JP2011049333A - Double side heater for substrate, and heated gas blowing device - Google Patents

Double side heater for substrate, and heated gas blowing device Download PDF

Info

Publication number
JP2011049333A
JP2011049333A JP2009196136A JP2009196136A JP2011049333A JP 2011049333 A JP2011049333 A JP 2011049333A JP 2009196136 A JP2009196136 A JP 2009196136A JP 2009196136 A JP2009196136 A JP 2009196136A JP 2011049333 A JP2011049333 A JP 2011049333A
Authority
JP
Japan
Prior art keywords
substrate
gas
heating
heated
back surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009196136A
Other languages
Japanese (ja)
Inventor
Yuji Furumura
雄二 古村
Naomi Mura
直美 村
Shinji Nishihara
晋治 西原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philtech Inc
Original Assignee
Philtech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philtech Inc filed Critical Philtech Inc
Priority to JP2009196136A priority Critical patent/JP2011049333A/en
Publication of JP2011049333A publication Critical patent/JP2011049333A/en
Pending legal-status Critical Current

Links

Landscapes

  • Formation Of Insulating Films (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem where a substrate is warped or cracked by a temperature difference between a surface and a reverse face of the substrate, in a method of blowing a high temperature of gas beam line-likely toward the substrate and of moving relatively the substrate, because the substrate is difficult to be heated over the whole thereof when a size of the substrate comes, in particular, to about 1 m or more, in a manufacturing process to heat uniformly the large-sized substrate in a short time without deforming the substrate. <P>SOLUTION: The temperature difference between the surface and the reverse face of the substrate is restrained low by blowing high temperature gas linearly onto the surface and the reverse face. The large-sized substrate is uniformly anneal-treated in the short time, by this manner. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

一般に、基板に膜を形成して作製するデバイスの中には、その基板が1m級の大型のものがある。例えば、ガラスや樹脂、金属シートの基板を用いるデバイスがある。ガラス基板上に成長させた薄膜を具備したデバイスとしては、液晶表示デバイス(LCD)や有機EL(エレクトロミネセンス)表示デバイス、太陽電池等のいわゆる大面積電子デバイスがある。
薄膜はいずれのデバイスにおいてもアモルファス膜や結晶膜、絶縁膜、導電膜、保護膜として用いられる。
In general, some devices manufactured by forming a film on a substrate have a large size of 1 m class. For example, there is a device using a substrate of glass, resin, or metal sheet. As a device having a thin film grown on a glass substrate, there are so-called large-area electronic devices such as a liquid crystal display device (LCD), an organic EL (electrominescence) display device, and a solar cell.
The thin film is used as an amorphous film, a crystal film, an insulating film, a conductive film, or a protective film in any device.

これら基板はシリコンウエハのような高温熱処理ができないので、真空チャンバーの中で低温に基板を保持して成膜可能なプラズマ化学気相成長(CVD)の膜が用いられる。この膜はプラズマ分解で生成されるガス種を吸着しながら成長するので水素や酸素などの希望しない不純物を含み、吸湿もしやすく緻密性で劣る。 これを改良するために、プラズマのビーム(先行特許文献1参照)やレーザー光でアニールして不純物を除去する技術がある。また,絶縁膜であるなら減圧を用いる化学気相成長(CVD)が確立された方法であるが減圧をもちいるので装置が高価になる。このために、別の方法で基板上に形成した膜を加熱する方法が取られる。例えば、目的の膜材料を溶かした溶液状のものを回転塗布(スピンオンとも言う)やスプレーなどの方式で基板に成膜して、それを200〜500℃で加熱して成膜できる材料がある。絶縁膜としては、例えば有機ポリマーや無機のポリマー、またはこれらの混合したポリマー塗布膜がある。導電膜としては、例えばAlの入ったZnO膜の塗布膜がある。銅(Cu)や銀(Ag)の微粒子を分散材で囲い、それを溶剤に溶かして塗布する金属塗布膜がある。結晶膜としては、例えば化合物半導体であるCIGS(Cu,In、Ga,Seの化合物)の塗布膜がある。 これらの塗布膜は40cmから2mくらいの大型基板の上に塗布して用いる。安価に製造するために基板の材料がガラスであったり耐熱樹脂であったりする。これらの膜は基板の温度を上げることによりその上に塗布された膜をアニールして用いる。しかし基板が40cmないし2mの大きさの場合、一様に均一に基板温度を上げることが困難である。いたるところ一様に熱を与えるためには、例えば炉の中でアニールするとき、数時間の時間をかけることにより基板のいたるところで温度の違いが起きないにする。この対応では、単位時間当たりの生産枚数が低下するという課題が生じる。基板は耐熱性に劣るガラスや樹脂である場合には特にアニールは困難である。プラズマジェットやレーザーを用いて基板を低温に維持したままアニールすることが提案されたり行われているが、大面積の基板では生産性に劣るという課題がある(特許文献1,2参照)。   Since these substrates cannot be subjected to high-temperature heat treatment like silicon wafers, plasma chemical vapor deposition (CVD) films that can be formed while holding the substrate at a low temperature in a vacuum chamber are used. Since this film grows while adsorbing the gas species generated by plasma decomposition, it contains undesired impurities such as hydrogen and oxygen, is easy to absorb moisture, and is inferior in density. In order to improve this, there is a technique for removing impurities by annealing with a plasma beam (see Prior Patent Document 1) or laser light. In addition, in the case of an insulating film, chemical vapor deposition (CVD) using reduced pressure is established, but since reduced pressure is used, the apparatus becomes expensive. For this purpose, a method of heating a film formed on the substrate by another method is taken. For example, there is a material in which a solution in which a target film material is dissolved is formed on a substrate by a method such as spin coating (also called spin-on) or spraying, and then heated at 200 to 500 ° C. . Examples of the insulating film include an organic polymer, an inorganic polymer, or a polymer coating film in which these are mixed. As the conductive film, for example, there is a coating film of a ZnO film containing Al. There is a metal coating film in which fine particles of copper (Cu) or silver (Ag) are surrounded by a dispersion material and dissolved in a solvent. As the crystal film, for example, there is a coating film of CIGS (compound of Cu, In, Ga, Se) which is a compound semiconductor. These coating films are used on a large substrate of about 40 cm to 2 m. In order to manufacture inexpensively, the material of a board | substrate is glass or a heat resistant resin. These films are used by annealing the film applied thereon by raising the temperature of the substrate. However, when the substrate is 40 cm to 2 m in size, it is difficult to raise the substrate temperature uniformly and uniformly. In order to apply heat uniformly everywhere, for example, when annealing in a furnace, it takes several hours to prevent temperature differences throughout the substrate. In this correspondence, there arises a problem that the number of production per unit time decreases. Annealing is particularly difficult when the substrate is made of glass or resin having poor heat resistance. Although it has been proposed or performed to anneal the substrate while maintaining the substrate at a low temperature using a plasma jet or a laser, there is a problem that the productivity of a large-area substrate is inferior (see Patent Documents 1 and 2).

