JP2011050604A - Biological information measuring system - Google Patents

Biological information measuring system Download PDF

Info

Publication number
JP2011050604A
JP2011050604A JP2009202981A JP2009202981A JP2011050604A JP 2011050604 A JP2011050604 A JP 2011050604A JP 2009202981 A JP2009202981 A JP 2009202981A JP 2009202981 A JP2009202981 A JP 2009202981A JP 2011050604 A JP2011050604 A JP 2011050604A
Authority
JP
Japan
Prior art keywords
signal
reflected wave
microwave
phase difference
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009202981A
Other languages
Japanese (ja)
Other versions
JP5467395B2 (en
Inventor
Atsushi Mase
淳 間瀬
Yuichiro Chikaki
祐一郎 近木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu TLO Co Ltd
Original Assignee
Kyushu TLO Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu TLO Co Ltd filed Critical Kyushu TLO Co Ltd
Priority to JP2009202981A priority Critical patent/JP5467395B2/en
Publication of JP2011050604A publication Critical patent/JP2011050604A/en
Application granted granted Critical
Publication of JP5467395B2 publication Critical patent/JP5467395B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological information measuring system which enables desired information relating to a subject to be obtained by obtaining a phase difference while properly adjusting the level of a signal based on a reflected wave reflected by the surface of the subject of microwaves applied to the subject so as to avoid influence of noise accompanying a movement of the subject not subjected to measurement. <P>SOLUTION: A reflected wave signal including a noise component obtained by a microwave transmission and reception unit 11 is subjected to adjustment of fixing the level of a reflected wave signal by an adjustment unit 12. Variation in amplitude component in an in-phase component signal and an orthogonal component signal obtained by a quadrature detection unit 13 is suppressed to eliminate an influence of the variation in the amplitude component on the calculation of a phase difference by an arithmetic unit 14. Accordingly, a phase difference signal properly corresponding to the micromotion of an object to be measured is obtained efficiently. Using the phase difference signal, the states of heart rate, respiration, or the like are measured appropriately and the state of the subject is evaluated appropriately. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被験体にマイクロ波を照射して得られる反射波に基づいて、被験体の状態を解析可能な信号を得る生体情報測定システムに関する。   The present invention relates to a biological information measurement system that obtains a signal capable of analyzing the state of a subject based on a reflected wave obtained by irradiating the subject with microwaves.

電磁波を測定対象物に照射し、測定対象物で反射する電磁波のドップラーシフトを利用して測定対象物の振動状態や変位を求める手法は従来から広く知られているが、マイクロ波−ミリ波帯の電磁波は、誘電体等の媒質を透過する性質も有しており、これらを利用して、人体において振動として現れる心臓の拍動や呼吸の動態を人へのマイクロ波照射で検出しようとする試みが近年提案されている。マイクロ波を用いることで、人体に対し非接触で且つ衣服を着たままでの測定が可能となり、被測定者にかかる負担を最小限に抑えられる効果が得られる。   A technique for irradiating a measurement object with an electromagnetic wave and using the Doppler shift of the electromagnetic wave reflected by the measurement object to obtain the vibration state and displacement of the measurement object has been widely known. The electromagnetic wave has the property of transmitting through a medium such as a dielectric, and by using these, it is attempted to detect the heart beat and respiratory dynamics that appear as vibrations in the human body by microwave irradiation to the human body. Attempts have been proposed in recent years. By using the microwave, it is possible to perform measurement without touching the human body and wearing clothes, and an effect of minimizing the burden on the measurement subject can be obtained.

このマイクロ波を用いる測定システムは、単なる心拍数や呼吸数の測定といった人の日常生活における健康状態のモニタの役割にとどまらず、睡眠時無呼吸症候群や車両等運転時の居眠り検知などの人体における異常の発見、また、心拍測定に基づくストレス評価への応用も考えられる。この他、非接触で且つ遠隔位置から人の動きを計測できる特性により、侵入者監視等のセキュリティ対策への適用も期待できる。   This measurement system using microwaves is not limited to monitoring the health status of people in their daily lives, such as simply measuring heart rate and respiration rate, but also in the human body such as sleep apnea syndrome and sleep detection when driving a vehicle. It is also possible to find abnormalities and apply them to stress assessment based on heart rate measurements. In addition, it can be expected to be applied to security measures such as intruder monitoring due to the characteristics of being able to measure human movements from a remote location without contact.

こうしたマイクロ波を用いる測定システムの一例としては、特開2002−58659号公報や特開2009−55997号公報に開示されるものがある。   As an example of a measurement system using such a microwave, there are those disclosed in Japanese Patent Application Laid-Open Nos. 2002-58659 and 2009-55997.

特開2002−58659号公報JP 2002-58659 A 特開2009−55997号公報JP 2009-55997 A

従来のマイクロ波を用いた測定システムは前記各特許文献に示されるものとなっており、それぞれマイクロ波を用いて被験者の微小な動きを検出して心拍等の情報を得る仕組みである。詳しくは、照射波に対する反射波の位相変化(位相差)を検出することで、被験者の心拍等測定対象の振動に基づく体表の微動を検出しようとするものであり、こうした位相変化を効率よく検出するために、前記特許文献2に示されるようなクオドラチャ検出(I−Q検出)が用いられる。クオドラチャ検出では、理論上、反射波の振幅成分と位相変化成分を分離できることで位相変化を効率よく算出することができるが、生体のように通常の特に拘束等されていない状態では、静止状態とはなりにくく、常に何らかの動きを伴うものが被験体となる場合、こうした測定対象外の動きがノイズとなって、反射波における振幅成分が大きく変化し、この振幅成分の大きな変化が位相変化の検出に影響を与えて、位相成分を生体の測定対象の動き(微動)に正しく対応したものとして算出できなくなり、得られた位相変化を心拍や呼吸等の測定対象の動きを示すものとして有効に使用できないという課題を有していた。   Conventional measurement systems using microwaves are those described in the above-mentioned patent documents, and each has a mechanism for detecting minute movements of a subject using microwaves and obtaining information such as heartbeats. Specifically, by detecting the phase change (phase difference) of the reflected wave with respect to the irradiation wave, it is intended to detect microtremors on the body surface based on the vibration of the subject to be measured, such as the subject's heartbeat. For detection, quadrature detection (I-Q detection) as shown in Patent Document 2 is used. In quadrature detection, theoretically, the phase change can be efficiently calculated by separating the amplitude component and the phase change component of the reflected wave, but in a state that is not particularly restricted, such as a living body, When the subject is always subject to some kind of movement, the movement outside of the measurement becomes noise, and the amplitude component in the reflected wave changes greatly, and this large change in amplitude component detects the phase change. The phase component cannot be calculated as a correct response to the movement (fine movement) of the biological measurement target, and the obtained phase change is effectively used to indicate the movement of the measurement target such as heartbeat or respiration. I had a problem that I couldn't.

本発明は、前記課題を解消するためになされたもので、被験体に照射したマイクロ波の被験体表面での反射波に基づく信号のレベルを適切に調整しつつ位相差を求めて、被験体の測定対象外の動きに伴うノイズの影響を避け、被験体に係る所望の情報を適切に把握可能とする生体情報測定システムを提供することを目的とする。   The present invention has been made in order to solve the above-mentioned problems, and obtains the phase difference while appropriately adjusting the level of the signal based on the reflected wave of the microwave irradiated to the subject on the surface of the subject. It is an object of the present invention to provide a biological information measurement system that avoids the influence of noise associated with movement outside the measurement target and can appropriately grasp desired information on the subject.

本発明に係る生体情報測定システムは、非静止状態の被験体に対しマイクロ波を照射すると共に、当該照射波の被験体表面での反射波を受信し、反射波信号及びクオドラチャ検出用の参照波信号を出力するマイクロ波送受信部と、当該マイクロ波送受信部から出力される反射波信号について、信号出力レベルを調整して所定出力レベルの反射波信号を得る調整部と、当該調整部で調整された反射波信号及び前記参照波信号を用いてクオドラチャ検出処理を行い、反射波と同相成分の信号及び直交成分の信号を得るクオドラチャ検出部と、当該クオドラチャ検出部から出力された前記同相成分信号及び直交成分信号から、照射波と反射波との位相差信号を算出する演算部とを備えるものである。   The biological information measurement system according to the present invention irradiates a non-stationary subject with microwaves, receives a reflected wave on the subject surface of the irradiated wave, and receives a reflected wave signal and a quadrature detection reference wave. A microwave transmission / reception unit that outputs a signal, an adjustment unit that adjusts a signal output level to obtain a reflected wave signal of a predetermined output level for a reflected wave signal output from the microwave transmission / reception unit, and the adjustment unit A quadrature detection unit that performs quadrature detection processing using the reflected wave signal and the reference wave signal, and obtains a signal of the in-phase component and a quadrature component of the reflected wave, and the in-phase component signal output from the quadrature detection unit and An arithmetic unit that calculates a phase difference signal between the irradiation wave and the reflected wave from the orthogonal component signal is provided.

このように本発明によれば、マイクロ波送受信部によって得られた測定対象の動きの成分以外の被験体の動きに伴うノイズ成分も含む反射波信号について、調整部で被験体の測定対象外の動きの影響を受けて大きく変化している反射波信号のレベルを一定にする調整を実行してから、クオドラチャ検出部で同相成分信号と直交成分信号を求め、これら同相成分信号と直交成分信号における振幅成分の変化を抑え、振幅成分変化が演算部における位相差の算出に与える影響を排除することにより、マイクロ波送受信部で得られる反射波信号がノイズ成分を含んで、クオドラチャ検出処理で得られる各信号の振幅成分を大きく変化させ、そのままでは位相差の算出が正常に行えないような場合でも、ノイズの影響なく位相差を算出して測定対象の微動に適切に対応する位相差信号を効率よく求められ、この位相差信号を用いて、体表の微動としてあらわれる例えば心拍や呼吸等の状態を正しく測定でき、被験体の状態を正確に評価できる。   As described above, according to the present invention, the reflected wave signal including the noise component accompanying the movement of the subject other than the movement component of the measurement target obtained by the microwave transmission / reception unit is excluded from the measurement target of the subject by the adjustment unit. After performing the adjustment to make the level of the reflected wave signal that is greatly changed under the influence of the movement constant, the quadrature detection unit obtains the in-phase component signal and the quadrature component signal, and the in-phase component signal and the quadrature component signal By suppressing the change of the amplitude component and eliminating the influence of the change of the amplitude component on the calculation of the phase difference in the calculation unit, the reflected wave signal obtained by the microwave transmitting / receiving unit can be obtained by the quadrature detection process including the noise component. Even if the amplitude component of each signal is changed greatly and the phase difference cannot be calculated normally as it is, the phase difference can be calculated without the influence of noise and It is possible to efficiently obtain a phase difference signal that appropriately corresponds to the movement, and by using this phase difference signal, it is possible to correctly measure the state of heartbeat, respiration, etc. that appear as fine movements on the body surface, and to accurately evaluate the state of the subject. .

また、本発明に係る生体情報測定システムは必要に応じて、前記マイクロ波送受信部が、被験体にマイクロ波を照射する照射用アンテナと、当該照射用アンテナから照射されるマイクロ波を発生させる第一マイクロ波発振器と、前記マイクロ波と所定周波数差となる他のマイクロ波を発生させる第二マイクロ波発振器と、前記各マイクロ波発振器で発生した二つのマイクロ波から差周波数の前記参照波信号を得る参照波用ミキサ部と、反射波を受信する受信用アンテナと、当該受信用アンテナで受信した反射波と前記第二マイクロ発振器からのマイクロ波とから差周波数の前記反射波信号を得る反射波用ミキサ部とを有してなるものである。   Further, in the biological information measuring system according to the present invention, the microwave transmission / reception unit generates an irradiation antenna for irradiating the subject with microwaves and a microwave irradiated from the irradiation antenna as necessary. One microwave oscillator, a second microwave oscillator that generates another microwave having a predetermined frequency difference from the microwave, and the reference wave signal having a difference frequency from two microwaves generated by each microwave oscillator. A reference wave mixer unit to be obtained, a receiving antenna for receiving the reflected wave, a reflected wave for obtaining the reflected wave signal having a difference frequency from the reflected wave received by the receiving antenna and the microwave from the second micro oscillator And a mixer section for use.

このように本発明によれば、マイクロ波送受信部を、照射用のマイクロ波の発振器とは別に、これと所定周波数差の他の発振器を参照波信号発生用に用いるヘテロダイン方式の送受信機構とすることにより、二つのマイクロ波発振器を利用して反射波信号や参照波信号を中間周波数の信号とすることができ、各信号の周波数帯域を抑えて測定精度を向上させられると共に、信号レベル調整を行う場合の調整部分で直流成分の増幅を考慮せずに済み、システムの構成を簡略化できる。   As described above, according to the present invention, the microwave transmission / reception unit is a heterodyne transmission / reception mechanism that uses another oscillator with a predetermined frequency difference for generating a reference wave signal, in addition to the irradiation microwave oscillator. By using two microwave oscillators, the reflected wave signal and reference wave signal can be converted to intermediate frequency signals, and the measurement accuracy can be improved by suppressing the frequency band of each signal, and the signal level can be adjusted. It is not necessary to consider the amplification of the DC component in the adjustment part when performing, and the system configuration can be simplified.

また、本発明に係る生体情報測定システムは必要に応じて、前記クオドラチャ検出部から出力される前記同相成分信号及び直交成分信号における直流成分を0とする調整を行うオフセット調整手段を備えるものである。   In addition, the biological information measurement system according to the present invention includes offset adjusting means for adjusting the DC component in the in-phase component signal and the quadrature component signal output from the quadrature detection unit to 0 as necessary. .

このように本発明によれば、クオドラチャ検出で得られた同相成分信号及び直交成分信号における直流成分を0とする調整を行うことにより、マイクロ波送受信部で得られる反射波信号が生体の動きに伴うノイズを多く含んで直流成分を多く含み、直流成分が振幅成分より大きくなって計算に影響を与える状況でも、直流成分による影響を回避して計算等処理を正確に実行して、生体の測定対象となる動きに対応した位相差信号を取得でき、測定対象の動きを正しく評価できる。   As described above, according to the present invention, the reflected wave signal obtained by the microwave transmission / reception unit is adjusted to the movement of the living body by adjusting the DC component in the in-phase component signal and the quadrature component signal obtained by quadrature detection to zero. Even in situations where there is a lot of accompanying noise and a large amount of DC component, and the DC component is larger than the amplitude component and affects the calculation, the calculation of the living body is performed by avoiding the influence of the DC component and accurately performing processing such as calculation. The phase difference signal corresponding to the target movement can be acquired, and the movement of the measurement target can be correctly evaluated.

また、本発明に係る生体情報測定システムは必要に応じて、前記演算部が、クオドラチャ検出部から出力された前記同相成分信号及び直交成分信号における直流成分を0とする調整を行った上で、同相成分信号及び直交成分信号から前記位相差信号を取得するものである。   Further, in the biological information measurement system according to the present invention, as necessary, the calculation unit adjusts the DC component in the in-phase component signal and the quadrature component signal output from the quadrature detection unit to 0, The phase difference signal is obtained from the in-phase component signal and the quadrature component signal.

このように本発明によれば、クオドラチャ検出で得られた同相成分信号及び直交成分信号における直流成分を0とする調整を演算部で行うことにより、マイクロ波送受信部で得られる反射波信号が生体の動きに伴うノイズを多く含んで直流成分を多く含み、直流成分が振幅成分より大きくなって計算に影響を与える状況でも、直流成分による影響を回避して計算等処理を正確に実行して、生体の測定対象となる動きに対応した位相差信号を取得でき、測定対象の動きを正しく評価できる。   As described above, according to the present invention, the reflected wave signal obtained by the microwave transmission / reception unit is converted into a living body by performing the adjustment so that the DC component in the in-phase component signal and the quadrature component signal obtained by quadrature detection is zero. Even in the situation that includes a lot of noise accompanying the movement of and contains a lot of DC components, and the DC component is larger than the amplitude component and affects the calculation, avoid the influence of the DC component and execute processing such as calculation accurately, A phase difference signal corresponding to the movement of the living body can be acquired, and the movement of the measuring object can be correctly evaluated.

また、本発明に係る生体情報測定システムは必要に応じて、少なくとも前記マイクロ波送受信部と、前記調整部と、前記クオドラチャ検出部とが二系統配設され、二つのマイクロ波送受信部における被験体へのマイクロ波照射及び反射波の受信が、被験体を挟んで対向した箇所でそれぞれ行われ、各系統ごとの前記同相成分信号及び直交成分信号からそれぞれ算出した二つの位相差信号を加算し、当該加算した信号をシステム全体の位相差信号とするものである。   Moreover, the biological information measuring system according to the present invention includes at least two microwave transmission / reception units, the adjustment unit, and the quadrature detection unit as necessary, and subjects in two microwave transmission / reception units. The microwave irradiation and the reception of the reflected wave are performed at locations facing each other across the subject, and the two phase difference signals calculated from the in-phase component signal and the quadrature component signal for each system are added, The added signal is used as a phase difference signal for the entire system.

このように本発明によれば、マイクロ波送受信部と調整部、並びにクオドラチャ検出部とが二系統配設され、被験体に対してマイクロ波照射及び反射波の受信が、被験体を挟んで対向した二箇所でそれぞれ行われ、各系統ごとに算出された二つの位相差信号を加算して全体の位相差信号とし、被験体の動きに伴って各位置で得られた反射波信号にそれぞれ逆位相で重畳するノイズ成分をキャンセルすることにより、各マイクロ波送受信部で得られる反射波信号が被験体の測定対象外の動きに伴うノイズを多く含んで、単独のシステムでの処理の場合にノイズの影響を受けて位相差信号を測定対象の動きに適切に対応させられない場合でも、二系統で位相差信号を求めて合成することで、信号へのノイズ重畳分を相殺し、確実にノイズ低減を図れ、位相差信号を確実に生体の測定対象となる動きに対応させられ、測定対象の動きとしてあらわれる被験体の状態を正しく評価できる。   Thus, according to the present invention, the microwave transmission / reception unit, the adjustment unit, and the quadrature detection unit are arranged in two systems, and the microwave irradiation and the reception of the reflected wave are opposed to the subject across the subject. The two phase difference signals calculated for each system are added together to obtain the overall phase difference signal, which is opposite to the reflected wave signal obtained at each position as the subject moves. By canceling the noise component superimposed on the phase, the reflected wave signal obtained by each microwave transmitter / receiver contains a lot of noise due to the movement of the subject outside the measurement target, and in the case of processing in a single system, the noise Even if the phase difference signal cannot be appropriately matched to the movement of the measurement target due to the influence of the noise, the phase difference signal is obtained and synthesized by the two systems to cancel the noise superimposition on the signal and ensure noise Figure of reduction , Is made to correspond to the motion to be measured reliably in vivo the phase difference signal, the condition of the subject appears as the motion of the measuring object can be correctly evaluated.

