JP2011050895A - Semiconductor photocatalyst having performance heightened by surface modification treatment, method for production thereof, and hydrogen production method using the photocatalyst - Google Patents

Semiconductor photocatalyst having performance heightened by surface modification treatment, method for production thereof, and hydrogen production method using the photocatalyst Download PDF

Info

Publication number
JP2011050895A
JP2011050895A JP2009203596A JP2009203596A JP2011050895A JP 2011050895 A JP2011050895 A JP 2011050895A JP 2009203596 A JP2009203596 A JP 2009203596A JP 2009203596 A JP2009203596 A JP 2009203596A JP 2011050895 A JP2011050895 A JP 2011050895A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor photocatalyst
redox medium
photocatalyst
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009203596A
Other languages
Japanese (ja)
Other versions
JP5464414B2 (en
Inventor
Kazuhiro Sayama
和弘 佐山
Yugo Mitsuishi
雄悟 三石
Hitoshi Kusama
仁 草間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009203596A priority Critical patent/JP5464414B2/en
Publication of JP2011050895A publication Critical patent/JP2011050895A/en
Application granted granted Critical
Publication of JP5464414B2 publication Critical patent/JP5464414B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photocatalyst which can highly efficiently progress a photocatalytic reaction for reducing a redox medium and simultaneously producing oxygen. <P>SOLUTION: It is possible to markedly improve the activity of a photocatalytic reaction for reducing a redox medium and simultaneously producing oxygen by subjecting a visible-light-responsive photocatalyst, such as a tungsten compound, for forming oxygen from water in the presence of a reversible redox medium to a surface treatment with a solution containing at least one element M selected from the group consisting of an alkali metal, an alkali earth metal, silver, and nickel. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、半導体触媒に関し、特に表面改質処理により高性能化された半導体光触媒及びその製造方法並びに該光触媒を用いた水素製造方法に関する。   The present invention relates to a semiconductor catalyst, and more particularly to a semiconductor photocatalyst improved in performance by surface modification treatment, a method for producing the same, and a method for producing hydrogen using the photocatalyst.

水素エネルギーは非常にクリーンなエネルギー源であり、燃料電池や水素エンジンなど様々な応用が考えられ、まさに化石エネルギーに代わる未来のエネルギー形態の中心になると思われる。
しかし、現在の水素の大部分は化石資源のスチームリフォーミングなどで製造されている。将来の化石資源の枯渇や炭酸ガスによる地球温暖化問題などを考慮すると、最終的には無尽蔵の水を水素源にするしかない。水から水素を製造するには電気分解が簡単であるが、電気を生み出すために化石燃料を用いたのでは意味がない。
Hydrogen energy is a very clean energy source, and various applications such as fuel cells and hydrogen engines can be considered, and it will be the center of future energy forms to replace fossil energy.
However, most of the current hydrogen is produced by steam reforming of fossil resources. Considering the future depletion of fossil resources and global warming due to carbon dioxide, there is no choice but to use inexhaustible water as a hydrogen source. Producing hydrogen from water is easy to electrolyze, but it doesn't make sense to use fossil fuels to produce electricity.

そこで、無尽蔵でクリーンかつ安全な太陽エネルギーを太陽電池で電気エネルギーに変換し、水を電解して水素を製造するアイデアが提案されている。しかしながら、このアイデアの最大の欠点は、システム、特に太陽電池の高いコストおよび低いエネルギー収支(システムがその寿命までに製造するエネルギー/システムを製造するエネルギー)である。シリコンなどの太陽電池や電気分解技術は精力的に研究されてきたが、太陽光による水素製造を実現するためには、革新的な技術でシステムのコストやエネルギー収支を大幅に向上する必要がある。また、水の電気分解技術もかなり進んで来ているが、ガス発生を進行させる過電圧が非常に高く、水の理論電解電圧の1.23Vよりかなり高い電圧が必要とされ、そのためのエネルギーロスも大きな問題である。   Therefore, an idea has been proposed in which inexhaustible, clean and safe solar energy is converted into electric energy by a solar cell, and water is electrolyzed to produce hydrogen. However, the biggest drawback of this idea is the high cost and low energy balance of the system, especially the solar cell (the energy that the system produces by the lifetime / energy that produces the system). Solar cells such as silicon and electrolysis technology have been studied energetically, but in order to realize solar hydrogen production, it is necessary to significantly improve the system cost and energy balance with innovative technology. . Water electrolysis technology has also advanced considerably, but the overvoltage that promotes gas generation is very high, and a voltage much higher than the theoretical electrolysis voltage of water of 1.23V is required, and energy loss for that is also required. It is a big problem.

一方、光触媒を用いて太陽光のエネルギーで水を水素と酸素に直接分解する研究も進んでいる。この技術はコストが非常に低くまたリサイクルや耐久性の面で優れているが、現段階では、その効率の低さが問題となっている。そのため、より革新的な新たなエネルギー変換システムの確立が望まれている。   On the other hand, research on direct decomposition of water into hydrogen and oxygen using solar energy using a photocatalyst is also in progress. This technology is very low cost and excellent in terms of recycling and durability, but at the present stage its low efficiency is a problem. Therefore, establishment of a more innovative new energy conversion system is desired.

本発明者らは、前記課題を解決すべく鋭意研究を重ね、WOやTiO、Inなどの半導体光触媒を用い、Fe3+を含有する水溶液に光照射して、酸素とFe2+を発生させ、次に、Fe2+を含む水溶液を電解してFe3+を再生するとともに水素を発生させることにより、水素発生のための電解電圧を大幅に減少させて、非常に低コストの水素製造を可能にする方法(特許文献1)及びそのための装置(特許文献2)を提案した。
また、本発明者らは、前記Fe3+/Fe2+以外の新たなレドックスを開発した結果、酸化状態から還元状態に変化させることができるヨウ素化合物を含む水溶液に、光照射を行って酸素と還元状態にあるヨウ素化合物を生成させ、生成した還元状態にあるヨウ素化合物を電解して酸化状態にあるヨウ素化合物を再生すると共に水素を発生させる方法も提案している(特許文献3)。
The inventors of the present invention have made extensive studies to solve the above-mentioned problems. Using semiconductor photocatalysts such as WO 3 , TiO 2 , and In 2 O 3 , light irradiation is performed on an aqueous solution containing Fe 3+ , and oxygen and Fe 2+ are irradiated. Next, by electrolyzing an aqueous solution containing Fe 2+ to regenerate Fe 3+ and generate hydrogen, the electrolysis voltage for hydrogen generation is greatly reduced, thereby producing hydrogen at a very low cost. The method (patent document 1) and the apparatus (patent document 2) for enabling it were proposed.
In addition, as a result of developing a new redox other than the above Fe 3+ / Fe 2+ , the present inventors performed light irradiation on an aqueous solution containing an iodine compound that can be changed from an oxidized state to a reduced state to reduce oxygen and oxygen. A method has also been proposed in which an iodine compound in a state is generated, the generated iodine compound in a reduced state is electrolyzed to regenerate the iodine compound in an oxidized state and generate hydrogen (Patent Document 3).

