this is obtained with n = 10 for different partial thermocompression bonding parts, and the average value thereof Was measured as the interval between the partial thermocompression bonding portions.
<Partial thermocompression bonding rate>
From the magnified photograph of the nonwoven fabric surface using a Keyence Corporation (VE-8800) scanning electron microscope, the ratio of the area of the partial thermocompression bonding portion to the total area of the nonwoven fabric was calculated with a 30-fold field of view.
Partial thermocompression rate = (total area of partial crimped part) / (total area of non-woven fabric)

(6)通気性:
JIS−L−1906の一般長繊維不織布試験方法のフラジュール形法に準じて測定した。
(6) Breathability:
The measurement was performed according to the fragile method of the general long fiber nonwoven fabric test method of JIS-L-1906.

(7)酸素指数:
JIS−K−7201の酸素指数測定方法に準じて測定した。
(7) Oxygen index:
It measured according to the oxygen index measuring method of JIS-K-7201.

(8)剛軟度:JIS−L−1906 45°カンチレバー法に準じて求めた。 (8) Bending softness: Determined according to JIS-L-1906 45 ° cantilever method.

(9)破断伸度(%):
定長引張試験機を用い、試料幅5cm長さ30cmを切り取り、つかみ間隔20cm、引張速度10cm/minで、引張伸度をタテ、ヨコ各々3箇所測定し、破断時の伸度のタテ、ヨコ各々3箇所の平均値を破断伸度とした。
(9) Elongation at break (%):
Using a constant-length tensile tester, cut a sample width of 5 cm and a length of 30 cm, measure the tensile elongation at three vertical and horizontal positions at a gripping interval of 20 cm and a tensile speed of 10 cm / min, and determine the vertical and horizontal elongation at break. The average value for each of three locations was taken as the elongation at break.

(10)目付換算の5%中間応力値(N/5cm):
定長引張試験機を用い、試料幅5cm長さ30cmを切り取り、つかみ間隔20cm、引張速度10cm/minで、引張強力をタテ、ヨコ各々3箇所測定し、5%伸長時の応力のタテ、ヨコ各々3箇所の平均値を5%中間応力とし、これを目付けで除した値を目付換算の5%中間応力値とした。
(10) 5% intermediate stress value in terms of basis weight (N / 5 cm):
Using a constant-length tensile tester, cut a sample width of 5 cm and a length of 30 cm, measure the tensile strength at three vertical and horizontal positions at a gripping interval of 20 cm and a tensile speed of 10 cm / min, and measure the stress at 5% elongation. The average value for each of the three locations was taken as 5% intermediate stress, and the value obtained by dividing this by the basis weight was taken as the 5% intermediate stress value in terms of basis weight.

(11)平均見かけ密度(g/cm3):
平均見かけ密度=(目付け)/(厚み)
の式に従って求めた。
(11) Average apparent density (g / cm 3 ):
Average apparent density = (weight per unit area) / (thickness)
It calculated | required according to the formula of.

[実施例1]
スパンボンド用溶融紡糸機を用いて、りん酸エステル系難燃剤{1、3−フェニレンビス(2,6ジメチルフェニルホスフェート):旭電化工業製}を1.5質量%含有させたポリプロピレン樹脂(PP、融点165℃)をハの字型の異形ノズル紡口から吐出し、紡口下130mmの位置から冷却装置で糸条を側面から冷却することにより、冷却差による糸の構造差を発現させて捲縮を発現させ、牽引装置にて、V形の繊維断面を有するポリプロピレン捲縮長繊維(繊度:3dtex、捲縮数:23個/25mm、らせん捲縮径:0.7mm)のウエブ(目付100g/m2)を得た。
[Example 1]
Using a spunbond melt spinning machine, a polypropylene resin (PP) containing 1.5% by mass of a phosphoric ester-based flame retardant {1,3-phenylenebis (2,6 dimethylphenyl phosphate): manufactured by Asahi Denka Kogyo} , Melting point 165 ° C.) is discharged from the odd-shaped nozzle spout, and the yarn is cooled from the side by a cooling device from a position 130 mm below the spout, thereby causing a difference in the structure of the yarn due to the cooling difference. Polypropylene crimped long fiber (fineness: 3 dtex, number of crimps: 23 pieces / 25 mm, spiral crimped diameter: 0.7 mm) having a V-shaped fiber cross section (weight per unit) 100 g / m 2 ) was obtained.

