JP2011048232A - Optical system enabling short-distance photography and optical device using the same - Google Patents

Optical system enabling short-distance photography and optical device using the same Download PDF

Info

Publication number
JP2011048232A
JP2011048232A JP2009197850A JP2009197850A JP2011048232A JP 2011048232 A JP2011048232 A JP 2011048232A JP 2009197850 A JP2009197850 A JP 2009197850A JP 2009197850 A JP2009197850 A JP 2009197850A JP 2011048232 A JP2011048232 A JP 2011048232A
Authority
JP
Japan
Prior art keywords
lens group
focus lens
optical system
moves
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009197850A
Other languages
Japanese (ja)
Inventor
Koji Hoshi
浩二 星
Kyoichi Miyazaki
恭一 宮崎
Noriyuki Adachi
宣幸 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2009197850A priority Critical patent/JP2011048232A/en
Publication of JP2011048232A publication Critical patent/JP2011048232A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Lenses (AREA)
  • Structure And Mechanism Of Cameras (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical system that can move for focusing at high speed from an infinity object to equal magnification and has excellent optical performance, and an optical device using the same; and to provide a compact optical system that can carry out image stabilization when the optical system is vibrated and has excellent optical performance from the infinity object to equal magnification, and an optical device using the same. <P>SOLUTION: The optical system includes a first focus lens group moving by a different moving amount in an optical axis direction when focusing from the infinity object to a short-distance object, a second focus lens group and a third focus lens group, wherein at least one focus lens group comprises a single lens. The optical system includes the first focus lens group, an image-stabilizing lens group arranged on an image side of the first focus lens group and moved in a perpendicular direction to an optical axis to carry out image stabilization when the optical system is vibrated, and the second focus lens group on the image side of the image-stabilizing lens group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、無限遠物体から撮影倍率等倍までの近距離撮影が可能な、いわゆるマクロレンズに関し、特にスチルカメラ、ビデオカメラ、デジタルカメラなどの光学装置に好適なものである。   The present invention relates to a so-called macro lens that can perform close-up shooting from an object at infinity to a shooting magnification of the same magnification, and is particularly suitable for an optical apparatus such as a still camera, a video camera, and a digital camera.

従来、スチルカメラ用撮影レンズで、無限遠物体から近距離物体へのフォーカシングに際して3つのレンズ群を移動させて撮影倍率等倍まで撮影を可能とするマクロレンズが特許文献1により知られている。前記公報によるレンズは、フォーカシングに際して移動する3つのレンズ群はいずれのレンズ群も複数レンズで構成されている。   Conventionally, Patent Document 1 discloses a macro lens that can shoot up to the same magnification as a photographic magnification by moving three lens groups during focusing from an infinitely distant object to a close object with a photographic lens for a still camera. In the lens according to the publication, each of the three lens groups that move during focusing is composed of a plurality of lenses.

また、無限遠物体から近距離物体へのフォーカシングに際して複数のレンズ群を移動させ、フォーカシングに際して光軸方向に固定のレンズ群の一部を光軸に対して垂直方向に移動させて光学系が振動した際の像ブレを補正可能とするマクロレンズが特許文献2、特許文献3により知られている。   In addition, when focusing from an infinite object to a close object, multiple lens groups are moved, and during focusing, a part of the lens group fixed in the optical axis direction is moved in the direction perpendicular to the optical axis to vibrate the optical system. Patent Documents 2 and 3 disclose macro lenses that can correct image blur at the time.

特開2000−231056号公報JP 2000-231056 A 特許第4194297号公報Japanese Patent No. 4194297 特開2003−322797号公報JP 2003-322797 A

無限遠物体から撮影倍率等倍まで撮影可能なマクロレンズは、フォーカシングに際して移動するレンズ群の移動量が大きくなる傾向があり、フォーカシングモーターで高速なフォーカシングを実現するためにはフォーカシングに際して移動するレンズ群を軽量にするのが望ましい。しかしながら、特許文献1に記載のレンズは、フォーカシングに際して移動する3つのレンズ群はいずれのレンズ群も複数レンズで構成されており、フォーカシングで移動するレンズ群が軽量にならず、高速にフォーカシングを移動させるのが困難であった。   Macro lenses that can shoot from an object at infinity to the same magnification as the photographic magnification tend to increase the amount of movement of the lens group that moves during focusing, and in order to achieve high-speed focusing with a focusing motor, the lens group that moves during focusing It is desirable to reduce the weight. However, in the lens described in Patent Document 1, each of the three lens groups that move during focusing is composed of a plurality of lenses, and the lens group that moves during focusing does not become lighter and moves focusing at high speed. It was difficult to do.

本発明の第一の目的は、無限遠物体から撮影倍率等倍まで高速にフォーカシング移動可能でかつ良好な光学性能の光学系およびそれを用いた光学装置を提供することである。   SUMMARY OF THE INVENTION A first object of the present invention is to provide an optical system that can move at high speed from an object at infinity to a shooting magnification equal to the same magnification and that has good optical performance, and an optical apparatus using the same.

また、無限遠物体から撮影倍率等倍まで撮影可能なマクロレンズは、近距離までの性能を良好にするために遠距離物体から近距離物体へのフォーカシングに際して複数のレンズ群を移動させることになるが、光学系が振動した際の像ブレを補正しようとして像ブレ補正レンズ群を配置するとレンズ系を小型にするのが困難になるか、良好な光学性能を実現するのが困難であった。特許文献2、特許文献3に記載のいずれのレンズにおいても十分に小型で良好な光学性能は得られていない。   In addition, a macro lens that can shoot from an infinitely distant object to the same magnification will move multiple lens groups during focusing from a distant object to a close object in order to improve the performance up to a short distance. However, if an image blur correcting lens group is arranged to correct image blur when the optical system vibrates, it is difficult to reduce the size of the lens system or to achieve good optical performance. In any of the lenses described in Patent Document 2 and Patent Document 3, the lens is sufficiently small and good optical performance is not obtained.

本発明の第二の目的は、小型で、光学系が振動した際の像ブレを補正可能で無限遠物体から撮影倍率等倍まで良好な光学性能の光学系およびそれを用いた光学装置を提供することである。   The second object of the present invention is to provide an optical system that is small in size and capable of correcting image blurring when the optical system vibrates and has good optical performance from an object at infinity to a magnification equal to the photographing magnification, and an optical device using the optical system. It is to be.

上記目的を達成するため、本発明の光学系は、複数のレンズ群をフォーカシング時に異なる移動をさせ、またフォーカスレンズ群と像ブレ補正レンズ群の配置を適切に設定することを特徴としている。   In order to achieve the above object, the optical system of the present invention is characterized in that a plurality of lens groups are moved differently during focusing, and the arrangement of the focus lens group and the image blur correcting lens group is appropriately set.

例えば、無限遠物体から近距離物体へのフォーカシングに際して光軸方向を移動する第1のフォーカスレンズ群と、
前記第1のフォーカスレンズ群の移動量とは異なる移動量でフォーカシングに際して移動する第2のフォーカスレンズ群と、
前記第1のフォーカスレンズ群および前記第2フォーカスレンズ群のいずれの移動量とも異なる移動量でフォーカシングに際して移動する第3のフォーカスレンズ群を有し、
前記フォーカスレンズ群のうち少なくとも一つのフォーカスレンズ群は単玉構成としたことを特徴としている。
For example, a first focus lens group that moves in the optical axis direction during focusing from an object at infinity to a near object;
A second focus lens group that moves during focusing with a movement amount different from the movement amount of the first focus lens group;
A third focus lens group that moves during focusing with a movement amount different from any of the movement amounts of the first focus lens group and the second focus lens group;
At least one focus lens group among the focus lens groups has a single lens configuration.