本発明は例えば大面積電子デバイスの作製に好適な膜形成の改良に係り、例えばガラス基板の上に塗布した材料のアニールに関する。特に大型のガラス基板に塗布したシリコン酸化膜、シリコン窒化膜、導電膜、または多元の化合物膜等を含む塗布膜をアニールして膜を改質する装置に関する。ガラス基板だけでなく、樹脂基板や金属基板を用いる大面積デバイスにも同じ課題がある。 The present invention relates to an improvement in film formation suitable for manufacturing a large area electronic device, for example, and relates to annealing of a material applied on a glass substrate, for example. In particular, the present invention relates to an apparatus for modifying a film by annealing a coating film including a silicon oxide film, a silicon nitride film, a conductive film, or a multi-component compound film coated on a large glass substrate. Not only glass substrates but also large area devices using resin substrates and metal substrates have the same problem.

特開2006−06130号公報JP 2006-06130 A 特開2006−278625号公報JP 2006-278625 A

大型基板の加熱装置の代表は炉アニール装置とランプアニール装置である。大型基板に対してはそれぞれ課題がある。炉では一枚いれても多数枚いれても基板の周辺と中心部では温度の上がり方が違う。一様にしようとすると時間をかけてゆっくり温度を上げなくてはならない。これには生産性の低下のほかに、他の工程のタイミングと合わないという課題がある。大型基板を覆うようにランプをたくさん並べるランプアニールでは基板の周辺と中心の差は調整で抑えられるが、ランプとランプの隙間で温度差が生じる。また基板が透明であると光が吸収されにくいのと、吸収が表面材料の種類や厚みに依存するという課題がある。これら課題を解決する方法に加熱されたガスを基板に垂直にビーム状に吹き付ける方法がある。ビーム状に吹き付ける一定温度のガスは基板表面に熱を熱伝導で連続的に与えるので基板表面の塗布膜は高速アニールされる。基板が10cm程度の小型のとき、裏面とガスの吹き付ける表面の温度差で生じる基板の反りは相対的に小さい。しかし、基板が50cmや2mの大きさになると基板表裏の温度差による基板の反り量は相対的に大きくなる。ガスの吹き出し口と基板の距離が基板表面温度に影響するので、この反りは一定以下に抑えないとならない。これが課題である。   Representative of large substrate heating devices are a furnace annealing device and a lamp annealing device. There are problems with large substrates. Regardless of whether one or many sheets are placed in the furnace, the temperature rises differently around the substrate and in the center. In order to make it uniform, the temperature must be raised slowly over time. In addition to the decrease in productivity, this has a problem that it does not match the timing of other processes. In lamp annealing in which a large number of lamps are arranged so as to cover a large substrate, the difference between the periphery and the center of the substrate can be suppressed by adjustment, but a temperature difference occurs between the lamp and the lamp. In addition, when the substrate is transparent, there is a problem that light is hardly absorbed, and absorption depends on the type and thickness of the surface material. As a method for solving these problems, there is a method in which heated gas is sprayed in a beam shape perpendicularly to the substrate. The gas at a constant temperature sprayed in the form of a beam continuously applies heat to the substrate surface by heat conduction, so that the coating film on the substrate surface is annealed at high speed. When the substrate is as small as about 10 cm, the warpage of the substrate caused by the temperature difference between the back surface and the surface to which the gas is blown is relatively small. However, when the size of the substrate is 50 cm or 2 m, the amount of warpage of the substrate due to the temperature difference between the front and back of the substrate becomes relatively large. Since the distance between the gas outlet and the substrate affects the substrate surface temperature, this warpage must be kept below a certain level. This is a challenge.

