JP2011047844A - Stress evaluation method and stress evaluation apparatus for piping structure - Google Patents

Stress evaluation method and stress evaluation apparatus for piping structure Download PDF

Info

Publication number
JP2011047844A
JP2011047844A JP2009197658A JP2009197658A JP2011047844A JP 2011047844 A JP2011047844 A JP 2011047844A JP 2009197658 A JP2009197658 A JP 2009197658A JP 2009197658 A JP2009197658 A JP 2009197658A JP 2011047844 A JP2011047844 A JP 2011047844A
Authority
JP
Japan
Prior art keywords
branch pipe
pipe
stress
displacement
piping structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009197658A
Other languages
Japanese (ja)
Other versions
JP5378113B2 (en
Inventor
Shoichi Iimura
正一 飯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Capty Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Capty Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Capty Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP2009197658A priority Critical patent/JP5378113B2/en
Publication of JP2011047844A publication Critical patent/JP2011047844A/en
Application granted granted Critical
Publication of JP5378113B2 publication Critical patent/JP5378113B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple and accurate stress evaluation method of a piping structure for a so-called station piping which branches from a main pipe laid underground and has a plurality of inflection points on the ground. <P>SOLUTION: Assuming that a vertical directional displacement δ at an end of a branch pipe 9c is sum of a displacement δ1 caused by in-vertical-plane moment acting on the branch pipe 9c, a displacement δ2 caused by torsional deformation of a branch pipe 9b, and a displacement δ3 caused by bending moment of a branch pipe 9a toward the branch pipe 9b, a stress evaluation method of a piping structure evaluates a maximum stress σ arising in a piping structure using a following expression (10): the expression (10) is as follows: σ=ä3EGd<SB>o</SB>(2a+2b+c)δ}/äcG(12a<SP>2</SP>+12ab+4bc+10ca+c<SP>2</SP>)+3bc<SP>2</SP>E}, where a, b, c are length of the branch pipes 9a, 9b, 9c respectively, E is a vertical elastic coefficient, G is a horizontal elastic coefficient, d<SB>o</SB>is an outer diameter of the branch pipe, δ is a vertical directional displacement relative to the main pipe at a support part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地中に埋設された主配管から分岐し、地上において屈曲する半埋設立体配管である配管構造の沈下応力の評価方法および応力評価装置に関するものである。   The present invention relates to an evaluation method and a stress evaluation apparatus for subsidence stress of a pipe structure which is a semi-buried establishment pipe branched from a main pipe buried in the ground and bent on the ground.

従来、沈下に伴う埋設管路に生じる応力を求めるためには、適切な間隔で埋設管の沈下量を測定し、この測定した沈下量をもとに、地盤をばねに置き換えた弾性床上の梁理論に基づく有限要素法を用いることで応力分布が求められる。なお、埋設管の沈下量を測定するためには、埋設管に沈下棒と呼ばれる沈下量測定冶具を取り付けておき、沈下量を測定する。   Conventionally, in order to determine the stress generated in the buried pipe due to subsidence, the amount of subsidence of the buried pipe is measured at appropriate intervals, and the ground is replaced with a spring on the elastic floor where the ground is replaced with a spring. The stress distribution can be obtained by using a finite element method based on theory. In order to measure the subsidence amount of the buried pipe, a subsidence amount measuring jig called a subsidence rod is attached to the buried pipe, and the subsidence amount is measured.

このような応力解析方法として、埋設管をシェルで構成される円筒でモデル化し、有限個のシェル領域の各交点に、半径方向、接線方向および軸方向のばねを接続して地盤をモデル化し、それらのばねの変位として解析する方法がある(特許文献1)。また、沈下データを3点または4点ずつ組み合わせて計算により応力を求める方法もある(特許文献2、特許文献3)。   As such a stress analysis method, the buried pipe is modeled by a cylinder composed of shells, and the ground is modeled by connecting radial, tangential and axial springs to each intersection of a finite number of shell regions, There is a method of analyzing the displacement of these springs (Patent Document 1). There is also a method of obtaining stress by calculation by combining the settlement data with 3 or 4 points (Patent Document 2 and Patent Document 3).

特開平09―269085号公報Japanese Patent Laid-Open No. 09-269085 特開2003―006180号公報JP 2003-006180 A 特開2009―162296号公報JP 2009-162296 A

しかし、特許文献1のような従来の方法では、1件当たりの検討費用が極めて高いため、対象か所が特定されていない状況で利用すると、かなりの費用を要するという問題がある。また、特許文献2、特許文献3を用いると、主配管から立ち上がり分岐および屈曲箇所を多く有する、いわゆるステーション配管においては、以下の理由により応力を評価することが困難である。   However, the conventional method such as Patent Document 1 has a problem that a considerable cost is required when it is used in a situation where the target location is not specified because the cost of study per case is extremely high. In addition, when Patent Documents 2 and 3 are used, it is difficult to evaluate stress for the following reasons in a so-called station pipe that has many rising branches and bent portions from the main pipe.