また、例えば、無限遠物体から近距離物体へのフォーカシングに際して、光軸方向を移動する負の屈折力の第1のフォーカスレンズ群と、
前記第1のフォーカスレンズ群の移動量とは異なる移動量でフォーカシングに際して移動する正の屈折力の第2のフォーカスレンズ群を有し、
前記第1のフォーカスレンズ群は少なくとも1枚の正レンズを有し、
前記正レンズのアッベ数をVp、
前記第2のフォーカスレンズ群は少なくとも1枚の負レンズを有し、
前記負レンズのアッベ数をVnとしたとき
15.8<Vp<22.9
Vp<Vn
なる条件式を満足することを特徴としている。
Further, for example, when focusing from an object at infinity to a near object, a first focus lens group having a negative refractive power that moves in the optical axis direction; and
A second focus lens group having a positive refractive power that moves during focusing with a movement amount different from the movement amount of the first focus lens group;
The first focus lens group has at least one positive lens;
The Abbe number of the positive lens is Vp,
The second focus lens group includes at least one negative lens;
When the Abbe number of the negative lens is Vn, 15.8 <Vp <22.9
Vp <Vn
It satisfies the following conditional expression.

また、例えば、無限遠物体から近距離物体へのフォーカシングに際して光軸方向を移動する第1のフォーカスレンズ群と、
前記第1のフォーカスレンズ群より像側に配置し光軸に対して垂直方向に移動させて光学系が振動した際の像ブレを補正する像ブレ補正レンズ群と、
前記像ブレ補正レンズ群より像側に前記第1のフォーカスレンズ群の移動量とは異なる移動量でフォーカシングに際して移動する第2のフォーカスレンズ群を有したことを特徴としている。
Also, for example, a first focus lens group that moves in the optical axis direction during focusing from an object at infinity to a near object;
An image blur correction lens group that is disposed closer to the image side than the first focus lens group and moves in a direction perpendicular to the optical axis to correct image blur when the optical system vibrates;
It is characterized in that a second focus lens group that moves during focusing with a movement amount different from the movement amount of the first focus lens group is provided on the image side of the image blur correction lens group.

また、本発明に係る光学装置は、上記の光学系と、前記光学系が形成する光学像を受光する手段を備える。   An optical device according to the present invention includes the above optical system and means for receiving an optical image formed by the optical system.

本発明によれば、無限遠物体から撮影倍率等倍まで高速にフォーカシング可能でかつ良好な光学性能の光学系およびそれを用いた光学装置を提供することができる。   According to the present invention, it is possible to provide an optical system capable of focusing at a high speed from an object at infinity to a photographing magnification of equal magnification and having an excellent optical performance, and an optical apparatus using the optical system.

また、本発明によれば、小型で、光学系が振動した際の像ブレを補正可能で無限遠物体から撮影倍率等倍まで良好な光学性能の光学系およびそれを用いた光学装置を提供することができる。   In addition, according to the present invention, there is provided an optical system that is small in size and capable of correcting image blurring when the optical system vibrates and has good optical performance from an object at infinity to a magnification equal to the photographing magnification, and an optical device using the optical system. be able to.

実施の形態1(実施例1)に係る光学系のレンズ配置図Lens arrangement diagram of optical system according to Embodiment 1 (Example 1) 実施例1に係る光学系の縦収差図Longitudinal aberration diagram of the optical system according to Example 1 実施例1に係る光学系の物体距離無限遠における、像ブレ補正を行っていない基本状態及び像ブレ補正状態での横収差図FIG. 5 is a lateral aberration diagram in a basic state where image blur correction is not performed and in an image blur correction state at an infinite object distance of the optical system according to the first embodiment. 実施の形態2(実施例2)に係る光学系のレンズ配置図Lens arrangement diagram of optical system according to Embodiment 2 (Example 2) 実施例2に係る光学系の縦収差図Longitudinal aberration diagram of the optical system according to Example 2 実施例2に係る光学系の物体距離無限遠における、像ブレ補正を行っていない基本状態及び像ブレ補正状態での横収差図Lateral aberration diagrams in the basic state where image blur correction is not performed and in the image blur correction state when the object distance of the optical system according to Example 2 is infinite 実施の形態3(実施例3)に係る光学系のレンズ配置図Lens arrangement diagram of optical system according to Embodiment 3 (Example 3) 実施例3に係る光学系の縦収差図Longitudinal aberration diagram of the optical system according to Example 3 実施例3に係る光学系の物体距離無限遠における、像ブレ補正を行っていない基本状態及び像ブレ補正状態での横収差図Lateral aberration diagrams in a basic state where image blur correction is not performed and in an image blur correction state at an infinite object distance of the optical system according to the third embodiment 本発明に係る光学装置の概略構成図1 is a schematic configuration diagram of an optical device according to the present invention.

(実施の形態1〜3)
以下に図面を用いて本発明の実施の形態1、2、3について説明する。
(Embodiments 1 to 3)
Embodiments 1, 2, and 3 of the present invention are described below with reference to the drawings.

図1、4、7において、(a)図は物体距離無限遠に合焦状態のレンズ配置図、(b)図は、撮影倍率が0.5倍となる中間距離に合焦状態でのレンズ配置図、(c)図は撮影倍率が等倍となる最短撮影距離に合焦状態でのレンズ配置図をそれぞれ表している。また図1、4、7の各図において、(a)図と(b)図との間に設けられた折れ線の矢印は、各状態におけるレンズ群の位置を結んで得られる直線である。各状態の間は、単純に直線で接続しただけであり、実際の各レンズ群の動きとは異なる。   1, 4, and 7, (a) is a lens arrangement diagram in a focused state at an object distance of infinity, and (b) is a lens in a focused state at an intermediate distance where the photographing magnification is 0.5 times. The layout diagram, (c) shows the lens layout diagram in the focused state at the shortest shooting distance where the shooting magnification is equal. 1, 4, and 7, the broken line arrows provided between FIGS. 1A and 1B are straight lines obtained by connecting the positions of the lens groups in the respective states. Each state is simply connected by a straight line, which is different from the actual movement of each lens group.

図1、4、7において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。また各図において、各レンズ群の符号に付された記号(+)及び記号(−)は、各レンズ群の屈折力の符号に対応する。更に各図において、最も右側に記載された直線は、像面Sの位置を表す。図示していないが、本発明の光学系をデジタルカメラに用いる場合は、最終レンズ群(G6)と像面Sの間には、光学的ローパスフィルタや撮像素子のフェースプレート等が配置される。更に各図において、第3レンズ群G3の像側にはフォーカシング時に変化しない空気間隔を介して絞りAが設けられている。   In FIGS. 1, 4, and 7, an asterisk * attached to a specific surface indicates that the surface is an aspherical surface. In each figure, a symbol (+) and a symbol (−) attached to a symbol of each lens group correspond to a refractive power symbol of each lens group. Furthermore, in each figure, the straight line described on the rightmost side represents the position of the image plane S. Although not shown, when the optical system of the present invention is used in a digital camera, an optical low-pass filter, a face plate of an image sensor, or the like is disposed between the final lens group (G6) and the image plane S. Further, in each drawing, an aperture stop A is provided on the image side of the third lens group G3 through an air interval that does not change during focusing.

図2、5、8は、それぞれ数値実施例1、2、3に係る光学系の縦収差図である。   2, 5, and 8 are longitudinal aberration diagrams of the optical systems according to Numerical Examples 1, 2, and 3, respectively.

各縦収差図において、(a)図は物体距離無限遠に合焦状態、(b)図は撮影倍率が0.5倍となる中間距離に合焦状態、(c)図は撮影倍率が等倍となる最短撮影距離に合焦状態における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d−line)、短破線はF線(F−line)、長破線はC線(C−line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。   In each longitudinal aberration diagram, (a) is in focus at an object distance of infinity, (b) is in focus at an intermediate distance where the shooting magnification is 0.5, and (c) is at shooting magnification, etc. Each aberration in the focused state is represented by the shortest shooting distance that is doubled. Each longitudinal aberration diagram shows spherical aberration (SA (mm)), astigmatism (AST (mm)), and distortion (DIS (%)) in order from the left side. In the spherical aberration diagram, the vertical axis represents the F number (indicated by F in the figure), the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line (C- line). In the astigmatism diagram, the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there. In the distortion diagram, the vertical axis represents the image height (indicated by H in the figure).

各実施例の光学系は、物体側から像側へと順に、正の屈折力の第1レンズ群G1と、負の屈折力の第2レンズ群G2と、正の屈折力の第3レンズ群G3と、正の屈折力の第4レンズ群G4と負の屈折力の第5レンズ群G5と弱い屈折力の第6レンズ群G6を備える。   The optical system of each embodiment includes, in order from the object side to the image side, a first lens group G1 having a positive refractive power, a second lens group G2 having a negative refractive power, and a third lens group having a positive refractive power. G3, a fourth lens group G4 having a positive refractive power, a fifth lens group G5 having a negative refractive power, and a sixth lens group G6 having a weak refractive power.