上記の捲縮長繊維ウェブを、表面全体に1個当たりの面積が1.2mm2の凸部を4.6mmの最小間隔で千鳥配置したエンボスロールと表面平滑ロールとを組合せた部分熱圧着ロール(温度135℃、線圧300N/cm、部分熱圧着率8%)の間に通過させて、部分熱圧着された捲縮長繊維不織布を得た。 Partially thermocompression-bonding roll in which the above-described crimped long fiber web is combined with an embossing roll and a surface smoothing roll in which convex portions having an area of 1.2 mm 2 on the entire surface are staggered with a minimum spacing of 4.6 mm. (The temperature was 135 ° C., the linear pressure was 300 N / cm, and the partial thermocompression bonding rate was 8%) to obtain a crimped continuous fiber non-woven fabric partially thermocompression bonded.

得られた捲縮長繊維不織布の特性は、熱圧着部1箇所当たりの面積:1.2mm2、熱圧着部の最小間隔:4.6mm、部分熱圧着率:8%、目付:100g/m2、厚み:0.82mm、通気性:35cm3/cm2/sec、酸素指数(LOI):25、剛軟度:7.5cm、破断伸度:タテ85% ヨコ110%、5%中間応力値:タテ方向35N/5cm、ヨコ方向7N/5cm、目付換算の5%中間応力値:タテ0.35N/5cm ヨコ0.07N/5cm、平均見かけ密度:0.12g/cm3であった。 The properties of the obtained crimped long-fiber nonwoven fabric are as follows: area per thermocompression bonding part: 1.2 mm 2 , minimum distance between thermocompression bonding parts: 4.6 mm, partial thermocompression bonding rate: 8%, basis weight: 100 g / m 2 , Thickness: 0.82 mm, Breathability: 35 cm 3 / cm 2 / sec, Oxygen Index (LOI): 25, Bending Softness: 7.5 cm, Elongation at Break: Vertical 85% Horizontal 110%, 5% Intermediate Stress Value: 35 N / 5 cm in the vertical direction, 7 N / 5 cm in the horizontal direction, 5% intermediate stress value in terms of basis weight: Vertical 0.35 N / 5 cm, horizontal 0.07 N / 5 cm, average apparent density: 0.12 g / cm 3 .

得られた捲縮長繊維不織布を用いて、自動車用の座席シートの成型を行った。該不織布を発泡成型金型の内側に装着させた結果、柔らかい風合いがあり、金型への形状追随性が良く、金型への装着が良好に行えた。次いで、2液タイプのウレタン樹脂を金型に注入し、発泡成型を行った。得られた複合成型体を成型金型から離形して、不織布表面への樹脂の染み出しを観察したが、樹脂の染み出しがなかった。また、座席シートに座って移動する方法で摩擦による異音の発生有無を調べたところ、異音の発生はなく良好な複合成型品が得られたことが分かった。   Using the obtained crimped long fiber nonwoven fabric, a seat sheet for an automobile was molded. As a result of attaching the non-woven fabric to the inside of the foaming mold, there was a soft texture, good shape followability to the mold, and good mounting to the mold. Next, a two-component type urethane resin was injected into the mold and foamed. The obtained composite molded body was released from the molding die, and the resin exuded on the surface of the nonwoven fabric was observed, but no resin exuded. In addition, when the presence or absence of abnormal noise due to friction was examined by sitting and moving on a seat, it was found that a good composite molded product was obtained with no abnormal noise.

[実施例2]
実施例1の捲縮長繊維不織布の製造において、難燃剤として、過酸化処理したN−ブチル−2,2,6,6,−テトラメチル−4−ピペリジンアミンと、2,4,6,−トリクロロ−1,3,5,−トリアジンとの反応生成物にシクロヘキサンを反応させて得られる生成物と、N,N’−ビス(3−アミノピロピル)エチレンジアミンとの反応生成物である難燃剤(チバ・スペシャルテイ・ケミカルズ社製)を1.0質量%含有させたこと、及び、ポリプロピレン捲縮長繊維ウェブが目付70g/m2、捲縮数:17個/25mm、らせん捲縮径:0.7mm、繊度2dtexのものとなるように、紡糸条件を変更したこと以外は、実施例1と同様にして捲縮長繊維不織布を得た。
[Example 2]
In the production of the crimped continuous fiber nonwoven fabric of Example 1, as a flame retardant, peroxidized N-butyl-2,2,6,6-tetramethyl-4-piperidineamine and 2,4,6,- A flame retardant (Ciba) which is a reaction product of a product obtained by reacting a reaction product of trichloro-1,3,5, -triazine with cyclohexane and N, N′-bis (3-aminopyrrolyl) ethylenediamine (Specialty Chemicals Co., Ltd.) 1.0 mass%, and the polypropylene crimped continuous fiber web has a basis weight of 70 g / m 2 , the number of crimps: 17 pieces / 25 mm, and the spiral crimped diameter: 0. A crimped continuous fiber non-woven fabric was obtained in the same manner as in Example 1 except that the spinning conditions were changed to 7 mm and a fineness of 2 dtex.