また、本発明に係る生体情報測定システムは必要に応じて、少なくとも前記マイクロ波送受信部と、前記調整部と、前記クオドラチャ検出部とが二系統配設され、二つのマイクロ波送受信部における被験体へのマイクロ波照射及び反射波の受信が、異なる二箇所でそれぞれ行われ、各系統ごとの前記同相成分信号及び直交成分信号からそれぞれ算出した二つの位相差信号同士の相互相関を求め、相互相関関数の信号を取得し、当該相互相関関数の信号をシステム全体の位相差信号とするものである。   Moreover, the biological information measuring system according to the present invention includes at least two microwave transmission / reception units, the adjustment unit, and the quadrature detection unit as necessary, and subjects in two microwave transmission / reception units. Microwave irradiation and reflected wave reception are performed at two different locations, and the cross-correlation between two phase difference signals calculated from the in-phase component signal and quadrature component signal for each system is obtained. A function signal is acquired, and the signal of the cross-correlation function is used as a phase difference signal of the entire system.

このように本発明によれば、マイクロ波送受信部と調整部、並びにクオドラチャ検出部とが二系統配設され、被験体に対するマイクロ波照射及び反射波の受信を異なる二箇所で実行し、各系統ごとに算出された二つの位相差信号が測定対象の動きに対応した波形成分を共通して含むことを利用して、二つの位相差信号の相互相関をとり、得られた相互相関関数を新たな全体の位相差信号とすることから、二つの位相差信号の相関の高さを示す相互相関関数は、測定対象の動きに対応する波形成分に合致する時間関数となり、各マイクロ波送受信部で得られる反射波信号がノイズを含んで、単独のシステムでの処理の場合にノイズの影響を受けて位相差信号を測定対象の動きに適切に対応させられない場合でも、相互相関関数を測定対象の動きに対応する位相差信号として適切に使用でき、位相差信号からノイズの影響を排除して確実に生体の測定対象となる動きに対応させられ、測定対象の動きとしてあらわれる被験体の状態を正しく評価できる。   As described above, according to the present invention, the microwave transmission / reception unit, the adjustment unit, and the quadrature detection unit are arranged in two systems, and the microwave irradiation and the reception of the reflected wave are performed on the subject at two different locations. Using the fact that the two phase difference signals calculated for each of them contain a waveform component that corresponds to the movement of the measurement object, the two phase difference signals are cross-correlated and the obtained cross-correlation function is updated. Therefore, the cross-correlation function that indicates the level of correlation between the two phase difference signals is a time function that matches the waveform component corresponding to the movement of the measurement target, and each microwave transceiver unit The cross-correlation function is measured even if the resulting reflected wave signal contains noise and the phase difference signal cannot be appropriately matched to the movement of the measurement target due to the influence of noise when processing in a single system. Movement Appropriately used as the corresponding phase difference signal, can eliminate the influence of noise from the phase difference signal and reliably correspond to the movement that is the measurement target of the living body, and can correctly evaluate the state of the subject that appears as the movement of the measurement target .

本発明の第1の実施形態に係る生体情報測定システムのブロック構成図である。1 is a block configuration diagram of a biological information measurement system according to a first embodiment of the present invention. 本発明の第1の実施形態に係る生体情報測定システムのリサジュー図形に基づくオフセット調整原理と信号出力レベル調整原理の説明図である。It is explanatory drawing of the offset adjustment principle based on the Lissajous figure and the signal output level adjustment principle of the biological information measuring system which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る生体情報測定システムの他のブロック構成図である。It is another block block diagram of the biometric information measurement system which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る生体情報測定システムのブロック構成図である。It is a block block diagram of the biological information measuring system which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る生体情報測定システムのブロック構成図である。It is a block block diagram of the biological information measurement system which concerns on the 3rd Embodiment of this invention. 本発明の生体情報測定システムの実施例1におけるクオドラチャ検出処理で得られた同相成分信号及び直交成分信号のグラフ、及び位相差信号を示すグラフである。It is a graph which shows the graph of the in-phase component signal and quadrature component signal which were obtained by the quadrature detection process in Example 1 of the biometric information measurement system of this invention, and a phase difference signal. 本発明の生体情報測定システムの実施例1における同相成分信号及び直交成分信号に基づくリサジュー曲線のグラフである。It is a graph of the Lissajous curve based on the in-phase component signal and quadrature component signal in Example 1 of the biological information measurement system of the present invention. 本発明の生体情報測定システムの実施例1におけるAGC有りの場合での位相差信号のWavelet変換結果説明図、及びWavelet変換に基づく心拍数変化と心電計に基づく心拍数変化のグラフである。It is wavelet conversion result explanatory drawing of the phase difference signal in case of AGC presence in Example 1 of the living body information measurement system of the present invention, and a graph of heart rate change based on Wavelet conversion and heart rate change based on an electrocardiograph. 本発明の生体情報測定システムの実施例1におけるAGC無しの場合での位相差信号のWavelet変換結果説明図、及びWavelet変換に基づく心拍数変化と心電計に基づく心拍数変化のグラフである。It is a wavelet conversion result explanatory drawing of the phase difference signal in the case of no AGC in Example 1 of the living body information measurement system of the present invention, and a graph of heart rate change based on Wavelet conversion and heart rate change based on an electrocardiograph. 本発明の生体情報測定システムの実施例2におけるシステム1の位相差信号を示すグラフ、及びシステム2の位相差信号を示すグラフである。It is the graph which shows the phase difference signal of the system 1 in Example 2 of the biological information measuring system of this invention, and the graph which shows the phase difference signal of the system 2. 本発明の生体情報測定システムの実施例2におけるシステム全体の位相差信号を示すグラフである。It is a graph which shows the phase difference signal of the whole system in Example 2 of the biometric information measurement system of this invention. 本発明の生体情報測定システムの実施例2におけるシステム1の同相成分信号及び直交成分信号に基づくリサジュー曲線のグラフ、及びシステム2の同相成分信号及び直交成分信号に基づくリサジュー曲線のグラフである。It is a graph of the Lissajous curve based on the in-phase component signal and quadrature component signal of the system 1 in Example 2 of the biological information measurement system of the present invention, and the graph of the Lissajous curve based on the in-phase component signal and quadrature component signal of the system 2. 本発明の生体情報測定システムの実施例2におけるシステム1の位相差信号のパワースペクトル図、及びシステム2の位相差信号のパワースペクトル図である。It is the power spectrum figure of the phase difference signal of the system 1 in Example 2 of the biometric information measurement system of this invention, and the power spectrum figure of the phase difference signal of the system 2. 本発明の生体情報測定システムの実施例2におけるシステム全体の位相差信号及び心電計で得た心拍信号の各パワースペクトル図である。It is each power spectrum figure of the heart rate signal obtained with the phase difference signal of the whole system in Example 2 of the biological information measurement system of this invention, and an electrocardiograph. 本発明の生体情報測定システムの実施例3におけるシステム1のクオドラチャ検出処理で得られた同相成分信号及び直交成分信号のグラフ、及び位相差信号を示すグラフである。It is a graph which shows the graph of the in-phase component signal and quadrature component signal which were obtained by the quadrature detection process of the system 1 in Example 3 of the biological information measurement system of this invention, and a phase difference signal. 本発明の生体情報測定システムの実施例3におけるシステム2のクオドラチャ検出処理で得られた同相成分信号及び直交成分信号のグラフ、及び位相差信号を示すグラフである。It is a graph which shows the graph of the in-phase component signal and quadrature component signal which were obtained by the quadrature detection process of the system 2 in Example 3 of the biological information measurement system of this invention, and a phase difference signal. 本発明の生体情報測定システムの実施例3におけるシステム1の同相成分信号及び直交成分信号に基づくリサジュー曲線のグラフ、及びシステム2の同相成分信号及び直交成分信号に基づくリサジュー曲線のグラフである。It is the graph of the Lissajous curve based on the in-phase component signal and quadrature component signal of the system 1 in Example 3 of the biological information measuring system of the present invention, and the graph of the Lissajous curve based on the in-phase component signal and quadrature component signal of the system 2. 本発明の生体情報測定システムの実施例3における各システムの位相差信号同士の相互相関関数を示すグラフ及びこれを時間軸方向に拡大したグラフである。It is the graph which shows the cross correlation function of the phase difference signals of each system in Example 3 of the biological information measurement system of this invention, and the graph which expanded this in the time-axis direction. 本発明の生体情報測定システムの実施例3におけるシステム1の位相差信号及び心電計で得た心拍信号の各パワースペクトル図、並びに、システム2の位相差信号及び心電計で得た心拍信号の各パワースペクトル図である。Respective power spectrum diagrams of the phase difference signal of the system 1 and the heart rate signal obtained by the electrocardiograph in Example 3 of the biological information measuring system of the present invention, and the heart rate signal obtained by the phase difference signal of the system 2 and the electrocardiograph FIG. 本発明の生体情報測定システムの実施例3におけるシステム全体の位相差信号及び心電計で得た心拍信号の各パワースペクトル図である。It is each power spectrum figure of the heart rate signal obtained with the phase difference signal of the whole system in Example 3 of the biometric information measurement system of this invention, and an electrocardiograph.

(本発明の第1の実施形態)
以下、本発明の第1の実施形態に係る生体情報測定システムを前記図1及び図2に基づいて説明する。本実施形態においては、心拍の振動を非接触且つ非拘束状態で測定して心拍を検出するための測定システムの例について説明する。
(First embodiment of the present invention)
Hereinafter, a biological information measurement system according to a first embodiment of the present invention will be described with reference to FIG. 1 and FIG. In the present embodiment, an example of a measurement system for detecting a heartbeat by measuring the vibration of the heartbeat in a non-contact and unrestrained state will be described.

前記各図において本実施形態に係る生体情報測定システム1は、非静止状態の被験体50に対しマイクロ波を照射すると共に、被験体50表面での反射波を受信し、反射波信号及びクオドラチャ検出用の参照波信号を出力するマイクロ波送受信部11と、このマイクロ波送受信部11から出力される反射波信号について、信号出力レベルを調整する調整部12と、調整部12で調整された反射波信号及び前記参照波信号を用いてクオドラチャ検出処理を行い、反射波と同相成分の信号及び直交成分の信号を得るクオドラチャ検出部13と、クオドラチャ検出部13から出力された前記同相成分信号及び直交成分信号から、照射波と反射波との位相差信号を算出する演算部14とを備える構成である。   In each of the drawings, the biological information measuring system 1 according to the present embodiment irradiates a subject 50 in a non-stationary state with a microwave, receives a reflected wave on the surface of the subject 50, and detects a reflected wave signal and quadrature detection. A microwave transmission / reception unit 11 that outputs a reference wave signal for use, an adjustment unit 12 that adjusts the signal output level of the reflected wave signal output from the microwave transmission / reception unit 11, and a reflected wave that is adjusted by the adjustment unit 12 A quadrature detection unit 13 that performs quadrature detection processing using the signal and the reference wave signal to obtain a signal having the same phase component and a quadrature component as the reflected wave; and the in-phase component signal and the quadrature component output from the quadrature detection unit 13 It is the structure provided with the calculating part 14 which calculates the phase difference signal of an irradiation wave and a reflected wave from a signal.

前記マイクロ波送受信部11は、被験体50としての人体に対し、連続するマイクロ波を所定の測定時間にわたって照射する一方、この照射波の被験体50表面での反射波を受信し、人体における測定対象の動き、例えば、心臓の拍動や呼吸等に基づく体表の微動に対応した位相差信号を求めるための反射波信号及び参照波信号をそれぞれ出力するものである。   The microwave transmission / reception unit 11 irradiates a human body as the subject 50 with continuous microwaves over a predetermined measurement time, while receiving a reflected wave of the irradiation wave on the surface of the subject 50 and measuring the human body. A reflected wave signal and a reference wave signal for obtaining a phase difference signal corresponding to a fine movement of the body surface based on the movement of the object, for example, heart beat or respiration are output.

詳細には、マイクロ波送受信部11は、被験体50にマイクロ波を照射する照射用アンテナ11aと、この照射用アンテナ11aから照射されるマイクロ波を発生させる第一マイクロ波発振器11bと、反射波を受信する受信用アンテナ11cと、第一マイクロ波発振器11bで発生したマイクロ波を被験体への照射波と参照波成分に分離する方向性結合器11dと、前記マイクロ波と所定周波数差となる他のマイクロ波を発生させる第二マイクロ波発振器11eと、第二マイクロ波発振器11eで発生した他のマイクロ波を反射波信号生成用成分と参照波信号生成用成分とに分離する方向性結合器11fと、各方向性結合器11d、11fで分離された二つの参照用のマイクロ波から差周波数(中間周波数)の参照波信号を得る参照波用ミキサ部11gと、受信用アンテナ11cで受信した反射波と方向性結合器11fを経た他のマイクロ波とから差周波数(中間周波数)の反射波信号を得る反射波用ミキサ部11hとを備える構成である。   Specifically, the microwave transmission / reception unit 11 includes an irradiation antenna 11a that irradiates the subject 50 with microwaves, a first microwave oscillator 11b that generates microwaves irradiated from the irradiation antenna 11a, and a reflected wave. Receiving antenna 11c, a directional coupler 11d for separating the microwave generated by the first microwave oscillator 11b into an irradiation wave to the subject and a reference wave component, and a predetermined frequency difference from the microwave. A second microwave oscillator 11e that generates another microwave, and a directional coupler that separates the other microwave generated by the second microwave oscillator 11e into a reflected wave signal generating component and a reference wave signal generating component 11f and a reference wave signal for obtaining a reference wave signal having a difference frequency (intermediate frequency) from two reference microwaves separated by the directional couplers 11d and 11f. A configuration including a synthesizer unit 11g, and a reflected wave mixer unit 11h that obtains a reflected wave signal having a difference frequency (intermediate frequency) from the reflected wave received by the receiving antenna 11c and another microwave that has passed through the directional coupler 11f. It is.

このマイクロ波送受信部11では、第一マイクロ波発振器11bと第二マイクロ波発振器11eの二つの発振器を用い、被験体50表面での反射波と第二マイクロ波発振器11eから出力されたマイクロ波とをミキサ部で周波数混合して中間周波数に変換された反射波信号を得、この反射波信号を、第一マイクロ波発振器11bと第二マイクロ波発振器11eの各マイクロ波出力をミキサ部で周波数混合して得られた中間周波数の参照波信号と共に出力するヘテロダイン方式を採用している。二つのマイクロ波発振器を用い、反射波信号と参照波信号をそれぞれ中間周波数としていることで、各信号線路中に挿入されて不要成分を減衰させる帯域通過フィルタ(バンドパスフィルタ)等のフィルタのバンド幅を狭帯域化することができ、これにより各信号における高調波などの不要成分の影響を除去して測定精度を向上させられる。   In the microwave transmitting and receiving unit 11, using two oscillators in the first microwave oscillator 11b and a second microwave oscillator 11e, microwaves and output from the reflected wave and the second microwave oscillator 11e in a subject 50 surface Is mixed in the mixer section to obtain a reflected wave signal converted into an intermediate frequency, and the reflected wave signal is mixed in the mixer section with each microwave output of the first microwave oscillator 11b and the second microwave oscillator 11e. The heterodyne method is used for outputting together with the intermediate frequency reference wave signal obtained in this way. A band of a filter such as a band-pass filter (band-pass filter) that is inserted into each signal line and attenuates unnecessary components by using two microwave oscillators and having the reflected wave signal and the reference wave signal as intermediate frequencies. The width can be narrowed, thereby eliminating the influence of unnecessary components such as harmonics in each signal and improving the measurement accuracy.

また、マイクロ波送受信部11がヘテロダイン方式で反射波信号と参照波信号をそれぞれ中間周波数に変換した形で出力することで、後段の調整部12は直流成分の増幅を考慮する必要が無く、いわゆるDCアンプ構成としなくて済み、温度変化などのドリフトの影響もなくシステムの安定度を維持しやすい、時間的に安定な装置構成とすることができる。   Further, since the microwave transmission / reception unit 11 outputs the reflected wave signal and the reference wave signal converted into intermediate frequencies by the heterodyne method, the adjustment unit 12 in the subsequent stage does not need to consider the amplification of the DC component, so-called A DC amplifier configuration is not required, and a time-stable device configuration can be obtained in which the stability of the system can be easily maintained without being affected by drifts such as temperature changes.

前記調整部12は、マイクロ波送受信部11から出力される反射波信号の信号出力レベルを調整して所定出力範囲の反射波信号を得るものであり、詳細には、ゲイン可変アンプと検出制御部を備え、ゲイン可変アンプからの出力を検出制御部で検出、監視して、あらかじめ設定した一定の出力となるようにゲイン可変アンプのゲインを制御する、いわゆるAGC(自動利得調整)を実行する構成となっている。   The adjusting unit 12 adjusts the signal output level of the reflected wave signal output from the microwave transmitting / receiving unit 11 to obtain a reflected wave signal in a predetermined output range. In detail, the gain variable amplifier and the detection control unit comprising a detection by the detection control unit output from the gain variable amplifier monitors and controls the gain of the variable gain amplifier to have a constant output which is set in advance, to perform a so-called AGC (automatic gain control) configuration It has become.