特開2001−233602号公報JP 2001-233602 A 特開平11−157801号公報JP-A-11-157801 特開2002−255502号公報JP 2002-255502 A

しかしながら、前述の半導体光触媒とレドックス媒体を用いた水素製造方法・装置においては、用いている半導体光触媒の光触媒反応が未だ充分とはいえず、そのため更に高性能な新規半導体光触媒もしくは、既存の光触媒を高性能化するための手法の開発が望まれている。
本発明は上記の点に鑑みてなされたものであり、レドックス媒体を還元し、それと同時に酸素を製造する光触媒反応を高効率に進行できる光触媒を提供することを目的とするものである。
However, in the hydrogen production method and apparatus using the above-described semiconductor photocatalyst and redox medium, the photocatalytic reaction of the semiconductor photocatalyst used is still not sufficient, so that a new semiconductor photocatalyst with higher performance or an existing photocatalyst can be used. Development of a technique for improving performance is desired.
The present invention has been made in view of the above points, and an object of the present invention is to provide a photocatalyst capable of reducing the redox medium and simultaneously proceeding the photocatalytic reaction for producing oxygen with high efficiency.

本発明者らは、上記課題を解決するために鋭意検討した結果、タングステン化合物等の可視光応答性光触媒に対し、アルカリ金属、アルカリ土類金属、銀及びニッケルからなる群のうち、少なくとも1つの元素Mを含む溶液によって表面改質処理を行うことで、レドックス媒体を還元し、それと同時に酸素を製造する光触媒反応の活性を大きく向上させることができるという知見を得た。   As a result of intensive studies to solve the above problems, the present inventors have determined that at least one of the group consisting of alkali metals, alkaline earth metals, silver and nickel with respect to visible light responsive photocatalysts such as tungsten compounds. It was found that by performing surface modification treatment with a solution containing the element M, the redox medium can be reduced, and at the same time, the activity of the photocatalytic reaction for producing oxygen can be greatly improved.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]可逆的なレドックス媒体の存在下、水から酸素を生成するための半導体光触媒であって、半導体の結晶粒子の表面に、アルカリ金属、アルカリ土類金属、銀、及びニッケルからなる群のうち、少なくとも1つの金属元素が取り込まれた構造を有していることを特徴とする半導体光触媒。
[2]前記半導体が、可視光応答性のタングステン化合物であることを特徴とする上記[1]の半導体光触媒。
[3]前記タングステン化合物が、酸化タングステンである上記[2]の半導体光触媒。
[4]上記[1]〜[3]のいずれかの半導体光触媒を製造する方法であって、アルカリ金属、アルカリ土類金属、銀、及びニッケルからなる群のうち、少なくとも1つの金属元素を含む金属塩溶液を用いて、水熱処理又は含浸処理することを特徴とする半導体光触媒の製造方法。
[5]前記金属塩が、硫酸塩、硝酸塩、炭酸塩、塩化物及び水酸化物のいずれかから選ばれることを特徴とする上記[4]の半導体光触媒の製造方法。
[6]上記[1]〜[3]のいずれかの半導体光触媒の存在下、可逆的なレドックス媒体の酸化体を含有する水溶液に光照射して酸素とレドックス媒体の還元体を生成させる工程、及び生成されたレドックス媒体の還元体を電解して酸化体に再生すると共に水素を発生させる工程を含むことを特徴とする水素の製造方法。
[7]前記可逆的なレドックス媒体が、鉄イオン又はヨウ素化合物イオンであることを特徴とする上記[6]に記載の水素の製造方法。
[8]上記[1]〜[3]のいずれかの半導体光触媒の存在下、可逆的なレドックス媒体の酸化体を含有する水溶液に光照射して酸素と該レドックス媒体の還元体を生成させる半導体光触媒反応装置、生成された該レドックス媒体の還元体を電解して酸化体に再生すると共に水素を発生させる電解装置、及び再生された該レドックス媒体の酸化体を前記半導体光触媒反応装置に供給する装置からなることを特徴とする水素の製造装置。
[9] 上記[1]〜[3]のいずれかの半導体光触媒が導電性基板上で膜状に存在した光電極において、光照射して光電極上で酸素を発生させ、光電極とつながった対極で水素を発生させることを特徴とする水素の製造方法。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] A semiconductor photocatalyst for generating oxygen from water in the presence of a reversible redox medium, wherein the surface of semiconductor crystal particles is made of an alkali metal, an alkaline earth metal, silver, and nickel. Among them, a semiconductor photocatalyst having a structure in which at least one metal element is incorporated.
[2] The semiconductor photocatalyst according to the above [1], wherein the semiconductor is a visible light responsive tungsten compound.
[3] The semiconductor photocatalyst according to the above [2], wherein the tungsten compound is tungsten oxide.
[4] A method for producing a semiconductor photocatalyst according to any one of [1] to [3], comprising at least one metal element selected from the group consisting of alkali metals, alkaline earth metals, silver, and nickel. A method for producing a semiconductor photocatalyst, characterized by hydrothermal treatment or impregnation treatment using a metal salt solution.
[5] The method for producing a semiconductor photocatalyst according to the above [4], wherein the metal salt is selected from sulfate, nitrate, carbonate, chloride and hydroxide.
[6] A step of generating oxygen and a reduced form of redox medium by irradiating an aqueous solution containing an oxidant of a reversible redox medium in the presence of the semiconductor photocatalyst according to any one of [1] to [3] above, And a method for producing hydrogen, comprising the step of electrolyzing the reductant of the produced redox medium to regenerate it into an oxidant and generating hydrogen.
[7] The method for producing hydrogen according to the above [6], wherein the reversible redox medium is an iron ion or an iodine compound ion.
[8] A semiconductor that generates an oxygen and a reduced form of the redox medium by irradiating an aqueous solution containing an oxidant of a reversible redox medium in the presence of the semiconductor photocatalyst according to any one of the above [1] to [3]. Photocatalyst reaction apparatus, electrolysis apparatus for electrolyzing the reductant of the generated redox medium to regenerate it into an oxidant and generating hydrogen, and an apparatus for supplying the regenerated oxidant of the redox medium to the semiconductor photocatalyst reaction apparatus An apparatus for producing hydrogen, comprising:
[9] In the photoelectrode in which the semiconductor photocatalyst of any one of the above [1] to [3] is present in the form of a film on the conductive substrate, light is irradiated to generate oxygen on the photoelectrode, and the counter electrode connected to the photoelectrode A method for producing hydrogen, characterized in that hydrogen is generated in the process.

本発明の表面改質処理を施したタングステン系の可視光応答性光触媒によれば、レドックス媒体を還元し、同時に酸素を生成する光触媒反応に対する活性を、未処理のものと比べ飛躍的に向上させることができる。   According to the tungsten-based visible light responsive photocatalyst subjected to the surface modification treatment of the present invention, the redox medium is reduced, and at the same time, the activity for the photocatalytic reaction that generates oxygen is drastically improved compared to the untreated one. be able to.

本発明の半導体光触媒の構造を示す模式図。The schematic diagram which shows the structure of the semiconductor photocatalyst of this invention.