得られた不織布の特性は、熱圧着部1箇所当たりの面積:1.2mm2、熱圧着部の最小間隔:4.6mm、部分熱圧着率:8%、目付:70g/m2、厚み:0.60mm、通気性:55cm3/cm/sec、酸素指数:24、剛軟度:5.3cm、破断伸度:タテ85% ヨコ110%、5%中間応力:タテ19N/5cm ヨコ4N/5cm、目付換算の5%の中間応力値:タテ0.27N/5cm ヨコ0.04N/5cm、平均見かけ密度:0.12g/cm3であった。 The properties of the obtained nonwoven fabric were as follows: area per thermocompression bonding part: 1.2 mm 2 , minimum distance between thermocompression bonding parts: 4.6 mm, partial thermocompression bonding rate: 8%, basis weight: 70 g / m 2 , thickness: 0.60 mm, Breathability: 55 cm 3 / cm 2 / sec, Oxygen index: 24, Bending softness: 5.3 cm, Elongation at break: Vertical 85% Horizontal 110%, 5% Intermediate stress: Vertical 19N / 5cm Horizontal 4N The intermediate stress value of 5% in terms of basis weight: vertical 0.27 N / 5 cm, horizontal 0.04 N / 5 cm, and average apparent density: 0.12 g / cm 3 .

得られた捲縮長繊維不織布を用いて、自動車用の座席シートの成型を行った。該不織布を発泡成型金型の内側に装着させた結果、柔らかい風合いがあり、金型への形状追随性が良く、金型への装着が良好に行えた。次いで、2液タイプのウレタン樹脂を金型に注入し、発泡成型を行った。得られた複合成型体を成型金型から離形して、不織布表面への樹脂の染み出しを観察したが、樹脂の染み出しがなかった。また、座席シートに座って移動する方法で摩擦による異音の発生有無を調べたところ、異音の発生はなく良好な複合成型品が得られたことが分かった。   Using the obtained crimped long fiber nonwoven fabric, a seat sheet for an automobile was molded. As a result of attaching the non-woven fabric to the inside of the foaming mold, there was a soft texture, good shape followability to the mold, and good mounting to the mold. Next, a two-component type urethane resin was injected into the mold and foamed. The obtained composite molded body was released from the molding die, and the resin exuded on the surface of the nonwoven fabric was observed, but no resin exuded. In addition, when the presence or absence of abnormal noise due to friction was examined by sitting and moving on a seat, it was found that a good composite molded product was obtained with no abnormal noise.

[実施例3及び4]
実施例2における難燃剤の含有量を0.5質量%(実施例3)、0.3質量%(実施例4)に変更したこと以外は、実施例2と同様の方法で(ポリプロピレン捲縮長繊維は、実施例3において、繊度:2dtex、捲縮数:16個/25cm、らせん捲縮径:0.7mmであり、実施例4において、繊度:2dtex、捲縮数:15個/25cm、らせん捲縮径:0.8mmであった)、捲縮長繊維ウェブ及び捲縮長繊維不織布を得た。得られた捲縮長繊維不織布の特性は以下の通りである。
[Examples 3 and 4]
(Polypropylene crimp) in the same manner as in Example 2 except that the flame retardant content in Example 2 was changed to 0.5 mass% (Example 3) and 0.3 mass% (Example 4). In Example 3, the fine fiber has a fineness: 2 dtex, a number of crimps: 16 pieces / 25 cm, and a helical crimp diameter: 0.7 mm. In Example 4, a fineness: 2 dtex, the number of crimps: 15 pieces / 25 cm. , Spiral crimped diameter: 0.8 mm), a crimped continuous fiber web and a crimped continuous fiber nonwoven fabric were obtained. The properties of the obtained crimped long fiber nonwoven fabric are as follows.