第1レンズ群G1は最終面が非球面であり、
第2レンズ群G2は1枚の正レンズを有し、
第3レンズ群G3は正レンズ1枚構成であり、
第4レンズ群G4は1枚の負レンズを有し、
第5レンズ群G5は負レンズ1枚構成であり、
第6レンズ群G6は物体側より順に物体側に凹面を向けた負レンズと像側に凸面を向けた正レンズの2枚構成である。
The first lens group G1 has an aspherical final surface,
The second lens group G2 has one positive lens,
The third lens group G3 has a single positive lens configuration,
The fourth lens group G4 has one negative lens,
The fifth lens group G5 has a single negative lens configuration.
The sixth lens group G6 has a two-lens configuration of a negative lens having a concave surface directed toward the object side and a positive lens having a convex surface directed toward the image side in order from the object side.

第6レンズ群G6を上記構成にすることにより、像面湾曲を良好に補正することが可能になっている。また、像側にテレセントリックな光学系にすることが可能になりデジタルカメラに本光学系を用いる場合に好ましい。   By configuring the sixth lens group G6 to have the above configuration, it is possible to favorably correct field curvature. Further, it is possible to make a telecentric optical system on the image side, which is preferable when this optical system is used in a digital camera.

各実施例の光学系では、物体距離無限遠に合焦状態から最短撮影距離に合焦状態へのフォーカシング時に際して、第1レンズ群G1と第3レンズ群G3と第6レンズ群G6は像面に対して光軸方向に固定し、第2レンズ群G2をほぼ単調に像面側に移動させ、第4レンズG4をほぼ単調に物体側に移動させ、第5レンズ群G5を第4レンズ群G4とは異なる移動をさせている。   In the optical system of each embodiment, the first lens group G1, the third lens group G3, and the sixth lens group G6 are in the image plane during focusing from the in-focus state at the infinite object distance to the in-focus state at the shortest shooting distance. The second lens group G2 is moved almost monotonically to the image plane side, the fourth lens G4 is moved almost monotonically to the object side, and the fifth lens group G5 is moved to the fourth lens group. The movement is different from that of G4.

上記の各レンズ群構成とフォーカシング方式によって、無限遠物体から撮影倍率等倍まで良好な光学性能を実現するとともに、フォーカシング時に全長変化のない操作性の良好な光学系およびそれを用いた光学装置が実現できる。   The above lens group configuration and focusing method realize good optical performance from an object at infinity to the same magnification as the photographing magnification, and an optical system with good operability that does not change the overall length during focusing and an optical device using the same. realizable.

また、上記の各実施例の光学系では、第5レンズ群G5を1枚のレンズ素子で構成することによって、フォーカスレンズ群の軽量化及び高速な応答性が実現される。   In the optical systems of the above embodiments, the fifth lens group G5 is composed of a single lens element, whereby the weight of the focus lens group and high-speed response are realized.

また、各実施例の光学系では、光学系が振動した際の像ブレを補正するために第3レンズ群G3を光軸と垂直方向に移動させる。   In the optical system of each embodiment, the third lens group G3 is moved in the direction perpendicular to the optical axis in order to correct image blur when the optical system vibrates.

像ブレ補正レンズ群である第3レンズ群G3の物体側と像側に各々フォーカシング時に移動するレンズ群を配置することにより無限遠物体から撮影倍率等倍まで像ブレ補正時の光学性能を良好にすることができる。   By placing lens groups that move during focusing on the object side and the image side of the third lens group G3, which is an image blur correction lens group, optical performance at the time of image blur correction from an infinite object to the same magnification as the photographing magnification is improved. can do.

また、像ブレ補正レンズ群である第3レンズ群G3に隣接して絞りAを配置することが第3レンズ群G3のレンズ径を小型化するのに好ましい。   In order to reduce the lens diameter of the third lens group G3, it is preferable to dispose the stop A adjacent to the third lens group G3 that is the image blur correction lens group.

図3は、実施例1の光学系において物体距離無限遠に合焦状態での横収差を示しており、像ブレ補正を行っていない基本状態及び像ブレ補正状態での横収差と、光学系全体が0.36°傾いた状態で第3レンズ群G3を光軸と垂直方向に0.50mm移動させて像ブレ補正を行っている状態での横収差を示している。   FIG. 3 shows lateral aberration in the in-focus state at an object distance of infinity in the optical system of the first embodiment. The lateral aberration in the basic state where the image blur correction is not performed and in the image blur correction state, and the optical system. The lateral aberration is shown when image blur correction is performed by moving the third lens group G3 by 0.50 mm in the direction perpendicular to the optical axis with the whole tilted by 0.36 °.

図6、9はそれぞれ実施例2、3の光学系において物体距離無限遠に合焦状態での横収差を示しており、像ブレ補正を行っていない基本状態及び像ブレ補正状態での横収差と、光学系全体が0.30°傾いた状態で第3レンズ群G3を0.50mm移動させて像ブレ補正を行っている状態での横収差を示している。   FIGS. 6 and 9 show lateral aberrations in the in-focus state at an object distance of infinity in the optical systems of Examples 2 and 3, respectively. In the basic state in which image blur correction is not performed, the lateral aberration in the image blur correction state. The lateral aberration is shown in a state where image blur correction is performed by moving the third lens group G3 by 0.50 mm with the entire optical system tilted by 0.30 °.

各横収差図において、上段3つの収差図は、像ぶれ補正を行っていない基本状態、下段3つの収差図は、像ブレ補正状態にそれぞれ対応する。基本状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の−70%の像点における横収差に、それぞれ対応する。像ブレ補正状態の各横収差図のうち、上段は最大像高の70%の像点における横収差、中段は軸上像点における横収差、下段は最大像高の−70%の像点における横収差に、それぞれ対応する。また各横収差図において、横軸は瞳面上での主光線からの距離を表し、実線はd線(d−line)、短破線はF線(F−line)、長破線はC線(C−line)の特性である。   In each lateral aberration diagram, the upper three aberration diagrams correspond to the basic state where image blur correction is not performed, and the lower three aberration diagrams correspond to the image blur correction state. Of the lateral aberration diagrams in the basic state, the upper row shows the lateral aberration at the image point of 70% of the maximum image height, the middle row shows the lateral aberration at the axial image point, and the lower row shows the lateral aberration at the image point of -70% of the maximum image height. Respectively. In each lateral aberration diagram in the image blur correction state, the upper stage is the lateral aberration at the image point of 70% of the maximum image height, the middle stage is the lateral aberration at the axial image point, and the lower stage is at the image point of -70% of the maximum image height. Each corresponds to lateral aberration. In each lateral aberration diagram, the horizontal axis represents the distance from the principal ray on the pupil plane, the solid line is the d line (d-line), the short broken line is the F line (F-line), and the long broken line is the C line ( C-line) characteristics.

以下、各実施の形態に係る光学系が満足すべき条件を説明する。なお、各実施の形態に係る光学系において、複数の満足すべき条件が規定されるが、適合する条件をできるだけ多く満足する光学系の構成が最も望ましい。しかしながら、個別の条件を満足することにより、それぞれ対応する効果を奏する光学系を得ることも可能である。   Hereinafter, conditions that the optical system according to each embodiment should satisfy will be described. In the optical system according to each embodiment, a plurality of conditions to be satisfied are defined, but an optical system configuration that satisfies as many conditions as possible is most desirable. However, by satisfying individual conditions, it is possible to obtain optical systems that exhibit corresponding effects.

各実施の形態に係る光学系は、以下の条件を満足することが望ましい。   It is desirable that the optical system according to each embodiment satisfies the following conditions.