本発明の半導体光触媒は、可逆的なレドックス媒体の存在下、水から酸素を生成するための半導体光触媒であって、半導体の結晶粒子の表面に、アルカリ金属、アルカリ土類金属、銀、及びニッケルからなる群のうち、少なくとも1つの金属元素Mが取り込まれた構造を有していることを特徴とするものである。
図1は、本発明の半導体光触媒に係る半導体結晶粒子の構造を示す模式図であり、図中、1は、半導体結晶粒子、2は、表面処理で半導体結晶粒子の表面近傍内部に生成した金属Mと半導体との複合酸化物の薄膜層を表している。
The semiconductor photocatalyst of the present invention is a semiconductor photocatalyst for generating oxygen from water in the presence of a reversible redox medium, and an alkali metal, alkaline earth metal, silver, and nickel are formed on the surface of semiconductor crystal particles. It has a structure in which at least one metal element M is taken in the group consisting of:
FIG. 1 is a schematic view showing the structure of a semiconductor crystal particle according to the semiconductor photocatalyst of the present invention. In the figure, 1 is a semiconductor crystal particle, and 2 is a metal produced near the surface of the semiconductor crystal particle by surface treatment. The thin film layer of the complex oxide of M and a semiconductor is represented.

本発明の半導体光触媒は、アルカリ金属、アルカリ土類金属、銀及びびニッケルからなる群のうち、少なくとも1つの元素Mを含む金属塩溶液を用いて水熱処理法もしくは含浸法により、半導体光触媒に表面改質処理を施すことにより製造される。   The semiconductor photocatalyst of the present invention is formed on the surface of the semiconductor photocatalyst by hydrothermal treatment or impregnation using a metal salt solution containing at least one element M from the group consisting of alkali metals, alkaline earth metals, silver and nickel. Manufactured by applying a modification treatment.

半導体光触媒に対して行った上記の表面改質処理は、表面で進行する光触媒作用を促進させ、その光触媒活性を大幅に向上させることができる。
したがって、半導体光触媒に対して施されるこの表面改質処理方法は、可視光照射によって、たとえば、Fe3+やIO などといったレドックス媒体を還元して、同時に酸素を製造するエネルギー蓄積型の光触媒反応に対する活性を大幅に向上させることができる。
The surface modification treatment performed on the semiconductor photocatalyst can promote the photocatalytic action that proceeds on the surface, and can greatly improve the photocatalytic activity.
Therefore, this surface modification method applied to a semiconductor photocatalyst is an energy storage type photocatalyst that reduces redox media such as Fe 3+ and IO 3 by visible light irradiation and simultaneously produces oxygen. The activity against the reaction can be greatly improved.

表面改質処理に用いられる金属塩溶液は、アルカリ金属、アルカリ土類金属及び銀、ニッケルからなる群のうち、少なくとも1つの元素Mを含む金属塩溶液であれば特に制限はないが、特にセシウムが好ましい。   The metal salt solution used for the surface modification treatment is not particularly limited as long as it is a metal salt solution containing at least one element M from the group consisting of alkali metals, alkaline earth metals, silver, and nickel, but in particular cesium. Is preferred.

本発明における水熱処理法又は含浸法としては、図1のように、金属元素Mが半導体の表面近傍の結晶に取り込まれている構造を形成することのできる手法であればどのような方法であっても良いが、特に、金属を溶解した溶液を半導体粉末に含浸して適切な温度で短時間加熱する方法が好ましい。表面処理で半導体結晶粒子の表面内部に金属Mと半導体との複合酸化物の薄膜層が形成されることが好ましい。高温または長時間処理すると半導体の改質が表面だけでなく半導体結晶粒子内部にまで及ぶことになり、好ましくない。
XRD測定を表面処理前後で行い、半導体結晶粒子のXRDピークが変化していないことが好ましい。XRD測定は、バルク全体の結晶情報を反映しているので、処理が半導体結晶粒子内部に影響を与えていないことが分かる。
また、過酷な条件(長時間処理や高温処理、高濃度処理など)で表面処理を行うと、半導体内部まで金属Mと半導体との複合酸化物が形成されることがXRD測定で観測できるが、その場合は活性が大きく低下するので、処理条件を緩和(短時間処理や低温処理、低濃度処理など)する必要がある。
As the hydrothermal treatment method or the impregnation method in the present invention, any method can be used as long as it can form a structure in which the metal element M is incorporated in the crystal near the surface of the semiconductor as shown in FIG. However, a method in which a semiconductor powder is impregnated in a semiconductor powder and heated at an appropriate temperature for a short time is particularly preferable. It is preferable that a thin film layer of a composite oxide of metal M and semiconductor is formed inside the surface of the semiconductor crystal particles by the surface treatment. Treatment at a high temperature or for a long time is not preferable because the modification of the semiconductor extends not only to the surface but also to the inside of the semiconductor crystal grains.
It is preferable that the XRD measurement is performed before and after the surface treatment, and the XRD peak of the semiconductor crystal particles is not changed. Since the XRD measurement reflects the crystal information of the entire bulk, it can be seen that the treatment does not affect the inside of the semiconductor crystal particles.
In addition, when surface treatment is performed under harsh conditions (long-time treatment, high-temperature treatment, high-concentration treatment, etc.), it can be observed by XRD measurement that a complex oxide of metal M and semiconductor is formed inside the semiconductor. In that case, since the activity is greatly reduced, it is necessary to relax the processing conditions (short-time processing, low-temperature processing, low-concentration processing, etc.).

また、金属元素Mが半導体の表面近傍の結晶に取り込まれていることは、金属元素Mが溶解する条件の溶液で良く洗浄した後の半導体をXPSで観測できる。XPS測定は、表面1nm前後の深さの情報が得られるので、金属元素Mが安定に表面に存在していることを確認することで検証できる。   In addition, the fact that the metal element M is taken into the crystal in the vicinity of the surface of the semiconductor can be observed by XPS after the semiconductor is thoroughly washed with a solution under a condition that the metal element M is dissolved. The XPS measurement can be verified by confirming that the metal element M is stably present on the surface because information on the depth of about 1 nm on the surface can be obtained.

レドックス媒体を還元し、同時に酸素を製造する光触媒反応に対して、その反応効率を促進するための手法としては、半導体の表面の上にPtやRuOなどの助触媒担持することが報告されている(J.Phys.Chem.1984,88,4001.)。助触媒は反応中に溶解しない安定な元素材料を半導体に担持して用いる。アルカリ金属など元素Mが半導体表面上に担持や吸着しているだけでは、酸性溶液中に簡単にほとんど脱離してしまうので活性向上効果は無い。 For photocatalytic reactions that reduce redox media and at the same time produce oxygen, it has been reported that promoters such as Pt and RuO 2 are supported on the surface of the semiconductor as a method for promoting the reaction efficiency. (J. Phys. Chem. 1984, 88, 4001.). The cocatalyst is used by supporting a stable element material that does not dissolve during the reaction on a semiconductor. If the element M, such as an alkali metal, is merely supported or adsorbed on the semiconductor surface, the activity is not improved because the element M is easily desorbed in the acidic solution.