実施例3:熱圧着部1箇所当たりの面積:1.2mm2、熱圧着部の最小間隔:4.6mm、部分熱圧着率:8%、目付:70g/m2、厚み:0.6mm、通気性:54cm3/cm2/sec、酸素指数(LOI):22、剛軟度:5.5cm、破断伸度:タテ89% ヨコ116%、5%中間応力値:タテ23N/5cm、ヨコ3.5N/5cm、目付換算の5%中間応力値:タテ0.32N/5cm ヨコ0.05N/5cm、平均見かけ密度:0.12g/cm3
実施例4:熱圧着部1箇所当たりの面積:1.2mm、熱圧着部の最小間隔:4.6mm、部分熱圧着率:8%、目付:70g/m2、厚み:0.57mm、通気性:56cm3/cm2/sec、酸素指数(LOI):21、剛軟度:6.0cm、破断伸度:タテ86% ヨコ115%、5%中間応力値:タテ28N/5cm、ヨコ4N/5cm、目付換算の5%中間応力値:タテ0.4N/5cm ヨコ0.06N/5cm、平均見かけ密度:0.12g/cm3
Example 3: Area per thermocompression bonding part: 1.2 mm 2 , Minimum distance between thermocompression bonding parts: 4.6 mm, partial thermocompression bonding rate: 8%, basis weight: 70 g / m 2 , thickness: 0.6 mm, Breathability: 54 cm 3 / cm 2 / sec, oxygen index (LOI): 22, bending resistance: 5.5 cm, elongation at break: vertical 89% horizontal 116%, 5% intermediate stress value: vertical 23 N / 5 cm, horizontal 3.5 N / 5 cm, basis weight converted 5% intermediate stress value: vertical 0.32 N / 5 cm, horizontal 0.05 N / 5 cm, average apparent density: 0.12 g / cm 3
Example 4: Area per thermocompression bonding part: 1.2 mm, Minimum interval between thermocompression bonding parts: 4.6 mm, partial thermocompression bonding rate: 8%, basis weight: 70 g / m 2 , thickness: 0.57 mm, ventilation Property: 56 cm 3 / cm 2 / sec, oxygen index (LOI): 21, bending resistance: 6.0 cm, elongation at break: vertical 86% horizontal 115%, 5% intermediate stress value: vertical 28 N / 5 cm, horizontal 4 N / 5 cm, 5% intermediate stress value in terms of basis weight: Vertical 0.4 N / 5 cm Horizontal 0.06 N / 5 cm, Average apparent density: 0.12 g / cm 3

実施例3及び4で得られた捲縮長繊維不織布をそれぞれ用いて、自動車用の座席シートの成型を行った。該不織布を発泡成型金型の内側に装着させた結果、柔らかい風合いがあり、金型への形状追随性が良く、金型への装着が良好に行えた。次いで、2液タイプのウレタン樹脂を金型に注入し、発泡成型を行った。得られた複合成型体を成型金型から離形して、不織布表面への樹脂の染み出しを観察したが、樹脂の染み出しがなかった。また、座席シートに座って移動する方法で摩擦による異音の発生有無を調べたところ、異音の発生はなく良好な複合成型品が得られたことが分かった。   Using the crimped long-fiber nonwoven fabric obtained in Examples 3 and 4, a seat sheet for an automobile was molded. As a result of attaching the non-woven fabric to the inside of the foaming mold, there was a soft texture, good shape followability to the mold, and good mounting to the mold. Next, a two-component type urethane resin was injected into the mold and foamed. The obtained composite molded body was released from the molding die, and the resin exuded on the surface of the nonwoven fabric was observed, but no resin exuded. In addition, when the presence or absence of abnormal noise due to friction was examined by sitting and moving on a seat, it was found that a good composite molded product was obtained with no abnormal noise.

[比較例1]
スパンボンド用溶融紡糸機を用いて、ポリプロピレン樹脂(PP、融点165℃)を紡口から吐出し、紡口下で冷却装置を用いて糸条を側面から冷却し、牽引装置により丸形の繊維断面を有する目付100g/m2のポリプロピレン非捲縮長繊維ウェブ(繊度3dtex)を得た。
[Comparative Example 1]
Using a spunbond melt spinning machine, polypropylene resin (PP, melting point 165 ° C.) is discharged from the spinning nozzle, and the yarn is cooled from the side using a cooling device under the spinning nozzle. A polypropylene non-crimped long fiber web having a weight per unit area of 100 g / m 2 (fineness of 3 dtex) was obtained.