この調整部12で所定の出力レベルに調整された反射波信号は、参照波用ミキサ部11gからの参照波信号と共にクオドラチャ検出器13に入力され、クオドラチャ検出処理が行われることとなる。なお、調整部12は、ゲイン可変アンプからの出力に基づく調整の他、演算部14に入力される同相成分信号と直交成分信号の各振幅成分が適切な範囲となるように、演算部14から調整部12に制御指示を送信し、信号出力レベルの調整を行うようにすることもできる。   Reflected wave signal adjusted to a predetermined output level in the adjusting portion 12 is input to the quadrature detector 13 with the reference wave signal from the mixer portion 11g reference wave, so that the quadrature detection processing is performed. In addition to the adjustment based on the output from the gain variable amplifier, the adjustment unit 12 includes the adjustment unit 14 so that the amplitude components of the in-phase component signal and the quadrature component signal input to the calculation unit 14 are in an appropriate range. It is also possible to send a control instruction to the adjustment unit 12 to adjust the signal output level.

この調整部12で反射波信号の出力レベルを一定に調整することで、後段のクオドラチャ検出部13で得られる同相成分信号と直交成分信号における振幅成分が大きく変化することはなくなり、演算部での位相変化の算出が、振幅成分の変化の影響を受けず、適切な値を得られることとなる。   By adjusting the output level of the reflected wave signal to be constant by the adjustment unit 12, the amplitude component in the in-phase component signal and the quadrature component signal obtained by the subsequent quadrature detection unit 13 is not greatly changed. The calculation of the phase change is not affected by the change of the amplitude component, and an appropriate value can be obtained.

なお、この調整部12で反射波信号の出力レベルを一定にする目標値の設定は、後段側の演算部14等の機器の入力特性に応じて、例えば入力を飽和させないよう設定されるが、クオドラチャ検出部13から出力され演算部14で取扱われる同相成分信号と直交成分信号の各振幅成分の大きさを参照しつつ測定条件の変化に対応して動的に変化させるようにしてもよい。   The setting of the target value for making the output level of the reflected wave signal constant in the adjustment unit 12 is set so as not to saturate the input, for example, according to the input characteristics of the device such as the calculation unit 14 on the rear stage side. quadrature output from the detector 13 may be varied dynamically in response to changes in the reference while measuring conditions the magnitude of the amplitude component of the in-phase component signal and quadrature component signal handled by the calculation unit 14.

また、参照波信号についても、クオドラチャ検出部13での処理が容易となるように、調整部12からの反射波信号の出力レベルに合せて出力レベルを調整するようにしてもよい。   Further, the output level of the reference wave signal may be adjusted in accordance with the output level of the reflected wave signal from the adjustment unit 12 so that the processing by the quadrature detection unit 13 is facilitated.

前記クオドラチャ検出部13は、調整部12で調整された反射波信号と、マイクロ波送受信部11から出力された参照波信号を用いてクオドラチャ検出処理を行い、一般的なマイクロ波受信回路で得られる反射波信号と同相成分の信号及び直交成分の信号を得るものである。   The quadrature detection unit 13, a reflected wave signal adjusted by the adjustment unit 12 performs quadrature detection processing by using the reference wave signal outputted from the microwave transmitting and receiving unit 11, resulting in a general microwave receiver circuit A signal having an in-phase component and a signal having a quadrature component with respect to the reflected wave signal are obtained.

クオドラチャ検出器13では、クオドラチャ検出処理として、参照波信号(Acosωt)と反射波信号(Bcos(ωt+Δφ))とを組合わせて復調することで、位相変化の同相成分信号(ErcosΔφ)と直交成分信号(ErsinΔφ)を得ることができ、これら二つの信号を得ることで、演算部14では容易な演算処理で振幅成分Erと位相差成分Δφを分離して位相差信号を取得できる。なお、振幅成分Erは、参照波信号の振幅Aと反射波信号の振幅Bの積である。 The quadrature detector 13 performs quadrature detection processing by demodulating the reference wave signal (A cos ωt) and the reflected wave signal (B cos (ωt + Δφ)) in combination, thereby orthogonal to the in-phase component signal (E r cos Δφ) of the phase change. The component signal (E r sin Δφ) can be obtained, and by obtaining these two signals, the arithmetic unit 14 can separate the amplitude component E r and the phase difference component Δφ and obtain the phase difference signal by an easy calculation process. . The amplitude component Er is the product of the amplitude A of the reference wave signal and the amplitude B of the reflected wave signal.

また、クオドラチャ検出部13は、前記オフセット調整手段としての機能も備えており、反射波信号のクオドラチャ検出処理に際し、同相成分信号や直交成分信号と共に出力される直流成分を0とする調整を行える仕組みである。このオフセット調整は、検出回路上の差動増幅器やダブルバランスドミキサ(DBM)等を用いて簡易に実行することができる。   Further, the quadrature detection unit 13 also has a function as the offset adjusting means, and can perform adjustment to set the DC component output together with the in-phase component signal and the quadrature component signal to zero in the quadrature detection processing of the reflected wave signal. It is. This offset adjustment can be easily performed using a differential amplifier on a detection circuit, a double balanced mixer (DBM), or the like.

前記演算部14は、クオドラチャ検出部13から出力された前記同相成分信号及び直交成分信号から、照射波と反射波との位相差信号(位相変化に直接比例する成分)を取得(算出)する構成である。詳細には、クオドラチャ検出器13で得られた位相変化Δφの同相成分信号(ErcosΔφ)と直交成分信号(ErsinΔφ)を用いて、
Δφ=tan-1(ErsinΔφ/ErcosΔφ)
の関係から、Δφに直接比例する成分を算出でき、位相差信号を取得できる。
The calculation unit 14 is configured to acquire (calculate) a phase difference signal (a component that is directly proportional to the phase change) between the irradiation wave and the reflected wave from the in-phase component signal and the quadrature component signal output from the quadrature detection unit 13. It is. Specifically, using the in-phase component signal (E r cos Δφ) and the quadrature component signal (E r sin Δφ) of the phase change Δφ obtained by the quadrature detector 13,
Δφ = tan −1 (E r sin Δφ / E r cos Δφ)
From this relationship, a component directly proportional to Δφ can be calculated, and a phase difference signal can be acquired.

この演算部14は、そのハードウェア構成として、CPUやメモリ、入出力インターフェース等を備えるコンピュータとなっており、メモリ等に格納されるプログラムにより、コンピュータを演算部14として動作させる仕組みである。この演算部14をなすコンピュータは、CPUやメモリ、ROM等を一体的に形成されたマイクロコンピュータとしてもかまわない。   The computing unit 14 is a computer having a CPU, a memory, an input / output interface, and the like as its hardware configuration, and is a mechanism that causes the computer to operate as the computing unit 14 by a program stored in the memory or the like. The computer constituting the calculation unit 14 may be a microcomputer integrally formed with a CPU, a memory, a ROM, and the like.

演算部14では、前記同相成分信号及び直交成分信号についてその直流成分を0とするオフセット調整の処理も行うことができ、そのオフセット調整の具体的な手法としては、例として、同相成分信号(ErcosΔφ)と直交成分信号(ErsinΔφ)について、x=ErcosΔφ、y=ErsinΔφとして、xy平面上に各値の変化をプロットし、得られた曲線(リサジュー図形)を円の一部とみなしてその円中心を定義し、この円中心をxy平面の原点に一致させる調整処理を行うことができる(図2(A)参照)。調整後の同相成分信号及び直交成分信号を用いることで、位相差信号の算出がより適切に行えることとなる。 The calculation unit 14 can also perform offset adjustment processing for setting the DC component of the in-phase component signal and the quadrature component signal to 0. As a specific technique for the offset adjustment, for example, the in-phase component signal (E r cos Δφ) and quadrature component signal (E r sin Δφ) where x = E r cos Δφ and y = E r sin Δφ, the change of each value is plotted on the xy plane, and the obtained curve (Lissajous figure) is a circle The center of the circle can be defined as a part, and an adjustment process can be performed to match the center of the circle with the origin of the xy plane (see FIG. 2A). By using the adjusted in-phase component signal and quadrature component signal, the phase difference signal can be calculated more appropriately.

なお、調整部12で、演算部14に入力される同相成分信号と直交成分信号の各振幅成分の大きさに基づいて信号出力レベルの調整を行う場合においても、同様に演算部14で同相成分信号と直交成分信号の値の変化をxy平面上にプロットし、得られた曲線(リサジュー図形)が、xy平面の第1ないし第4の各象限のうちの複数の象限、望ましくは三つ以上の象限にまたがったものとなるような同相成分信号と直交成分信号の振幅成分を与える程度に、信号出力レベル調整を調整部で行うこともでき(図2(B)参照)、前記オフセット調整の場合と同様、調整後の同相成分信号及び直交成分信号を用いて位相差信号の算出がより適切に行えることとなる。   Even when the adjustment unit 12 adjusts the signal output level based on the magnitudes of the amplitude components of the in-phase component signal and the quadrature component signal input to the calculation unit 14, the calculation unit 14 similarly uses the in-phase component signal. The change of the value of the signal and the quadrature component signal is plotted on the xy plane, and the obtained curve (Lissajous figure) is a plurality of quadrants among the first to fourth quadrants of the xy plane, preferably three or more The signal output level can be adjusted by the adjustment unit to such an extent that the amplitude components of the in-phase component signal and the quadrature component signal are provided so as to extend over the quadrant (see FIG. 2B). As in the case, the phase difference signal can be calculated more appropriately using the adjusted in-phase component signal and quadrature component signal.

次に、本実施形態に係る生体情報測定システムの使用状態について説明する。前提として、被験体50となる人(被験者)は照射用アンテナ11aと受信用アンテナ11cの近くに位置しており、また、被験体50は拘束されておらず動きが生じる状況(非静止状態)となっているものとする。   Next, the usage state of the biological information measurement system according to the present embodiment will be described. As a premise, the person (subject) who becomes the subject 50 is located near the irradiation antenna 11a and the receiving antenna 11c, and the subject 50 is not restrained and moves (non-stationary state). It shall be.

まず、被験体50としての人体に対し、あらかじめ設定された測定時間(例えば、30秒)の間、マイクロ波送受信部11が、第一マイクロ波発振器11bで発生させた連続のマイクロ波を照射用アンテナ11aから被験体50に対し照射すると共に、被験体50の体表面での反射波を受信用アンテナ11cで受信する。   First, for a measurement time (for example, 30 seconds) set in advance for a human body as the subject 50, the microwave transmission / reception unit 11 applies irradiation to the continuous microwave generated by the first microwave oscillator 11b. While irradiating the subject 50 from the antenna 11a, the reflected wave on the body surface of the subject 50 is received by the receiving antenna 11c.

マイクロ波送受信部11は、受信用アンテナ11cで受信した反射波と、第二マイクロ波発振器11eで発生し方向性結合器11fを経た他のマイクロ波とから、反射波用ミキサ部11hで中間周波数の反射波信号を得る。また、第一マイクロ波発振器11bで発生し方向性結合器11dを経た、照射波と同じマイクロ波と、第二マイクロ波発振器11eで発生し方向性結合器11fを経た他のマイクロ波とから、参照波用ミキサ部11gで中間周波数の参照波信号を得る。得られた各信号のうち、反射波信号は調整部12に入力され、参照波信号はクオドラチャ検出部13に入力される。   The microwave transmitting / receiving unit 11 generates an intermediate frequency from the reflected wave received by the receiving antenna 11c and the other microwave generated by the second microwave oscillator 11e and passing through the directional coupler 11f by the reflected wave mixer unit 11h. The reflected wave signal is obtained. Further, from the same microwave as the irradiation wave generated by the first microwave oscillator 11b and passing through the directional coupler 11d, and another microwave generated by the second microwave oscillator 11e and passed through the directional coupler 11f, A reference wave signal having an intermediate frequency is obtained by the reference wave mixer 11g. Of the obtained signals, the reflected wave signal is input to the adjustment unit 12, and the reference wave signal is input to the quadrature detection unit 13.

マイクロ波送受信部11から出力された反射波信号は、調整部12でAGCにより所定の出力レベルに調整された後、クオドラチャ検出部13に入力される。クオドラチャ検出部13は、クオドラチャ検出処理として、参照波信号(Acosωt)と反射波信号(Bcos(ωt+Δφ))とを混合して復調し、反射波の同相成分信号(ErcosΔφ)と直交成分信号(ErsinΔφ)を得る。これら同相成分信号と直交成分信号が演算部14に入力され、演算部14ではこれら同相成分信号及び直交成分信号から、照射波と反射波との位相差信号(位相変化に直接比例する成分)が算出される。 The reflected wave signal output from the microwave transmitting / receiving unit 11 is adjusted to a predetermined output level by the AGC by the adjusting unit 12 and then input to the quadrature detecting unit 13. As the quadrature detection process, the quadrature detection unit 13 mixes and demodulates the reference wave signal (Acosωt) and the reflected wave signal (Bcos (ωt + Δφ)), and in-phase component signal (E r cosΔφ) of the reflected wave and the quadrature component signal (E r sin Δφ) is obtained. The in-phase component signal and the quadrature component signal are input to the calculation unit 14, and the calculation unit 14 generates a phase difference signal (component directly proportional to the phase change) between the irradiation wave and the reflected wave from the in-phase component signal and the quadrature component signal. Calculated.

この演算部14での位相差Δφの算出にあたり、あらかじめ調整部12で反射波信号の出力レベルを一定に調整していることで、クオドラチャ検出部13で得られる同相成分信号と直交成分信号における振幅成分が大きく変化することはなくなり、演算部14での位相差の算出が、振幅成分の変化の影響を受けず、被験体50における測定対象の動きに対応した適切な値を得られることとなる。   In the calculation of the phase difference Δφ at the operation unit 14, the amplitude of the pre-output level of the reflected wave signal by the adjustment section 12 that is adjusted to a constant phase component signal and quadrature component signal obtained by the quadrature detection section 13 The component does not change greatly, and the calculation of the phase difference in the calculation unit 14 is not affected by the change of the amplitude component, and an appropriate value corresponding to the movement of the measurement target in the subject 50 can be obtained. .

照射波と反射波との位相差信号は心拍に基づく体表の動きを現すものとなっており、位相差信号における各ピークを測定対象の心拍に対応するピークと見なすことができ、心拍間隔測定等の利用に供することが可能となる。そして、心拍間隔に対応する位相差信号のピーク間隔の変動を求めれば、例えばストレス評価を行なうこともできる。すなわち、心電計のR波とR波のピーク間隔から読取った心拍間隔の時間変化を周波数解析し、低周波成分のピーク値LFと、高周波成分のピーク値HFを用い、ストレス評価値としてのLF/HFの値を求める従来のストレス評価手法と同様に、位相差信号のピーク間隔を用いて心拍間隔変動に基づくストレス評価が行え、特に本実施形態のシステムの場合、直接被験者の身体に接触せずに測定を行えることで、被験者へ緊張等与えることなく心拍の間隔を確実に捉えられることとなり、ストレス評価を適切に行え、評価精度を向上させられる。   The phase difference signal between the irradiation wave and the reflected wave represents the movement of the body surface based on the heartbeat, and each peak in the phase difference signal can be regarded as a peak corresponding to the heartbeat of the measurement target, and the heartbeat interval measurement It becomes possible to use for the use etc. If the fluctuation of the peak interval of the phase difference signal corresponding to the heartbeat interval is obtained, for example, stress evaluation can be performed. That is, the time change of the heartbeat interval read from the R wave and the R wave peak interval of the electrocardiograph is subjected to frequency analysis, and the peak value LF of the low frequency component and the peak value HF of the high frequency component are used as stress evaluation values. as with conventional stress evaluation method of obtaining the value of LF / HF, it can stress evaluation based on beat-to-beat variation with a peak interval of the phase difference signal, especially in the case of the system of the present embodiment, direct contact with the subject's body By performing the measurement without performing the measurement, the interval between heartbeats can be reliably captured without giving tension to the subject, and the stress evaluation can be appropriately performed and the evaluation accuracy can be improved.

このように、本実施形態に係る生体情報測定システムは、マイクロ波送受信部11によって得られた測定対象の振動成分以外の被験体の動きに伴うノイズ成分も含む反射波信号について、調整部12で被験体の測定対象外の動きの影響を受けて大きく変化している反射波信号のレベルを一定にする調整を実行してから、クオドラチャ検出部13で同相成分信号と直交成分信号を求め、これら同相成分信号と直交成分信号における振幅成分の変化を抑え、振幅成分変化が演算部14における位相差の算出に与える影響を排除することから、マイクロ波送受信部11で得られる反射波信号がノイズ成分を含んで、クオドラチャ検出処理で得られる各信号の振幅成分を大きく変化させ、そのままでは位相差の算出が正常に行えないような場合でも、ノイズの影響なく位相差を算出して測定対象の微動に適切に対応する位相差信号を効率よく求められ、この位相差信号を用いて、体表の微動としてあらわれる例えば心拍や呼吸等の状態を正しく測定でき、被験体の状態を正確に評価できる。   As described above, the biological information measurement system according to the present embodiment uses the adjustment unit 12 for the reflected wave signal including the noise component accompanying the movement of the subject other than the vibration component to be measured obtained by the microwave transmission / reception unit 11. After performing the adjustment to make the level of the reflected wave signal greatly changing under the influence of the movement of the subject outside the measurement target constant, the quadrature detection unit 13 obtains the in-phase component signal and the quadrature component signal, Since the change of the amplitude component in the in-phase component signal and the quadrature component signal is suppressed and the influence of the change in the amplitude component on the calculation of the phase difference in the calculation unit 14 is eliminated, the reflected wave signal obtained by the microwave transmitting / receiving unit 11 is a noise component. Even if the amplitude component of each signal obtained by the quadrature detection process is greatly changed and the phase difference cannot be calculated normally as it is, The phase difference can be calculated efficiently without the influence of noise, and the phase difference signal corresponding to the fine movement of the measurement target can be obtained efficiently. Using this phase difference signal, the state of heartbeat, breathing, etc. Can measure correctly and accurately assess the condition of the subject.