一方、本発明では、半導体結晶粒子自体を改質し、元素Mが半導体表面近傍の内部に存在している。アルカリ金属など反応中に溶解する不安定な元素材料を用いることができる。また、例えば銀の場合、半導体結晶粒子の表面に光電着という手法で銀粒子を担持することができるが、これでは活性は向上しない。銀イオンを含む水溶液と半導体をオートクレーブに入れて高温で水熱処理することで銀が半導体の一部と複合し、半導体表面近傍の内部にまで存在することで、活性が向上できる。本発明の半導体光触媒を水溶液に入れると中に外表面に露出している元素Mが一部外れることもあるが、半導体表面近傍の内部は構造が保持されるので、活性は向上したまま持続できる。外表面に露出している元素Mが他の元素とイオン交換しても良い。イオン交換するイオンとしては、酸素発生の中間体である過酸化水素の自己酸化分解を促進するイオンが好ましい。つまり、+0.682〜+1.77V(SHE)の間の標準酸化還元準位であるイオンが好ましく、例えば、鉄イオンや銅イオン、マンガンイオン、クロムイオン、セリウムイオンなどがあるが、特にFe2+とイオン交換するのは好ましい。 On the other hand, in the present invention, the semiconductor crystal particles themselves are modified, and the element M exists in the vicinity of the semiconductor surface. An unstable element material that dissolves during the reaction, such as an alkali metal, can be used. Further, for example, in the case of silver, silver particles can be supported on the surface of the semiconductor crystal particles by a technique called photo-deposition, but this does not improve the activity. An aqueous solution containing silver ions and a semiconductor are placed in an autoclave and subjected to hydrothermal treatment at a high temperature, so that silver is combined with a part of the semiconductor and exists in the vicinity of the semiconductor surface, whereby the activity can be improved. When the semiconductor photocatalyst of the present invention is put in an aqueous solution, the element M exposed on the outer surface may be partially removed, but the structure is maintained inside the vicinity of the semiconductor surface, so that the activity can be maintained while being improved. . The element M exposed on the outer surface may be ion exchanged with other elements. As the ion to be ion-exchanged, an ion that promotes auto-oxidative decomposition of hydrogen peroxide, which is an intermediate for generating oxygen, is preferable. In other words, ions are preferably standard redox level between + 0.682~ + 1.77V (SHE), for example, iron ions, copper ions, manganese ions, chromium ions, and the like cerium ions, in particular Fe 2+ It is preferred to ion exchange with.

これらの金属塩溶液は、一般的には半導体光触媒に対して0.01atom%〜10atom%の範囲内において使用することが考慮される。この使用量については、金属塩溶液と可視光応答性光触媒の種類、そして、光触媒粉末の表面積などによって具体的に定めることができる。   These metal salt solutions are generally considered to be used in the range of 0.01 atom% to 10 atom% with respect to the semiconductor photocatalyst. About this usage-amount, it can determine concretely with the kind of metal salt solution and visible light responsive photocatalyst, the surface area of photocatalyst powder, etc.

本発明に係る可視光応答性光触媒の触媒活性促進効果が、当該光触媒の機能を補填し、レドックス媒体の還元作用を促進する理由の詳細は現時点では明らかではないが、以下のように推定している。
半導体結晶粒子表面の金属Mと半導体との複合酸化物の薄膜層が形成された部分では、光励起で生成した正孔と水との反応がすみやかに進行し、酸素発生が効率よく進行すると考えられる。または、半導体結晶粒子表面の金属Mと半導体との複合酸化物の薄膜層が形成された部分では、レドックス酸化体の吸着がすみやかに進み、光励起で生成した電子とレドックス酸化体との反応がすみやかに進行し、レドックス還元が効率よく進行すると考えられる。
The details of the reason why the catalytic activity promoting effect of the visible light responsive photocatalyst according to the present invention supplements the function of the photocatalyst and promotes the reduction action of the redox medium is not clear at present, but is estimated as follows. Yes.
It is considered that the reaction between the holes generated by photoexcitation and water proceeds promptly and oxygen generation proceeds efficiently in the portion where the thin film layer of the composite oxide of metal M and semiconductor on the semiconductor crystal particle surface is formed. . Alternatively, in the portion where the thin film layer of the composite oxide of the metal M and the semiconductor on the surface of the semiconductor crystal particle is formed, the adsorption of the redox oxidant proceeds promptly, and the reaction between the electron generated by photoexcitation and the redox oxidant is rapid. It is considered that redox reduction proceeds efficiently.

このように、可視光応答性光触媒を用いたレドックス媒体を還元して同時に酸素を製造するエネルギー蓄積型の光触媒反応において、反応効率を低下させる要因をうまく抑制することで、劇的に反応活性を向上させることができる。
以上の理由から、本発明の表面処理法と併用できる可視光応答性光触媒としては、可視光を吸収することにより、レドックス媒体を還元し、同時に酸素を製造できるものであれば、その光触媒活性の大小に拘わらず、従来公知の可視光応答性半導体化合物、例えば、BiVOなどの複合酸化物、TaONなどの含窒素化合物、N−TiOなどのドープ化合物などの何れも使用できるが、特にタングステン化合物半導体に対して特に有効である。
In this way, in the energy storage type photocatalytic reaction in which redox medium using visible light responsive photocatalyst is reduced to produce oxygen at the same time, the reaction activity is dramatically reduced by successfully suppressing the factors that lower the reaction efficiency. Can be improved.
For the above reasons, as a visible light responsive photocatalyst that can be used in combination with the surface treatment method of the present invention, any photocatalytic activity can be used as long as it can reduce redox medium and absorb oxygen at the same time by absorbing visible light. Regardless of the size, any conventionally known visible light responsive semiconductor compound such as a composite oxide such as BiVO 4 , a nitrogen-containing compound such as TaON, and a doped compound such as N—TiO 2 can be used. This is particularly effective for compound semiconductors.

タングステン系可視光応答性光触媒の半導体化合物としては、タングステン酸化物、タングステンを含む複合化合物が用いられる。酸素欠陥のあるWOxや異種金属やアニオン(N,C,S)をドーピングや置換した化合物でも良い。タングステンと同族であり似た特性を持つモリブデン化合物との固溶体半導体も用いることができる。
半導体光触媒の具体例は、WO(X≦3)、WMo1−y(x≦3、y≦1)、BiWO、BiMoOが例示される。その中でも、酸化タングステンが特に好ましい。
As the semiconductor compound of the tungsten-based visible light responsive photocatalyst, a composite compound containing tungsten oxide and tungsten is used. A compound in which WOx having an oxygen defect, a different metal, or an anion (N, C, S) is doped or substituted may be used. A solid solution semiconductor with a molybdenum compound which is similar to tungsten and has similar characteristics can also be used.
Specific examples of the semiconductor photocatalyst include WO x (X ≦ 3), W y Mo 1-y O x (x ≦ 3, y ≦ 1), Bi 2 WO 6 , and Bi 2 MoO 6 . Among these, tungsten oxide is particularly preferable.