表面全体に1個当たりの面積が1.2mm2の凸部を4.6mmの最小間隔で千鳥配置したエンボスロールと表面平滑ロールとを組合せた部分熱圧着ロール(温度135℃、線圧300N/cm、部分熱圧着率8%)の間に、上記の非捲縮長繊維ウェブを通過させて、部分熱圧着されたポリプロピレン非捲縮長繊維不織布を得た。 Partial thermocompression-bonding roll (temperature: 135 ° C., linear pressure: 300 N / mm), which is a combination of embossing rolls and surface smoothing rolls that have staggered arrangement of convex parts with an area of 1.2 mm 2 on the entire surface with a minimum spacing of 4.6 mm (cm, partial thermocompression rate 8%), the non-crimped long fiber web was passed through to obtain a partially non-crimped polypropylene non-crimped long-fiber nonwoven fabric.

得られた非捲縮長繊維不織布の特性は、熱圧着部1箇所当たりの面積:1.2mm、熱圧着部の最小間隔:4.6mm、部分熱圧着率:8%、目付:100g/m2、厚み:0.42mm、通気性:25cm3/cm2/sec、酸素指数(LOI):17、剛軟度:13.5mm、破断伸度:タテ50% ヨコ65%、5%中間応力値:タテ85N/5cm、ヨコ35N/5cm、目付換算の5%中間応力値:タテ0.85N/5cm ヨコ0.35N/5cm、平均見かけ密度:0.24g/cm3である。 The characteristics of the obtained non-crimped long-fiber nonwoven fabric were as follows: area per thermocompression bonding part: 1.2 mm, minimum distance between thermocompression bonding parts: 4.6 mm, partial thermocompression bonding rate: 8%, basis weight: 100 g / m 2 , Thickness: 0.42 mm, Breathability: 25 cm 3 / cm 2 / sec, Oxygen Index (LOI): 17, Bending Softness: 13.5 mm, Elongation at Break: Vertical 50% Horizontal 65%, 5% Intermediate Stress Value: Vertical 85 N / 5 cm, horizontal 35 N / 5 cm, basis weight conversion 5% intermediate stress value: Vertical 0.85 N / 5 cm Horizontal 0.35 N / 5 cm, average apparent density: 0.24 g / cm 3 .

得られた不織布を用いて、自動車用の座席シートのモールド成型加工を行った。該不織布を発泡成型金型の内側に装着させた結果、風合いが硬く、金型への形状追従性が悪く、不織布の金型への装着性が悪いことから、成型加工性が悪かった。次いで、2液タイプのウレタン樹脂を金型に注入し、発泡成型を行った。得られた複合成型体を成型金型から離形して、不織布表面へのウレタン樹脂の染み出し有無を観察したところ樹脂の染み出しがなかった。しかし、特に形状のよくない複合成型品が得られた。   Using the obtained non-woven fabric, a molding process for a seat sheet for an automobile was performed. As a result of attaching the nonwoven fabric to the inside of the foam molding die, the texture was hard, the shape following property to the die was poor, and the nonwoven fabric was poorly attachable to the die, resulting in poor molding processability. Next, a two-component type urethane resin was injected into the mold and foamed. The obtained composite molded body was released from the molding die, and the presence or absence of the urethane resin on the nonwoven fabric surface was observed. However, a composite molded product having a particularly poor shape was obtained.

Figure 2011051137
Figure 2011051137

本発明の複合成型体は難燃性であり、嵩高性及び柔軟性に富む捲縮繊維を用いて補強材を構成しているため、車両用の座席等の、発泡ウレタン樹脂がモールド成型されてなる、樹脂−補強材複合成型体として好ましく用いられる。本発明の複合成型体において用いる補強材は、凹凸金型に追従しやすく、且つ、発泡成型に用いる樹脂の補強材表面への染み出しを防止できる。よって本発明によれば、発泡成型シート、クッション体等の複合成型体と取付鋼材との摩擦等による異音の発生を防止できる。従って、本発明の複合成型体は、例えば車両用内装材等の広い用途に好適に利用できる。   The composite molded body of the present invention is flame retardant and comprises a reinforcing material using crimped fibers rich in bulkiness and flexibility, so that a urethane foam resin such as a vehicle seat is molded. The resin-reinforcing material composite molded body is preferably used. The reinforcing material used in the composite molded body of the present invention can easily follow the concavo-convex mold and can prevent the resin used for foam molding from seeping out onto the reinforcing material surface. Therefore, according to this invention, generation | occurrence | production of the noise by the friction etc. of composite molded bodies, such as a foaming molding sheet | seat and a cushion body, and attachment steel material can be prevented. Therefore, the composite molded body of the present invention can be suitably used for a wide range of applications such as vehicle interior materials.