なお、前記実施形態に係る生体情報測定システムにおいては、マイクロ波送受信部を、マイクロ波発振器を二つ設けるヘテロダイン方式とする構成としているが、これに限らず、図3に示すように、マイクロ波発振器15を一つのみ使用し、高周波発振器16、パワーデバイダ17、及びアップコンバータ18を併用して照射波や参照波を発生させるヘテロダイン方式を用いる構成とすることもでき、二つのマイクロ波発振器を使用する際の安定度は両者の揺らぎが重畳されたものとなるのに対し、このアップコンバータ18を用いた場合には、安定度は高周波発振器16のみの揺らぎで決定することから、揺らぎ成分を極めて小さくでき、位相測定精度を向上させることができる。さらに、このヘテロダイン方式の他、同一のマイクロ波発振器出力に基づいた反射波と参照波を生じさせて、位相差検出に用いるホモダイン方式を採用することもでき、マイクロ波発振器が一つで済むと共に、発振器周波数の安定性の問題を回避できる。   In the living body information measurement system according to the embodiment, the microwave transmission / reception unit is configured to be a heterodyne system in which two microwave oscillators are provided. However, the present invention is not limited to this, and as illustrated in FIG. using the oscillator 15 only one, high-frequency oscillator 16, a power divider 17, and up-converter 18 in combination with a can also be configured using a heterodyne to generate a radiation wave and reference wave, the two microwave oscillators The stability at the time of use is obtained by superimposing the fluctuations of both, whereas when this up-converter 18 is used, the stability is determined by the fluctuation of only the high-frequency oscillator 16, so that the fluctuation component is It can be made extremely small, and the phase measurement accuracy can be improved. In addition to this heterodyne method, a reflected wave and a reference wave based on the same microwave oscillator output can be generated, and a homodyne method used for phase difference detection can be adopted, and only one microwave oscillator is required. The problem of stability of the oscillator frequency can be avoided.

また、前記実施形態に係る生体情報測定システムにおいては、測定対象を心拍とし、体表での反射波から心拍に基づく体表の微動に対応する位相差信号を取得して、心拍の間隔を位相差信号のピーク間隔の形で求められる構成としているが、これに限らず、心拍の他に呼吸のタイミングを測定対象とする構成とすることもでき、呼吸の間隔を位相差信号のピーク間隔として求められることで、例えば、呼吸からのストレス評価を行うことができる。すなわち、呼吸にはストレス時には浅く速くなり、リラックス時には深くゆっくりしたものとなる傾向が見られ、位相差信号には、呼吸に基づいて、ストレス時に振幅が小さく且つ周波数が高くなり、またリラックス時に振幅が大きく且つ周波数が低くなっている振動波形成分が含まれることから、測定した呼吸から適切なストレス評価が行える。また、心拍と呼吸の同時測定も可能であり、この場合、心拍・呼吸変化の両面からストレス評価を行うことができ、心拍と同様にストレスと密接に関係している呼吸を解析・比較し、心拍測定によるストレス評価と並行してストレス評価を行うことで、評価の精度と信頼性が向上する。また、これら心拍変動と呼吸変動のストレス評価に係る関連性も明らかにできる。   Further, in the biological information measurement system according to the embodiment, the measurement target is a heartbeat, a phase difference signal corresponding to the fine movement of the body surface based on the heartbeat is obtained from the reflected wave on the body surface, and the interval between the heartbeats is adjusted. Although it is configured to be obtained in the form of the peak interval of the phase difference signal, it is not limited to this, and it can be configured to measure the timing of breathing in addition to the heartbeat, and the breathing interval is set as the peak interval of the phase difference signal By being required, for example, stress evaluation from breathing can be performed. That is, breathing tends to be shallower and faster when stressed, deeper and slower when relaxed, and the phase difference signal has a lower amplitude and higher frequency during stress based on breathing, and an amplitude when relaxed. Since a vibration waveform component having a large frequency and a low frequency is included, an appropriate stress evaluation can be performed from the measured respiration. Simultaneous measurement of heart rate and respiration is also possible. In this case, stress evaluation can be performed from both sides of heart rate and respiration change, and respiration that is closely related to stress as well as heart rate is analyzed and compared. By performing stress evaluation in parallel with stress evaluation by heart rate measurement, the accuracy and reliability of the evaluation are improved. In addition, the relationship between heart rate variability and respiratory variability in stress evaluation can be clarified.

(本発明の第2の実施形態)
本発明の第2の実施形態を前記図4に基づいて説明する。本実施形態においても、心拍の振動を非接触且つ非拘束状態で測定して心拍を検出するための測定システムの例について説明する。
(Second embodiment of the present invention)
A second embodiment of the present invention will be described with reference to FIG. Also in this embodiment, an example of a measurement system for detecting a heartbeat by measuring the vibration of the heartbeat in a non-contact and unconstrained state will be described.

前記図4において本実施形態に係る測定評価システム2は、前記第1の実施形態同様のマイクロ波送受信部21、25、調整部22、26、及びクオドラチャ検出部23、27を二系統備え、各系統のクオドラチャ検出部23、27から出力された同相成分信号及び直交成分信号から、照射波と反射波との位相差信号をそれぞれの系統ごとに算出し、得られた二つの位相差信号を加算してシステム全体の位相差信号とする処理を実行する演算部24とを備える構成である。   In FIG. 4, the measurement evaluation system 2 according to the present embodiment includes two systems of microwave transmission / reception units 21 and 25, adjustment units 22 and 26, and quadrature detection units 23 and 27 similar to those of the first embodiment. From the in-phase component signal and quadrature component signal output from the quadrature detection units 23 and 27 of the system, the phase difference signal between the irradiation wave and the reflected wave is calculated for each system, and the obtained two phase difference signals are added. And a calculation unit 24 that executes processing to obtain a phase difference signal of the entire system.

前記マイクロ波送受信部21、25は、それぞれ前記第1の実施形態同様のヘテロダイン方式の送受信構成で中間周波数の反射波信号と参照波信号を出力するものであり、詳細な説明を省略する。ただし、一方のマイクロ波送受信部21のうち、少なくとも照射用アンテナ21aと受信用アンテナ21cとが被験体の背面側に配設され、また、他方のマイクロ波送受信部25のうち、少なくとも照射用アンテナ25aと受信用アンテナ25cとが被験体の正面側に配設されて、二つのマイクロ波送受信部21、25における被験体へのマイクロ波照射及び反射波の受信が、被験体を挟んで対向した箇所でそれぞれ行われる仕組みである。これらマイクロ波送受信部21、25で取扱うマイクロ波の周波数は、マイクロ波送受信部ごとに異ならせており、一方の照射用アンテナ21aからの照射波の反射波のみが受信用アンテナ21cで受信され、且つ他方の照射用アンテナ25aからの照射波の反射波のみが受信用アンテナ25cで受信される。   The microwave transmission / reception units 21 and 25 each output a reflected wave signal and a reference wave signal of an intermediate frequency with a heterodyne transmission / reception configuration similar to that of the first embodiment, and will not be described in detail. However, at least the irradiation antenna 21a and the reception antenna 21c of the one microwave transmission / reception unit 21 are disposed on the back side of the subject, and at least the irradiation antenna of the other microwave transmission / reception unit 25. 25a and receiving antenna 25c is provided on the front side of the subject and reception of microwave radiation and the reflected waves to a subject in the two microwave transmitting and receiving unit 21 and 25, and face each other across the subject It is a mechanism that is performed at each location. The frequency of the microwaves handled by the microwave transmitting / receiving units 21 and 25 is different for each microwave transmitting / receiving unit, and only the reflected wave of the irradiation wave from one irradiation antenna 21a is received by the reception antenna 21c. In addition, only the reflected wave of the irradiation wave from the other irradiation antenna 25a is received by the reception antenna 25c.

前記調整部22、26は、それぞれ前記第1の実施形態同様、AGCとして反射波信号を一定の信号出力レベルに調整するものであり、調整部22は一方のマイクロ波送受信部21から出力される反射波信号の信号出力レベルを調整し、また、調整部26は他方のマイクロ波送受信部25から出力される反射波信号の信号出力レベルを調整する。   The adjustment units 22 and 26 adjust the reflected wave signal to a constant signal output level as AGC, respectively, as in the first embodiment. The adjustment unit 22 is output from one microwave transmission / reception unit 21. The signal output level of the reflected wave signal is adjusted, and the adjusting unit 26 adjusts the signal output level of the reflected wave signal output from the other microwave transmitting / receiving unit 25.

前記クオドラチャ検出部23、27は、それぞれ前記第1の実施形態同様、反射波信号と参照波信号を用いてクオドラチャ検出処理を行い、反射波と同相成分の信号及び直交成分の信号を得るものである。このうち、一方のクオドラチャ検出部23は、調整部22で調整された反射波信号と、マイクロ波送受信部21から出力された参照波信号を用いてクオドラチャ検出処理を行い、また、他方のクオドラチャ検出部27は、調整部26で調整された反射波信号と、マイクロ波送受信部25から出力された参照波信号を用いてクオドラチャ検出処理を行う。   The quadrature detection section 23 and 27, in which each of the same first embodiment, performs a quadrature detection processing using the reference wave signal and reflected wave signal to obtain a signal of the signal and the orthogonal component of the reflected wave in phase component is there. Among these, one quadrature detection unit 23 performs quadrature detection processing using the reflected wave signal adjusted by the adjustment unit 22 and the reference wave signal output from the microwave transmission / reception unit 21, and detects the other quadrature detection. The unit 27 performs quadrature detection processing using the reflected wave signal adjusted by the adjusting unit 26 and the reference wave signal output from the microwave transmitting / receiving unit 25.

前記演算部24は、一方のクオドラチャ検出部23から出力された同相成分信号及び直交成分信号から前記第1の実施形態同様に位相差信号を算出し、また、他方のクオドラチャ検出部27から出力された同相成分信号及び直交成分信号から前記第1の実施形態同様に位相差信号を算出してから、得られた二つの各系統ごとの位相差信号を加算し、この加算した信号をシステム全体の位相差信号とするものである。   The arithmetic unit 24 calculates a phase difference signal from the in-phase component signal and the quadrature component signal output from one quadrature detection unit 23 as in the first embodiment, and outputs from the other quadrature detection unit 27. The phase difference signal is calculated from the in-phase component signal and the quadrature component signal in the same manner as in the first embodiment, and the obtained phase difference signals for each of the two systems are added. This is a phase difference signal.

この演算部24は、前記第1の実施形態同様、ハードウェアとしてのコンピュータをプログラムにより演算部24として動作させる仕組みである。なお、演算部も、マイクロ波送受信部等と同様にそれぞれの系統ごとに異なる演算部が位相差信号を算出するように二つ配設すると共に、算出された各位相差信号を加算してシステム全体の位相差信号を求める別の演算部を新たに設けるようにしてもよい。   As in the first embodiment, the calculation unit 24 is a mechanism that causes a computer as hardware to operate as the calculation unit 24 by a program. In addition, as with the microwave transmission / reception unit, the calculation unit is also arranged so that two different calculation units for each system calculate the phase difference signal, and the calculated entire phase difference signal is added. Another calculation unit for obtaining the phase difference signal may be newly provided.

次に、本実施形態に係る生体情報測定システムの使用状態について説明する。前提として、被験体50となる人(被験者)は一方の照射用アンテナ21aと受信用アンテナ21cの群と、他方の照射用アンテナ25aと受信用アンテナ25cの群との間に位置しており、また、被験体50は拘束されておらず動きが生じる状況(非静止状態)にあり、さらに正面側のアンテナ25a、25cに少しずつ近付く向きへ移動しているものとする。   Next, the usage state of the biological information measurement system according to the present embodiment will be described. As a premise, the person (subject) who becomes the subject 50 is located between the group of one irradiation antenna 21a and the receiving antenna 21c, and the other group of the irradiation antenna 25a and the receiving antenna 25c, further, the subject 50 is in the situation where the motion has not been constrained occur (non-stationary state), it is assumed that moving further front side of the antenna 25a, to the direction that approaches gradually to 25c.

まず、被験体50としての人体に対し、あらかじめ設定された測定時間(例えば、30秒)の間、マイクロ波送受信部21が、第一マイクロ波発振器21bで発生させた連続のマイクロ波を被験体背面側の照射用アンテナ21aから被験体50に対し照射すると共に、被験体50の体表面での反射波を同じく被験体背面側の受信用アンテナ21cで受信する。また、他方のマイクロ波送受信部25が、第一マイクロ波発振器25bで発生させた連続のマイクロ波を被験体正面側の照射用アンテナ25aから被験体50に対し照射すると共に、被験体50の体表面での反射波を同じく被験体正面側の受信用アンテナ25cで受信する。   First, with respect to the human body as a subject 50, a preset measuring time (e.g., 30 seconds), the microwave transmitting and receiving unit 21, subjects the microwave continuous caused by the first microwave oscillator 21b The subject 50 is irradiated from the rear-side irradiation antenna 21a, and the reflected wave on the body surface of the subject 50 is also received by the receiving antenna 21c on the rear side of the subject. The other microwave transmitting / receiving unit 25 irradiates the subject 50 with the continuous microwave generated by the first microwave oscillator 25b from the irradiation antenna 25a on the front side of the subject, and the body of the subject 50. Similarly, the reflected wave on the surface is received by the receiving antenna 25c on the front side of the subject.

マイクロ波送受信部21は、受信用アンテナ21cで受信した被験体背面側における反射波と、第二マイクロ波発振器21eで発生し方向性結合器21fを経た他のマイクロ波とから、反射波用ミキサ部21hで中間周波数の反射波信号を得る。また、第一マイクロ波発振器21bで発生し方向性結合器21dを経た、照射波と同じマイクロ波と、第二マイクロ波発振器21eで発生し方向性結合器21fを経た他のマイクロ波とから、参照波用ミキサ部21gで中間周波数の参照波信号を得る。得られた各信号のうち、反射波信号は調整部22に入力され、参照波信号はクオドラチャ検出部23に入力される。   Microwave transceiver 21, a reflected wave in a subject back side received by the receiving antenna 21c, from other microwaves passing through the generated directional coupler 21f in the second microwave oscillator 21e, a mixer for the reflected wave A reflected wave signal having an intermediate frequency is obtained by the unit 21h. Further, from the same microwave as the irradiation wave generated by the first microwave oscillator 21b and passing through the directional coupler 21d, and another microwave generated by the second microwave oscillator 21e and passed through the directional coupler 21f, A reference wave signal having an intermediate frequency is obtained by the reference wave mixer unit 21g. Of the obtained signals, the reflected wave signal is input to the adjustment unit 22, and the reference wave signal is input to the quadrature detection unit 23.

同様に、マイクロ波送受信部25は、受信用アンテナ25cで受信した被験体正面側における反射波と、第二マイクロ波発振器25eで発生し方向性結合器25fを経た他のマイクロ波とから、反射波用ミキサ部25hで中間周波数の反射波信号を得る。また、第一マイクロ波発振器25bで発生し方向性結合器25dを経た、照射波と同じマイクロ波と、第二マイクロ波発振器25eで発生し方向性結合器25fを経た他のマイクロ波とから、参照波用ミキサ部25gで中間周波数の参照波信号を得る。得られた各信号のうち、反射波信号は調整部26に入力され、参照波信号はクオドラチャ検出部27に入力される。   Similarly, the microwave transmission / reception unit 25 reflects the reflected wave on the front side of the subject received by the receiving antenna 25c and the other microwave generated by the second microwave oscillator 25e and passing through the directional coupler 25f. An intermediate frequency reflected wave signal is obtained by the wave mixer 25h. Further, from the same microwave as the irradiation wave generated by the first microwave oscillator 25b through the directional coupler 25d and the other microwave generated by the second microwave oscillator 25e and passed through the directional coupler 25f, A reference wave signal having an intermediate frequency is obtained by the reference wave mixer unit 25g. Of the obtained signals, the reflected wave signal is input to the adjustment unit 26, and the reference wave signal is input to the quadrature detection unit 27.

各マイクロ波送受信部21、25から出力された反射波信号は、それぞれ調整部22、26でAGCにより所定の出力レベルに調整された後、クオドラチャ検出部23、27に入力される。クオドラチャ検出部23は、クオドラチャ検出処理として、マイクロ波送受信部21からの参照波信号と調整部22からの反射波信号とを組合わせて復調し、被験体背面側における反射波の同相成分信号と直交成分信号を得る。これら同相成分信号と直交成分信号が演算部24に入力され、演算部24はこれら同相成分信号及び直交成分信号から、被験体背面側における照射波と反射波との位相差信号を算出する。   The reflected wave signals output from the microwave transmission / reception units 21 and 25 are adjusted to predetermined output levels by the AGC by the adjustment units 22 and 26, respectively, and then input to the quadrature detection units 23 and 27. As the quadrature detection process, the quadrature detection unit 23 demodulates the reference wave signal from the microwave transmission / reception unit 21 and the reflected wave signal from the adjustment unit 22 and demodulates them, and outputs the in-phase component signal of the reflected wave on the back side of the subject. An orthogonal component signal is obtained. The in-phase component signal and the quadrature component signal are input to the calculation unit 24, and the calculation unit 24 calculates a phase difference signal between the irradiation wave and the reflected wave on the back side of the subject from the in-phase component signal and the quadrature component signal.

一方、クオドラチャ検出部27は、クオドラチャ検出処理として、マイクロ波送受信部25からの参照波信号と調整部26からの反射波信号とを組合わせて復調し、被験体正面側における反射波の同相成分信号と直交成分信号を得る。これら同相成分信号と直交成分信号も演算部24に入力され、演算部24はこれら同相成分信号及び直交成分信号から、被験体正面側における照射波と反射波との位相差信号を算出する。   On the other hand, the quadrature detection unit 27 demodulates the quadrature detection processing by combining the reference wave signal from the microwave transmitting / receiving unit 25 and the reflected wave signal from the adjustment unit 26, and in-phase components of the reflected wave on the front side of the subject. A signal and a quadrature component signal are obtained. These in-phase component signal and quadrature component signal are also input to the calculation unit 24, and the calculation unit 24 calculates a phase difference signal between the irradiation wave and the reflected wave on the front side of the subject from the in-phase component signal and the quadrature component signal.