無限遠物体から近距離物体へのフォーカシングに際して、光軸方向を移動する負の屈折力の第1のフォーカスレンズ群と、
前記第1のフォーカスレンズ群の移動量とは異なる移動量でフォーカシングに際して移動する正の屈折力の第2のフォーカスレンズ群を有し、
前記第1のフォーカスレンズ群は少なくとも1枚の正レンズを有し、
前記正レンズのアッベ数をVp、
前記第2のフォーカスレンズ群は少なくとも1枚の負レンズを有し、
前記負レンズのアッベ数をVnとしたとき
15.8<Vp<22.9‥‥(1)
Vp−Vn<0.0 ‥‥(2)
なる条件式を満足することが望ましい。
A first focus lens group having a negative refractive power that moves in the optical axis direction during focusing from an object at infinity to a near object;
A second focus lens group having a positive refractive power that moves during focusing with a movement amount different from the movement amount of the first focus lens group;
The first focus lens group has at least one positive lens;
The Abbe number of the positive lens is Vp,
The second focus lens group includes at least one negative lens;
When the Abbe number of the negative lens is Vn 15.8 <Vp <22.9 (1)
Vp−Vn <0.0 (2)
It is desirable to satisfy the following conditional expression.

条件式(1)の上限を超えて分散が低くなると、第1のフォーカスレンズ群での色収差を補正するのが困難になり、色収差補正のためにレンズ枚数が増大する。さらに望ましくは上限を21.8、さらには20.8にするとよい。一般に高分散の材質は短波長の透過率が極端に低くなり、下限を超えて高分散になるとカラーバランスを良好に保つのが困難になる。さらに望ましくは下限を16.8にするとよい。   If the dispersion exceeds the upper limit of conditional expression (1), it becomes difficult to correct chromatic aberration in the first focus lens group, and the number of lenses increases for correcting chromatic aberration. More desirably, the upper limit is set to 21.8, and further to 20.8. In general, highly dispersive materials have extremely low short-wavelength transmittance, and when the dispersibility exceeds the lower limit, it becomes difficult to maintain good color balance. More preferably, the lower limit is set to 16.8.

条件式(2)は、第1のフォーカスレンズ群の正レンズと第2のフォーカスレンズ群の負レンズのアッベ数に関するもので、色収差補正のためには両方のレンズとも高分散の材質にするのが望ましいのであるが、上限を超えると両方のレンズとも短波長の透過率が極端に低い高分散の材質になってしまいカラーバランスを良好に保つのが困難になる。   Conditional expression (2) relates to the Abbe number of the positive lens of the first focus lens group and the negative lens of the second focus lens group, and in order to correct chromatic aberration, both lenses should be made of a highly dispersed material. However, if the upper limit is exceeded, both lenses become a highly dispersed material with extremely low short wavelength transmittance, making it difficult to maintain good color balance.

像ブレ補正レンズ群は1枚の正レンズで構成し、前記正レンズのアッベ数をVp3としたとき
30.5<Vp3<82.5 ‥‥(3)
なる条件式を満足することが望ましい。
The image blur correction lens group is composed of one positive lens, and when the Abbe number of the positive lens is Vp3, 30.5 <Vp3 <82.5 (3)
It is desirable to satisfy the following conditional expression.

条件式(3)は像ブレ補正レンズ群の正レンズの分散に関するものであるが、像ブレ補正レンズ群を第1のフォーカスレンズ群と第2のフォーカスレンズ群の間に配置する単レンズとした場合、像ブレ補正時の色ズレを少なくするためには高分散の材質とするのは望ましくない。条件式(3)の下限を超えて高分散になると色ズレが大きくなり望ましくない。さらに望ましくは下限を34.3、さらには39.5のようにするとよい。上限を超えると超低分散の材質となり、非常に高価な材質になるので好ましくない。   Conditional expression (3) relates to the dispersion of the positive lens of the image blur correction lens group, and the image blur correction lens group is a single lens arranged between the first focus lens group and the second focus lens group. In this case, it is not desirable to use a highly dispersed material in order to reduce color misalignment during image blur correction. If the dispersion exceeds the lower limit of the conditional expression (3), the color shift becomes large, which is not desirable. More preferably, the lower limit is set to 34.3, and further to 39.5. Exceeding the upper limit is not preferable because it results in an ultra-low dispersion material and a very expensive material.

無限遠物体に合焦状態の前記光学系全系の焦点距離をf、
前記第3レンズ群の焦点距離をf3としたとき
0.8<f3/f<3.2 ‥‥(4)
なる条件式を満足することが望ましい。
The focal length of the entire optical system focused on an object at infinity is f,
When the focal length of the third lens group is f3, 0.8 <f3 / f <3.2 (4)
It is desirable to satisfy the following conditional expression.

条件式(4)は第3レンズ群の焦点距離に関するものであるが、物体側より順に正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正または負の屈折力の第6レンズ群で構成し、無限遠物体から近距離物体へのフォーカシングに際して前記第1レンズ群、第3レンズ群、第6レンズ群は像面に対して光軸方向に固定し、前記第2レンズ群、第4レンズ群、第5レンズ群は移動する構成にした場合は、条件式(4)の下限を超えて第3レンズ群の屈折力が強くなると球面収差の補正のために第3レンズ群を構成するレンズ枚数の増大を招く。望ましくは下限を1.0、さらには1.2のようにするとよい。上限を超えて屈折力が弱くなると、第3レンズ群を像ブレ補正レンズとしたときに、像ブレ補正のための光軸と垂直方向への移動量が増大し、レンズ径が大型化してしまう。望ましくは上限を2.6、さらに望ましくは2.1にするとよい。   Conditional expression (4) relates to the focal length of the third lens group, but in order from the object side is a first lens group having a positive refractive power, a second lens group having a negative refractive power, and a third lens having a positive refractive power. A lens group, a fourth lens group having a positive refractive power, a fifth lens group having a negative refractive power, and a sixth lens group having a positive refractive power or a negative refractive power. When the first lens group, the third lens group, and the sixth lens group are fixed in the optical axis direction with respect to the image plane, and the second lens group, the fourth lens group, and the fifth lens group move. If the refractive power of the third lens unit becomes stronger beyond the lower limit of conditional expression (4), the number of lenses constituting the third lens unit will increase to correct spherical aberration. Desirably, the lower limit is set to 1.0, and further to 1.2. If the refractive power is weakened beyond the upper limit, when the third lens group is an image blur correction lens, the amount of movement in the direction perpendicular to the optical axis for image blur correction increases, and the lens diameter increases. . The upper limit is preferably 2.6, and more preferably 2.1.

(実施の形態4)
図10は、実施の形態1、2、3に係る光学装置の概略構成図である。
(Embodiment 4)
FIG. 10 is a schematic configuration diagram of the optical device according to the first, second, and third embodiments.

本実施の形態に係る光学装置100は、カメラ本体101と、カメラ本体101に着脱自在に接続される交換レンズ装置201とを備える。   The optical device 100 according to the present embodiment includes a camera body 101 and an interchangeable lens device 201 that is detachably connected to the camera body 101.

カメラ本体101は、交換レンズ装置201のレンズ系202によって形成される光学像を受光して、電気的な画像信号に変換する撮像素子102と、撮像素子102によって変換された画像信号を表示する液晶モニター103と、カメラマウント部104とを含む。一方、交換レンズ装置201は、上記の実施の形態1〜3のいずれかに係るレンズ系202と、レンズ系202を保持する鏡筒と、カメラ本体のカメラマウント部104に接続されるレンズマウント部204とを含む。カメラマウント部104及びレンズマウント部204は、物理的な接続のみならず、カメラ本体101内のコントローラ(図示せず)と交換レンズ装置201内のコントローラ(図示せず)とを電気的に接続し、相互の信号のやり取りを可能とするインターフェースとしても機能する。   The camera body 101 receives an optical image formed by the lens system 202 of the interchangeable lens apparatus 201 and converts it into an electrical image signal, and a liquid crystal that displays the image signal converted by the image sensor 102. A monitor 103 and a camera mount unit 104 are included. On the other hand, the interchangeable lens device 201 includes a lens system 202 according to any one of the first to third embodiments, a lens barrel that holds the lens system 202, and a lens mount unit connected to the camera mount unit 104 of the camera body. 204. The camera mount unit 104 and the lens mount unit 204 electrically connect not only a physical connection but also a controller (not shown) in the camera body 101 and a controller (not shown) in the interchangeable lens device 201. It also functions as an interface that enables mutual signal exchange.