Claims (6)

発泡成型樹脂と、該発泡成型樹脂の補強材である捲縮長繊維スパンボンド不織布とを有する複合成型体であって、
該捲縮長繊維スパンボンド不織布が、繊度0.5〜10dtex及び捲縮数2〜40個/25mmであるポリプロピレン系捲縮長繊維を少なくとも用いて構成されており、
該捲縮長繊維スパンボンド不織布が、部分熱圧着率2〜15%で熱圧着されており、
該捲縮長繊維スパンボンド不織布が、目付50〜200g/m2、厚み0.5〜2.0mm、通気性0.1〜150cm3/cm2/sec、及びJIS−K−7201に従って測定される酸素指数(LOI)20以上を有する、複合成型体。
A composite molded body having a foam molding resin and a crimped long fiber spunbond nonwoven fabric that is a reinforcing material of the foam molding resin,
The crimped long fiber spunbonded nonwoven fabric is composed of at least a polypropylene-based crimped long fiber having a fineness of 0.5 to 10 dtex and a number of crimps of 2 to 40 pieces / 25 mm,
The crimped long fiber spunbond nonwoven fabric is thermocompression bonded with a partial thermocompression bonding rate of 2 to 15%,
The crimped long fiber spunbond nonwoven fabric is measured according to a basis weight of 50 to 200 g / m 2 , a thickness of 0.5 to 2.0 mm, a gas permeability of 0.1 to 150 cm 3 / cm 2 / sec, and JIS-K-7201. A composite molded article having an oxygen index (LOI) of 20 or more.
前記捲縮長繊維スパンボンド不織布が、難燃剤を0.1〜10質量%含有する、請求項1に記載の複合成型体。   The composite molded body according to claim 1, wherein the crimped long fiber spunbonded nonwoven fabric contains 0.1 to 10% by mass of a flame retardant. 前記捲縮長繊維スパンボンド不織布中の前記ポリプロピレン系捲縮長繊維の含有率が、70〜100質量%である、請求項1又は2に記載の複合成型体。   The composite molded body according to claim 1 or 2, wherein a content of the polypropylene-based crimped long fibers in the crimped long-fiber spunbonded nonwoven fabric is 70 to 100% by mass. 前記捲縮長繊維スパンボンド不織布が剛軟度15cm以下を有する、請求項1〜3のいずれか1項に記載の複合成型体。   The composite molded body according to any one of claims 1 to 3, wherein the crimped long fiber spunbonded nonwoven fabric has a bending resistance of 15 cm or less. 前記捲縮長繊維スパンボンド不織布が、破断伸度70%以上を有する、請求項1〜4のいずれか1項に記載の複合成型体。   The composite molded body according to any one of claims 1 to 4, wherein the crimped long fiber spunbonded nonwoven fabric has a breaking elongation of 70% or more. 前記発泡成型樹脂が、ウレタン発泡成型樹脂である、請求項1〜5のいずれか1項に記載の複合成型体。   The composite molded body according to claim 1, wherein the foam molding resin is a urethane foam molding resin.
JP2009199859A 2009-08-31 2009-08-31 Combined molding Pending JP2011051137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009199859A JP2011051137A (en) 2009-08-31 2009-08-31 Combined molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009199859A JP2011051137A (en) 2009-08-31 2009-08-31 Combined molding

Publications (1)

Publication Number Publication Date
JP2011051137A true JP2011051137A (en) 2011-03-17

Family

ID=43940686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009199859A Pending JP2011051137A (en) 2009-08-31 2009-08-31 Combined molding

Country Status (1)

Country Link
JP (1) JP2011051137A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079468A (en) * 2011-10-04 2013-05-02 Daihatsu Motor Co Ltd Interior material for vehicle
JP2014214390A (en) * 2013-04-24 2014-11-17 日本バイリーン株式会社 Skin material for molding
JP2019019415A (en) * 2017-07-11 2019-02-07 旭化成株式会社 Surface material for resin foam plate made of filament nonwoven fabric having high-rigidity and high adhesive strength