さらに、演算部24は、それぞれ算出した被験体正面側における位相差信号と、被験体背面側における位相差信号との加算処理を行う。各系統ごとに算出された位相差信号には、被験体の動きに伴うノイズ成分が重畳しているが、被験体に対してマイクロ波照射及び反射波の受信が、被験体を挟んで対向した二箇所でそれぞれ行われることで、前記二つの反射波信号におけるノイズ成分は互いに逆位相をなす関係となっている。これら二つの反射波信号を加算することにより、信号にそれぞれ逆位相で重畳するノイズ成分をキャンセルでき、加算により得られた信号を新たにシステム全体の位相差信号とすれば、測定対象となる体表の微動に対応する位相差の成分が強調される一方、被験体の測定対象外の動きに伴うノイズを抑えた位相差信号が得られたこととなる。   Further, the calculation unit 24 performs addition processing of the calculated phase difference signal on the subject front side and the phase difference signal on the subject rear side. In the phase difference signal calculated for each system, noise components accompanying the movement of the subject are superimposed, but microwave irradiation and reception of reflected waves are opposed to the subject across the subject. By being performed in two places, the noise components in the two reflected wave signals are in opposite phases to each other. By adding these two reflected wave signals, it is possible to cancel the noise components superimposed on the signals in opposite phases, and if the signal obtained by the addition is newly made the phase difference signal of the entire system, the body to be measured While the phase difference component corresponding to the fine movement in the table is emphasized, a phase difference signal in which noise associated with the movement of the subject outside the measurement target is suppressed is obtained.

このように、本実施形態に係る生体情報測定システムは、マイクロ波送受信部21、25と調整部22、26、並びにクオドラチャ検出部23、27とが二系統配設され、被験体に対してマイクロ波照射及び反射波の受信が、被験体を挟んで対向した二箇所でそれぞれ行われ、各系統ごとに算出された二つの位相差信号を加算して全体の位相差信号とし、被験体の動きに伴って各位置で得られた反射波信号にそれぞれ逆位相で重畳するノイズ成分をキャンセルすることから、各マイクロ波送受信部21、25で得られる反射波信号が被験体の測定対象外の動きに伴うノイズを多く含んで、単独のシステムでの処理の場合にノイズの影響を受けて位相差信号を測定対象の動きに適切に対応させられない場合でも、二系統で位相差信号を求めて合成することで、信号へのノイズ重畳分を相殺し、確実にノイズ低減を図れ、位相差信号を確実に生体の測定対象となる動きに対応させられ、測定対象の動きとしてあらわれる被験体の状態を正しく評価できる。   As described above, the biological information measurement system according to this embodiment includes the microwave transmission / reception units 21 and 25, the adjustment units 22 and 26, and the quadrature detection units 23 and 27. Wave irradiation and reception of reflected waves are performed at two locations facing each other across the subject, and the two phase difference signals calculated for each system are added to obtain the entire phase difference signal. Accordingly, since the noise component superimposed on the reflected wave signal obtained at each position in the opposite phase is canceled, the reflected wave signal obtained by each of the microwave transmitting / receiving units 21 and 25 is the movement of the subject outside the measurement target. In the case of processing in a single system that contains a lot of noise, the phase difference signal is obtained by two systems even if the phase difference signal cannot be appropriately matched to the movement of the measurement target due to the influence of noise. Together By canceling the noise superimposition on the signal, the noise can be reliably reduced, and the phase difference signal can be reliably matched to the movement to be measured by the living body, and the state of the subject appearing as the movement of the measurement target can be determined. Can be evaluated correctly.

前記実施形態に係る生体情報測定システムの応用として、建物等の出入り口ないし部屋の動線上の離れた二箇所に、マイクロ波送受信部を向い合わせとなる配置で二系統配設し、人を挟んだ状態での各系統における人からの反射波信号に基づく各位相差信号を合成処理することにより、心拍変化を正しく評価し、緊張状態(例えば不審行動時)の人物検知に利用することができる。また、心拍数およびその変化の確定が不要な場合にも、人の存在による反射波の位相変化が、マイクロ波発振器の揺らぎや周辺環境の微動により生じる位相変化よりも大きいことを利用して、マイクロ波照射範囲における侵入者の存在を検知できるため、非接触で且つ遠隔位置から侵入者の監視を要求されるセキュリティ対策に適用することができる。   As an application of the biological information measurement system according to the embodiment, the distant two points of the dynamic lines of the doorway to the room, such as a building, and two systems disposed in an arrangement to be aligned toward the microwave transmitting and receiving unit, across the human By synthesizing each phase difference signal based on the reflected wave signal from the person in each system in the state, the heart rate change can be correctly evaluated and used for detecting a person in a tension state (for example, during suspicious behavior). Also, even when it is not necessary to determine the heart rate and its change, utilizing the fact that the phase change of the reflected wave due to the presence of a person is larger than the phase change caused by the fluctuation of the microwave oscillator and the fine movement of the surrounding environment, Since the presence of an intruder in the microwave irradiation range can be detected, the present invention can be applied to a security measure that requires contactless and remote monitoring of the intruder.

(本発明の第3の実施形態)
本発明の第3の実施形態を前記図5に基づいて説明する。本実施形態においても、心拍の振動を非接触且つ非拘束状態で測定して心拍を検出するための測定システムの例について説明する。
(Third embodiment of the present invention)
A third embodiment of the present invention will be described with reference to FIG. Also in this embodiment, an example of a measurement system for detecting a heartbeat by measuring the vibration of the heartbeat in a non-contact and unconstrained state will be described.

前記図5において本実施形態に係る測定評価システム3は、前記第2の実施形態同様、マイクロ波送受信部31、35、調整部32、36、及びクオドラチャ検出部33、37を二系統備え、演算部34が各系統のクオドラチャ検出部33、37から出力された同相成分信号及び直交成分信号から、照射波と反射波との位相差信号をそれぞれの系統ごとに算出する構成を備える一方、異なる点として、演算部34が、各系統ごとの同相成分信号及び直交成分信号からそれぞれ算出した二つの位相差信号同士の相互相関を求め、相互相関関数の信号をシステム全体の位相差信号として得る構成を有するものである。   5, the measurement evaluation system 3 according to the present embodiment includes two systems of microwave transmission / reception units 31 and 35, adjustment units 32 and 36, and quadrature detection units 33 and 37, as in the second embodiment. While the unit 34 has a configuration for calculating the phase difference signal of the irradiation wave and the reflected wave for each system from the in-phase component signal and the quadrature component signal output from the quadrature detection units 33 and 37 of each system, As described above, the calculation unit 34 obtains the cross-correlation between two phase difference signals calculated from the in-phase component signal and the quadrature component signal for each system, and obtains the signal of the cross-correlation function as the phase difference signal of the entire system. It is what you have.

前記マイクロ波送受信部31、35は、それぞれ前記第1の実施形態同様のヘテロダイン方式の送受信構成で中間周波数の反射波信号と参照波信号を出力するものであり、詳細な説明を省略する。ただし、一方のマイクロ波送受信部31のうち、少なくとも照射用アンテナ31aと受信用アンテナ31cとが被験体に所定の第一の方向から面する所定の第一の箇所に配設され、また、他方のマイクロ波送受信部35のうち、少なくとも照射用アンテナ35aと受信用アンテナ35cとが前記第一の箇所とは異なる第二の箇所に配設されて被験体に所定の第二の方向から面し、二つのマイクロ波送受信部31、35における被験体へのマイクロ波照射及び反射波の受信が、異なる二箇所で被験体に異なる方向から面してそれぞれ行われる仕組みである。これらマイクロ波送受信部31、35で取扱うマイクロ波の周波数は、マイクロ波送受信部ごとに異ならせており、一方の照射用アンテナ31aからの照射波の反射波のみが受信用アンテナ31cで受信され、且つ他方の照射用アンテナ35aからの照射波の反射波のみが受信用アンテナ35cで受信される。   The microwave transmission / reception units 31 and 35 each output a reflected wave signal and a reference wave signal of an intermediate frequency with a heterodyne transmission / reception configuration similar to that of the first embodiment, and will not be described in detail. However, in one microwave transmission / reception unit 31, at least the irradiation antenna 31a and the reception antenna 31c are arranged at a predetermined first location facing the subject from a predetermined first direction, and the other In the microwave transmitting / receiving unit 35, at least the irradiation antenna 35a and the receiving antenna 35c are arranged at a second location different from the first location and face the subject from a predetermined second direction. The microwave irradiation and the reception of the reflected wave to the subject in the two microwave transmission / reception units 31 and 35 are respectively performed in two different places facing the subject from different directions. The microwave frequencies handled by these microwave transmitting / receiving units 31 and 35 are different for each microwave transmitting / receiving unit, and only the reflected wave of the irradiation wave from one irradiation antenna 31a is received by the reception antenna 31c. In addition, only the reflected wave of the irradiation wave from the other irradiation antenna 35a is received by the reception antenna 35c.

前記調整部32、36は、それぞれ前記第1の実施形態同様、AGCとして反射波信号を一定の信号出力レベルに調整するものであり、調整部32は一方のマイクロ波送受信部31から出力される反射波信号の信号出力レベルを調整し、また、調整部36は他方のマイクロ波送受信部35から出力される反射波信号の信号出力レベルを調整する。   As in the first embodiment, the adjustment units 32 and 36 adjust the reflected wave signal to a constant signal output level as AGC, and the adjustment unit 32 is output from one microwave transmission / reception unit 31. The signal output level of the reflected wave signal is adjusted, and the adjusting unit 36 adjusts the signal output level of the reflected wave signal output from the other microwave transmitting / receiving unit 35.

前記クオドラチャ検出部33、37は、それぞれ前記第1の実施形態同様、反射波信号と参照波信号を用いてクオドラチャ検出処理を行い、反射波と同相成分の信号及び直交成分の信号を得るものである。このうち、一方のクオドラチャ検出部33は、調整部32で調整された反射波信号と、マイクロ波送受信部31から出力された参照波信号を用いてクオドラチャ検出処理を行い、また、他方のクオドラチャ検出部37は、調整部36で調整された反射波信号と、マイクロ波送受信部35から出力された参照波信号を用いてクオドラチャ検出処理を行う。   The quadrature detection section 33 and 37, in which each of the same first embodiment, performs a quadrature detection processing using the reference wave signal and reflected wave signal to obtain a signal of the signal and the orthogonal component of the reflected wave in phase component is there. Among these, one quadrature detection unit 33 performs quadrature detection processing using the reflected wave signal adjusted by the adjustment unit 32 and the reference wave signal output from the microwave transmission / reception unit 31, and also detects the other quadrature detection. The unit 37 performs quadrature detection processing using the reflected wave signal adjusted by the adjusting unit 36 and the reference wave signal output from the microwave transmitting / receiving unit 35.

前記演算部34は、一方のクオドラチャ検出部33から出力された同相成分信号及び直交成分信号から前記第1の実施形態同様に位相差信号を算出し、また、他方のクオドラチャ検出部37から出力された同相成分信号及び直交成分信号から前記第1の実施形態同様に位相差信号を算出してから、得られた二つの各系統ごとの位相差信号同士の相互相関を求め、相互相関関数をシステム全体の位相差信号とするものである。   The calculation unit 34 calculates a phase difference signal from the in-phase component signal and the quadrature component signal output from one quadrature detection unit 33 as in the first embodiment, and outputs from the other quadrature detection unit 37. After the phase difference signal is calculated from the in-phase component signal and the quadrature component signal as in the first embodiment, the cross-correlation between the obtained two phase difference signals for each system is obtained, and the cross correlation function is calculated. The entire phase difference signal is used.

相互相関関数を求める仕組みを説明すると、各位相差信号は、測定対象の周期的微動に対応した波形成分を含むことから、各信号同士で相関の強い箇所が前記波形成分に存在し、相互相関関数には前記波形成分に近い周期変化が現れると予想される。一方、各位相信号に含まれるノイズ成分は時間的にランダムであるため、相関は得られない。よって、相互相関関数はノイズの影響を排除しつつ測定対象の周期的微動に対応した波形成分を有するものとなり、システム全体の新たな位相差信号として用いることができる。   The mechanism for obtaining the cross-correlation function will be described. Since each phase difference signal includes a waveform component corresponding to the periodic fine movement to be measured, there is a strong correlation point between the signals, and the cross-correlation function It is expected that a periodic change close to the waveform component appears. On the other hand, since the noise component included in each phase signal is random in time, no correlation is obtained. Therefore, the cross-correlation function has a waveform component corresponding to the periodic fine movement to be measured while eliminating the influence of noise, and can be used as a new phase difference signal of the entire system.

ここで、算出された一方の位相差信号をA(t)、他方の位相差信号をB(t)とすれば、相互相関関数C(τ)は次式で定義される。   Here, when one calculated phase difference signal is A (t) and the other phase difference signal is B (t), the cross-correlation function C (τ) is defined by the following equation.

ここで、右辺のA(t)はある時間tにおける一方の位相差信号、B(t+τ)は時間tから所定時間τだけ経過した時における他方の位相差信号をそれぞれ表わす。 Here, A (t) on the right side represents one phase difference signal at a certain time t, and B (t + τ) represents the other phase difference signal when a predetermined time τ has elapsed from time t.

この演算部34は、前記第1の実施形態同様、ハードウェアとしてのコンピュータをプログラムにより演算部34として動作させる仕組みである。なお、演算部も、マイクロ波送受信部等と同様にそれぞれの系統ごとに異なる演算部が位相差信号を算出するように二つ配設すると共に、算出された各位相差信号同士の相互相関を求め、相互相関関数の信号を得る別の演算部を新たに設けるようにしてもよい。   As in the first embodiment, the calculation unit 34 is a mechanism that causes a computer as hardware to operate as the calculation unit 34 by a program. As with the microwave transmission / reception unit, etc., two calculation units are arranged so that different calculation units calculate the phase difference signal, and the calculated correlation between the phase difference signals is obtained. Alternatively, another calculation unit for obtaining a signal of the cross correlation function may be newly provided.

次に、本実施形態に係る生体情報測定システムの使用状態について説明する。前提として、被験体50となる人(被験者)は一方の照射用アンテナ31aと受信用アンテナ31cの群と、他方の照射用アンテナ35aと受信用アンテナ35cの群との両方に面する位置にあって、また、被験体50は拘束されておらず動きが生じる状況(非静止状態)にあるものとする。   Next, the usage state of the biological information measurement system according to the present embodiment will be described. Given, who becomes a subject 50 (subject) is a both-facing position with one of the irradiation antenna 31a and the group of the receiving antenna 31c, and the other irradiation antenna 35a and the group of the receiving antenna 35c In addition, it is assumed that the subject 50 is not restrained and is in a state (non-stationary state) in which movement occurs.

まず、被験体50としての人体に対し、あらかじめ設定された測定時間(例えば、30秒)の間、一方のマイクロ波送受信部31が、第一マイクロ波発振器31bで発生させた連続のマイクロ波を照射用アンテナ31aから被験体50に対し照射すると共に、被験体50の体表面での反射波を受信用アンテナ31cで受信する。また、他方のマイクロ波送受信部35が、第一マイクロ波発振器35bで発生させた連続のマイクロ波を照射用アンテナ35aから被験体50に対し照射すると共に、被験体50の体表面での反射波を受信用アンテナ35cで受信する。   First, for a human body as the subject 50, one microwave transmission / reception unit 31 generates a continuous microwave generated by the first microwave oscillator 31b for a preset measurement time (for example, 30 seconds). The subject 50 is irradiated from the irradiation antenna 31a, and the reflected wave on the body surface of the subject 50 is received by the receiving antenna 31c. Further, the other microwave transmitting / receiving unit 35 irradiates the subject 50 with the continuous microwave generated by the first microwave oscillator 35b from the irradiation antenna 35a, and the reflected wave on the body surface of the subject 50. Is received by the receiving antenna 35c.

一方のマイクロ波送受信部31は、受信用アンテナ31cで受信した被験体表面からの反射波と、第二マイクロ波発振器31eで発生し方向性結合器31fを経た他のマイクロ波とから、反射波用ミキサ部31hで中間周波数の反射波信号を得る。また、第一マイクロ波発振器31bで発生し方向性結合器31dを経た、照射波と同じマイクロ波と、第二マイクロ波発振器31eで発生し方向性結合器31fを経た他のマイクロ波とから、参照波用ミキサ部31gで中間周波数の参照波信号を得る。得られた各信号のうち、反射波信号は調整部32に入力され、参照波信号はクオドラチャ検出部33に入力される。   One microwave transmitter / receiver 31 receives a reflected wave from a reflected wave from the subject surface received by the receiving antenna 31c and another microwave generated by the second microwave oscillator 31e and passing through the directional coupler 31f. An intermediate frequency reflected wave signal is obtained by the mixer unit 31h. Further, from the same microwave as the irradiation wave generated by the first microwave oscillator 31b and passing through the directional coupler 31d, and another microwave generated by the second microwave oscillator 31e and passed through the directional coupler 31f, A reference wave signal having an intermediate frequency is obtained by the reference wave mixer unit 31g. Of the obtained signals, the reflected wave signal is input to the adjustment unit 32, and the reference wave signal is input to the quadrature detection unit 33.