以下、実施の形態1〜3に係る光学系を具体的に実施した数値実施例を説明する。後述するように、数値実施例1〜3は、それぞれ実施の形態1〜3に対応する。なお、各数値実施例において、長さの単位はすべて「mm」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数である。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。   Hereinafter, numerical examples in which the optical systems according to Embodiments 1 to 3 are specifically implemented will be described. As will be described later, Numerical Examples 1 to 3 correspond to Embodiments 1 to 3, respectively. In each numerical example, the units of length are all “mm”. In each numerical example, r is a radius of curvature, d is a surface interval, nd is a refractive index with respect to the d line, and vd is an Abbe number with respect to the d line. In each numerical example, the surface marked with * is an aspherical surface, and the aspherical shape is defined by the following equation.

Figure 2011048232
Figure 2011048232

ただし、数式中の各項によって表される事項は以下の通りである。   However, the items represented by the terms in the formula are as follows.

Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離
h:光軸からの高さ
r:頂点曲率半径
κ:円錐定数
An:n次の非球面係数
(数値実施例1)
数値実施例1の光学系は、図1に示した実施の形態1に対応する。
焦点距離=45.90 2ω=26.3°
面データ
面番号 r d nd vd
1 -638.97800 1.54400 1.77250 49.6
2 -63.91990 0.20000
3 22.70370 0.80000 1.92286 20.9
4 14.59950 3.78380 1.74330 49.3
5* 254.94710 可変
6 -114.65930 0.80000 1.91082 35.2
7 19.26630 1.29610
8 171.12040 0.80000 1.56883 56.0
9 15.79480 2.47420 1.94595 18.0
10 33.83050 可変
11 101.31670 1.88250 1.67790 55.5
12 -92.86470 0.50000
13 ∞ 1.29820
14(絞り) ∞ 1.30180
15 ∞ 可変
16* 24.52360 3.53680 1.74330 49.3
17* -126.58720 0.20000
18 73.43350 1.21640 1.80518 25.5
19 13.35190 4.40870 1.69680 55.5
20 -137.43960 可変
21 37.23370 0.80000 1.49700 81.6
22 11.76600 可変
23 -14.97250 0.80000 1.61800 63.4
24 304.88010 0.15070
25 57.68760 3.99790 1.80610 40.7
26 -27.68910 BF
非球面データ
第5面
K= 0.00000E+00, A4= 2.58659E-06, A6=-2.48230E-09, A8=-1.32418E-11
A10= 1.78428E-14
第16面
K= 0.00000E+00, A4=-4.59714E-06, A6=-1.21672E-08, A8= 8.36980E-12
A10=-2.50770E-13
第17面
K= 0.00000E+00, A4= 8.51325E-07, A6= 8.94394E-09, A8=-7.13504E-11
A10= 2.51833E-14
フォーカス状態による可変間隔とFナンバー
無限 ×0.50 ×1.03
Fナンバー 2.92 4.37 5.82
d5 1.3344 5.8240 8.2070
d10 8.4016 3.8960 1.5263
d15 12.4314 6.9108 0.5000
d20 0.9527 3.5058 8.9085
d22 10.5314 13.5084 14.5174
BF 15.04245 15.04322 15.04462
(数値実施例2)
数値実施例2の光学系は、図4に示した実施の形態2に対応する。
焦点距離=45.90 2ω=26.4°
面データ
面番号 r d nd vd
1 642.26970 1.43740 1.77250 49.6
2 -89.72320 0.20000
3 21.08090 0.80000 1.92286 20.9
4 13.88670 3.68240 1.74330 49.3
5* 107.23500 可変
6 -1629.50830 0.80000 1.88300 40.8
7 19.62440 1.37790
8 -3299.49490 0.80000 1.58144 40.9
9 15.79410 1.71010 1.94595 18.0
10 32.81280 可変
11 94.65010 1.75090 1.61800 63.4
12 -111.56000 0.50000
13 ∞ 1.29610
14(絞り) ∞ 1.30390
15 ∞ 可変
16* 25.71270 3.27890 1.74330 49.3
17* -64.58190 0.20000
18 38.03620 0.81680 1.80518 25.5
19 12.05380 4.10290 1.69680 55.5
20 55.14270 可変
21 29.24020 0.80000 1.48749 70.4
22 12.15830 可変
23 -21.59800 0.80000 1.78590 43.9
24 34.94590 0.00750
25 30.94440 5.56390 1.80610 33.3
26 -29.61420 BF
非球面データ
第5面
K= 0.00000E+00, A4= 4.06894E-06, A6= 4.33467E-09, A8=-7.29301E-11
A10= 4.60085E-14
第16面
K= 0.00000E+00, A4=-1.70560E-06, A6=-6.41196E-08, A8= 3.35239E-10
A10= 1.15316E-14
第17面
K= 0.00000E+00, A4= 9.33419E-06, A6=-5.80439E-08, A8= 3.09084E-10
A10= 2.15739E-13
フォーカス状態による可変間隔とFナンバー
無限 ×0.5 ×1.00
Fナンバー 2.92 4.37 5.82
d5 1.8334 5.9903 9.5384
d10 9.2728 5.1212 1.5798
d15 12.8901 6.1207 0.5000
d20 1.5061 4.5876 8.9686
d22 6.3225 10.0033 11.2451
BF 15.07015 15.07040 15.07111
(数値実施例3)
数値実施例3の光学系は、図7に示した実施の形態3に対応する。
焦点距離=45.90 2ω=26.5°
面データ
面番号 r d nd vd
1 85.59320 1.55800 1.51680 64.2
2 -271.12050 0.15000
3 23.58360 0.80000 1.92286 20.9
4 14.77410 4.40840 1.76930 49.3
5* -243.93860 可変
6 ∞ 0.80000 1.91082 35.2
7 20.96750 1.48410
8 -104.14150 0.80000 1.91082 35.2
9 14.79660 2.35470 1.94595 18.0
10 88.13310 可変
11 100.00000 1.80840 1.72916 54.7
12 -100.00000 0.50000
13 ∞ 1.30000
14(絞り) ∞ 1.30000
15 ∞ 可変
16 48.42080 3.29920 1.77250 49.6
17 -96.22290 0.15000
18 65.97500 0.80000 1.84666 23.8
19 16.71380 4.20100 1.72916 54.7
20 -160.77180 0.15000
21 49.84430 2.88490 1.49700 81.6
22 -113.82110 可変
23 -75.77480 0.80000 1.48749 70.4
24 16.07660 可変
25 -17.34990 0.75000 1.48749 70.4
26 34.99840 3.62640 1.83481 42.7
27 -40.55440 BF
非球面データ
第5面
K= 0.00000E+00, A4= 9.64948E-06, A6=-3.28988E-08, A8= 3.85170E-10
A10=-2.58623E-12
フォーカス状態による可変間隔とFナンバー
無限 ×0.50 ×1.00
Fナンバー 2.89 4.32 5.75
d5 1.7316 5.4823 9.2513
d10 9.0043 5.2277 1.4853
d15 10.5737 4.9689 1.0908
d22 2.0973 4.7756 8.3665
d24 7.0600 10.0034 10.2794
BF 15.01368 15.04600 15.00427
以下の表1に、各数値実施例に係る光学系における各条件式の対応値を示す。
Z: distance from a point on the aspherical surface whose height from the optical axis is h to the tangent plane of the aspherical vertex h: height from the optical axis r: vertex radius of curvature κ: conic constant An: n-th non-dimensional Spherical coefficient (Numerical example 1)
The optical system of Numerical Example 1 corresponds to Embodiment 1 shown in FIG.
Focal length = 45.90 2ω = 26.3 °
Surface data Surface number rd nd vd
1 -638.97800 1.54400 1.77250 49.6
2 -63.91990 0.20000
3 22.70370 0.80000 1.92286 20.9
4 14.59950 3.78380 1.74330 49.3
5 * 254.94710 Variable
6 -114.65930 0.80000 1.91082 35.2
7 19.26630 1.29610
8 171.12040 0.80000 1.56883 56.0
9 15.79480 2.47420 1.94595 18.0
10 33.83050 Variable
11 101.31670 1.88250 1.67790 55.5
12 -92.86470 0.50000
13 ∞ 1.29820
14 (Aperture) ∞ 1.30180
15 ∞ Variable
16 * 24.52360 3.53680 1.74330 49.3
17 * -126.58720 0.20000
18 73.43350 1.21640 1.80518 25.5
19 13.35190 4.40870 1.69680 55.5
20 -137.43960 Variable
21 37.23370 0.80000 1.49700 81.6
22 11.76600 Variable
23 -14.97250 0.80000 1.61800 63.4
24 304.88010 0.15070
25 57.68760 3.99790 1.80610 40.7
26 -27.68910 BF
Aspheric data 5th surface
K = 0.00000E + 00, A4 = 2.58659E-06, A6 = -2.48230E-09, A8 = -1.32418E-11
A10 = 1.78428E-14
16th page
K = 0.00000E + 00, A4 = -4.59714E-06, A6 = -1.21672E-08, A8 = 8.36980E-12
A10 = -2.50770E-13
17th page
K = 0.00000E + 00, A4 = 8.51325E-07, A6 = 8.94394E-09, A8 = -7.13504E-11
A10 = 2.51833E-14
Variable interval and F number according to focus state
Infinite × 0.50 × 1.03
F number 2.92 4.37 5.82
d5 1.3344 5.8240 8.2070
d10 8.4016 3.8960 1.5263
d15 12.4314 6.9108 0.5000
d20 0.9527 3.5058 8.9085
d22 10.5314 13.5084 14.5174
BF 15.04245 15.04322 15.04462
(Numerical example 2)
The optical system of Numerical Example 2 corresponds to Embodiment 2 shown in FIG.
Focal length = 45.90 2ω = 26.4 °
Surface data Surface number rd nd vd
1 642.26970 1.43740 1.77250 49.6
2 -89.72320 0.20000
3 21.08090 0.80000 1.92286 20.9
4 13.88670 3.68240 1.74330 49.3
5 * 107.23500 variable
6 -1629.50830 0.80000 1.88300 40.8
7 19.62440 1.37790
8 -3299.49490 0.80000 1.58144 40.9
9 15.79410 1.71010 1.94595 18.0
10 32.81280 Variable
11 94.65010 1.75090 1.61800 63.4
12 -111.56000 0.50000
13 ∞ 1.29610
14 (Aperture) ∞ 1.30390
15 ∞ Variable
16 * 25.71270 3.27890 1.74330 49.3
17 * -64.58190 0.20000
18 38.03620 0.81680 1.80518 25.5
19 12.05380 4.10290 1.69680 55.5
20 55.14270 Variable
21 29.24020 0.80000 1.48749 70.4
22 12.15830 Variable
23 -21.59800 0.80000 1.78590 43.9
24 34.94590 0.00750
25 30.94440 5.56390 1.80610 33.3
26 -29.61420 BF
Aspheric data 5th surface
K = 0.00000E + 00, A4 = 4.06894E-06, A6 = 4.33467E-09, A8 = -7.29301E-11
A10 = 4.60085E-14
16th page
K = 0.00000E + 00, A4 = -1.70560E-06, A6 = -6.41196E-08, A8 = 3.35239E-10
A10 = 1.15316E-14
17th page
K = 0.00000E + 00, A4 = 9.33419E-06, A6 = -5.80439E-08, A8 = 3.09084E-10
A10 = 2.15739E-13
Variable interval and F number according to focus state
Infinite × 0.5 × 1.00
F number 2.92 4.37 5.82
d5 1.8334 5.9903 9.5384
d10 9.2728 5.1212 1.5798
d15 12.8901 6.1207 0.5000
d20 1.5061 4.5876 8.9686
d22 6.3225 10.0033 11.2451
BF 15.07015 15.07040 15.07111
(Numerical Example 3)
The optical system of Numerical Example 3 corresponds to Embodiment 3 shown in FIG.
Focal length = 45.90 2ω = 26.5 °
Surface data Surface number rd nd vd
1 85.59320 1.55800 1.51680 64.2
2 -271.12050 0.15000
3 23.58360 0.80000 1.92286 20.9
4 14.77410 4.40840 1.76930 49.3
5 * -243.93860 Variable
6 ∞ 0.80000 1.91082 35.2
7 20.96750 1.48410
8 -104.14150 0.80000 1.91082 35.2
9 14.79660 2.35470 1.94595 18.0
10 88.13310 Variable
11 100.00000 1.80840 1.72916 54.7
12 -100.00000 0.50000
13 ∞ 1.30000
14 (Aperture) ∞ 1.30000
15 ∞ Variable
16 48.42080 3.29920 1.77250 49.6
17 -96.22290 0.15000
18 65.97500 0.80000 1.84666 23.8
19 16.71380 4.20100 1.72916 54.7
20 -160.77180 0.15000
21 49.84430 2.88490 1.49700 81.6
22 -113.82110 Variable
23 -75.77480 0.80000 1.48749 70.4
24 16.07660 Variable
25 -17.34990 0.75000 1.48749 70.4
26 34.99840 3.62640 1.83481 42.7
27 -40.55440 BF
Aspheric data 5th surface
K = 0.00000E + 00, A4 = 9.64948E-06, A6 = -3.28988E-08, A8 = 3.85170E-10
A10 = -2.58623E-12
Variable interval and F number according to focus state
Infinite × 0.50 × 1.00
F number 2.89 4.32 5.75
d5 1.7316 5.4823 9.2513
d10 9.0043 5.2277 1.4853
d15 10.5737 4.9689 1.0908
d22 2.0973 4.7756 8.3665
d24 7.0600 10.0034 10.2794
BF 15.01368 15.04600 15.00427
Table 1 below shows corresponding values of the conditional expressions in the optical system according to each numerical example.