まず、沈下量を測定する際に側点の水準測量に用いられるスタッフは、メモリが5mm刻みであり、トランシットを1か所に固定して、例えば3か所の測定点の水準値を計測した場合、2点間の最大読み取り誤差が1〜2mm程度とる場合がある。しかし、ステーション配管においては、形状が複雑であるため、測点同士の間隔が1m以下となる場合があり、この場合、読み取り誤差によって管路の降伏点を超えてしまうような場合がある。   First, the staff used for leveling of the side points when measuring the amount of subsidence measured the level values at three measurement points, for example, with the memory in increments of 5 mm and fixed transit at one location. In some cases, the maximum reading error between two points may be about 1 to 2 mm. However, since the station piping has a complicated shape, the interval between the measurement points may be 1 m or less. In this case, the yield point of the pipeline may be exceeded due to a reading error.

また、特許文献2、特許文献3のような方法を一次評価に用いる場合は、評価に工数は要さないが、評価した結果、実際に発生している応力をはるかに超える応力が算定されてしまうことになる。したがって、評価に工数を要す特許文献1のような二次評価を行う前に、簡易な一次評価をするための方法が求められている。   In addition, when the methods such as Patent Document 2 and Patent Document 3 are used for the primary evaluation, man-hours are not required for the evaluation, but as a result of the evaluation, a stress far exceeding the actually generated stress is calculated. Will end up. Therefore, there is a need for a method for performing a simple primary evaluation before performing a secondary evaluation as in Patent Document 1 requiring man-hours for evaluation.

特に、一次評価としては、簡易な方法でありながらも、あまりにも安全側に偏った評価結果となる場合には、結果的に不要な二次評価を必要とすることから、二次評価の評価結果に対してできるだけ近い評価を行う必要がある。   In particular, as the primary evaluation, although it is a simple method, if the evaluation result is too biased toward the safety side, an unnecessary secondary evaluation is required as a result. It is necessary to evaluate the results as close as possible.

本発明は、このような問題に鑑みてなされたもので、地下に埋設された主配管から分岐し、地上において複数の屈曲点を有するいわゆるステーション配管に対する、簡易かつ正確な配管構造の応力評価方法を提供することを目的とする。   The present invention has been made in view of such a problem, and is a simple and accurate stress evaluation method for a pipe structure for a so-called station pipe branched from a main pipe buried underground and having a plurality of bending points on the ground. The purpose is to provide.

前述した目的を達成するため、第1の発明は、略水平方向に形成され、地中に埋設される主配管と、前記主配管に接続され、略鉛直方向に立ち上がる第1の枝配管と、地上に設けられ、前記第1の枝配管と略垂直に接続される第2の枝配管と、前記第2の枝配管と接続され、略水平方向にかつ前記第2の枝配管と垂直に接続される第3の枝配管と、前記第3の枝配管を下方から支持する支持部と、を有する配管構造の応力評価方法であって、前記支持部の鉛直方向の変位δが、前記第3の枝配管に作用する鉛直方向せん断力および前記第3の枝配管に作用する前記第3の枝配管に垂直かつ略水平な方向を回転軸とするモーメントによる変位δ1と、前記第2の枝配管のねじり変形による変位δ2と、前記第1の枝配管の前記第2の枝配管方向への曲げモーメントによる変位δ3との和であるとして、式(10)により前記配管構造に生じる最大応力σを評価することを特徴とする配管構造の応力評価方法である。
σ={3EGd(2a+2b+c)δ}/{cG(12a+12ab+4bc+10ca+c)+3bcE}・・・(10)
但し、aは、第1の枝配管における主配管との接続部から第2の枝配管接続部までの距離、bは第1の枝配管との接続部から第3の枝配管接続部までの距離、cは第2の枝配管との接続部から支持部までの距離、Eは縦弾性係数、Gは横弾性係数、dは枝配管の外径、δは支持部における主配管との相対的な鉛直方向変位である。
In order to achieve the above-described object, the first invention includes a main pipe formed in a substantially horizontal direction and buried in the ground, a first branch pipe connected to the main pipe and rising in a substantially vertical direction, A second branch pipe provided on the ground and connected substantially vertically to the first branch pipe, and connected to the second branch pipe, and connected in a substantially horizontal direction and perpendicular to the second branch pipe. Stress evaluation method for a piping structure having a third branch pipe and a support part that supports the third branch pipe from below, wherein a vertical displacement δ of the support part is the third branch pipe. Displacement δ1 due to a vertical shearing force acting on the third branch pipe and a moment about the third branch pipe acting on the third branch pipe as a rotation axis in a direction perpendicular to and substantially horizontal to the third branch pipe, and the second branch pipe Displacement δ2 due to torsional deformation of the first branch pipe in the second branch pipe direction As the sum of the displacement δ3 by the bending moment, a stress evaluation method of the piping structure and evaluating the maximum stress σ generated in the piping structure with the formula (10).
σ = {3EGd o (2a + 2b + c) δ} / {cG (12a 2 + 12ab + 4bc + 10ca + c 2 ) + 3bc 2 E} (10)
However, a is the distance from the connection part with the main pipe in the first branch pipe to the second branch pipe connection part, b is from the connection part with the first branch pipe to the third branch pipe connection part. distance, c is the distance to the supporting portion from the connecting portion of the second branch pipe, E is Young's modulus, G is the modulus of transverse elasticity, d o is the outside diameter of the branch pipe, [delta] of the main pipe in the support portion Relative vertical displacement.