次に、本発明に係る可視光応答性光触媒に対する代表的な表面改質処理方法について説明する。
その一つはタングステン化合物に対して炭酸セシウム溶液を含浸するものである。この場合、典型的には、炭酸セシウム水溶液を磁性るつぼにとり、そこにタングステン化合物をケン濁させる。そして、100℃に加温したホットプレート上で蒸発乾固させ、その後電気炉を用い500℃で10分間焼成する。最後に表面のセシウムを取り除くために、純水で洗浄する。光触媒を導電性基板上に成膜した半導体光電極に対しては、作成した光電極に炭酸セシウム水溶液を滴下して常温で乾燥させ、その後500℃で10分間焼成する。
Next, a representative surface modification method for the visible light responsive photocatalyst according to the present invention will be described.
One is to impregnate a tungsten compound with a cesium carbonate solution. In this case, typically, an aqueous cesium carbonate solution is placed in a magnetic crucible, and a tungsten compound is suspended therein. Then, it is evaporated to dryness on a hot plate heated to 100 ° C., and then baked at 500 ° C. for 10 minutes using an electric furnace. Finally, in order to remove the surface cesium, it is washed with pure water. For a semiconductor photoelectrode in which a photocatalyst is formed on a conductive substrate, an aqueous cesium carbonate solution is dropped onto the prepared photoelectrode, dried at room temperature, and then baked at 500 ° C. for 10 minutes.

以下に酸化タングステン粉末を、炭酸セシウム水溶液を用いて表面改質処理する場合を例として説明する。酸化タングステン粉末を、炭酸セシウム水溶液を用いて表面処理する場合には、含浸するセシウムは酸化タングステン粉末に対して0.1atom%〜10atom%が好ましく、より好ましくは1atom%である。水熱処理法でも同様の量を用いるのが好ましい。   Hereinafter, a case where the surface modification treatment is performed on the tungsten oxide powder using a cesium carbonate aqueous solution will be described. When the surface treatment of the tungsten oxide powder is performed using an aqueous cesium carbonate solution, the impregnated cesium is preferably 0.1 atom% to 10 atom%, more preferably 1 atom% with respect to the tungsten oxide powder. It is preferable to use the same amount in the hydrothermal treatment method.

本発明に係る半導体光触媒に対する表面改質処理方法は、レドックス媒体を還元して、同時に酸素を製造するエネルギー蓄積型の光触媒反応を進行するための触媒として極めて有効である。
レドックス媒体としては、いくつかのレドックスが使用できるが、特に鉄イオンの他にIO 等のヨウ素化合物に有効である。
The surface modification method for a semiconductor photocatalyst according to the present invention is extremely effective as a catalyst for proceeding an energy storage type photocatalytic reaction in which a redox medium is reduced and oxygen is produced at the same time.
Several redox media can be used as the redox medium, but it is particularly effective for iodine compounds such as IO 3 in addition to iron ions.

以下、本発明を実施例によりさらに具体的に説明するが、本発明はこの実施例によって何ら限定されるものではない。
(実施例1〜8)
様々な金属塩水溶液にて表面処理したWOを以下のように調製した。
高純度化学製のWO粉末1gと表1に示した様々な金属塩水溶液10mLを、タングステンと金属イオンの化学両論比1:0.01になるようにPARR社製の酸分解用反応容器(4749)に仕込んだ。そして、240度に加温したオーブンの中で12時間水熱処理した。その後、純水で十分に洗浄し、70度に加温されたオーブンで乾燥した。X線回折計(XRD;MX Laboマックサイエンス社製)によりWOが主生成物であることを同定した。
これらの表面処理されたWO粉末(0.4g)とFe3+を含んだ反応溶液(4.2mM/300mL)を側面照射型の反応管に入れ、ガスクロと真空ポンプを備えた閉鎖循環系に接続した。反応溶液はマグネチックスターラーで攪拌した。そして、閉鎖循環系内を真空脱気したのち、光源にL42のカットオフフィルターで照射光を可視光に制御した300WのXeランプを用いて光照射を行った。その後、生成した気体をガスクロにて定性定量した。その結果を表1に示す。
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
(Examples 1-8)
WO 3 surface-treated with various aqueous metal salt solutions was prepared as follows.
A reaction vessel for acid decomposition manufactured by PARR was prepared by adding 1 g of WO 3 powder made of high purity chemical and 10 mL of various metal salt aqueous solutions shown in Table 1 so that the stoichiometric ratio of tungsten and metal ions was 1: 0.01. 4749). Then, hydrothermal treatment was performed for 12 hours in an oven heated to 240 degrees. Thereafter, it was thoroughly washed with pure water and dried in an oven heated to 70 degrees. It was identified by the X-ray diffractometer (XRD; manufactured by MX Labo Mac Science) that WO 3 was the main product.
These surface-treated WO 3 powder (0.4 g) and a reaction solution (4.2 mM / 300 mL) containing Fe 3+ were placed in a side-irradiation type reaction tube, and a closed circulation system equipped with a gas chromatograph and a vacuum pump was placed. Connected. The reaction solution was stirred with a magnetic stirrer. Then, after the inside of the closed circulation system was vacuum degassed, light irradiation was performed using a 300 W Xe lamp in which the irradiation light was controlled to be visible light with a cut-off filter of L42 as a light source. Thereafter, the generated gas was qualitatively determined by gas chromatography. The results are shown in Table 1.

WOは、水熱処理を行うだけでも、性能が向上することがわかった。それに対して、Rh、Ir、Cr、Co、La、B、そしてPtなどの様々な種類の金属イオン存在下で水熱処理したものは、活性が変わらないかまたは減少した。一方、アルカリ金属、アルカリ土類金属、そして銀、ニッケルで処理したものは、特異的に酸素生成活性が向上することがわかった。特に、セシウムで処理したもので性能が最も高かった。水熱処理された粒子の表面状態を光電子スペクトル計(Ulvac-Phi; XPS-1800)および電子顕微鏡(SEM;Hitachi S-800)により確認した。その結果、粒径や見た目には大きな変化はなかった。XRD測定でも変化はなかった。XPS測定では表面に表面改質処理した元素が存在していることが確かめられた。タングステン化合物は一般的にアルカリ性に弱いが、このように条件を最適化すれば表面付近のみ改質することができる。アルカリ金属、アルカリ土類金属、銀、ニッケルを加熱せずに半導体表面上に吸着や光電着させただけでは活性は向上しなかった。つまり、ある程度の温度で水熱加熱処理することで、半導体表面自体を改質する必要があることが言える。 WO 3 has been found to improve performance simply by performing hydrothermal treatment. In contrast, the hydrothermal treatment in the presence of various types of metal ions such as Rh, Ir, Cr, Co, La, B, and Pt did not change or decreased in activity. On the other hand, it was found that the oxygen generation activity was specifically improved in the case of treatment with alkali metal, alkaline earth metal, silver or nickel. In particular, those treated with cesium had the highest performance. The surface state of the hydrothermally treated particles was confirmed by a photoelectron spectrometer (Ulvac-Phi; XPS-1800) and an electron microscope (SEM; Hitachi S-800). As a result, there was no significant change in particle size or appearance. There was no change in the XRD measurement. The XPS measurement confirmed that the surface-modified element was present on the surface. Tungsten compounds are generally weak in alkalinity, but if the conditions are optimized in this way, only the vicinity of the surface can be modified. The activity was not improved by simply adsorbing or photo-depositing the alkali metal, alkaline earth metal, silver or nickel on the semiconductor surface without heating. That is, it can be said that it is necessary to modify the semiconductor surface itself by performing a hydrothermal treatment at a certain temperature.