Figure 2011048232
Figure 2011048232

本発明は、無限遠物体から撮影倍率等倍までの近距離撮影が可能な、いわゆるマクロレンズに関し、特にスチルカメラ、ビデオカメラ、デジタルカメラなどの光学装置に好適なものである。   The present invention relates to a so-called macro lens that can perform close-up shooting from an object at infinity to a shooting magnification of the same magnification, and is particularly suitable for an optical apparatus such as a still camera, a video camera, and a digital camera.

G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
G5 第5レンズ群
G6 第6レンズ群
L1 第1レンズ素子
L2 第2レンズ素子
L3 第3レンズ素子
L4 第4レンズ素子
L5 第5レンズ素子
L6 第6レンズ素子
L7 第7レンズ素子
L8 第8レンズ素子
L9 第9レンズ素子
L10 第10レンズ素子
L11 第11レンズ素子
L12 第12レンズ素子
L13 第13レンズ素子
L14 第14レンズ素子
A 開口絞り
S 像面
100 光学装置
101 カメラ本体
102 撮像素子
103 液晶モニター
104 カメラマウント部
201 交換レンズ装置
202 レンズ系
204 レンズマウント部
G1 1st lens group G2 2nd lens group G3 3rd lens group G4 4th lens group G5 5th lens group G6 6th lens group L1 1st lens element L2 2nd lens element L3 3rd lens element L4 4th lens element L5 5th lens element L6 6th lens element L7 7th lens element L8 8th lens element L9 9th lens element L10 10th lens element L11 11th lens element L12 12th lens element L13 13th lens element L14 14th lens element A Aperture stop S Image surface 100 Optical device 101 Camera body 102 Image sensor 103 Liquid crystal monitor 104 Camera mount unit 201 Interchangeable lens device 202 Lens system 204 Lens mount unit

Claims (11)