この課題を図1に示す。支持台6の上に基板の裏面1bを接して置かれた基板1がガス吹き付け器2の下を移動する。基板1の表面1aには塗布膜5が形成されている。ガス吹き付け器2のガス加熱機構4で加熱されたガスビーム3が基板表面をほぼ垂直に吹き付けて基板表面を加熱する。基板表面に塗布された塗布膜5はガスビーム3によりアニールされ,溶剤などのガスを放出する。基板の温度は支持台6との基板裏面1bとの密着度合いにより違い、基板の裏面1bにある空気などの熱の不良導体に影響される。基板の表面1aが吹き付けガス2で加熱されて基板の加熱された部分1cが上に膨らむ。出来上がる支持台6との隙間7は熱伝導度を悪くさせて裏面の温度が上昇し膨らみは減り一定の膨らみになる。この膨らみが高温に加熱された基板に永久変形の歪を残すと、基板は平坦性を失う。これが課題である。基板を一定以上に変形させないガス吹き付け装置の構造が必要である。 This problem is shown in FIG. The substrate 1 placed on the support base 6 in contact with the back surface 1b of the substrate moves under the gas sprayer 2. A coating film 5 is formed on the surface 1 a of the substrate 1. The gas beam 3 heated by the gas heating mechanism 4 of the gas sprayer 2 sprays the substrate surface almost vertically to heat the substrate surface. The coating film 5 applied on the substrate surface is annealed by the gas beam 3 to release a gas such as a solvent. The temperature of the substrate varies depending on the degree of adhesion between the support base 6 and the back surface 1b of the substrate, and is influenced by defective conductors such as air on the back surface 1b of the substrate. The surface 1a of the substrate is heated by the blowing gas 2 and the heated portion 1c of the substrate expands upward. The gap 7 between the completed support base 6 deteriorates the thermal conductivity, the temperature of the back surface rises, and the bulge is reduced to a constant bulge. If this bulge leaves a permanently deformed strain on the substrate heated to a high temperature, the substrate loses its flatness. This is a challenge. A structure of a gas spraying device that does not deform the substrate beyond a certain level is required.

図2に課題を解決する本発明の装置の基本構造を示す。基板1は隙間のある左右の支持台25,26の上を滑りながらガス吹き付け装置2を通過する。支持台25,26の間には基板裏面を加熱するための高温支持台27が備えられている。高温支持台27の温度は中に備えられた電熱ヒーター28で調整される。基板がガスビーム3に当たるときに基板表面と裏面の温度が平衡状態になるように温度は調整される。この調整によりガスビームの当たる基板の加熱された部分1cの膨らみは抑制される。平衡状態を作り出す方法にはいくつかの代替技術がある。炉アニールにおいても、上下に赤外線ヒーターを持つオーブンにおいても基板の表裏両面がアニールされる。本発は基板の表面に垂直にガスをビーム状に吹き付ける装置において、基板裏面をビームの当たる場所だけ加熱することに特徴を有する。表裏の温度差を小さくする効果を得るには、裏面を積極的に加熱しなくても、裏面からの熱放射を抑制する機構でよい。この効果のためにはビームの当たる場所には支持台をおかずに空気による断熱機構でも良い。同効果を得るためには、赤外線を反射する機構を備えて裏面加熱を補助しても良い。同効果を得るためには加熱されたガスを裏面に当てる機構でも良い。積極的に表裏が同じ温度条件になるように、上に置かれたガス吹き付け装置2と同じ吹き付け装置を下に配置して基板を対向しておいた上下2つのガス吹き付け装置のガスの間を通過させても良い。基板はこの吹き付けビームを通過するとき瞬間的に表裏で加熱される。よって基板1の上の塗布膜5は通過したときに瞬間的に加熱される。基板の上下で同じ温度のガスビームが当たるので基板の表裏の温度差は原理的には無い。以上では基板を移動させるように記述したが、吹きつけ装置と基板は相対的に移動させればよく、基板を加熱する装置が移動する構造でも良い。 FIG. 2 shows the basic structure of the apparatus of the present invention that solves the problem. The substrate 1 passes through the gas spraying device 2 while sliding on the left and right support bases 25 and 26 with a gap. A high temperature support base 27 for heating the back surface of the substrate is provided between the support bases 25 and 26. The temperature of the high temperature support 27 is adjusted by an electric heater 28 provided therein. The temperature is adjusted so that the temperature of the front surface and the back surface of the substrate is in an equilibrium state when the substrate hits the gas beam 3. By this adjustment, the swelling of the heated portion 1c of the substrate that is exposed to the gas beam is suppressed. There are several alternative techniques for creating an equilibrium state. Even in furnace annealing, both the front and back surfaces of the substrate are annealed in an oven having an infrared heater above and below. The present invention is characterized in that in the apparatus in which gas is blown perpendicularly to the front surface of the substrate, the back surface of the substrate is heated only at the place where the beam hits. In order to obtain the effect of reducing the temperature difference between the front and back surfaces, a mechanism that suppresses heat radiation from the back surface may be used without actively heating the back surface. For this effect, a heat insulating mechanism using air may be used without placing a support base at the place where the beam hits. In order to obtain the same effect, a mechanism for reflecting infrared rays may be provided to assist in heating the back surface. In order to obtain the same effect, a mechanism that applies heated gas to the back surface may be used. Between the gas of the two upper and lower gas spraying devices that faced the substrate with the same spraying device as the gas spraying device 2 placed on the lower side, so that the front and back are at the same temperature condition You may let it pass. The substrate is instantaneously heated on the front and back as it passes through the spray beam. Therefore, the coating film 5 on the substrate 1 is instantaneously heated when it passes. In principle, there is no temperature difference between the front and back surfaces of the substrate because the gas beams of the same temperature hit the top and bottom of the substrate. In the above description, the substrate is moved. However, the spraying device and the substrate may be moved relative to each other, and the structure for moving the device for heating the substrate may be used.

そして、請求項1に係る発明は、基板を移動させる機構を備え、断面が矩形または線状である加熱したガスのビームを基板の表面に吹き付けて基板表面を加熱する基板加熱装置であって、当該加熱ガスビームの当たる部分の基板の裏面を加熱する裏面加熱機構を備え、当該基板が当該加熱ガスビームと当該裏面加熱機構の間に挟まれて通過することを特徴とする基板加熱装置である。   The invention according to claim 1 is a substrate heating apparatus that includes a mechanism for moving the substrate, and heats the substrate surface by spraying a heated gas beam having a rectangular or linear cross section on the surface of the substrate, A substrate heating apparatus comprising a back surface heating mechanism that heats a back surface of a substrate that is exposed to the heated gas beam, wherein the substrate passes between the heated gas beam and the back surface heating mechanism.