Figure 2011050895
Figure 2011050895

(実施例9〜14)
炭酸セシウム水溶液にて表面処理したWOを以下のように調製した。
高純度化学製のWO粉末と表2に示した様々な濃度の炭酸セシウム水溶液10mLを、タングステンと金属イオンの化学両論比1:0.01〜0.1になるようにPARR社製の酸分解用反応容器(4749)に仕込んだ。そして、240℃に加温したオーブンの中で12時間水熱処理した。その後、純水で十分に洗浄し、70℃に加温されたオーブンで乾燥した。X線回折計(XRD;MX Laboマックサイエンス社製)によりWOが主生成物であることを同定した。紫外可視分光光度計(DRS;Jasco;Ubest-570)により、吸収スペクトルに変化が見られないことを確認した。
セシウムの仕込み量を変化させて水熱処理により表面処理を行ったWOを用いて、実施例1と同様の実験条件において、光触媒活性を比較した結果を表2に示した。この条件では0.01atom%では効果が無く、それを超えるセシウムイオン濃度が必要であった。1atom%の量のセシウムイオンを共存させた溶液下で水熱処理することで最も高い活性を示すことがわかった。
(Examples 9 to 14)
WO 3 surface-treated with an aqueous cesium carbonate solution was prepared as follows.
A high-purity chemical WO 3 powder and 10 mL of various concentrations of cesium carbonate aqueous solutions shown in Table 2 were prepared by using an acid manufactured by PARR so that the stoichiometric ratio of tungsten to metal ions was 1: 0.01 to 0.1. A decomposition reaction vessel (4749) was charged. And it hydrothermally treated for 12 hours in the oven heated at 240 degreeC. Thereafter, it was thoroughly washed with pure water and dried in an oven heated to 70 ° C. It was identified by the X-ray diffractometer (XRD; manufactured by MX Labo Mac Science) that WO 3 was the main product. It was confirmed by an ultraviolet-visible spectrophotometer (DRS; Jasco; Ubest-570) that no change was observed in the absorption spectrum.
Table 2 shows the results of comparison of the photocatalytic activity under the same experimental conditions as in Example 1 using WO 3 which was surface-treated by hydrothermal treatment while changing the amount of cesium charged. Under these conditions, there was no effect at 0.01 atom%, and a cesium ion concentration exceeding that was required. It was found that the highest activity was exhibited by hydrothermal treatment in a solution coexisting with an amount of 1 atom% of cesium ions.

Figure 2011050895
Figure 2011050895

(実施例15〜19)
炭酸セシウム水溶液にて表面処理したWOを実施例1〜14とは別法にて調製した。高純度化学製のWO粉末1gを前処理として700℃〜900℃で焼成し、その後、純水10mLを入れたPARR社製の酸分解用反応容器(4749)に仕込んで、100℃〜240℃に加温したオーブンの中で12時間水熱処理した。次に、表面改質処理として、任意の量のセシウム溶液を入れた磁性るつぼにWO(0.5g)をケン濁させ、100℃に加温したホットプレート上で蒸発乾固した。そして500℃で10分焼成した後に、純水で十分に洗浄し、70℃に加温されたオーブンで乾燥した。X線回折計(XRD;MX Laboマックサイエンス社製)によりWOが主生成物であることを同定した。種々の条件で表面処理を行ったWOを用いて、実施例1および2と同様の実験条件において、光触媒活性を比較した結果を表3に示した。WO光触媒は、セシウムを添加せず、焼成と水熱処理のみでも、条件を最適化すれば、4倍程度まで活性が向上することがわかった。さらに、その最適条件で調製したWOに対し、セシウムを含浸し、表面処理を行うことでさらに2倍以上活性が向上した。最適化された条件で改めて水熱処理時にセシウムを共存させ、表面処理したWOは、含浸法で行ったものよりも活性が低かったことから、含浸法で処理することがもっとも好ましいことがわかった。実施例17のセシウム表面処理した触媒を光触媒反応実験後に濾過回収して、もう一度Fe3+を含んだ反応溶液に入れて光触媒反応を行うと酸素発生活性は約2倍に向上した。一回目の光触媒反応実験中に鉄イオンが触媒上のセシウムと一部イオン交換したためと推察される。
(Examples 15 to 19)
WO 3 surface-treated with an aqueous cesium carbonate solution was prepared by a method different from Examples 1-14. 1 g of WO 3 powder made by high-purity chemical was calcined at 700 ° C. to 900 ° C. as a pretreatment, and then charged into a reaction vessel for acid decomposition (4749) made by PARR containing 10 mL of pure water, and 100 ° C. to 240 ° C. Hydrothermal treatment was carried out for 12 hours in an oven heated to ° C. Next, as a surface modification treatment, WO 3 (0.5 g) was suspended in a magnetic crucible containing an arbitrary amount of cesium solution and evaporated to dryness on a hot plate heated to 100 ° C. And after baking at 500 degreeC for 10 minutes, it fully wash | cleaned with the pure water and dried in the oven heated at 70 degreeC. It was identified by the X-ray diffractometer (XRD; manufactured by MX Labo Mac Science) that WO 3 was the main product. Table 3 shows the results of comparison of photocatalytic activity under the same experimental conditions as in Examples 1 and 2 using WO 3 subjected to surface treatment under various conditions. It was found that the WO 3 photocatalyst improves the activity up to about 4 times if the conditions are optimized without adding cesium and only firing and hydrothermal treatment. Furthermore, the activity was further improved twice or more by impregnating cesium and performing surface treatment on WO 3 prepared under the optimum conditions. It was found that WO 3 treated with cesium at the time of hydrothermal treatment under the optimized conditions and surface-treated was less active than that obtained by the impregnation method, so that the treatment by the impregnation method was most preferable. . When the catalyst treated with the cesium surface in Example 17 was collected by filtration after the photocatalytic reaction experiment, and once again placed in a reaction solution containing Fe 3+ and subjected to the photocatalytic reaction, the oxygen generation activity was improved about twice. This is probably because iron ions partially exchanged with cesium on the catalyst during the first photocatalytic reaction experiment.