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258930U (en) * 1988-10-18 1990-04-27
JPH0976255A (en) * 1995-09-14 1997-03-25 Bridgestone Corp Cushion molding and its preparation
JPH11178672A (en) * 1997-12-24 1999-07-06 Inoac Corporation:Kk Seat topper material for seat, and seat
JP2000062061A (en) * 1998-08-26 2000-02-29 Asahi Chem Ind Co Ltd Reinforcing material base fabric for foam molding
JP2004216708A (en) * 2003-01-14 2004-08-05 Seiren Co Ltd Facing cloth and interior member
WO2005019783A1 (en) * 2003-08-25 2005-03-03 Takayasu Co., Ltd. Sound absorbing material
JP2008195075A (en) * 2008-03-17 2008-08-28 Seiren Co Ltd Overlaying material and interior member
JP2009167570A (en) * 2008-01-18 2009-07-30 Asahi Kasei Fibers Corp Reinforced ground fabric for expansion molding of urethane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258930U (en) * 1988-10-18 1990-04-27
JPH0976255A (en) * 1995-09-14 1997-03-25 Bridgestone Corp Cushion molding and its preparation
JPH11178672A (en) * 1997-12-24 1999-07-06 Inoac Corporation:Kk Seat topper material for seat, and seat
JP2000062061A (en) * 1998-08-26 2000-02-29 Asahi Chem Ind Co Ltd Reinforcing material base fabric for foam molding
JP2004216708A (en) * 2003-01-14 2004-08-05 Seiren Co Ltd Facing cloth and interior member
WO2005019783A1 (en) * 2003-08-25 2005-03-03 Takayasu Co., Ltd. Sound absorbing material
JP2009167570A (en) * 2008-01-18 2009-07-30 Asahi Kasei Fibers Corp Reinforced ground fabric for expansion molding of urethane
JP2008195075A (en) * 2008-03-17 2008-08-28 Seiren Co Ltd Overlaying material and interior member

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013079468A (en) * 2011-10-04 2013-05-02 Daihatsu Motor Co Ltd Interior material for vehicle
JP2014214390A (en) * 2013-04-24 2014-11-17 日本バイリーン株式会社 Skin material for molding
JP2019019415A (en) * 2017-07-11 2019-02-07 旭化成株式会社 Surface material for resin foam plate made of filament nonwoven fabric having high-rigidity and high adhesive strength

Similar Documents

Publication Publication Date Title
JP5486243B2 (en) Polyolefin-based crimped long fiber nonwoven fabric and nonwoven fabric laminate
EP2889407B1 (en) Melt-blown nonwoven fabric and use thereof
US9694558B2 (en) Multilayer nonwoven fabric for foam molding, method of producing multilayer nonwoven fabric for foam molding, urethane-foam molded complex using multilayer nonwoven fabric, vehicle seat, and chair
EP3165656B1 (en) Spunbonded non-woven fabric and method for manufacturing same
EP2447402B1 (en) Nonwoven fabric laminate for expansion molding
KR101403302B1 (en) Tufted nonwoven and bonded nonwoven
JP7206564B2 (en) Laminate and sound absorbing material
EP3730684B1 (en) Nonwoven fabric and composite sound-absorbing material using same as skin material
JP5863474B2 (en) Melt-blown nonwoven fabric, its use, and its production method
WO2002022933A1 (en) Multilayer non-woven fabric and use thereof
JP5634074B2 (en) Foam molded body, foam molding method thereof, and sheet material for foam molded body
JP2011051137A (en) Combined molding
JP6349019B1 (en) Melt blown non-woven fabric, its use and production method thereof
JP6498454B2 (en) Sheet for multilayer molding and sheet molded body
JP6646267B1 (en) Laminated sound absorbing material
WO2022209976A1 (en) Biodegradable three-dimensional network structure
EP3663083A1 (en) Laminated acoustic absorption member
JP6965405B1 (en) Sheet material, composite material using it, multilayer molded body using it, and method of manufacturing sheet material
WO2020255500A1 (en) Layered sound-absorbing material
KR101958482B1 (en) Fiber aggregate having excellent sound absorption performance and manufacturing method thereof
JP6642810B2 (en) Laminated sound absorbing material
KR20110109399A (en) Nonwovens for interior materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130521

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008