前述の配管構造の応力評価方法により前記配管構造の応力を算出し、前記応力値が規定値以下であれば前記配管構造の詳細応力の評価は不要と判断し、前記応力が規定値を超える場合には、前記配構造に取り付けられている沈下棒により前記配管構造の各部の変位を計測し、前記沈下棒により得られた各部の変位に基づいて有限要素法により前記配管構造の詳細応力を求めてもよい。   When the stress of the piping structure is calculated by the above-described stress evaluation method of the piping structure, and if the stress value is not more than a specified value, it is judged that the detailed stress evaluation of the piping structure is unnecessary, and the stress exceeds the specified value In this method, the displacement of each part of the piping structure is measured by a sinking bar attached to the distribution structure, and the detailed stress of the piping structure is obtained by a finite element method based on the displacement of each part obtained by the sinking bar. May be.

第1の発明によれば、略水平方向に形成され、地中に埋設される主配管と、主配管に接続され、略鉛直方向に立ち上がる第1の枝配管と、地上に設けられ、第1の枝配管と略垂直に接続される第2の枝配管と、第2の枝配管と接続され、略水平方向にかつ第2の枝配管と垂直に接続される第3の枝配管と、を具備し、第3の枝配管を下方から支持する支持部が形成されるような複雑な配管構造に対して、メイン配管に対する支持部での相対的な鉛直方向変位を測定することで、簡易に応力の評価を行うことができる。   According to the first aspect of the present invention, a main pipe formed in a substantially horizontal direction and buried in the ground, a first branch pipe connected to the main pipe and rising in a substantially vertical direction, and provided on the ground, A second branch pipe connected substantially vertically to the second branch pipe, and a third branch pipe connected to the second branch pipe and connected substantially horizontally and vertically to the second branch pipe. It is easy to measure the relative vertical displacement at the support part with respect to the main pipe for a complicated pipe structure that has a support part that supports the third branch pipe from below. Stress can be evaluated.

計算結果は、FEMによる計算結果に対してやや安全側(20〜30%程度)であるものの、過剰な評価結果とはならないため、十分配管構造の一次評価として利用できる。   Although the calculation result is slightly safer (about 20 to 30%) than the calculation result by FEM, it does not become an excessive evaluation result, so it can be used as a primary evaluation of a sufficient piping structure.

一次評価によって、規定値(たとえば管路の降伏応力の20%以上)の場合にのみ、詳細に二次評価により配管構造の応力評価を行えば、必要な場合にのみ二次評価を行えばよいため、評価工数を大幅に削減することができる。   If the stress evaluation of the piping structure is performed in detail by the secondary evaluation only in the case of a specified value (for example, 20% or more of the yield stress of the pipe) by the primary evaluation, the secondary evaluation may be performed only when necessary. Therefore, the evaluation man-hour can be significantly reduced.

第2の発明は、略水平方向に形成され、地中に埋設される主配管と、前記主配管に接続され、略鉛直方向に立ち上がる第1の枝配管と、地上に設けられ、前記第1の枝配管と略垂直に接続される第2の枝配管と、前記第2の枝配管と接続され、略水平方向にかつ前記第2の枝配管と垂直に接続される第3の枝配管と、前記第3の枝配管を下方から支持する支持部とを有する配管構造の応力評価装置であって、第1の枝配管における主配管との接続部から第2の枝配管接続部までの距離aと、第1の枝配管との接続部から第3の枝配管接続部までの距離bと、第2の枝配管との接続部から支持部までの距離cと、各枝配管の縦弾性係数E、横弾性係数Gと、各枝配管の外径dと、が予め入力され、記憶手段に記憶されており、前記支持部における前記主配管との相対的な鉛直方向変位であるδを測定して入力手段により入力することで、前記記憶手段に保持された以下の式(10)により、配管構造の応力を制御部で算出し、前記制御部は、算出された応力が所定値以下であれば合格と判断し、算出された応力が所定値を超えた場合に不合格と判断し、算出結果を表示手段に表示させることを特徴とする配管構造の応力評価装置である。
σ={3EGd(2a+2b+c)δ}/{cG(12a+12ab+4bc+10ca+c)+3bcE} ・・・(10)
According to a second aspect of the present invention, there is provided a main pipe formed in a substantially horizontal direction and buried in the ground, a first branch pipe connected to the main pipe and rising in a substantially vertical direction, and provided on the ground. A second branch pipe connected substantially vertically to the second branch pipe, and a third branch pipe connected to the second branch pipe and connected in a substantially horizontal direction and perpendicular to the second branch pipe. A stress evaluation device having a piping structure having a support portion for supporting the third branch pipe from below, and a distance from a connection portion with the main pipe in the first branch pipe to a second branch pipe connection portion. a, the distance b from the connection part of the first branch pipe to the third branch pipe connection part, the distance c from the connection part of the second branch pipe to the support part, and the longitudinal elasticity of each branch pipe coefficients E, and the transverse modulus of elasticity G, the outer diameter d o of the branch pipe, but is input in advance, is stored in the storage means, Contact to the support portion By measuring δ, which is a relative displacement in the vertical direction with respect to the main pipe, and inputting it by the input means, the stress of the pipe structure is determined by the control unit according to the following equation (10) held in the storage means. When the calculated stress is equal to or less than a predetermined value, the control unit determines that the calculation is acceptable, and when the calculated stress exceeds the predetermined value, the control unit determines that the calculation is failed, and causes the display unit to display the calculation result. It is the stress evaluation apparatus of the piping structure characterized by this.
σ = {3EGd o (2a + 2b + c) δ} / {cG (12a 2 + 12ab + 4bc + 10ca + c 2 ) + 3bc 2 E} (10)