請求項2に係る発明は前記裏面加熱機構が当該支持台に挟まれて備えられていることを特徴とする請求項1記載の装置である。 The invention according to claim 2 is the apparatus according to claim 1, wherein the back surface heating mechanism is sandwiched between the support bases.

請求項3に係る発明は前記裏面加熱機構が電熱ヒーターであることを特徴とする請求項1ないし2記載の装置である。 The invention according to claim 3 is the apparatus according to claim 1 or 2, wherein the back surface heating mechanism is an electric heater.

請求項4に係る発明は前記裏面加熱機構が加熱したガスのビームを吹き付ける機構であることを特徴とする請求項1ないし2記載の装置である。 The invention according to claim 4 is the apparatus according to claim 1 or 2, wherein the back surface heating mechanism is a mechanism for blowing a beam of gas heated.

請求項5に係る発明は前記ガスが窒素、酸素、水素、アルゴン、水を含むガスであることを特徴とする請求項1ないし4記載の装置である。 The invention according to claim 5 is the apparatus according to claims 1 to 4, wherein the gas is a gas containing nitrogen, oxygen, hydrogen, argon, and water.

請求項6に係る発明は前記基板がガラス、樹脂、金属を材料とすることを特徴とする請求項1ないし5記載の装置である。 The invention according to claim 6 is the apparatus according to any one of claims 1 to 5, wherein the substrate is made of glass, resin, or metal.

請求項7に係る発明は、入口と出口をもつガスの流路となる溝が、加熱される金属加熱板表面の一端から反対の端までに作られてあり、断熱材で断熱された金属板を当該金属加熱板表面に密着させることで当該溝は外部と遮蔽された流路を形成し、当該流路の途中に当該金属板の長手方向に横溝が少なくとも2本以上形成されてあり、当該横溝より細くかつ横溝より多い数の縦溝が横溝と横溝の間の壁を横切って隣接する横溝同士が接続されてあり、横溝内のガスが縦溝で分かれて加速されて、縦溝出口正面の横溝の壁に衝突してまた横溝で合流する流路が形成されてあり、当該流路を通過することでガスを加熱し、加熱されたガスをビーム状に吹き出す加熱ガス吹き付け装置である。 The invention according to claim 7 is a metal plate in which a groove serving as a gas flow path having an inlet and an outlet is formed from one end of the surface of the heated metal heating plate to the opposite end, and is insulated with a heat insulating material. In close contact with the surface of the metal heating plate, the groove forms a channel shielded from the outside, and at least two or more horizontal grooves are formed in the longitudinal direction of the metal plate in the middle of the channel, The number of vertical grooves that are narrower than the horizontal grooves and more than the horizontal grooves are connected to each other across the wall between the horizontal grooves and the horizontal grooves. This is a heated gas spraying device in which a flow path that collides with the wall of the horizontal groove and joins at the horizontal groove is formed, the gas is heated by passing through the flow path, and the heated gas is blown out in a beam shape.

請求項8に係る発明は、前記金属加熱板を電熱線で加熱することを特徴とする請求項7記載の装置である。 The invention according to claim 8 is the apparatus according to claim 7, wherein the metal heating plate is heated with a heating wire.

請求項1と2に係る発明によれば、基板を熱変形させずに基板表面を瞬間的に加熱できて、かつ基板を支持台の上を通過させることができる。炉のアニールの場合は、基板を移動通過できなかったが、本発明では移動が可能である。ランプアニールではランプとランプの境目で温度が不均一になり1m級の大型基板を均一にアニールするのは困難であった。また基板の上の材料の赤外線吸収が材料の光学的性質の差で異なるという課題がある。しかし、本発明はガスビームの熱伝導による加熱であるので材料依存が無い。 According to the first and second aspects of the present invention, the substrate surface can be instantaneously heated without thermally deforming the substrate, and the substrate can be passed over the support base. In the case of annealing in the furnace, the substrate could not be moved, but in the present invention, it can be moved. In lamp annealing, the temperature becomes non-uniform at the boundary between the lamps, and it is difficult to uniformly anneal a large 1 m class substrate. There is also a problem that the infrared absorption of the material on the substrate differs depending on the difference in the optical properties of the material. However, since the present invention is heating by heat conduction of a gas beam, there is no material dependence.

請求項3に係る発明によれば拡張可能な電熱ヒーターの加熱機構で大きな基板の反り防止ができるので安価に装置の拡張設計が可能である。 According to the invention of claim 3, since the heating mechanism of the expandable electric heater can prevent a large substrate from warping, the device can be extended at a low cost.

請求項4に係る発明によれば、基板の表裏両面を同じガスのビームで加熱するので、基板が早い速度で移動するときにおいても、表面加熱が可能である。また基板移動速度を変更しても、上下の加熱機構が対称的であるので、表裏の温度差を理想的に小さくできる。 According to the invention of claim 4, since the front and back surfaces of the substrate are heated by the same gas beam, surface heating is possible even when the substrate moves at a high speed. Even if the substrate moving speed is changed, the upper and lower heating mechanisms are symmetrical, so that the temperature difference between the front and back sides can be reduced ideally.

請求項5に係る発明によれば、ガスとして水を含ませることができる。水で基板の上の有機物を除去できる。酸素をガスに含ませると、有機物を酸化させて気体にしたり金属を燃焼させて拡散させづらくできる。水素をガスに含ませると水素化物として不純物を除去できる。上下のガス吹き付け装置のガス種は同じでも異なっていても目的に応じて選ぶことが自由である。 According to the invention which concerns on Claim 5, water can be included as gas. Organic substances on the substrate can be removed with water. When oxygen is included in the gas, it is difficult to oxidize the organic substance to form a gas or to burn the metal to diffuse it. When hydrogen is included in the gas, impurities can be removed as a hydride. The gas types of the upper and lower gas spraying apparatuses can be selected according to the purpose, whether they are the same or different.