無限遠物体から近距離物体へのフォーカシングに際して、光軸方向を移動する第1のフォーカスレンズ群と、
前記第1のフォーカスレンズ群の移動量とは異なる移動量でフォーカシングに際して移動する第2のフォーカスレンズ群と、
前記第1のフォーカスレンズ群および前記第2フォーカスレンズ群のいずれの移動量とも異なる移動量でフォーカシングに際して移動する第3のフォーカスレンズ群を有し、
前記フォーカスレンズ群のうち少なくとも一つのフォーカスレンズ群は単玉構成としたことを特徴とする近距離撮影可能な光学系。
A first focus lens group that moves in the optical axis direction during focusing from an object at infinity to a near object;
A second focus lens group that moves during focusing with a movement amount different from the movement amount of the first focus lens group;
A third focus lens group that moves during focusing with a movement amount different from any of the movement amounts of the first focus lens group and the second focus lens group;
An optical system capable of close-up photography, wherein at least one of the focus lens groups has a single lens configuration.
無限遠物体から近距離物体へのフォーカシングに際して、光軸方向を移動する負の屈折力の第1のフォーカスレンズ群と、
前記第1のフォーカスレンズ群の移動量とは異なる移動量でフォーカシングに際して移動する正の屈折力の第2のフォーカスレンズ群を有し、
前記第1のフォーカスレンズ群は少なくとも1枚の正レンズを有し、
前記正レンズのアッベ数をVp、
前記第2のフォーカスレンズ群は少なくとも1枚の負レンズを有し、
前記負レンズのアッベ数をVnとしたとき
15.8<Vp<22.9
Vp−Vn<0.0
なる条件式を満足することを特徴とする近距離撮影可能な光学系。
A first focus lens group having a negative refractive power that moves in the optical axis direction during focusing from an object at infinity to a near object;
A second focus lens group having a positive refractive power that moves during focusing with a movement amount different from the movement amount of the first focus lens group;
The first focus lens group has at least one positive lens;
The Abbe number of the positive lens is Vp,
The second focus lens group includes at least one negative lens;
When the Abbe number of the negative lens is Vn, 15.8 <Vp <22.9
Vp−Vn <0.0
An optical system capable of photographing at close range, which satisfies the following conditional expression:
無限遠物体から近距離物体へのフォーカシングに際して光軸方向を移動する第1のフォーカスレンズ群と、
前記第1のフォーカスレンズ群より像側に配置し光軸に対して垂直方向に移動させて光学系が振動した際の像ブレを補正する像ブレ補正レンズ群と、
前記像ブレ補正レンズ群より像側に前記第1のフォーカスレンズ群の移動量とは異なる移動量でフォーカシングに際して移動する第2のフォーカスレンズ群を有したことを特徴とする近距離撮影可能な光学系。
A first focus lens group that moves in the optical axis direction during focusing from an infinitely distant object to a close object;
An image blur correction lens group that is disposed closer to the image side than the first focus lens group and moves in a direction perpendicular to the optical axis to correct image blur when the optical system vibrates;
An optical system capable of photographing at close range, comprising a second focus lens group that moves at the time of focusing with a movement amount different from the movement amount of the first focus lens group on the image side of the image blur correction lens group. system.
物体側より順に正の屈折力の第1レンズ群、負の屈折力の第2レンズ群、正の屈折力の第3レンズ群、正の屈折力の第4レンズ群、負の屈折力の第5レンズ群、正または負の屈折力の第6レンズ群で構成し、
無限遠物体から近距離物体へのフォーカシングに際して前記第1レンズ群、第3レンズ群、第6レンズ群は像面に対して光軸方向に固定し、
前記第2レンズ群、第4レンズ群、第5レンズ群は移動することを特徴とする請求項1から3のいずれか1項の光学系。
A first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, a fourth lens group having a positive refractive power, and a first lens group having a negative refractive power in order from the object side. It is composed of 5 lens groups and a 6th lens group with positive or negative refractive power,
The first lens group, the third lens group, and the sixth lens group are fixed in the optical axis direction with respect to the image plane during focusing from an object at infinity to an object at a short distance,
The optical system according to any one of claims 1 to 3, wherein the second lens group, the fourth lens group, and the fifth lens group move.
前記像ブレ補正レンズ群は1枚の正レンズで構成され、
前記正レンズのアッベ数をVp3としたとき
30.5<Vp3<82.5
なる条件式を満足することを特徴とする請求項1から3のいずれか1項の光学系。
The image blur correction lens group is composed of one positive lens,
When the Abbe number of the positive lens is Vp3, 30.5 <Vp3 <82.5
The optical system according to claim 1, wherein the following conditional expression is satisfied.
前記像ブレ補正レンズ群に隣接して絞りを配置したことを特徴とする請求項5の光学系。   6. The optical system according to claim 5, wherein a stop is disposed adjacent to the image blur correcting lens group. 前記第6レンズ群は最も物体側の面が物体側に凹面を向け最も像側の面が像側に凸面を向けた構成、もしくは物体側より順に負レンズと正レンズの2枚で構成されることを特徴とする請求項4の光学系。   The sixth lens group has a configuration in which the most object-side surface is concave on the object side and the most image-side surface is convex on the image side, or two negative lenses and a positive lens in order from the object side. The optical system according to claim 4. 無限遠物体に合焦状態の前記光学系全系の焦点距離をf、
前記第3レンズ群の焦点距離をf3としたとき
1.5<f3/f<3.5
なる条件式を満足することを特徴とする請求項4の光学系。
The focal length of the entire optical system focused on an object at infinity is f,
When the focal length of the third lens group is f3, 1.5 <f3 / f <3.5
The optical system according to claim 4, wherein the following conditional expression is satisfied.
無限遠物体から近距離物体へのフォーカシングに際して、光軸方向を移動する第1のフォーカスレンズ群と、
前記第1のフォーカスレンズ群の移動量とは異なる移動量でフォーカシングに際して移動する第2のフォーカスレンズ群と、
前記第1のフォーカスレンズ群および前記第2フォーカスレンズ群のいずれの移動量とも異なる移動量でフォーカシングに際して移動する第3のフォーカスレンズ群を有し、
前記フォーカスレンズ群のうち少なくとも一つのフォーカスレンズ群は単玉構成とする近距離撮影可能な光学系を用いた光学装置。
A first focus lens group that moves in the optical axis direction during focusing from an object at infinity to a near object;
A second focus lens group that moves during focusing with a movement amount different from the movement amount of the first focus lens group;
A third focus lens group that moves during focusing with a movement amount different from any of the movement amounts of the first focus lens group and the second focus lens group;
An optical apparatus using an optical system capable of close-up photography, wherein at least one of the focus lens groups has a single lens configuration.
無限遠物体から近距離物体へのフォーカシングに際して、光軸方向を移動する負の屈折力の第1のフォーカスレンズ群と、
前記第1のフォーカスレンズ群の移動量とは異なる移動量でフォーカシングに際して移動する正の屈折力の第2のフォーカスレンズ群を有し、
前記第1のフォーカスレンズ群は少なくとも1枚の正レンズを有し、
前記正レンズのアッベ数をVp、
前記第2のフォーカスレンズ群は少なくとも1枚の負レンズを有し、
前記負レンズのアッベ数をVnとしたとき
15.8<Vp<22.9
Vp−Vn<0.0
なる条件式を満足する近距離撮影可能な光学系を用いた光学装置。
A first focus lens group having a negative refractive power that moves in the optical axis direction during focusing from an object at infinity to a near object;
A second focus lens group having a positive refractive power that moves during focusing with a movement amount different from the movement amount of the first focus lens group;
The first focus lens group has at least one positive lens;
The Abbe number of the positive lens is Vp,
The second focus lens group includes at least one negative lens;
When the Abbe number of the negative lens is Vn, 15.8 <Vp <22.9
Vp−Vn <0.0
An optical device using an optical system capable of photographing at close range that satisfies the following conditional expression.
無限遠物体から近距離物体へのフォーカシングに際して光軸方向を移動する第1のフォーカスレンズ群と、
前記第1のフォーカスレンズ群より像側に配置し光軸に対して垂直方向に移動させて光学系が振動した際の像ブレを補正する像ブレ補正レンズ群と、
前記像ブレ補正レンズ群より像側に前記第1のフォーカスレンズ群の移動量とは異なる移動量でフォーカシングに際して移動する第2のフォーカスレンズ群を有する近距離撮影可能な光学系を用いた光学装置。
A first focus lens group that moves in the optical axis direction during focusing from an infinitely distant object to a close object;
An image blur correction lens group that is disposed closer to the image side than the first focus lens group and moves in a direction perpendicular to the optical axis to correct image blur when the optical system vibrates;
An optical apparatus using a short-distance photographing optical system having a second focus lens group that moves during focusing with a movement amount different from the movement amount of the first focus lens group closer to the image side than the image blur correction lens group .
JP2009197850A 2009-08-28 2009-08-28 Optical system enabling short-distance photography and optical device using the same Pending JP2011048232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197850A JP2011048232A (en) 2009-08-28 2009-08-28 Optical system enabling short-distance photography and optical device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197850A JP2011048232A (en) 2009-08-28 2009-08-28 Optical system enabling short-distance photography and optical device using the same

Publications (1)

Publication Number Publication Date
JP2011048232A true JP2011048232A (en) 2011-03-10