第2の発明によれば、略水平方向に形成され、地中に埋設される主配管と、主配管に接続され、略鉛直方向に立ち上がる第1の枝配管と、地上に設けられ、第1の枝配管と略垂直に接続される第2の枝配管と、第2の枝配管と接続され、略水平方向にかつ第2の枝配管と垂直に接続される第3の枝配管と、を具備し、第3の枝配管を下方から支持する支持部が形成されるような複雑な配管構造に対して、メイン配管に対する支持部での相対的な変位のみを入力することで、簡易に応力の評価を行うことができる。   According to the second invention, the main pipe formed in the substantially horizontal direction and buried in the ground, the first branch pipe connected to the main pipe and rising in the substantially vertical direction, and provided on the ground, the first A second branch pipe connected substantially vertically to the second branch pipe, and a third branch pipe connected to the second branch pipe and connected substantially horizontally and vertically to the second branch pipe. For a complicated piping structure in which a support part for supporting the third branch pipe from below is formed, by inputting only the relative displacement at the support part with respect to the main pipe, stress can be easily applied. Can be evaluated.

本発明によれば、地下に埋設された主配管から分岐し、地上において複数の屈曲点を有するいわゆるステーション配管に対する、簡易かつ正確な配管構造の応力評価方法を提供することができる。   According to the present invention, it is possible to provide a simple and accurate stress evaluation method for a pipe structure for a so-called station pipe branched from a main pipe buried underground and having a plurality of bending points on the ground.

配管構造1を示す図。The figure which shows the piping structure 1. FIG. 配管構造のδ1を示す図。The figure which shows (delta) 1 of piping structure. 配管構造のδ2を示す図。The figure which shows (delta) 2 of piping structure. 配管構造のδ3を示す図。The figure which shows (delta) 3 of piping structure.

以下、本発明の実施の形態を詳細に説明する。図1は、本発明にかかる配管構造1を示す図である。地面7下には、略水平方向に主配管3が埋設される。主配管にはメインバルブ5が設けられる。   Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a view showing a piping structure 1 according to the present invention. Under the ground 7, the main pipe 3 is embedded in a substantially horizontal direction. A main valve 5 is provided in the main piping.

主配管3には、略鉛直方向に枝配管9aが接続される。枝配管9aは地面7よりも上まで延伸されている。枝配管9aの端部には、枝配管9bが接続される。枝配管9bは、枝配管9aに対して略垂直な方向に向けて接続される。すなわち、枝配管9bは、略水平方向に設けられる。   A branch pipe 9a is connected to the main pipe 3 in a substantially vertical direction. The branch pipe 9 a is extended to above the ground 7. A branch pipe 9b is connected to the end of the branch pipe 9a. The branch pipe 9b is connected in a direction substantially perpendicular to the branch pipe 9a. That is, the branch pipe 9b is provided in a substantially horizontal direction.

枝配管9bの端部には、枝配管9cが接続される。枝配管9cは、枝配管9bに対して略垂直であり、かつ略水平方向に接続される。枝配管9cの一部には、下方から枝配管の自重を支持する支持部11が設けられる。なお、以下の説明において、枝配管9cとは、枝配管9bとの接続部から支持部11までの間の配管を指すものとする。   A branch pipe 9c is connected to the end of the branch pipe 9b. The branch pipe 9c is substantially perpendicular to the branch pipe 9b and is connected in a substantially horizontal direction. A part of the branch pipe 9c is provided with a support portion 11 that supports the weight of the branch pipe from below. In the following description, the branch pipe 9c refers to a pipe from the connection part to the branch pipe 9b to the support part 11.

枝配管9a、9b、9cは、それぞれ長さa、b、cである。すなわち、枝配管9aが主配管3から高さaまで鉛直方向に設置され、枝配管9bが枝配管9aに対して略垂直に、水平方向に長さb設けられ、さらに枝配管9cが枝配管9bに垂直かつ水平方向に長さc設けられ、枝配管9c端部が支持部11により下方より指示されている。   The branch pipes 9a, 9b, and 9c have lengths a, b, and c, respectively. That is, the branch pipe 9a is installed in the vertical direction from the main pipe 3 to the height a, the branch pipe 9b is provided substantially vertically with respect to the branch pipe 9a and has a length b in the horizontal direction, and the branch pipe 9c is further provided in the branch pipe. A length c is provided vertically and horizontally in 9b, and the end of the branch pipe 9c is instructed from below by the support portion 11.