請求項6に係る発明によれば、大型のガラス基板を割らないように、また変形させないように扱える。金属や樹脂であっても変形するのを防止できる。特に平面を維持させたい基板を用いるときに本発明は有効である。 According to the invention which concerns on Claim 6, it can handle so that a large sized glass substrate may not be broken and may not be changed. Even a metal or resin can be prevented from being deformed. The present invention is particularly effective when using a substrate that is desired to maintain a flat surface.

請求項7と8に係る発明によれば、ガス加熱装置の横溝を長手方向に大型基板の大きさに対応して自由に拡張することで、大型の基板をカバーして加熱できるガスビームを作り出すことができる。 According to the invention which concerns on Claim 7 and 8, the gas groove which can cover and heat a large board | substrate is created by extending freely the horizontal groove of a gas heating apparatus corresponding to the magnitude | size of a large board | substrate in a longitudinal direction. Can do.

図1は支持台の上に載せた基板表面を加熱したガスのビームで加熱する装置の模式図である。ガスのビームは基板表面に衝突して基板表面を瞬時に加熱する。裏面と表面の温度差のためにビームの当たった基板は上に膨らむ。FIG. 1 is a schematic view of an apparatus for heating a substrate surface placed on a support with a heated gas beam. The gas beam strikes the substrate surface and instantly heats the substrate surface. Due to the temperature difference between the back surface and the front surface, the substrate with the beam swells upward. 図2は加熱したガスのビームを吹き付ける加熱機構において基板の膨らみを抑制するための機構を追加した装置の模式図である。ビームが当たる基板の直下に基板裏面の温度を上げる機構を追加した。ここでは当該機構として電熱ヒーターを配置した第1の実施形態を示す。FIG. 2 is a schematic view of an apparatus to which a mechanism for suppressing the swelling of the substrate is added in a heating mechanism for blowing a heated gas beam. Added a mechanism to raise the temperature of the backside of the substrate directly below the substrate that the beam hits. Here, a first embodiment in which an electric heater is disposed as the mechanism is shown. 図3は加熱したガスのビームを吹き付ける第1のガス吹き付け機構と第2のガス吹き付け機構を基板を介して対向させて配置した装置の模式図である。基板に対して対称的に配置した吹き付け機構の間を通過することにより基板表裏の温度差は小さく抑えられる。FIG. 3 is a schematic view of an apparatus in which a first gas blowing mechanism and a second gas blowing mechanism for blowing a heated gas beam are arranged to face each other with a substrate interposed therebetween. By passing between the spraying mechanisms arranged symmetrically with respect to the substrate, the temperature difference between the front and back of the substrate can be kept small. 図4はガスを加熱する機構の模式図である。(A)は当該機構の縦断面図、(B)はYY断面図である。ガス導入管からのガスは広い空間の横溝で一定圧力のガスとして集合し、1mm幅の縦溝で高い流速を得て出口で正面の横溝の壁に衝突する。この衝突が壁から効率よく熱をガスに伝達する。横溝は少なくとも2本あれば良い。この場合5段の衝突熱伝達を行いながら、均一なスリット状のガスビームを作り出す。FIG. 4 is a schematic view of a mechanism for heating the gas. (A) is a longitudinal sectional view of the mechanism, and (B) is a YY sectional view. The gas from the gas introduction pipe gathers as a gas having a constant pressure in a wide groove in a wide space, obtains a high flow velocity in a 1 mm wide vertical groove, and collides with the wall of the front horizontal groove at the outlet. This collision efficiently transfers heat from the wall to the gas. There should be at least two lateral grooves. In this case, a uniform slit-shaped gas beam is created while performing five stages of impact heat transfer.

以下、本発明の実施形態を添付図面に基づいて説明する。なお、これら添付図面中、同一または相当部分には同一符号を付している。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the accompanying drawings, the same or corresponding parts are denoted by the same reference numerals.

実施例1を図2で説明する。ガス吹き付け装置2が基板1の上に配置されてある。ガス加熱機構4はアルミニュームで出来ている。ガスはこの加熱機構4を通過することで加熱される。加熱機構の構造の模式図を図4に示した。加熱されたガスビーム3は移動する基板1の表面1aに当たる。基板表面の塗布膜5がガスビームで加熱される。基板1は支持台25と26の上を移動する。支持台25と26の間に基板裏面を加熱する機構27が備えられている。加熱は当該加熱機構27の内部にある電熱ヒーター28で行われる。支持台25、26は固定されている。加熱機構27は支持台から離れてあり、隣接する部分の支持台を加熱する。加熱機構の温度を250℃に設定し、ガスビームの温度を250℃に設定して、ガスビーム幅45cmより狭い40cmの幅0.7mmの厚みの基板を右から左に300mm/分の速度で移動させた。ガスビームのガスは窒素であり、流量は50SLMとした。横から基板の反りを観測したところ、認められなかった。基板の上に塗布したSiOC膜(韓国APM社製Miraspin
TRX)は鉛筆硬度8Hの硬さ特性を示した。基板に変形を与えないで基板の上の塗布膜をアニールできたことが確認された。
Example 1 will be described with reference to FIG. A gas blowing device 2 is disposed on the substrate 1. The gas heating mechanism 4 is made of aluminum. The gas is heated by passing through the heating mechanism 4. A schematic diagram of the structure of the heating mechanism is shown in FIG. The heated gas beam 3 strikes the surface 1a of the moving substrate 1. The coating film 5 on the substrate surface is heated with a gas beam. The substrate 1 moves on the support bases 25 and 26. A mechanism 27 for heating the back surface of the substrate is provided between the support tables 25 and 26. Heating is performed by an electric heater 28 inside the heating mechanism 27. The support bases 25 and 26 are fixed. The heating mechanism 27 is separated from the support base and heats the adjacent support base. The temperature of the heating mechanism is set to 250 ° C., the temperature of the gas beam is set to 250 ° C., and the substrate having a width of 0.7 mm and a width of 40 cm narrower than the gas beam width of 45 cm is moved from right to left at a speed of 300 mm / min. It was. The gas of the gas beam was nitrogen and the flow rate was 50 SLM. When the warping of the substrate was observed from the side, it was not recognized. SiOC film coated on the substrate (Miraspin manufactured by APM, Korea)
TRX) showed a hardness characteristic with a pencil hardness of 8H. It was confirmed that the coating film on the substrate could be annealed without deforming the substrate.