Family

ID=43834600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197850A Pending JP2011048232A (en) 2009-08-28 2009-08-28 Optical system enabling short-distance photography and optical device using the same

Country Status (1)

Country Link
JP (1) JP2011048232A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027363A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Zoom-lens system, interchangeable lens device, and camera system
US8797659B2 (en) 2012-04-12 2014-08-05 Konica Minolta Optics, Inc. Macro lens and imaging apparatus
JP2014142601A (en) * 2012-12-27 2014-08-07 Panasonic Corp Inner focus lens system, interchangeable lens unit and camera system
JP2014167526A (en) * 2013-02-28 2014-09-11 Nikon Corp Interchangeable lens and camera system
JP2014197130A (en) * 2013-03-29 2014-10-16 キヤノン株式会社 Image capturing device
US9063253B2 (en) 2011-12-12 2015-06-23 Tamron Co., Ltd. Imaging lens
DE102015102698A1 (en) 2014-02-27 2015-08-27 Carl Zeiss Ag Macro lens system and imaging device
CN104880813A (en) * 2014-02-28 2015-09-02 富士胶片株式会社 Macro Lens System And Imaging Apparatus
EP2942655A1 (en) 2014-05-08 2015-11-11 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same
EP3015897A1 (en) 2014-10-31 2016-05-04 Konica Minolta, Inc. Macro lens system, imaging optical device, and digital appliance
US9939609B2 (en) 2016-02-03 2018-04-10 Panasonic Intellectual Property Management Co., Ltd. Lens system, interchangeable lens device, and camera system
WO2018050176A3 (en) * 2016-09-18 2018-05-11 Leica Camera Ag Lens having a fixed focal length and constant overall length for auto focus applications
US10079964B2 (en) 2014-12-22 2018-09-18 Panasonic Intellectual Property Management Co., Ltd. Lens system, interchangeable lens apparatus, and camera system
WO2018216789A1 (en) * 2017-05-26 2018-11-29 株式会社nittoh Optical system for image pickup, and image pickup device
US10215999B2 (en) 2013-05-09 2019-02-26 Sony Corporation Macro lens and imaging unit
US10914963B2 (en) 2019-01-28 2021-02-09 Olympus Corporation Macro lens and image pickup apparatus using the same

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027363A1 (en) * 2011-08-25 2013-02-28 パナソニック株式会社 Zoom-lens system, interchangeable lens device, and camera system
US9063253B2 (en) 2011-12-12 2015-06-23 Tamron Co., Ltd. Imaging lens
US8797659B2 (en) 2012-04-12 2014-08-05 Konica Minolta Optics, Inc. Macro lens and imaging apparatus
JP2014142601A (en) * 2012-12-27 2014-08-07 Panasonic Corp Inner focus lens system, interchangeable lens unit and camera system
JP2014167526A (en) * 2013-02-28 2014-09-11 Nikon Corp Interchangeable lens and camera system
JP2014197130A (en) * 2013-03-29 2014-10-16 キヤノン株式会社 Image capturing device
US10215999B2 (en) 2013-05-09 2019-02-26 Sony Corporation Macro lens and imaging unit
DE102015102698A1 (en) 2014-02-27 2015-08-27 Carl Zeiss Ag Macro lens system and imaging device
JP2015161792A (en) * 2014-02-27 2015-09-07 富士フイルム株式会社 Macro-lens and image capturing device
US9632289B2 (en) 2014-02-27 2017-04-25 Fujifilm Corporation Macro lens system and imaging apparatus
JP2015161880A (en) * 2014-02-28 2015-09-07 富士フイルム株式会社 Macro-lens and image capturing device
CN104880813A (en) * 2014-02-28 2015-09-02 富士胶片株式会社 Macro Lens System And Imaging Apparatus
US9618728B2 (en) 2014-02-28 2017-04-11 Fujifilm Corporation Macro lens system and imaging apparatus
US9829681B2 (en) 2014-05-08 2017-11-28 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same
EP2942655A1 (en) 2014-05-08 2015-11-11 Canon Kabushiki Kaisha Optical system and image pickup apparatus including the same
EP3015897A1 (en) 2014-10-31 2016-05-04 Konica Minolta, Inc. Macro lens system, imaging optical device, and digital appliance
US10079964B2 (en) 2014-12-22 2018-09-18 Panasonic Intellectual Property Management Co., Ltd. Lens system, interchangeable lens apparatus, and camera system
US9939609B2 (en) 2016-02-03 2018-04-10 Panasonic Intellectual Property Management Co., Ltd. Lens system, interchangeable lens device, and camera system
CN109716200B (en) * 2016-09-18 2021-11-16 莱卡照相机股份公司 Fixed focal length and constant structural length lens for autofocus applications
CN109716200A (en) * 2016-09-18 2019-05-03 莱卡照相机股份公司 For auto-focusing application, focal length is fixed and structure length is constant camera lens
EP3598198A1 (en) 2016-09-18 2020-01-22 Leica Camera AG Lens with solid focal length and constant length for autofocus applications
EP3598199A1 (en) 2016-09-18 2020-01-22 Leica Camera AG Lens having a fixed focal length and constant overall length for auto focus applications
WO2018050176A3 (en) * 2016-09-18 2018-05-11 Leica Camera Ag Lens having a fixed focal length and constant overall length for auto focus applications
US11194122B2 (en) 2016-09-18 2021-12-07 Leica Camera Ag Lens with a fixed focal length and a constant structural length for autofocus applications
US11199683B2 (en) 2016-09-18 2021-12-14 Leica Camera Ag Lens with a fixed focal length and a constant structural length for autofocus applications
US11209621B2 (en) 2016-09-18 2021-12-28 Leica Camera Ag Lens having a fixed focal length and constant overall length for auto focus applications
WO2018216789A1 (en) * 2017-05-26 2018-11-29 株式会社nittoh Optical system for image pickup, and image pickup device
CN110709747A (en) * 2017-05-26 2020-01-17 株式会社日东 Optical system for image pickup and image pickup apparatus
CN110709747B (en) * 2017-05-26 2021-09-14 株式会社日东 Optical system for image pickup and image pickup apparatus
US11314042B2 (en) 2017-05-26 2022-04-26 Nittoh Inc. Optical system for image pickup, and image pickup device
US10914963B2 (en) 2019-01-28 2021-02-09 Olympus Corporation Macro lens and image pickup apparatus using the same

Similar Documents

Publication Publication Date Title
JP2011048232A (en) Optical system enabling short-distance photography and optical device using the same
JP5658811B2 (en) Zoom lens system, interchangeable lens device and camera system
JP6253012B2 (en) Inner focus lens system, interchangeable lens device and camera system
JP5942194B2 (en) Lens system, interchangeable lens device, and camera system
JP5942193B2 (en) Lens system, interchangeable lens device, and camera system
JP5816845B2 (en) Zoom lens system, interchangeable lens device and camera system
JP5577309B2 (en) Zoom lens system, lens barrel, interchangeable lens device, and camera system
JP5891448B2 (en) Zoom lens system, interchangeable lens device and camera system
WO2015146067A1 (en) Zoom-lens system, interchangeable-lens device, and camera system
JP5891447B2 (en) Zoom lens system, interchangeable lens device and camera system
WO2012026088A1 (en) Zoom lens system, interchangeable lens device, and camera system
JP6706737B2 (en) Zoom lens system, imaging device, camera
JP6206740B2 (en) Zoom lens system, imaging device and camera
JP2014142601A (en) Inner focus lens system, interchangeable lens unit and camera system
JP2011197472A (en) Zoom lens system, interchangeable lens device, and camera system
JP2012133230A (en) Zoom lens system, interchangeable lens device and camera system
JP5919519B2 (en) Zoom lens system, imaging device and camera
JP2011197469A (en) Zoom lens system, interchangeable lens device, and camera system
JP2012047813A (en) Zoom lens system, interchangeable lens device and camera system
JP5891452B2 (en) Zoom lens system, interchangeable lens device and camera system
JP2011197471A (en) Zoom lens system, interchangeable lens device, and camera system
WO2014006653A1 (en) Zoom lens system, image capturing device and camera
WO2012086154A1 (en) Zoom lens system, interchangeable lens device, and camera system
JP2013218298A (en) Zoom lens system, imaging device, and camera
JP2020118738A (en) Zoom lens system, image capturing device having the same, and camera system