このような配管構造1においては、支持部11の沈下(主配管3またはメインバルブ5に対する相対的な沈下)によって、最も高い応力を示すのが、枝配管9a、9b間となる。そこで、枝配管9a、9b、9cの範囲における応力評価を行うこととする。   In such a pipe structure 1, the highest stress is exhibited between the branch pipes 9 a and 9 b due to the sinking of the support portion 11 (sinking relative to the main pipe 3 or the main valve 5). Therefore, stress evaluation is performed in the range of the branch pipes 9a, 9b, and 9c.

まず、配管構造1を図2〜図4に示すようにモデル化する。図2〜図4は、配管構造1を正面から見た図であり、枝配管9bは紙面に垂直な方向(図中白丸)となる。また、枝配管9aの下端は固定端とする。   First, the piping structure 1 is modeled as shown in FIGS. 2-4 is the figure which looked at the piping structure 1 from the front, and the branch piping 9b becomes a direction (white circle in a figure) perpendicular | vertical to a paper surface. The lower end of the branch pipe 9a is a fixed end.

図2(a)に示すように、枝配管9cに作用する鉛直方向せん断力Pおよび枝配管9cに作用する枝配管9cに垂直かつ略水平な方向を回転軸とする(鉛直面内の)曲げモーメントをM1とする。この際の枝配管9c端部の鉛直方向変位をδとする(図2(b))。 As shown in FIG. 2 (a), the bending (within the vertical plane) has a vertical shear force P acting on the branch pipe 9c and a direction substantially perpendicular to the branch pipe 9c acting on the branch pipe 9c as a rotation axis. Let the moment be M1. The vertical displacement of the branch pipe 9c end of this time the [delta] 1 (Figure 2 (b)).

鉛直方向せん断力Pによって発生する曲げモーメントによって、枝配管9a、9b、9cに蓄えられる弾性歪みエネルギUと、曲げモーメントM1によって枝配管9a、9b、9cに蓄えられる弾性歪みエネルギUM1を求め、支持部11の位置における曲げモーメントM1に対応するたわみ角をゼロとした仮定の基に、カステリアノの定理を適用すると、Pとδの関係、M1とδとの関係は、それぞれ、式(1)、式(2)となる。 By the bending moment generated by the vertical shear forces P, calculated elastic strain energy U P to be accumulated branch pipe 9a, 9b, 9c,, branch pipes 9a by the bending moment M1, 9b, the elastic strain energy U M1 accumulated in the 9c , the assumption based on the deflection angle corresponding to the bending moment M1 and zero at the position of the support portion 11, applying the theorem Kasuteriano, relationship between P and [delta] 1, the relationship between M1 and [delta] 1, respectively, wherein (1) and Equation (2).

P={12EIδ(a+b+c)}/{c(4a+4b+c)}・・・(1)
M1={12EIδ(a+b+c/2)}/{c(4a+4b+c)}・・・(2)
但し、Eは縦弾性係数、Iは断面二次モーメントを示す。
P = {12EIδ 1 (a + b + c)} / {c 3 (4a + 4b + c)} (1)
M1 = {12EIδ 1 (a + b + c / 2)} / {c 2 (4a + 4b + c)} (2)
However, E shows a longitudinal elastic modulus and I shows a cross-sectional secondary moment.

次に、図3(a)に示すように、鉛直方向せん断力Pおよび曲げモーメントM1により枝配管9cが捩られることによる鉛直方向の変位δについて検討する。 Next, as shown in FIG. 3A, the vertical displacement δ 2 caused by the branch pipe 9c being twisted by the vertical shear force P and the bending moment M1 will be examined.

枝配管9bは、鉛直方向せん断力Pおよび曲げモーメントM1によって、(cPーM1)なる大きさの捩りモーメント(図中T1)で捩られる。枝配管9cは枝配管9bと接合されていることから、前述の捩りモーメントによって、鉛直方向の変位が生じる(図3(b))。この捩りモーメントによる枝配管9c端部の鉛直方向の変位量δ2は、式(3)で表わされる。   The branch pipe 9b is twisted by a torsional moment (T1 in the figure) having a magnitude of (cP-M1) by the vertical shearing force P and the bending moment M1. Since the branch pipe 9c is joined to the branch pipe 9b, a displacement in the vertical direction is caused by the above-described torsional moment (FIG. 3B). The amount of vertical displacement δ2 at the end of the branch pipe 9c due to this torsional moment is expressed by equation (3).

δ={32(cP−M1)/(πd G)}・cb/e・・・(3)
但し、Gは横弾性係数でありeは式(4)で表わされる。
δ 2 = {32 (cP- M1) / (πd O 4 G)} · cb / e ··· (3)
However, G is a lateral elastic modulus and e is represented by Formula (4).

e=1−(d /d )・・・(4)
但し、dは枝配管9bの内径、dは枝配管9aの外径を示す。
e = 1- (d i 4 / d O 4 ) (4)
However, d i is the inner diameter of the branch pipes 9b, d O denotes the outer diameter of the branch pipe 9a.