実施例2を図3に示す。ガス吹き付け装置を基板の上下に対称に配置した。上のガス吹きつけ装置31と下の吹きつけ装置32は同じものを用いた。内部のガス加熱機構35と36も同じである。基板1は支持台37と38の上を右から左に移動する。上のガスビーム33は基板表面1aに、下のガスビーム34は基板の裏面1bに当たる。基板は上下のガスビーム33、34に挟まれて移動する。加熱機構の温度を250℃に設定し、ガスビームの温度を250℃に設定して、0.7mmの厚みで40cm幅のガラス基板を右から左に300mm/分の速度で移動させた。ガスビームのガスは窒素であり、流量は50SLMとした。横から基板の反りを観測したところ、認められなかった。基板の上に塗布したSiOC膜(韓国APM社製Miraspin
TRX)は鉛筆硬度8Hの硬さ特性を示した。基板に変形を与えないで基板の上の塗布膜をアニールできたことが確認された。ここではガスとして窒素を用いた。不活性ガスとしてはアルゴンを選んでも良い。反応性のガスを混ぜることも可能である。酸素をガスに含ませると、有機物を酸化させて気体にしたり金属を燃焼させて拡散させづらくできる。金属の微粒子を分散材で覆い、それを溶剤に溶かした金属塗布膜があるが、分散材を除去するのにも酸素ビームは有効に作用する。水素をガスに含ませると水素化物として不純物を除去できる。ガスに水を含ませることもできる。沸点以上の高い温度の水は基板の上の有機物を除去するのに有効である。上下のガス吹き付け装置のガス種は同じでも異なっていても目的に応じて選ぶことが自由である。
Example 2 is shown in FIG. Gas spraying devices were arranged symmetrically above and below the substrate. The upper gas spraying device 31 and the lower gas spraying device 32 were the same. The internal gas heating mechanisms 35 and 36 are the same. The substrate 1 moves on the support bases 37 and 38 from right to left. The upper gas beam 33 hits the substrate surface 1a, and the lower gas beam 34 hits the back surface 1b of the substrate. The substrate moves between the upper and lower gas beams 33 and 34. The temperature of the heating mechanism was set to 250 ° C., the temperature of the gas beam was set to 250 ° C., and a glass substrate having a thickness of 0.7 mm and a width of 40 cm was moved from right to left at a speed of 300 mm / min. The gas of the gas beam was nitrogen and the flow rate was 50 SLM. When the warping of the substrate was observed from the side, it was not recognized. SiOC film coated on the substrate (Miraspin manufactured by APM, Korea)
TRX) showed a hardness characteristic with a pencil hardness of 8H. It was confirmed that the coating film on the substrate could be annealed without deforming the substrate. Here, nitrogen was used as the gas. Argon may be selected as the inert gas. It is also possible to mix reactive gases. When oxygen is included in the gas, it is difficult to oxidize the organic substance to form a gas or to burn the metal to diffuse it. There is a metal coating film in which metal fine particles are covered with a dispersion material and dissolved in a solvent, but an oxygen beam also works effectively to remove the dispersion material. When hydrogen is included in the gas, impurities can be removed as a hydride. The gas can also contain water. Water having a temperature higher than the boiling point is effective for removing organic substances on the substrate. The gas types of the upper and lower gas spraying apparatuses can be selected according to the purpose, whether they are the same or different.