同様に、他方のマイクロ波送受信部35は、受信用アンテナ35cで受信した被験体表面からの反射波と、第二マイクロ波発振器35eで発生し方向性結合器35fを経た他のマイクロ波とから、反射波用ミキサ部35hで中間周波数の反射波信号を得る。また、第一マイクロ波発振器35bで発生し方向性結合器35dを経た、照射波と同じマイクロ波と、第二マイクロ波発振器35eで発生し方向性結合器35fを経た他のマイクロ波とから、参照波用ミキサ部35gで中間周波数の参照波信号を得る。得られた各信号のうち、反射波信号は調整部36に入力され、参照波信号はクオドラチャ検出部37に入力される。   Similarly, the other microwave transmission / reception unit 35 includes a reflected wave from the subject surface received by the receiving antenna 35c and another microwave generated by the second microwave oscillator 35e and passing through the directional coupler 35f. Then, a reflected wave signal having an intermediate frequency is obtained by the reflected wave mixer unit 35h. Further, the same microwave as the irradiation wave generated by the first microwave oscillator 35b and passed through the directional coupler 35d, and another microwave generated by the second microwave oscillator 35e and passed through the directional coupler 35f, A reference wave signal having an intermediate frequency is obtained by the reference wave mixer unit 35g. Of the obtained signals, the reflected wave signal is input to the adjustment unit 36, and the reference wave signal is input to the quadrature detection unit 37.

各マイクロ波送受信部31、35から出力された反射波信号は、それぞれ調整部32、36でAGCにより所定の出力レベルに調整された後、クオドラチャ検出部33、37に入力される。クオドラチャ検出部33は、クオドラチャ検出処理として、マイクロ波送受信部31からの参照波信号と調整部32からの反射波信号とを組合わせて復調し、被験体の第一の方向における反射波の同相成分信号と直交成分信号を得る。これら同相成分信号と直交成分信号が演算部34に入力され、演算部34はこれら同相成分信号及び直交成分信号から、被験体の第一の方向における照射波と反射波との位相差信号を算出する。   The reflected wave signals output from the microwave transmission / reception units 31 and 35 are adjusted to a predetermined output level by the AGC by the adjustment units 32 and 36, respectively, and then input to the quadrature detection units 33 and 37. As the quadrature detection process, the quadrature detection unit 33 demodulates the reference wave signal from the microwave transmission / reception unit 31 and the reflected wave signal from the adjustment unit 32, and in-phases the reflected wave in the first direction of the subject. A component signal and a quadrature component signal are obtained. The in-phase component signal and the quadrature component signal are input to the calculation unit 34, and the calculation unit 34 calculates a phase difference signal between the irradiation wave and the reflected wave in the first direction of the subject from the in-phase component signal and the quadrature component signal. To do.

一方、クオドラチャ検出部37は、クオドラチャ検出処理として、マイクロ波送受信部35からの参照波信号と調整部36からの反射波信号とを組合わせて復調し、被験体の第二の方向における反射波の同相成分信号と直交成分信号を得る。これら同相成分信号と直交成分信号も演算部34に入力され、演算部34はこれら同相成分信号及び直交成分信号から、被験体の第二の方向における照射波と反射波との位相差信号を算出する。   On the other hand, the quadrature detection unit 37 demodulates the quadrature detection processing by combining the reference wave signal from the microwave transmission / reception unit 35 and the reflected wave signal from the adjustment unit 36, and reflects the reflected wave in the second direction of the subject. In-phase component signal and quadrature component signal are obtained. These in-phase component signal and quadrature component signal are also input to the calculation unit 34, and the calculation unit 34 calculates a phase difference signal between the irradiation wave and the reflected wave in the second direction of the subject from these in-phase component signal and quadrature component signal. To do.

続いて、演算部34は、それぞれ算出した被験体の第一の方向における位相差信号と、被験体の第二の方向における位相差信号との相互相関を求め、測定時間全体にわたる相互相関関数を得る。各系統ごとに算出された位相差信号には、被験体の動きに伴うノイズ成分が重畳しているが、測定対象の微動に対応した波形成分を共に含む位相差信号同士の相関をとり、相互相関関数を取得することにより、測定対象の微動に対応した信号波形成分は抽出されるが、位相差信号同士で相関のないノイズ成分はキャンセルできる。得られた相互相関関数を新たにシステム全体の位相差信号とすれば、測定対象となる体表の微動に対応する位相差の成分が明確化される一方、被験体の測定対象外の動きに伴うノイズを抑えた位相差信号が得られたこととなる。   Subsequently, the calculation unit 34 obtains a cross-correlation between the calculated phase difference signal in the first direction of the subject and the phase difference signal in the second direction of the subject, and calculates a cross-correlation function over the entire measurement time. obtain. The phase difference signals calculated for each system are superimposed with noise components that accompany the movement of the subject, but the phase difference signals that include both the waveform components corresponding to the fine movements to be measured are correlated to each other. By acquiring the correlation function, the signal waveform component corresponding to the fine movement to be measured is extracted, but the noise component having no correlation between the phase difference signals can be canceled. If the obtained cross-correlation function is newly used as the phase difference signal of the entire system, the phase difference component corresponding to the fine movement of the body surface to be measured is clarified, but the movement of the subject outside the measurement target is clarified. This means that a phase difference signal with suppressed noise is obtained.

こうして、各マイクロ波送受信部31、35で得られる反射波信号がそれぞれノイズを多く含んでいる場合でも、相互相関関数を取得して位相差信号とすることで、測定対象の微動、すなわち心拍に対応した位相差信号を確実に得られる。   In this way, even when the reflected wave signals obtained by the microwave transmission / reception units 31 and 35 each contain a lot of noise, the cross-correlation function is obtained and used as a phase difference signal, so that the fine movement of the measurement object, that is, the heartbeat is measured. A corresponding phase difference signal can be obtained reliably.

このように、本実施形態に係る生体情報測定システムは、マイクロ波送受信部31、35と調整部32、36、並びにクオドラチャ検出部33、37とが二系統配設され、被験体に対するマイクロ波照射及び反射波の受信を異なる二箇所で実行し、各系統ごとに算出された二つの位相差信号が測定対象の動きに対応した波形成分を共通して含むことを利用して、二つの位相差信号の相互相関をとり、得られた相互相関関数の信号を新たな全体の位相差信号とすることから、二つの位相差信号の相関の高さを示す相互相関関数は、測定対象の動きに対応する波形成分に合致する時間的変化を生じることとなり、各マイクロ波送受信部31、35で得られる反射波信号がノイズを含んで、単独のシステムでの処理の場合にノイズの影響を受けて位相差信号を測定対象の動きに適切に対応させられない場合でも、相互相関関数の信号を、測定対象の動きに対応する位相差信号として適切に使用でき、位相差信号からノイズの影響を排除して確実に生体の測定対象となる動きに対応させられ、測定対象の動きとしてあらわれる被験体の状態を正しく評価できる。   As described above, in the biological information measurement system according to the present embodiment, the microwave transmission / reception units 31 and 35, the adjustment units 32 and 36, and the quadrature detection units 33 and 37 are arranged in two lines, and microwave irradiation to the subject is performed. And receiving the reflected wave at two different locations, and using the fact that the two phase difference signals calculated for each system contain the waveform component corresponding to the movement of the measurement object in common, Since the cross-correlation of the signals is taken and the signal of the obtained cross-correlation function is used as a new overall phase difference signal, the cross-correlation function indicating the level of correlation between the two phase difference signals is A time change that matches the corresponding waveform component occurs, and the reflected wave signal obtained by each of the microwave transmitting / receiving units 31 and 35 includes noise, and is affected by the noise in the case of processing in a single system. Place Even if the difference signal cannot be appropriately matched to the movement of the measurement target, the cross-correlation function signal can be used appropriately as the phase difference signal corresponding to the movement of the measurement target, eliminating the influence of noise from the phase difference signal. Thus, the state of the subject that appears as the movement of the measurement target can be correctly evaluated by making it correspond to the movement of the measurement target of the living body.

本発明の生体情報測定システムで、被験者の心拍に基づく体表の微動を測定対象として複数の条件下でそれぞれ測定して得られた各位相差信号について、比較例としての心電計による心拍測定結果と比較して、本システムによる心拍の検出可能性を評価した。
(実施例1)
実施例1として、前記第1の実施形態に係る生体情報測定システムを用いて、自動車の座席に着座した非静止状態の被験者の背中上部にマイクロ波を照射し、心臓の動きに対応する背中側体表の微動を測定した。測定は、被験者の高速道路の運転時に調整部によるAGC有りと無しの両方の場合について行った。測定にあたって、マイクロ波送受信部の照射用アンテナ及び受信用アンテナは、ホーンアンテナ又は平面アンテナを用い、それぞれを座席後側に並べて配置した。
In the biological information measurement system of the present invention, heartbeat measurement results by an electrocardiograph as a comparative example for each phase difference signal obtained by measuring microtremors on the body surface based on the heartbeat of the subject under a plurality of conditions Compared to the above, we evaluated the detectability of heartbeat by this system.
Example 1
As Example 1, using the biological information measurement system according to the first embodiment, microwaves are applied to the upper back of a non-stationary subject seated on a car seat, and the back side corresponding to the motion of the heart Body surface tremor was measured. The measurement was performed for both cases with and without AGC by the adjusting unit when the subject was driving on the highway. In the measurement, the irradiating antenna and the receiving antenna of the microwave transmitting / receiving unit were arranged using the horn antenna or the flat antenna, and arranged side by side on the seat rear side.

マイクロ波発振器で生成されるマイクロ波は、周波数が10GHz、照射強度が150μWである。このマイクロ波が、方向性結合器を経て照射用アンテナから照射される。一方、生体の測定では、非静止状態における身体の動きに伴って、クオドラチャ検出処理後の各信号の振幅成分Erの値が大きく変化し、位相差の検出が困難となる。調整部ではこうした振幅成分Erの変化を制御するため、制御範囲の大きい(例えば、56dB)AGCを使用する。 The microwave generated by the microwave oscillator has a frequency of 10 GHz and an irradiation intensity of 150 μW. This microwave is irradiated from the irradiation antenna through the directional coupler. On the other hand, in measurement of a living body, the value of the amplitude component Er of each signal after quadrature detection processing changes greatly with the movement of the body in a non-stationary state, making it difficult to detect the phase difference. The adjustment unit uses AGC having a large control range (for example, 56 dB) in order to control such a change in the amplitude component Er .

被験者の背中での反射波は、受信用アンテナで受信され、反射波信号がAGC有りの場合は調整部に入力され、一定出力レベルに調整された後、クオドラチャ検出部に入る。反射波信号がAGC無しの場合は、そのままクオドラチャ検出部に入力される。   The reflected wave on the subject's back is received by the receiving antenna, and when the reflected wave signal has AGC, it is input to the adjustment unit, adjusted to a constant output level, and then enters the quadrature detection unit. When the reflected wave signal is not AGC, it is directly input to the quadrature detection unit.

クオドラチャ検出部で反射波の同相成分信号と直交成分信号を得、さらにこれを演算部で処理して、心拍に相当する体表面の微動に対応すると推測される位相差信号が出力される。なお、クオドラチャ検出部において、クオドラチャ検出処理で測定環境に応じて変化してあらわれる同相成分信号や直交成分信号の直流成分をあらかじめ0とするオフセット調整がなされ、測定環境そのものの影響は無視できる。   The quadrature detection unit obtains the in-phase component signal and the quadrature component signal of the reflected wave, and further processes them by the computation unit to output a phase difference signal presumed to correspond to the fine movement of the body surface corresponding to the heartbeat. In the quadrature detection unit, offset adjustment is performed so that the DC components of the in-phase component signal and the quadrature component signal that are changed according to the measurement environment in the quadrature detection process are set to 0 in advance, and the influence of the measurement environment itself can be ignored.

また、比較例として、マイクロ波による測定と同時に、心電計による心拍測定も行った。心電計の電極は一般的な心電図測定同様に被験者の身体複数箇所に直接当接させて測定を実施した。   In addition, as a comparative example, heart rate measurement using an electrocardiograph was performed simultaneously with measurement using a microwave. The electrocardiograph electrodes were measured in direct contact with multiple locations of the subject's body in the same manner as in general electrocardiogram measurement.

実施例と比較例のいずれも、非静止環境として被験者及び測定システムが自動車内でエンジン振動や路面走行に伴う振動等を加えられる状況下で測定され、その測定時間は30秒となっている。実施例における反射波信号に基づいてクオドラチャ検出部から出力される同相成分信号及び直交成分信号を図6(A)に示す。また、演算部で算出した位相差信号波形を、図6(B)に示す。   Both the example and the comparative example are measured under a situation where the subject and the measurement system are subjected to engine vibration, vibration accompanying road running, etc. in the automobile as a non-stationary environment, and the measurement time is 30 seconds. FIG. 6A shows an in-phase component signal and a quadrature component signal output from the quadrature detection unit based on the reflected wave signal in the embodiment. FIG. 6B shows the phase difference signal waveform calculated by the calculation unit.

また、AGC有りの場合で、クオドラチャ検出処理で得られた同相成分信号(ErcosΔφ)と直交成分信号(ErsinΔφ)について、x=ErcosΔφ、y=ErsinΔφとしてxy平面上に各値の変化をプロットし、得られたリサジュー曲線を図7に示す。図7から、図中の曲線を円の一部と見なしたときのその円中心はxy平面の原点にほぼ一致する状態であることがわかり、調整部でのAGCにより位相差が適切に演算部で算出できる状態が見て取れる。 In the case of AGC, the in-phase component signal (E r cos Δφ) and the quadrature component signal (E r sin Δφ) obtained by the quadrature detection processing are set on the xy plane as x = E r cos Δφ and y = E r sin Δφ. The change of each value is plotted, and the obtained Lissajous curve is shown in FIG. From FIG. 7, it can be seen that the center of the circle when the curve in the figure is regarded as a part of the circle is substantially coincident with the origin of the xy plane, and the phase difference is appropriately calculated by AGC in the adjustment unit. You can see the state that can be calculated in the section.

ここで、調整部でのAGC有りと無しの各位相差信号について、心拍の検出可能性を評価するため、信号のWavelet変換を行う。このWavelet変換結果をAGC有りの場合を図8(A)に、AGC無しの場合を図9(A)に示す。Wavelet変換の結果、位相差信号の時間・周波数スペクトルが表示されることとなる。図8(A)の縦軸が周波数の値、横軸が時間で、濃淡が強さを示す。図8(A)では、時間60〜86(s)の間、周波数約1.1Hzにピークが見られ、このピークが少しずつ変化していることがわかる。こうしてあらわれたピークの時間的変化、すなわち瞬時心拍数の時間的変化の波形を抽出し、この波形を心電計から得られた心拍数の時間的変化の波形と比較する。この心拍数の時間的変化の波形を、位相差信号のWavelet変換結果に基づくものと、比較例の心電計から得られたものを並記したグラフを、AGC有りは図8(B)に、AGC無しは図9(B)にそれぞれ示す。   Here, for each phase difference signal with and without AGC in the adjustment unit, signal wavelet conversion is performed in order to evaluate the detectability of the heartbeat. FIG. 8A shows the result of Wavelet conversion with AGC, and FIG. 9A shows the case without AGC. As a result of the wavelet transform, the time / frequency spectrum of the phase difference signal is displayed. In FIG. 8A, the vertical axis represents frequency values, the horizontal axis represents time, and the shading represents intensity. In FIG. 8A, it can be seen that a peak is observed at a frequency of about 1.1 Hz during a period of time 60 to 86 (s), and this peak changes little by little. The waveform of the temporal change of the peak that appears in this way, that is, the waveform of the temporal change of the instantaneous heart rate is extracted, and this waveform is compared with the waveform of the temporal change of the heart rate obtained from the electrocardiograph. The waveform of this heart rate change over time is shown in FIG. 8 (B), with a graph showing both the waveform based on the wavelet transform result of the phase difference signal and that obtained from the electrocardiograph of the comparative example. , No AGC is shown in FIG.

図9(B)に示すように、AGC無しの場合では、Wavelet変換結果に基づく心拍数の時間変化と、心電計から得られた心拍数の時間変化とは、大きく異なっており、マイクロ波による測定で心拍を適切に捉えているとは言えないのに対し、図8(B)に示すAGC有りの場合では、Wavelet変換結果に基づく心拍数の時間変化と、心電計から得られた心拍数の時間変化とは、3%程度の誤差で良く一致しており、マイクロ波でも精度良く心拍測定ができていることがわかる。AGC有りの場合は、AGC無しの場合と比較して、測定確度の大きな改善が得られていることは明らかである。   As shown in FIG. 9B, in the case without AGC, the time change of the heart rate based on the Wavelet conversion result and the time change of the heart rate obtained from the electrocardiograph are greatly different from each other. In the case with AGC shown in FIG. 8 (B), it is not possible to say that the heart rate is properly captured by the measurement by, and the time change of the heart rate based on the Wavelet conversion result and obtained from the electrocardiograph The time change of the heart rate agrees well with an error of about 3%, and it can be seen that the heart rate can be measured with high accuracy even with microwaves. It is clear that the measurement accuracy is greatly improved when AGC is present compared to when AGC is not present.

(実施例2)
次に、実施例2として、前記第2の実施形態に係る生体情報測定システムを用いて、非静止状態の被験者の正面及び背面にマイクロ波を照射し、心臓の動きに対応する体表の微動を測定した。測定は、立って前後に動きのある状態の被験者に対し行った。
(Example 2)
Next, as Example 2, using the biological information measurement system according to the second embodiment, microwaves are irradiated to the front and back of the subject in a non-stationary state to finely move the body surface corresponding to the motion of the heart. Was measured. Measurements were taken on subjects who were standing and moving back and forth.