Figure 2011050895
Figure 2011050895

(実施例20)
炭酸セシウム水溶液にて表面処理したWOを実施例15〜19と同様の手法にて調製した。高純度化学製のWO粉末1gをタングステンに対して1atom%にあたる量の炭酸セシウム溶液を入れた磁性るつぼにケン濁させ、100℃に加温したホットプレート上で蒸発乾固した。そして500℃で10分焼成した後に、純水で十分に洗浄し、70℃に加温されたオーブンで乾燥した。その後乾燥した触媒を用いて、0.5wt%にあたるPtを、HPtCl溶液を用いて炭酸セシウムと同じ手法で含浸し、500℃で30分焼成した。表面処理を行ったWOを用いて、Fe3+イオンの代わりに、IO からの酸素生成反応の光触媒活性を比較した結果を表4に示した。このように、セシウムによる表面処理を施したWOはFe3+を還元しながら酸素を生成する反応だけでなく、IO を還元しながら酸素を生成する反応に対しても非常に高い性能を発揮することがわかった。
(Example 20)
WO 3 surface-treated with an aqueous cesium carbonate solution was prepared in the same manner as in Examples 15-19. 1 g of WO 3 powder made by high purity chemical was suspended in a magnetic crucible containing an amount of cesium carbonate solution equivalent to 1 atom% with respect to tungsten, and evaporated to dryness on a hot plate heated to 100 ° C. And after baking at 500 degreeC for 10 minutes, it fully wash | cleaned with the pure water and dried in the oven heated at 70 degreeC. Thereafter, using a dried catalyst, Pt corresponding to 0.5 wt% was impregnated with H 2 PtCl 6 solution in the same manner as cesium carbonate, and calcined at 500 ° C. for 30 minutes. Table 4 shows the result of comparison of the photocatalytic activity of the oxygen generation reaction from IO 3 instead of Fe 3+ ions using WO 3 subjected to surface treatment. Thus, WO 3 subjected to the surface treatment with cesium has a very high performance not only for the reaction that generates oxygen while reducing Fe 3+ but also for the reaction that generates oxygen while reducing IO 3 −. I found it to work.

Figure 2011050895
Figure 2011050895

(実施例21)
炭酸セシウム水溶液にて表面処理したWO3光電極を実施例15〜19と同様の手法にて調製した。日本板ガラス製の導電性ガラスに厚さ1000nmの酸化タングステン粒子膜のスパッタ法で成膜し、500℃で30分間焼成した。その後、炭酸セシウム水溶液を滴下してさらに500℃で10分間焼成し、純水で十分に洗浄した。
この表面処理を行ったWO光電極を用いて、1.2V vs Ag/AgCl(pH2.3)のバイアスを印加した場合の光電流を比較した結果を表5に示した。このように、セシウムによる表面処理を施したWO光電極は、WO粉末同様性能が向上し、高い光電流が得られることがわかった。白金対極ではこの時光電流に比例した水素発生が起こる。故に、セシウムの表面処理は半導体光触媒粉末だけでなく、光触媒を導電性基板上に成膜した半導体光電極にも向上効果があることがわかった。
(Example 21)
WO3 photoelectrodes surface-treated with an aqueous cesium carbonate solution were prepared in the same manner as in Examples 15-19. A 1000 nm thick tungsten oxide particle film was formed on a conductive glass made of Japanese plate glass by sputtering, and baked at 500 ° C. for 30 minutes. Thereafter, an aqueous cesium carbonate solution was added dropwise, further baked at 500 ° C. for 10 minutes, and sufficiently washed with pure water.
Table 5 shows the results of comparison of photocurrents when a bias of 1.2 V vs. Ag / AgCl (pH 2.3) was applied using the WO 3 photoelectrode subjected to this surface treatment. As described above, it was found that the WO 3 photoelectrode subjected to the surface treatment with cesium has improved performance like the WO 3 powder, and a high photocurrent can be obtained. At the platinum counter electrode, hydrogen is generated in proportion to the photocurrent. Therefore, it was found that the surface treatment of cesium is effective not only for the semiconductor photocatalyst powder but also for the semiconductor photoelectrode in which the photocatalyst is formed on a conductive substrate.

Figure 2011050895
Figure 2011050895

1:半導体結晶粒子
2:表面処理で半導体結晶粒子の表面近傍内部に生成した金属Mと半導体との複合酸化物の薄膜層
1: Semiconductor crystal particle 2: Thin film layer of composite oxide of metal M and semiconductor produced in the vicinity of the surface of the semiconductor crystal particle by surface treatment

Claims (9)

可逆的なレドックス媒体の存在下、水から酸素を生成するための半導体光触媒であって、半導体の結晶粒子の表面に、アルカリ金属、アルカリ土類金属、銀、及びニッケルからなる群のうち、少なくとも1つの金属元素が取り込まれた構造を有していることを特徴とする半導体光触媒。   A semiconductor photocatalyst for producing oxygen from water in the presence of a reversible redox medium, wherein the surface of the semiconductor crystal particles has at least one selected from the group consisting of alkali metals, alkaline earth metals, silver, and nickel. A semiconductor photocatalyst having a structure in which one metal element is incorporated. 前記半導体が、可視光応答性のタングステン化合物であることを特徴とする請求項1に記載の半導体光触媒。   The semiconductor photocatalyst according to claim 1, wherein the semiconductor is a visible light responsive tungsten compound. 前記タングステン化合物が、酸化タングステンである請求項2に記載の半導体光触媒。   The semiconductor photocatalyst according to claim 2, wherein the tungsten compound is tungsten oxide. 請求項1〜3のいずれか1項に記載された半導体光触媒を製造する方法であって、アルカリ金属、アルカリ土類金属、銀、及びニッケルからなる群のうち、少なくとも1つの金属元素を含む金属塩溶液を用いて、水熱処理又は含浸処理することを特徴とする半導体光触媒の製造方法。   A method for producing a semiconductor photocatalyst according to any one of claims 1 to 3, wherein the metal comprises at least one metal element from the group consisting of alkali metals, alkaline earth metals, silver, and nickel. A method for producing a semiconductor photocatalyst, characterized by hydrothermal treatment or impregnation treatment using a salt solution. 前記金属塩が、硫酸塩、硝酸塩、炭酸塩、塩化物及び水酸化物のいずれかから選ばれることを特徴とする請求項4に記載の半導体光触媒の製造方法。   The method for producing a semiconductor photocatalyst according to claim 4, wherein the metal salt is selected from any of sulfates, nitrates, carbonates, chlorides and hydroxides. 請求項1〜3のいずれか1項に記載された半導体光触媒の存在下、可逆的なレドックス媒体の酸化体を含有する水溶液に光照射して酸素とレドックス媒体の還元体を生成させる工程、及び生成されたレドックス媒体の還元体を電解して酸化体に再生すると共に水素を発生させる工程を含むことを特徴とする水素の製造方法。   A step of irradiating an aqueous solution containing an oxidant of a reversible redox medium in the presence of the semiconductor photocatalyst according to any one of claims 1 to 3 to generate oxygen and a reduced form of the redox medium; and A method for producing hydrogen, comprising a step of electrolyzing a reductant of the produced redox medium to regenerate it into an oxidant and generating hydrogen. 前記可逆的なレドックス媒体が、鉄イオン又はヨウ素化合物イオンであることを特徴とする請求項6に記載の水素の製造方法。   The method for producing hydrogen according to claim 6, wherein the reversible redox medium is an iron ion or an iodine compound ion. 請求項1〜3のいずれか1項に記載された半導体光触媒の存在下、可逆的なレドックス媒体の酸化体を含有する水溶液に光照射して酸素と該レドックス媒体の還元体を生成させる半導体光触媒反応装置、生成された該レドックス媒体の還元体を電解して酸化体に再生すると共に水素を発生させる電解装置、及び再生された該レドックス媒体の酸化体を前記半導体光触媒反応装置に供給する装置からなることを特徴とする水素の製造装置。   A semiconductor photocatalyst that generates light and a reduced form of the redox medium by irradiating an aqueous solution containing an oxidant of a reversible redox medium in the presence of the semiconductor photocatalyst according to any one of claims 1 to 3. A reactor, an electrolyzer that electrolyzes the reductant of the generated redox medium to regenerate it into an oxidant and generates hydrogen, and a device that supplies the regenerated oxidant of the redox medium to the semiconductor photocatalytic reactor An apparatus for producing hydrogen, characterized in that 請求項1〜3のいずれか1項に記載された半導体光触媒が導電性基板上で膜状に存在した光電極において、光照射して光電極上で酸素を発生させ、光電極とつながった対極で水素を発生させることを特徴とする水素の製造方法。   In a photoelectrode in which the semiconductor photocatalyst according to any one of claims 1 to 3 is present in a film form on a conductive substrate, light is irradiated to generate oxygen on the photoelectrode, and a counter electrode connected to the photoelectrode. A method for producing hydrogen, characterized by generating hydrogen.
JP2009203596A 2009-09-03 2009-09-03 A semiconductor photocatalyst improved in performance by surface modification treatment, a production method thereof, and a hydrogen production method using the photocatalyst. Active JP5464414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009203596A JP5464414B2 (en) 2009-09-03 2009-09-03 A semiconductor photocatalyst improved in performance by surface modification treatment, a production method thereof, and a hydrogen production method using the photocatalyst.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009203596A JP5464414B2 (en) 2009-09-03 2009-09-03 A semiconductor photocatalyst improved in performance by surface modification treatment, a production method thereof, and a hydrogen production method using the photocatalyst.