実施例3を図4に示す。図4は基板の両面をガスビームで加熱した実施例2で用いた加熱ガス吹きつけ装置31、32の加熱機構35,36の構造の模式図である。(A)は加熱機構の厚み方向の断面を示す。(B)はYY断面図である。金属の加熱板41は厚み20mmのアルミニュームで製造した。当該金属板の両表面に深さ5mm、幅5mm、長さ450mmの6本の横溝42,43を等間隔6mmで切削した。上下で隣合う横溝は深さ3mm幅1mmの縦溝44、45を14mmの隔たりで配置して連結させた。次の段の縦溝の位置は当該隔たりの中央になるように配置した。図面では縦孔の数は省略して少なく示してある。最下に配置した横溝42−6と43−6に連結して深さ1mm、幅30mm、長さ450mmの浅いスリット溝46,47を金属板41の下端まで切削した。最上の横溝42−1と43−1には3/8インチのガス導入管48と49を連結孔50,51を介して接続して、ガスを2系統で導入した。導入管は加熱機構の長手方向の温度分布を均一にする方向で長手両端に配置した。金属板41の表面に切削して形成した溝を金属側板52,53を密着させて溝をガス流路とした。金属側板の外側は箱状に切削してあり、この中に断熱材54、55を配置して金属の蓋56,57で封入した。金属板上部にも断熱材58を、金属板41の端面にも断熱材59,60を封入した。金属板41の内部には絶縁された電熱線61が折り返して通してあり、図示しない電源で加熱して金属板41を加熱した。ガスの温度は熱電対(TC)で測定して設定温度になるように電源で制御した。2本のビームをアパーチャー部品62で一本のビームとして利用した。アパーチャー部品62を取り外して目的に応じて2本のビームを利用するときがある。例えば、最初に基板が通過するビームのガス流量を少なくして加熱効果を低めて、塗布膜の溶剤を揮発させ、その後通過するビームのガス流量を多くして完全に焼成するという工程を組み立てることが可能である。 Example 3 is shown in FIG. FIG. 4 is a schematic diagram of the structure of the heating mechanisms 35 and 36 of the heated gas spraying devices 31 and 32 used in Example 2 in which both surfaces of the substrate are heated with a gas beam. (A) shows the cross section of the heating mechanism in the thickness direction. (B) is a YY sectional view. The metal heating plate 41 was made of aluminum having a thickness of 20 mm. Six lateral grooves 42 and 43 having a depth of 5 mm, a width of 5 mm, and a length of 450 mm were cut at equal intervals of 6 mm on both surfaces of the metal plate. The adjacent horizontal grooves in the upper and lower sides were connected by arranging vertical grooves 44 and 45 having a depth of 3 mm and a width of 1 mm with a distance of 14 mm. The vertical groove of the next stage was arranged so as to be in the center of the gap. In the drawing, the number of vertical holes is omitted and reduced. Shallow slit grooves 46 and 47 having a depth of 1 mm, a width of 30 mm, and a length of 450 mm were cut to the lower end of the metal plate 41 in connection with the horizontal grooves 42-6 and 43-6 arranged at the bottom. Gas inlet pipes 48 and 49 of 3/8 inch were connected to the uppermost lateral grooves 42-1 and 43-1 through connecting holes 50 and 51, and gas was introduced in two systems. The introduction pipes were arranged at both longitudinal ends so as to make the temperature distribution in the longitudinal direction of the heating mechanism uniform. A groove formed by cutting the surface of the metal plate 41 was brought into close contact with the metal side plates 52 and 53, and the groove was used as a gas flow path. The outside of the metal side plate was cut into a box shape, and heat insulating materials 54 and 55 were disposed therein and sealed with metal lids 56 and 57. The heat insulating material 58 was sealed also on the top of the metal plate, and the heat insulating materials 59 and 60 were sealed on the end surface of the metal plate 41. An insulated heating wire 61 is folded back through the metal plate 41 and heated by a power source (not shown) to heat the metal plate 41. The temperature of the gas was measured with a thermocouple (TC) and controlled with a power supply so that the set temperature was reached. Two beams were used as one beam by the aperture part 62. There are times when the aperture part 62 is removed and two beams are used according to the purpose. For example, assembling a process that first reduces the gas flow rate of the beam that passes through the substrate to reduce the heating effect, volatilizes the solvent of the coating film, and then increases the gas flow rate of the beam that passes through and completes the firing. Is possible.

本実施例ではアルミニュームを金属板材料として選定したが、温度範囲や使用するガスの種類に応じて、他の材料を選んでも良い。加熱方法は電熱線としたが、ランプ加熱や誘導加熱を選んでも良い。予め加熱されたガスをガス導入部から導入しても良い。また側板に断熱材を入れた構造にしたが、側板を断熱材やセラミクスで形成しても良い。横溝は6本の実施例を示したが、横溝の本数は最小2本でも良い。 In this embodiment, aluminum is selected as the metal plate material, but other materials may be selected according to the temperature range and the type of gas used. Although the heating method is heating wire, lamp heating or induction heating may be selected. A preheated gas may be introduced from the gas introduction part. Moreover, although it was set as the structure which put the heat insulating material in the side plate, you may form a side plate with a heat insulating material or ceramics. Although six horizontal grooves are shown in the embodiment, the number of horizontal grooves may be a minimum of two.

本発明は1mを超える大型基板表面を基板変形なしで均一に加熱する製造装置構造を提供する。大型の基板を用いる太陽電池やフラットパネル表示装置の製造を容易にさせる。 The present invention provides a manufacturing apparatus structure that uniformly heats the surface of a large substrate exceeding 1 m without substrate deformation. Manufacturing of a solar cell or a flat panel display device using a large substrate is facilitated.

1 基板
1a 基板表面
1b 基板裏面
1c 基板の加熱された部分
2 ガス吹き付け装置
3 ガスビーム
4 ガス加熱機構
5 塗布膜
6 支持台
7 隙間
25支持台
26支持台
27裏面加熱機構
28電熱ヒーター
31上のガス吹きつけ装置
32下のガス吹きつけ装置
33上のガスビーム
34下のガスビーム
35上のガス加熱機構
36下のガス加熱機構
37,38 支持台
41金属板
42、43横溝
44、45縦溝
46、47スリット溝
48、49ガス導入管
50、51連結孔
52,53側板
54,55断熱材
56,57金属の蓋
58,59,60断熱材
61電熱線
62アパーチャー部品
DESCRIPTION OF SYMBOLS 1 Substrate 1a Substrate surface 1b Substrate back surface 1c Heated portion 2 of substrate 2 Gas spraying device 3 Gas beam 4 Gas heating mechanism 5 Coating film 6 Support base 7 Gap 25 Support base 26 Support base 27 Back surface heating mechanism
28 gas heater on electric heater 31 gas blower on the lower side of gas blower 33 on gas heater 34 on gas heater 35 on gas heater 35 on gas heater 37 on gas heater 35 on support base 41 metal plate 42 and 43 transverse groove 44 , 45 longitudinal groove 46, 47 slit groove 48, 49 gas introduction pipe 50, 51 connecting hole 52, 53 side plate 54, 55 heat insulating material 56, 57 metal cover 58, 59, 60 heat insulating material 61 heating wire 62 aperture part

Claims (8)