式(3)のP、M1に式(1)、式(2)を代入し、δをδで表わすと式(5)のように表すことができる。 Equation (1) to P, M1 of the formula (3), by substituting equation (2), expressed the [delta] 2 at [delta] 1 can be expressed as Equation (5).

δ={192bEI/πed G(4a+4b+c)}δ・・・(5) δ 2 = {192bEI / πed O 4 G (4a + 4b + c)} δ 1 (5)

次に、図4(a)に示すように、枝配管9aが曲げモーメントM2(=cP−M1)によって曲げられる際に、枝配管9bを介して枝配管9cに伝達される枝配管9c端部の鉛直方向変位δについて検討する。 Next, as shown in FIG. 4A, when the branch pipe 9a is bent by the bending moment M2 (= cP-M1), the end of the branch pipe 9c transmitted to the branch pipe 9c via the branch pipe 9b. Consider the vertical displacement δ 3 of.

枝管9cは、枝管9aの曲げモーメントM2により、図4(b)に示すように鉛直方向に変位する。式(1)、式(2)より、M2<M1であるため、安全を見てM2に代えてM1を用いると、δは式(6)のように表わされる。 The branch pipe 9c is displaced in the vertical direction as shown in FIG. 4B by the bending moment M2 of the branch pipe 9a. Equation (1), the equation (2), since it is M2 <M1, the use of M1 instead of M2 watching safety, [delta] 3 is expressed as Equation (6).

δ=(ac/EI)M1・・・(6) δ 3 = (ac / EI) M1 (6)

式(2)を式(6)に代入すると式(7)となる。   Substituting equation (2) into equation (6) yields equation (7).

δ={12a(a+b+c/2)/c(4a+4b+c)}δ・・・(7) δ 3 = {12a (a + b + c / 2) / c (4a + 4b + c)} δ 1 (7)

ここで、枝配管9cの端部の鉛直方向変位量δは、前述した変位量の和であると仮定すると、δは式(8)で表わされる。   Here, assuming that the vertical displacement amount δ of the end portion of the branch pipe 9c is the sum of the above-described displacement amounts, δ is expressed by Expression (8).

δ=δ+δ+δ・・・(8) δ = δ 1 + δ 2 + δ 3 (8)

支持部11における曲げ応力σは式(9)で表わされる。   The bending stress σ in the support portion 11 is expressed by the formula (9).

σ=M1/z=M1d/2I・・・(9)
但し、zは断面係数を示す。
σ = M1 / z = M1d O / 2I (9)
However, z shows a section modulus.

以上により、曲げ応力σを変位δで表わすと、式(10)の様になる。   As described above, when the bending stress σ is expressed by the displacement δ, the equation (10) is obtained.

σ={3EGd(2a+2b+c)δ}/{cG(12a+12ab+4bc+10ca+c)+3bcE}・・・(10) σ = {3EGd o (2a + 2b + c) δ} / {cG (12a 2 + 12ab + 4bc + 10ca + c 2 ) + 3bc 2 E} (10)

式(10)を用いれば、あらかじめ枝配管の長さと外径および枝配管の強度を設定しておき、支持部11における鉛直方向変位量(主配管3に対する相対的な変位量)を測定するのみで配管構造に生じる応力を簡易に推定することができる。   If Expression (10) is used, the length and outer diameter of the branch pipe and the strength of the branch pipe are set in advance, and only the vertical displacement amount (relative displacement amount with respect to the main pipe 3) in the support portion 11 is measured. Thus, the stress generated in the piping structure can be easily estimated.

したがって、式(10)、各種配管の情報およびプログラム等を記憶するハードディスクドライブ等の記憶手段と、式(10)を用いた各種計算および制御を行う制御部であるCPUと、測定値等を入力するキーボード等の入力手段と、計算結果を出力するディスプレイ等の表示手段とを有するシステム(コンピュータ)を用い、支持部11における鉛直方向変位量のみを測定し、測定結果および枝配管情報を入力手段により当該システムに入力し、制御部は、記憶手段から必要な情報を読み出すとともに当該システムに応力値を算出させることで、即座に配管構造の応力値を知ることができ、制御部は、算出された応力値に基づき、規定値以上であれば不合格として、使用者に対して二次評価を行うように知らせる(表示等行う)ことができる。なお、この場合、枝配管の各種情報(長さ、外径、縦弾性係数、横弾性係数等)を予め入力しておき、記憶手段に記憶し、測定されたδのみを入力すれば、即座に応力値および合否判定を表示させるようにしてもよい。   Therefore, input the equation (10), storage means such as a hard disk drive for storing various piping information and programs, etc., the CPU that is the control unit for performing various calculations and controls using equation (10), and the measurement values etc. Using a system (computer) having an input means such as a keyboard and a display means such as a display for outputting a calculation result, only the vertical displacement amount in the support portion 11 is measured, and the measurement result and branch piping information are input means The control unit reads out necessary information from the storage means and allows the system to calculate the stress value, thereby immediately knowing the stress value of the piping structure. Based on the measured stress value, if it exceeds the specified value, it can be rejected and the user can be informed (displayed etc.) to perform secondary evaluation. That. In this case, if various information (length, outer diameter, longitudinal elastic modulus, transverse elastic modulus, etc.) of the branch pipe is input in advance, stored in the storage means, and only measured δ is input, You may make it display a stress value and a pass / fail judgment.