測定にあたって、マイクロ波送受信部、調整部、及びクオドラチャ検出部は二系統配置し、各系統のクオドラチャ検出部から出力された同相成分信号及び直交成分信号から、演算部で、照射波と反射波との位相差信号をそれぞれの系統ごとに算出し、得られた二つの位相差信号を加算してシステム全体の位相差信号とする処理を実行する。各マイクロ波送受信部の照射用アンテナ及び受信用アンテナは、ホーンアンテナを用い、一方のマイクロ波送受信部における照射用アンテナと受信用アンテナを被験体の背面側に配設し、また、他方のマイクロ波送受信部における照射用アンテナと受信用アンテナを被験体の正面側に配設して、被験体へのマイクロ波照射及び反射波の受信が、被験体を挟んで対向した箇所で行えるようにした。なお、便宜上、被験体背面側に配設した照射用アンテナと受信用アンテナの系統をシステム1、被験体正面側に配設した照射用アンテナと受信用アンテナの系統をシステム2と呼称する。   In the measurement, the microwave transmission / reception unit, the adjustment unit, and the quadrature detection unit are arranged in two systems, and from the in-phase component signal and the quadrature component signal output from the quadrature detection unit of each system, an irradiation wave and a reflected wave are calculated by the calculation unit. The phase difference signal is calculated for each system, and the obtained two phase difference signals are added to form a phase difference signal for the entire system. The irradiation antenna and reception antenna of each microwave transmission / reception unit use horn antennas, the irradiation antenna and reception antenna in one microwave transmission / reception unit are arranged on the back side of the subject, and the other microwave The irradiation antenna and reception antenna in the wave transmission / reception unit are arranged on the front side of the subject so that microwave irradiation to the subject and reception of reflected waves can be performed at opposite locations across the subject. . For convenience, the system of the irradiation antenna and the reception antenna disposed on the back side of the subject is referred to as system 1, and the system of the irradiation antenna and the reception antenna disposed on the front side of the subject is referred to as system 2.

また、これらマイクロ波送受信部で使用するマイクロ波の周波数は、被験体の正面側では9.7GHz、背面側では10GHzである。また、照射強度は、被験体の正面側では419μW、背面側では366μWとしている。一方、各調整部におけるAGC特性や、クオドラチャ検出部における同相成分信号と直交成分信号の出力、演算部における各系統の位相差信号の算出は、いずれも同じ条件で実施例1と同様である。   Moreover, the frequency of the microwave used in these microwave transmission / reception units is 9.7 GHz on the front side of the subject and 10 GHz on the back side. The irradiation intensity is 419 μW on the front side of the subject and 366 μW on the back side. On the other hand, the AGC characteristic in each adjustment unit, the output of the in-phase component signal and the quadrature component signal in the quadrature detection unit, and the calculation of the phase difference signal of each system in the calculation unit are the same as in the first embodiment under the same conditions.

演算部で各系統ごとに位相差信号を算出したら、さらに演算部は二つの位相差信号を加算することで、心拍に相当する体表面の微動に対応すると推測される、システム全体としての位相差信号が出力される。   After calculating the phase difference signal for each system in the calculation unit, the calculation unit further adds the two phase difference signals, and is estimated to correspond to the fine movement of the body surface corresponding to the heartbeat. A signal is output.

一方、比較例として、マイクロ波による測定と同時に、心電計による心拍測定も行った。心電計の電極は一般的な心電図測定同様に被験者の身体複数箇所に直接当接させて測定を実施した。   On the other hand, as a comparative example, heart rate measurement was also performed using an electrocardiograph simultaneously with measurement using a microwave. The electrocardiograph electrodes were measured in direct contact with multiple locations of the subject's body in the same manner as in general electrocardiogram measurement.

実施例と比較例のいずれも、被験者が非静止状態にある中で測定され、その測定時間は30秒となっている。本実施例における各マイクロ波送受信部で得た反射波信号に基づいて演算部で算出した位相差信号波形を、システム1のものを図10(A)に、システム2のものを図10(B)にそれぞれ示す。また、演算部で二つの位相差信号を加算した位相差信号波形を、図11に示す。ただし、前記各図の位相差信号波形は、ハイパスフィルタで位相差信号の不要な周波数成分(0.7Hz以下)を除去した後のものであり、直流分を含んだ低周波成分が無くなったことで時間波形の振幅が0を中心に分布している。   Both the examples and comparative examples were measured while the subject was in a non-stationary state, and the measurement time was 30 seconds. FIG. 10A shows the phase difference signal waveform calculated by the calculation unit based on the reflected wave signal obtained by each microwave transmission / reception unit in the present embodiment, and FIG. ) Respectively. Further, FIG. 11 shows a phase difference signal waveform obtained by adding two phase difference signals in the calculation unit. However, the phase difference signal waveforms in the above figures are those after removing unnecessary frequency components (0.7 Hz or less) of the phase difference signal with a high-pass filter, and low frequency components including DC components are eliminated. The amplitude of the time waveform is distributed around 0.

また、クオドラチャ検出処理で得られた同相成分信号(ErcosΔφ)と直交成分信号(ErsinΔφ)について、x=ErcosΔφ、y=ErsinΔφとしてxy平面上に各値の変化をプロットし、得られたリサジュー曲線を、システム1の場合を図12(A)に、システム2の場合を図12(B)にそれぞれ示す。 In addition, for the in-phase component signal (E r cos Δφ) and quadrature component signal (E r sin Δφ) obtained by the quadrature detection process, the change of each value is plotted on the xy plane as x = E r cos Δφ and y = E r sin Δφ. The Lissajous curves obtained are shown in FIG. 12A for the system 1 and in FIG. 12B for the system 2, respectively.

そして、実施例の各系統ごとに得られた位相差信号と、これらを加算したシステム全体としての位相差信号について、心拍の検出可能性を評価するため、高速フーリエ変換による周波数解析を行い、各周波数帯域ごとのパワースペクトルを求めて、心電計の測定結果から同様に得られたパワースペクトルと比較した。被験体背面側(システム1)で得られた位相差信号、被験体正面側(システム2)で得られた位相差信号の各パワースペクトルを図13(A)、(B)に、加算されたシステム全体としての位相差信号のパワースペクトルを、比較例の心電計から得られたものと共に示した図を、図14に示す。   Then, for the phase difference signal obtained for each system of the embodiment and the phase difference signal as a whole system obtained by adding these, frequency analysis by fast Fourier transform is performed in order to evaluate the detectability of the heartbeat, The power spectrum for each frequency band was obtained and compared with the power spectrum obtained in the same manner from the electrocardiograph measurement results. Each power spectrum of the phase difference signal obtained on the subject back side (system 1) and the phase difference signal obtained on the subject front side (system 2) was added to FIGS. 13 (A) and 13 (B). FIG. 14 shows the power spectrum of the phase difference signal as a whole system together with that obtained from the electrocardiograph of the comparative example.

図13に示すように、各系統ごとに得られた位相差信号のパワースペクトルは、心電計での測定から得られたパワースペクトル(図14参照)とは、いずれも大きく異なっているものの、図14に示すように、加算により得られたシステム全体の位相差信号のパワースペクトルは、心電計からのものと良く一致しており、位相差信号の加算により心拍の検出が心電計による測定同様に精度良く行えることがわかる。   As shown in FIG. 13, the power spectrum of the phase difference signal obtained for each system is greatly different from the power spectrum obtained from the measurement with the electrocardiograph (see FIG. 14). As shown in FIG. 14, the power spectrum of the phase difference signal of the entire system obtained by the addition is in good agreement with that from the electrocardiograph, and the heartbeat is detected by the electrocardiograph by the addition of the phase difference signal. It can be seen that the measurement can be performed with the same accuracy as the measurement.

(実施例3)
続いて、実施例3として、前記第3の実施形態に係る生体情報測定システムを用いて、自動車の座席に着座した非静止状態の被験者の背中に、異なる二箇所からマイクロ波を照射し、心臓の動きに対応する背中側体表の微動を測定した。測定は、自動車が停止してアイドリング状態にある場合の被験者に対し行った。
(Example 3)
Subsequently, as Example 3, using the biological information measurement system according to the third embodiment, the back of a non-stationary test subject sitting on a car seat is irradiated with microwaves from two different locations, and the heart The tremor on the dorsal body surface corresponding to the movement of the back was measured. The measurement was performed on a subject when the automobile was stopped and in an idling state.

測定にあたって、マイクロ波送受信部、調整部、及びクオドラチャ検出部は二系統配置し、各系統のクオドラチャ検出部から出力された同相成分信号及び直交成分信号から、演算部で、照射波と反射波との位相差信号をそれぞれの系統ごとに算出し、得られた二つの位相差信号同士の相互相関を求め、相互相関関数の信号をシステム全体の位相差信号とする処理を実行する。各マイクロ波送受信部の照射用アンテナ及び受信用アンテナは、ボウタイアンテナを用い、一方のマイクロ波送受信部における照射用アンテナと受信用アンテナを座席背面部のほぼ中間の高さ位置に並べて配設し、また、他方のマイクロ波送受信部における照射用アンテナと受信用アンテナを座席背面部の上部に並べて配設し、被験体へのマイクロ波照射及び反射波の受信が、被験体に対し異なる二箇所で行えるようにした。なお、便宜上、座席背面部のほぼ中間の高さ位置に配設した照射用アンテナと受信用アンテナの系統をシステム1、座席背面部の上部に配設した照射用アンテナと受信用アンテナの系統をシステム2と呼称する。   In the measurement, the microwave transmission / reception unit, the adjustment unit, and the quadrature detection unit are arranged in two systems, and from the in-phase component signal and the quadrature component signal output from the quadrature detection unit of each system, an irradiation wave and a reflected wave are calculated by the calculation unit. The phase difference signal is calculated for each system, the cross-correlation between the two obtained phase difference signals is obtained, and the process of using the cross-correlation function signal as the phase difference signal of the entire system is executed. The irradiation antenna and the reception antenna of each microwave transmission / reception unit use a bow-tie antenna, and the irradiation antenna and the reception antenna in one microwave transmission / reception unit are arranged side by side at almost the middle height position of the seat back. In addition, the irradiation antenna and the receiving antenna in the other microwave transmission / reception unit are arranged side by side on the upper part of the back of the seat, and the microwave irradiation to the subject and the reception of the reflected wave are different from those of the subject. I was able to do it. For the sake of convenience, the system of the irradiation antenna and the receiving antenna disposed at almost the middle height position of the seat back portion is the system 1, and the system of the irradiation antenna and the receiving antenna disposed at the upper portion of the seat rear portion is shown. This is called system 2.

また、これらマイクロ波送受信部で使用するマイクロ波の周波数は、システム1では10GHz、システム2では9.7GHzである。また、照射強度は、システム1では366μW、システム2では419μWとしている。一方、各調整部におけるAGC特性や、クオドラチャ検出部における同相成分信号と直交成分信号の出力、演算部における各系統の位相差信号の算出は、いずれも同じ条件で前記実施例1、2と同様である。   Further, the microwave frequency used in these microwave transmission / reception units is 10 GHz in the system 1 and 9.7 GHz in the system 2. The irradiation intensity is 366 μW in the system 1 and 419 μW in the system 2. On the other hand, the AGC characteristic in each adjustment unit, the output of the in-phase component signal and the quadrature component signal in the quadrature detection unit, and the calculation of the phase difference signal of each system in the calculation unit are the same as in the first and second embodiments under the same conditions. It is.

演算部で各系統ごとに位相差信号を算出したら、さらに演算部は二つの位相差信号同士の相互相関を求め、相互相関関数を取得して、これを、心拍に相当する体表面の微動に対応すると推測される、システム全体の位相差信号として出力する。   After calculating the phase difference signal for each system in the calculation unit, the calculation unit further obtains a cross-correlation between the two phase difference signals, obtains a cross-correlation function, and uses this as a tremor on the body surface corresponding to the heartbeat. It is output as a phase difference signal of the entire system, which is presumed to correspond.

一方、比較例として、マイクロ波による測定と同時に、心電計による心拍測定も行った。心電計の電極は一般的な心電図測定同様に被験者の身体複数箇所に直接当接させて測定を実施した。   On the other hand, as a comparative example, heart rate measurement was also performed using an electrocardiograph simultaneously with measurement using a microwave. The electrocardiograph electrodes were measured in direct contact with multiple locations of the subject's body in the same manner as in general electrocardiogram measurement.

実施例と比較例のいずれも、被験者が非静止状態にある中で測定され、その測定時間は30秒となっている。本実施例におけるシステム1の反射波信号に基づいてクオドラチャ検出部から出力される同相成分信号及び直交成分信号を図15(A)に示す。また、演算部で算出したシステム1の位相差信号波形を、図15(B)に示す。一方、システム2の反射波信号に基づいてクオドラチャ検出部から出力される同相成分信号及び直交成分信号を図16(A)に示す。そして、演算部で算出したシステム2の位相差信号波形を、図16(B)に示す。   Both the examples and comparative examples were measured while the subject was in a non-stationary state, and the measurement time was 30 seconds. FIG. 15A shows an in-phase component signal and a quadrature component signal output from the quadrature detection unit based on the reflected wave signal of the system 1 in this embodiment. FIG. 15B shows the phase difference signal waveform of the system 1 calculated by the calculation unit. On the other hand, the in-phase component signal and the quadrature component signal output from the quadrature detection unit based on the reflected wave signal of the system 2 are shown in FIG. Then, the phase difference signal waveform of the system 2 calculated by the calculation unit is shown in FIG.

また、クオドラチャ検出処理で得られた同相成分信号(ErcosΔφ)と直交成分信号(ErsinΔφ)について、x=ErcosΔφ、y=ErsinΔφとしてxy平面上に各値の変化をプロットし、得られたリサジュー曲線を、システム1は図17(A)に、システム2は図17(B)にそれぞれ示す。図17(A)、(B)から、図中の曲線の変化が小さい上、この曲線を円の一部と見なしたときのその円中心はxy平面の原点にほぼ一致する状態であることがわかり、調整部でのAGCにより位相差が適切に演算部で算出できる状態が見て取れる。 In addition, for the in-phase component signal (E r cos Δφ) and quadrature component signal (E r sin Δφ) obtained by the quadrature detection process, the change of each value is plotted on the xy plane as x = E r cos Δφ and y = E r sin Δφ. The Lissajous curves obtained are shown in FIG. 17A for the system 1 and FIG. 17B for the system 2, respectively. 17 (A) and 17 (B), the change in the curve in the figure is small, and the circle center when this curve is regarded as a part of the circle is substantially coincident with the origin of the xy plane. Thus, it can be seen that the phase difference can be appropriately calculated by the calculation unit by AGC in the adjustment unit.

さらに、演算部で、各系統ごとの位相差信号同士の相互相関を求め、システム全体の新たな位相差信号として取得した相互相関関数の波形を、横軸を時間、縦軸を相関の大きさ(振幅)としてプロットしたグラフを図18(A)に示し、さらにこれを時間軸方向に拡大表示したものを図18(B)に示す。ただし、各位相差信号は、あらかじめハイパスフィルタで不要な周波数成分(0.8Hz以下)を除去した後、相互相関を求めている。   Furthermore, the calculation unit obtains the cross-correlation between the phase difference signals for each system, and the waveform of the cross-correlation function acquired as a new phase difference signal for the entire system is plotted with time on the horizontal axis and magnitude of the correlation on the vertical axis. FIG. 18A shows a graph plotted as (amplitude), and FIG. 18B shows an enlarged display in the time axis direction. However, the cross-correlation is obtained for each phase difference signal after removing unnecessary frequency components (0.8 Hz or less) with a high-pass filter in advance.

そして、実施例の各系統ごとに得られた位相差信号について、心拍の検出可能性を評価するため、ハイパスフィルタで不要な周波数成分(0.8Hz以下)を除去した後、高速フーリエ変換による周波数解析を行い、各周波数帯域ごとのパワースペクトルを求めて、心電計の測定結果から同様に得られたパワースペクトルと比較した。同様に、位相差信号同士の相互相関を求めて得たシステム全体としての位相差信号について、心拍の検出可能性を評価するため、高速フーリエ変換による周波数解析を行い、各周波数帯域ごとのパワースペクトルを求めて、心電計の測定結果から同様に得られたパワースペクトルと比較した。システム1で得られた位相差信号、システム2で得られた位相差信号、及び相互相関による新たな位相差信号の各パワースペクトルを、それぞれ比較例の心電計から得られたものと共に示した各図を、図19(A)、図19(B)、図20にそれぞれ示す。   Then, in order to evaluate the heartbeat detectability of the phase difference signal obtained for each system of the embodiment, after removing unnecessary frequency components (0.8 Hz or less) with a high-pass filter, the frequency by fast Fourier transform Analysis was performed to obtain a power spectrum for each frequency band, and the result was compared with a power spectrum similarly obtained from the measurement result of the electrocardiograph. Similarly, in order to evaluate the heartbeat detectability of the phase difference signal as a whole system obtained by obtaining the cross-correlation between the phase difference signals, frequency analysis by fast Fourier transform is performed, and the power spectrum for each frequency band. Was compared with the power spectrum similarly obtained from the electrocardiograph measurement results. Each power spectrum of the phase difference signal obtained by the system 1, the phase difference signal obtained by the system 2, and a new phase difference signal by cross-correlation are shown together with those obtained from the electrocardiograph of the comparative example. Each figure is shown in FIG. 19 (A), FIG. 19 (B), and FIG.

図19に示すように、各系統ごとに得られた位相差信号のパワースペクトルは、心電計での測定から得られたパワースペクトルと、それぞれ一致するピークを有しており、アイドリング時等の被験者の動きが小さい状況では、AGCによる効果で一系統の位相差信号でも心拍検出の可能性のあることがわかる。しかしながら、図20に示すように、相互相関を求めて得られたシステム全体の位相差信号のパワースペクトルは、心電計からのものとさらに良く一致しており、位相差信号同士の相互相関を求めることにより心拍の検出が心電計による測定同様に精度良く行え、自動車の走行時などさらにノイズの増大する状況でも適切な心拍検出が期待できる。また、システム全体の位相差信号のスペクトル形状は心電計由来のものに近いシンプルなものとなっており、コンピュータによる自動ピーク検出等を行う際にも、誤りが生じにくく、より確実な検出、評価が行える。   As shown in FIG. 19, the power spectrum of the phase difference signal obtained for each system has a peak that coincides with the power spectrum obtained from the measurement with the electrocardiograph, In a situation where the movement of the subject is small, it can be seen that heartbeat detection is possible even with a single phase difference signal due to the effect of AGC. However, as shown in FIG. 20, the power spectrum of the phase difference signal of the entire system obtained by obtaining the cross-correlation more closely matches that from the electrocardiograph, and the cross-correlation between the phase difference signals is As a result, heart rate can be detected with high accuracy as in the case of measurement by an electrocardiograph, and appropriate heart rate detection can be expected even in a situation where noise further increases, such as when a car is running. In addition, the spectrum shape of the phase difference signal of the entire system is a simple one close to that derived from an electrocardiograph, and even when performing automatic peak detection by a computer, errors are less likely to occur, more reliable detection, Can be evaluated.