基板を移動させる機構を備え、断面が矩形または線状である加熱したガスのビームを基板の表面に吹き付けて基板表面を加熱する基板加熱装置であって、当該加熱ガスビームの当たる部分の基板の裏面を加熱する裏面加熱機構を備え、当該基板が当該加熱ガスビームと当該裏面加熱機構の間に挟まれて通過することを特徴とする基板加熱装置。 A substrate heating device having a mechanism for moving a substrate and spraying a heated gas beam having a rectangular or linear cross section on the surface of the substrate to heat the substrate surface, the back surface of the substrate being exposed to the heated gas beam A substrate heating apparatus comprising a back surface heating mechanism for heating the substrate, wherein the substrate passes between the heated gas beam and the back surface heating mechanism. 前記裏面加熱機構が当該支持台に挟まれて備えられていることを特徴とする請求項1記載の装置。 The apparatus according to claim 1, wherein the back surface heating mechanism is sandwiched between the support bases. 前記裏面加熱機構が電熱ヒーターであることを特徴とする請求項1ないし2記載の装置。 3. The apparatus according to claim 1, wherein the back surface heating mechanism is an electric heater. 前記裏面加熱機構が加熱したガスのビームを吹き付ける機構であることを特徴とする請求項1ないし2記載の装置。 3. The apparatus according to claim 1, wherein the back surface heating mechanism is a mechanism for blowing a heated gas beam. 前記ガスが窒素、酸素、水素、アルゴン、水を含むガスであることを特徴とする請求項1ないし4記載の装置。 5. The apparatus according to claim 1, wherein the gas is a gas containing nitrogen, oxygen, hydrogen, argon, and water. 前記基板がガラス、樹脂、金属を材料とすることを特徴とする請求項1ないし5記載の装置。 6. The apparatus according to claim 1, wherein the substrate is made of glass, resin, or metal. 入口と出口をもつガスの流路となる溝が、加熱される金属加熱板表面の一端から反対の端までに作られてあり、断熱材で断熱された金属板を当該金属加熱板表面に密着させることで当該溝は外部と遮蔽された流路を形成し、当該流路の途中に当該金属板の長手方向に横溝が少なくとも2本以上形成されてあり、当該横溝より細くかつ横溝より多い数の縦溝が横溝と横溝の間の壁を横切って隣接する横溝同士が接続されてあり、横溝内のガスが縦溝で分かれて加速されて、縦溝出口正面の横溝の壁に衝突してまた横溝で合流する流路が形成されてあり、当該流路を通過することでガスを加熱し、加熱されたガスをビーム状に吹き出す加熱ガス吹き付け装置。 A gas flow channel with an inlet and outlet is created from one end of the heated metal heating plate surface to the opposite end, and the metal plate insulated by the heat insulating material is in close contact with the metal heating plate surface The groove forms a flow path that is shielded from the outside, and at least two or more horizontal grooves are formed in the longitudinal direction of the metal plate in the middle of the flow path. The vertical grooves of the horizontal grooves are connected to each other across the wall between the horizontal grooves, and the gas in the horizontal grooves is accelerated by being divided by the vertical grooves and colliding with the wall of the horizontal groove in front of the vertical groove outlet. A heated gas spraying device in which a flow path that merges in the horizontal groove is formed, the gas is heated by passing through the flow path, and the heated gas is blown out in a beam shape. 前記金属加熱板を電熱線で加熱することを特徴とする請求項7記載の装置。
The apparatus according to claim 7, wherein the metal heating plate is heated with a heating wire.
JP2009196136A 2009-08-26 2009-08-26 Double side heater for substrate, and heated gas blowing device Pending JP2011049333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196136A JP2011049333A (en) 2009-08-26 2009-08-26 Double side heater for substrate, and heated gas blowing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009196136A JP2011049333A (en) 2009-08-26 2009-08-26 Double side heater for substrate, and heated gas blowing device

Publications (1)

Publication Number Publication Date
JP2011049333A true JP2011049333A (en) 2011-03-10

Family

ID=43835389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196136A Pending JP2011049333A (en) 2009-08-26 2009-08-26 Double side heater for substrate, and heated gas blowing device

Country Status (1)

Country Link
JP (1) JP2011049333A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032250A (en) * 2011-08-03 2013-02-14 Philtech Inc Manufacturing apparatus having mechanism heating substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013032250A (en) * 2011-08-03 2013-02-14 Philtech Inc Manufacturing apparatus having mechanism heating substrate

Similar Documents

Publication Publication Date Title
JP4089113B2 (en) Thin film production equipment
US9199874B2 (en) Method for depositing a thin film, and resulting material
JP3179605U (en) Heating and cooling the substrate support
CA2394426C (en) Device for fast and uniform heating of a substrate with infrared radiation
JP5813920B2 (en) Method for depositing a thin film on a substrate and apparatus for in-line vacuum processing of a substrate
US9453334B2 (en) Method and device for producing a low-emissivity layer system
US7867868B2 (en) Absorber layer candidates and techniques for application
KR101136892B1 (en) Ceramic plate heater for semiconductor and display device manufacturing process
EP2827681B1 (en) High frequency heating apparatus
CN110218970B (en) Preparation method of tin diselenide film
US20150235878A1 (en) Semiconductor Manufacturing Apparatus and Method of Manufacturing Semiconductor Device
WO2012028704A1 (en) Substrate heating device
TW201123470A (en) Thermal management and method for large scale processing of CIS and/or CIGS based thin films overlying glass substrates
JP2011049333A (en) Double side heater for substrate, and heated gas blowing device
TWI492305B (en) Method and apparatus for manufacturing semiconductor device
JP2011070085A (en) Surface heating device
KR101354600B1 (en) Improved boat, and heat treatment chamber and apparatus of substrate having the same
EP2637479B1 (en) High frequency heating apparatus
JP2009174060A (en) Substrate tray of film deposition apparatus
KR102109344B1 (en) Transparent Electrode and Fabrication Method for the Same
JP2011225965A (en) Substrate treatment apparatus
KR101593493B1 (en) Themal processing apparatus of large area glass substrate
KR102118859B1 (en) Transparent Electrode and Fabrication Method for the Same
JP2011187545A (en) Substrate treatment device including transfer mechanism by high-temperature pressurized airtight gas
JP2013032250A (en) Manufacturing apparatus having mechanism heating substrate