Publications (2)

Publication Number Publication Date
JP2011050895A true JP2011050895A (en) 2011-03-17
JP5464414B2 JP5464414B2 (en) 2014-04-09

Family

ID=43940487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009203596A Active JP5464414B2 (en) 2009-09-03 2009-09-03 A semiconductor photocatalyst improved in performance by surface modification treatment, a production method thereof, and a hydrogen production method using the photocatalyst.

Country Status (1)

Country Link
JP (1) JP5464414B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889800A (en) * 1994-09-19 1996-04-09 Nikon Corp Photocatalyst
JP2001002403A (en) * 1999-06-16 2001-01-09 Sharp Corp Oxygen producing device
JP2001233602A (en) * 2000-12-22 2001-08-28 Natl Inst Of Advanced Industrial Science & Technology Meti System for producing hydrogen comprising semiconductor photocatalyst reacting device and electrolytic device
JP2004256378A (en) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology Method and apparatus for manufacturing hydrogen and oxygen
JP2005068007A (en) * 2004-10-18 2005-03-17 National Institute Of Advanced Industrial & Technology Method for manufacturing hydrogen and oxygen by iodine compound and semiconductor photocatalyst
JP2005199187A (en) * 2004-01-16 2005-07-28 Tokyo Univ Of Science Novel z-scheme type visible light active photocatalyst system for perfectly decomposing water and water perfectly decomposing method using the same
JP2008043827A (en) * 2006-08-10 2008-02-28 Mitsui Chemicals Inc Glass molding containing photocatalyst coated with silicon oxide film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0889800A (en) * 1994-09-19 1996-04-09 Nikon Corp Photocatalyst
JP2001002403A (en) * 1999-06-16 2001-01-09 Sharp Corp Oxygen producing device
JP2001233602A (en) * 2000-12-22 2001-08-28 Natl Inst Of Advanced Industrial Science & Technology Meti System for producing hydrogen comprising semiconductor photocatalyst reacting device and electrolytic device
JP2004256378A (en) * 2003-02-27 2004-09-16 National Institute Of Advanced Industrial & Technology Method and apparatus for manufacturing hydrogen and oxygen
JP2005199187A (en) * 2004-01-16 2005-07-28 Tokyo Univ Of Science Novel z-scheme type visible light active photocatalyst system for perfectly decomposing water and water perfectly decomposing method using the same
JP2005068007A (en) * 2004-10-18 2005-03-17 National Institute Of Advanced Industrial & Technology Method for manufacturing hydrogen and oxygen by iodine compound and semiconductor photocatalyst
JP2008043827A (en) * 2006-08-10 2008-02-28 Mitsui Chemicals Inc Glass molding containing photocatalyst coated with silicon oxide film

Also Published As

Publication number Publication date
JP5464414B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
Miyoshi et al. Water splitting on rutile TiO2‐based photocatalysts
Navalón et al. Photocatalytic CO2 reduction using non‐titanium metal oxides and sulfides
Yang et al. Utter degradation of toluene with inhibiting the generation of benzene by self-supporting Bi2MoO6 nanoflakes featuring OV-enriched interface
Dhakshinamoorthy et al. Photocatalytic CO 2 reduction by TiO 2 and related titanium containing solids
Kočí et al. Photocatalytic reduction of CO2 over TiO2 based catalysts
Zhang et al. Nickel sulfide as co-catalyst on nanostructured TiO2 for photocatalytic hydrogen evolution
Tian et al. Water splitting by CdS/Pt/WO3-CeOx photocatalysts with assisting of artificial blood perfluorodecalin
Izumi Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond
JP4997454B2 (en) Semiconductor electrode and energy conversion system using the same
JP5999548B2 (en) Photocatalyst and method for producing the same
Zhang et al. Enhanced visible light photocatalytic activity for TiO2 nanotube array films by codoping with tungsten and nitrogen
CN108675382B (en) Based on TiO2Integrated catalytic system of nanotube photocatalyst and degradation treatment method thereof
Chen et al. Construction of Z-type heterojunction BiVO4/Sm/α-Fe2O3 photoanode for selective degradation: Efficient removal of bisphenol A based on multifunctional Sm-doped modification
JP4406689B2 (en) Equipment for producing hydrogen and oxygen by water photolysis
Belousov et al. Pyrochlore oxides as visible light-responsive photocatalysts
Zhang et al. Multicomponent hydroxides supported Cu/Cu2O nanoparticles for high efficient photocatalytic ammonia synthesis
Takagi et al. Synergistic effect of Ag decorated in-liquid plasma treated titanium dioxide catalyst for efficient electrocatalytic CO2 reduction application
Lai et al. Single Step Formation of C‐TiO2 Nanotubes: Influence of Applied Voltage and Their Photocatalytic Activity under Solar Illumination
JP2004256378A (en) Method and apparatus for manufacturing hydrogen and oxygen
JP2022549402A (en) Nitrogen- and phosphorus-modified granular carbon-supported bimetallic catalysts, their preparation methods and their applications
JP3793800B2 (en) Method for producing hydrogen and oxygen using iodine compound and semiconductor photocatalyst
JP2005068007A (en) Method for manufacturing hydrogen and oxygen by iodine compound and semiconductor photocatalyst
JP5464414B2 (en) A semiconductor photocatalyst improved in performance by surface modification treatment, a production method thereof, and a hydrogen production method using the photocatalyst.
CN113649054B (en) NiFe@NC/Al-SrTiO 3 Composite photocatalyst and application thereof
Madi et al. Well-designed 2D vanadium carbide (V2C) MXenes supported LaCoO3/g-C3N4 heterojunction for highly efficient and stable photocatalytic CO2 reduction to CO and CH4

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140108

R150 Certificate of patent or registration of utility model

Ref document number: 5464414

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250