式(10)により導き出した計算結果と、詳細な有限要素法(FEM)による解析結果との比較を行った。結果を表1に示す。   A comparison was made between the calculation result derived by the equation (10) and the analysis result by the detailed finite element method (FEM). The results are shown in Table 1.

Figure 2011047844
Figure 2011047844

比較は、配管外径(枝配管の外径)呼び径600mm(外径60.96cm、内径58.42cm)の場合と、配管外径(枝配管の外径)呼び径300mm(外径31.85cm、内径30.17cm)の場合とで行った。また、各枝配管の長さa、b、cはすべて200cmとし、枝配管9c端部の鉛直方向変位は1cmとした。なお、FEM解析は、本来曲管部となる位置を直管同士の接合とみなした場合と、曲管としてみなした場合の2種類について解析した。   For comparison, the outer diameter of the pipe (outer diameter of the branch pipe) is 600 mm (outer diameter 60.96 cm, inner diameter 58.42 cm), and the outer diameter of the pipe (outer diameter of the branch pipe) is 300 mm (outer diameter 31. 85 cm, inner diameter 30.17 cm). The lengths a, b, and c of each branch pipe were all 200 cm, and the vertical displacement at the end of the branch pipe 9c was 1 cm. In addition, FEM analysis was analyzed about the two types, when the position which becomes a curved pipe part is regarded as joining of straight pipes, and when considered as a curved pipe.

表1より明らかなように、直管とした場合のFEM解析結果と本発明による計算結果は略一致した。また、本発明の計算値は、やや安全側(高い応力)の値を示した。同様に、曲管とした場合のFEM解析結果では、応力集中係数とたわみ係数が考慮され、より低い応力値を示したが、これに対しても、本発明の方法によれば、2〜3割程度安全側の評価を得ることができた。   As is clear from Table 1, the FEM analysis result in the case of a straight pipe almost coincided with the calculation result according to the present invention. Moreover, the calculated value of this invention showed the value of the somewhat safe side (high stress). Similarly, in the FEM analysis result in the case of a curved pipe, the stress concentration coefficient and the deflection coefficient are taken into consideration, and a lower stress value is shown. However, according to the method of the present invention, it is 2-3. We were able to get an evaluation on the safe side.

以上説明したように、本発明にかかる方法によれば、簡易にステーション配管構造の応力値を得ることができる。得られた値は、実際の値(FEM解析値)に対して安全側の数値となり、また、その差は20〜30%程度である。このため、例えば、本発明による評価を一次評価として、評価値が規定値以内(例えば枝配管の降伏応力の20%未満)の場合には、問題なしと判断し、評価値が規定値を超えた場合に、より詳細な評価(二次評価)を実施するようにすれば、不要な二次評価を行う必要がなく、効率が良い。   As described above, according to the method of the present invention, the stress value of the station piping structure can be easily obtained. The obtained value is a value on the safe side with respect to the actual value (FEM analysis value), and the difference is about 20 to 30%. For this reason, for example, when the evaluation according to the present invention is a primary evaluation and the evaluation value is within a specified value (for example, less than 20% of the yield stress of the branch pipe), it is determined that there is no problem, and the evaluation value exceeds the specified value. In such a case, if more detailed evaluation (secondary evaluation) is performed, there is no need to perform unnecessary secondary evaluation, and efficiency is improved.

また、実際に測定する点が、支持部における鉛直方向変位のみであるため、測定が容易である。なお、例えば、従来より提案されている特許文献2、特許文献3のような、埋設部の式、露出部の式、埋設部と露出部の境界の式を、本件のような立体配管構造に適用すると、前述のFEM解析結果に対して10倍程度の安全側の評価結果となる。このため、一次評価方法としては、本発明によるモデル化および各種仮定に基づく式(10)を用いることで、過剰な安全率をみることなく、適切な評価を行うことができる。   In addition, since the actual measurement point is only the vertical displacement at the support portion, the measurement is easy. It should be noted that, for example, conventionally proposed Patent Document 2 and Patent Document 3, such as the embedded section formula, the exposed section formula, and the formula of the boundary between the buried section and the exposed section are converted into a three-dimensional piping structure as in the present case. When applied, the evaluation result on the safety side is about 10 times the FEM analysis result described above. For this reason, as a primary evaluation method, by using the expression (10) based on modeling and various assumptions according to the present invention, appropriate evaluation can be performed without looking at an excessive safety factor.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

1………配管構造
3………主配管
5………メインバルブ
7………地面
9a、9b、9c………枝配管
11………支持部
DESCRIPTION OF SYMBOLS 1 ......... Piping structure 3 ......... Main piping 5 ......... Main valve 7 ......... Ground 9a, 9b, 9c ......... Branch piping 11 ......... Support part

Claims (3)