以上から、反射波信号のAGCによる信号レベル調整や、二つの位相差信号の加算、位相差信号同士の相互相関計算といった処理を経て、最終的な位相差信号を算出することで、パワースペクトルも心電計由来のものに近い波形が得られ、心拍の検出可能性が示されており、非静止環境下での被験者と非接触状態における測定でも、得られた信号に対し上記各処理を適用することで、心電計による測定同様の精度で心拍を測定できることが確認できた。   From the above, the power spectrum is also obtained by calculating the final phase difference signal through processing such as signal level adjustment by AGC of the reflected wave signal, addition of two phase difference signals, and cross-correlation calculation between the phase difference signals. Waveforms close to those derived from an electrocardiograph were obtained, indicating the possibility of heartbeat detection, and the above processes were applied to the obtained signals even in non-contact measurement with a subject in a non-stationary environment As a result, it was confirmed that the heart rate could be measured with the same accuracy as that measured by the electrocardiograph.

1、2、3 生体情報測定システム
11、21、25、31、35 マイクロ波送受信部
11a、21a、25a、31a、35a 照射用アンテナ
11b、21b、25b、31b、35b 第一マイクロ波発振器
11c、21c、25c、31c、35c 受信用アンテナ
11d、21d、25d、31d、35d 方向性結合器
11e、21e、25e、31e、35e 第二マイクロ波発振器
11f、21f、25f、31f、35f 方向性結合器
11g、21g、25g、31g、35g 参照波用ミキサ部
11h、21h、25h、31h、35h 反射波用ミキサ部
12、22、26、32、36 調整部
13、23、27、33、37 クオドラチャ検出部
14、24、34 演算部
15 マイクロ波発振器
16 高周波発振器
17 パワーデバイダ
18 アップコンバータ
50 被験体
1, 2, 3 Biological information measurement system 11, 21, 25, 31, 35 Microwave transceiver 11a, 21a, 25a, 31a, 35a Irradiation antenna 11b, 21b, 25b, 31b, 35b First microwave oscillator 11c, 21c, 25c, 31c, 35c Receiving antenna 11d, 21d, 25d, 31d, 35d Directional coupler 11e, 21e, 25e, 31e, 35e Second microwave oscillator 11f, 21f, 25f, 31f, 35f Directional coupler 11g, 21g, 25g, 31g, 35g Reference wave mixer unit 11h, 21h, 25h, 31h, 35h Reflected wave mixer unit 12, 22, 26, 32, 36 Adjustment unit 13, 23, 27, 33, 37 Quadrature detection Units 14, 24, 34 Arithmetic unit 15 Microwave oscillator 16 High frequency oscillator 17 Power Divider 18 Upconverter 50 Subject

Claims (6)

非静止状態の被験体に対しマイクロ波を照射すると共に、当該照射波の被験体表面での反射波を受信し、反射波信号及びクオドラチャ検出用の参照波信号を出力するマイクロ波送受信部と、
当該マイクロ波送受信部から出力される反射波信号について、信号出力レベルを調整して所定出力レベルの反射波信号を得る調整部と、
当該調整部で調整された反射波信号及び前記参照波信号を用いてクオドラチャ検出処理を行い、反射波と同相成分の信号及び直交成分の信号を得るクオドラチャ検出部と、
当該クオドラチャ検出部から出力された前記同相成分信号及び直交成分信号から、照射波と反射波との位相差信号を算出する演算部とを備えることを
特徴とする生体情報測定システム。
A microwave transmitting / receiving unit that irradiates a non-stationary subject with microwaves, receives a reflected wave on the subject surface of the irradiated wave, and outputs a reflected wave signal and a reference wave signal for quadrature detection;
For the reflected wave signal output from the microwave transmission / reception unit, an adjustment unit that adjusts the signal output level to obtain a reflected wave signal of a predetermined output level;
A quadrature detection unit that performs quadrature detection processing using the reflected wave signal adjusted by the adjustment unit and the reference wave signal, and obtains a signal having an in-phase component and a quadrature component from the reflected wave; and
A biological information measurement system comprising: an arithmetic unit that calculates a phase difference signal between an irradiation wave and a reflected wave from the in-phase component signal and the quadrature component signal output from the quadrature detection unit.
前記請求項1に記載の生体情報測定システムにおいて、
前記マイクロ波送受信部が、
被験体にマイクロ波を照射する照射用アンテナと、
当該照射用アンテナから照射されるマイクロ波を発生させる第一マイクロ波発振器と、
前記マイクロ波と所定周波数差となる他のマイクロ波を発生させる第二マイクロ波発振器と、
前記各マイクロ波発振器で発生した二つのマイクロ波から差周波数の前記参照波信号を得る参照波用ミキサ部と、
反射波を受信する受信用アンテナと、
当該受信用アンテナで受信した反射波と前記第二マイクロ発振器からのマイクロ波とから差周波数の前記反射波信号を得る反射波用ミキサ部とを有してなることを
特徴とする生体情報測定システム。
The biological information measuring system according to claim 1,
The microwave transceiver unit is
An irradiation antenna for irradiating the subject with microwaves;
A first microwave oscillator for generating a microwave irradiated from the irradiation antenna;
A second microwave oscillator for generating another microwave having a predetermined frequency difference from the microwave;
A reference wave mixer unit for obtaining the reference wave signal having a difference frequency from two microwaves generated by each microwave oscillator;
A receiving antenna for receiving the reflected wave;
A biological information measuring system comprising: a reflected wave mixer unit that obtains the reflected wave signal having a difference frequency from the reflected wave received by the receiving antenna and the microwave from the second micro oscillator .
前記請求項1又は2に記載の生体情報測定システムにおいて、
前記クオドラチャ検出部から出力される前記同相成分信号及び直交成分信号における直流成分を0とする調整を行うオフセット調整手段を備えることを
特徴とする生体情報測定システム。
In the living body information measurement system according to claim 1 or 2,
A biological information measuring system comprising offset adjusting means for adjusting a direct current component in the in-phase component signal and the quadrature component signal output from the quadrature detection unit to zero.
前記請求項1又は2に記載の生体情報測定システムにおいて、
前記演算部が、クオドラチャ検出部から出力された前記同相成分信号及び直交成分信号における直流成分を0とする調整を行った上で、同相成分信号及び直交成分信号から前記位相差信号を取得することを
特徴とする生体情報測定システム。
In the living body information measurement system according to claim 1 or 2,
The calculation unit obtains the phase difference signal from the in-phase component signal and the quadrature component signal after adjusting the DC component in the in-phase component signal and the quadrature component signal output from the quadrature detection unit to zero. A biological information measurement system characterized by
前記請求項1ないし4のいずれかに記載の生体情報測定システムにおいて、
少なくとも前記マイクロ波送受信部と、前記調整部と、前記クオドラチャ検出部とが二系統配設され、
二つのマイクロ波送受信部における被験体へのマイクロ波照射及び反射波の受信が、被験体を挟んで対向した箇所でそれぞれ行われ、
各系統ごとの前記同相成分信号及び直交成分信号からそれぞれ算出した二つの位相差信号を加算し、当該加算した信号をシステム全体の位相差信号とすることを
特徴とする生体情報測定システム。
The biological information measuring system according to any one of claims 1 to 4,
At least the microwave transmission / reception unit, the adjustment unit, and the quadrature detection unit are arranged in two systems,
The microwave irradiation to the subject in the two microwave transmission / reception units and reception of the reflected wave are respectively performed at locations facing each other across the subject,
A biological information measurement system characterized in that two phase difference signals respectively calculated from the in-phase component signal and quadrature component signal for each system are added, and the added signal is used as a phase difference signal of the entire system.
前記請求項1ないし4のいずれかに記載の生体情報測定システムにおいて、
少なくとも前記マイクロ波送受信部と、前記調整部と、前記クオドラチャ検出部とが二系統配設され、
二つのマイクロ波送受信部における被験体へのマイクロ波照射及び反射波の受信が、異なる二箇所でそれぞれ行われ、
各系統ごとの前記同相成分信号及び直交成分信号からそれぞれ算出した二つの位相差信号同士の相互相関を求め、相互相関関数の信号を取得し、当該相互相関関数の信号をシステム全体の位相差信号とすることを
特徴とする生体情報測定システム。
The biological information measuring system according to any one of claims 1 to 4,
At least the microwave transmission / reception unit, the adjustment unit, and the quadrature detection unit are arranged in two systems,
The microwave irradiation and the reception of the reflected wave to the subject in the two microwave transmission / reception units are respectively performed at two different locations,
The cross-correlation between two phase difference signals calculated from the in-phase component signal and the quadrature component signal for each system is obtained, a cross-correlation function signal is obtained, and the cross-correlation function signal is used as the phase difference signal of the entire system. A biological information measuring system characterized by that.
JP2009202981A 2009-09-02 2009-09-02 Biological information measurement system Active JP5467395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009202981A JP5467395B2 (en) 2009-09-02 2009-09-02 Biological information measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202981A JP5467395B2 (en) 2009-09-02 2009-09-02 Biological information measurement system

Publications (2)

Publication Number Publication Date
JP2011050604A true JP2011050604A (en) 2011-03-17
JP5467395B2 JP5467395B2 (en) 2014-04-09

Family

ID=43940243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202981A Active JP5467395B2 (en) 2009-09-02 2009-09-02 Biological information measurement system

Country Status (1)

Country Link
JP (1) JP5467395B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012249884A (en) * 2011-06-03 2012-12-20 Tokyo Metropolitan Univ Non-contact stress evaluation system, non-contact stress evaluation method, and program for the same
JP2013113603A (en) * 2011-11-25 2013-06-10 Kyushu Univ Microwave imaging system and imaging processing method
EP2700353A1 (en) 2012-08-22 2014-02-26 Fujitsu Limited Heart rate estimating apparatus and method
JP2014210137A (en) * 2013-04-22 2014-11-13 公立大学法人首都大学東京 Body information measuring device
JP2016131713A (en) * 2015-01-19 2016-07-25 沖電気工業株式会社 Cycle estimation device, cycle estimation method, and program
JP2016159081A (en) * 2015-03-05 2016-09-05 国立大学法人九州工業大学 Biological signal detector, biological signal processor, and blood pressure measurement system
JP2017058134A (en) * 2015-09-14 2017-03-23 株式会社田定工作所 Respiratory organ and circulatory organ monitoring device using microwave
EP3184040A1 (en) * 2015-12-21 2017-06-28 Stichting IMEC Nederland A method for detecting at least one of a heart rate and a respiratory rate of a subject
US9693738B2 (en) 2015-05-22 2017-07-04 Panasonic Corporation Heartbeat measuring apparatus, heartbeat measuring method, and recording medium
CN107518903A (en) * 2016-06-21 2017-12-29 欧姆龙汽车电子株式会社 Electric wave type biology sensor
JP2018064642A (en) * 2016-10-17 2018-04-26 オムロンオートモーティブエレクトロニクス株式会社 Biological sensor
JP2019126540A (en) * 2018-01-24 2019-08-01 株式会社豊田中央研究所 Biological information detector
JP2019537733A (en) * 2016-10-25 2019-12-26 ヴィジリテック アーゲー Sensor device
JP2020062291A (en) * 2018-10-18 2020-04-23 Simplex Quantum株式会社 Biological information detection device and biological information detection method
WO2023093770A1 (en) * 2021-11-29 2023-06-01 中国科学技术大学 Millimeter-wave radar-based noncontact electrocardiogram monitoring method
WO2023243065A1 (en) * 2022-06-17 2023-12-21 三菱電機株式会社 Biological information acquisition device and biological information acquisition method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526855A (en) * 1991-07-25 1993-02-02 Olympus Optical Co Ltd Ultrasonic measuring device
JP2006220595A (en) * 2005-02-14 2006-08-24 Univ Of Electro-Communications Living thing detector
JP2006304963A (en) * 2005-04-27 2006-11-09 Tau Giken:Kk Noncontact diagnostic device
JP2008099849A (en) * 2006-10-19 2008-05-01 Tau Giken:Kk Noncontact diagnostic system
JP2009055997A (en) * 2007-08-30 2009-03-19 Honda Motor Co Ltd Biological vibration frequency detector and vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526855A (en) * 1991-07-25 1993-02-02 Olympus Optical Co Ltd Ultrasonic measuring device
JP2006220595A (en) * 2005-02-14 2006-08-24 Univ Of Electro-Communications Living thing detector
JP2006304963A (en) * 2005-04-27 2006-11-09 Tau Giken:Kk Noncontact diagnostic device
JP2008099849A (en) * 2006-10-19 2008-05-01 Tau Giken:Kk Noncontact diagnostic system
JP2009055997A (en) * 2007-08-30 2009-03-19 Honda Motor Co Ltd Biological vibration frequency detector and vehicle

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012249884A (en) * 2011-06-03 2012-12-20 Tokyo Metropolitan Univ Non-contact stress evaluation system, non-contact stress evaluation method, and program for the same
JP2013113603A (en) * 2011-11-25 2013-06-10 Kyushu Univ Microwave imaging system and imaging processing method
US9782087B2 (en) 2012-08-22 2017-10-10 Fujitsu Limited Heart rate estimating apparatus and method
EP2700353A1 (en) 2012-08-22 2014-02-26 Fujitsu Limited Heart rate estimating apparatus and method
JP2014210137A (en) * 2013-04-22 2014-11-13 公立大学法人首都大学東京 Body information measuring device
JP2016131713A (en) * 2015-01-19 2016-07-25 沖電気工業株式会社 Cycle estimation device, cycle estimation method, and program
JP2016159081A (en) * 2015-03-05 2016-09-05 国立大学法人九州工業大学 Biological signal detector, biological signal processor, and blood pressure measurement system
WO2016140367A1 (en) * 2015-03-05 2016-09-09 国立大学法人九州工業大学 Biological signal detecting device, biological signal processing device, and blood pressure measuring system
US9693738B2 (en) 2015-05-22 2017-07-04 Panasonic Corporation Heartbeat measuring apparatus, heartbeat measuring method, and recording medium
JP2017058134A (en) * 2015-09-14 2017-03-23 株式会社田定工作所 Respiratory organ and circulatory organ monitoring device using microwave
US10722123B2 (en) 2015-12-21 2020-07-28 Imec Vzw Method for detecting at least one of a heart rate and a respiratory rate of a subject
EP3184040A1 (en) * 2015-12-21 2017-06-28 Stichting IMEC Nederland A method for detecting at least one of a heart rate and a respiratory rate of a subject
CN107518903A (en) * 2016-06-21 2017-12-29 欧姆龙汽车电子株式会社 Electric wave type biology sensor
JP2018064642A (en) * 2016-10-17 2018-04-26 オムロンオートモーティブエレクトロニクス株式会社 Biological sensor
JP2019537733A (en) * 2016-10-25 2019-12-26 ヴィジリテック アーゲー Sensor device
JP2022091843A (en) * 2016-10-25 2022-06-21 ヴィジリテック アーゲー Sensor device
JP7130255B2 (en) 2016-10-25 2022-09-05 ヴィジリテック アーゲー sensor device
US11696697B2 (en) 2016-10-25 2023-07-11 Vigilitech Ag Sensor device
JP2019126540A (en) * 2018-01-24 2019-08-01 株式会社豊田中央研究所 Biological information detector
JP2020062291A (en) * 2018-10-18 2020-04-23 Simplex Quantum株式会社 Biological information detection device and biological information detection method
WO2023093770A1 (en) * 2021-11-29 2023-06-01 中国科学技术大学 Millimeter-wave radar-based noncontact electrocardiogram monitoring method
WO2023243065A1 (en) * 2022-06-17 2023-12-21 三菱電機株式会社 Biological information acquisition device and biological information acquisition method

Also Published As

Publication number Publication date
JP5467395B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
JP5467395B2 (en) Biological information measurement system
JP5709017B2 (en) Signal frequency measurement system for subject condition analysis
JP6029108B2 (en) Biological information detection system
Sekine et al. Non-contact heart rate detection using periodic variation in Doppler frequency
JP5131744B2 (en) Biological vibration frequency detection device and vehicle
EP3424418B1 (en) A method and a system for detecting a vital sign of a subject
JP4962947B2 (en) Non-contact diagnostic device
Droitcour et al. Signal-to-noise ratio in Doppler radar system for heart and respiratory rate measurements
JP5230477B2 (en) Pulse type ultra-wideband sensor and method thereof
US7753849B2 (en) Doppler radar cardiopulmonary sensor and signal processing system and method for use therewith
JP6353194B2 (en) Physical information measuring device
EP3641649B1 (en) System and method for breathing monitoring using radar-based sensor systems and the signal autocorrelation function
KR20070121833A (en) System and methods for remote sensing using double-sideband signals
JP2006304963A (en) Noncontact diagnostic device
US20210251506A1 (en) Blood pressure measurement device, vehicle device, and blood pressure measurement program
JP2010286268A (en) Signal peak measuring system
JP2013172899A (en) Awaking degree estimation device
JP2015217143A (en) Heartbeat measuring device
Scalise et al. Wireless Sensing for the Respiratory Activity of Human Beings: Measurements and Wide‐band Numerical Analysis
Kontou et al. Heartbeat and respiration detection using a low complexity cw radar system
Will et al. Intelligent signal processing routine for instantaneous heart rate detection using a Six-Port microwave interferometer
LU100438B1 (en) System and Method for Breathing Monitoring using Radar-Based Sensor Systems and the Signal Autocorrelation Function
JP6747600B2 (en) Heart rate measuring device
Horimoto et al. Heartbeat harmonics detectability during driving simulation using NHA and CW Doppler radar
Obeid et al. Touch-less heartbeat detection and cardiopulmonary modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140109

R150 Certificate of patent or registration of utility model

Ref document number: 5467395

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250