略水平方向に形成され、地中に埋設される主配管と、
前記主配管に接続され、略鉛直方向に立ち上がる第1の枝配管と、
地上に設けられ、前記第1の枝配管と略垂直に接続される第2の枝配管と、
前記第2の枝配管と接続され、略水平方向にかつ前記第2の枝配管と垂直に接続される第3の枝配管と、
前記第3の枝配管を下方から支持する支持部と、
を有する配管構造の応力評価方法であって、
前記支持部の鉛直方向の変位δが、
前記第3の枝配管に作用する鉛直方向せん断力および前記第3の枝配管に作用する前記第3の枝配管に垂直かつ略水平な方向を回転軸とするモーメントによる変位δ1と、
前記第2の枝配管のねじり変形による変位δ2と、
前記第1の枝配管の前記第2の枝配管方向への曲げモーメントによる変位δ3との和であるとして、式(10)により前記配管構造に生じる最大応力σを評価することを特徴とする配管構造の応力評価方法。
σ={3EGd(2a+2b+c)δ}/{cG(12a+12ab+4bc+10ca+c)+3bcE} ・・・(10)
但し、aは、第1の枝配管における主配管との接続部から第2の枝配管接続部までの距離、bは第1の枝配管との接続部から第3の枝配管接続部までの距離、cは第2の枝配管との接続部から支持部までの距離、Eは縦弾性係数、Gは横弾性係数、dは各枝配管の外径、δは支持部における主配管との相対的な鉛直方向変位である。
A main pipe formed in a substantially horizontal direction and buried in the ground;
A first branch pipe connected to the main pipe and rising in a substantially vertical direction;
A second branch pipe provided on the ground and connected substantially perpendicularly to the first branch pipe;
A third branch pipe connected to the second branch pipe and connected in a substantially horizontal direction and perpendicular to the second branch pipe;
A support portion for supporting the third branch pipe from below;
A stress evaluation method for a piping structure having
The vertical displacement δ of the support is
A vertical shear force acting on the third branch pipe and a displacement δ1 due to a moment about a direction perpendicular to and substantially horizontal to the third branch pipe acting on the third branch pipe as a rotation axis;
Displacement δ2 due to torsional deformation of the second branch pipe;
A pipe characterized in that the maximum stress σ generated in the pipe structure is evaluated by the equation (10), assuming that the sum is a displacement δ3 due to a bending moment of the first branch pipe in the second branch pipe direction. Structural stress evaluation method.
σ = {3EGd o (2a + 2b + c) δ} / {cG (12a 2 + 12ab + 4bc + 10ca + c 2 ) + 3bc 2 E} (10)
However, a is the distance from the connection part with the main pipe in the first branch pipe to the second branch pipe connection part, b is from the connection part with the first branch pipe to the third branch pipe connection part. distance, c is the distance to the supporting portion from the connecting portion of the second branch pipe, E is Young's modulus, G is the modulus of transverse elasticity, d o is the outside diameter of each branch pipe, [delta] is a main pipe in the support portion Relative vertical displacement.
請求項1記載の配管構造の応力評価方法により前記配管構造の応力を算出し、
前記応力値が規定値以下であれば前記配管構造の詳細応力の評価は不要と判断し、
前記応力が規定値を超える場合には、前記配構造に取り付けられている沈下棒により前記配管構造の各部の変位を計測し、
前記沈下棒により得られた各部の変位に基づいて有限要素法により前記配管構造の詳細応力を求めることを特徴とする配管構造の応力評価方法。
The stress of the piping structure is calculated by the stress evaluation method of the piping structure according to claim 1,
If the stress value is less than or equal to a specified value, it is determined that the detailed stress evaluation of the piping structure is unnecessary,
When the stress exceeds a specified value, the displacement of each part of the piping structure is measured by a sinking rod attached to the distribution structure,
A stress evaluation method for a piping structure, characterized in that a detailed stress of the piping structure is obtained by a finite element method based on the displacement of each part obtained by the sinking rod.
略水平方向に形成され、地中に埋設される主配管と、前記主配管に接続され、略鉛直方向に立ち上がる第1の枝配管と、地上に設けられ、前記第1の枝配管と略垂直に接続される第2の枝配管と、前記第2の枝配管と接続され、略水平方向にかつ前記第2の枝配管と垂直に接続される第3の枝配管と、前記第3の枝配管を下方から支持する支持部とを有する配管構造の応力評価装置であって、
第1の枝配管における主配管との接続部から第2の枝配管接続部までの距離aと、第1の枝配管との接続部から第3の枝配管接続部までの距離bと、第2の枝配管との接続部から支持部までの距離cと、各枝配管の縦弾性係数E、横弾性係数Gと、各枝配管の外径dと、が予め入力され、記憶手段に記憶されており、前記支持部における前記主配管との相対的な鉛直方向変位であるδを測定して入力手段により入力することで、前記記憶手段に保持された以下の式(10)により、配管構造の応力を制御部で算出し、前記制御部は、算出された応力が所定値以下であれば合格と判断し、算出された応力が所定値を超えた場合に不合格と判断し、算出結果を表示手段に表示させることを特徴とする配管構造の応力評価装置。
σ={3EGd(2a+2b+c)δ}/{cG(12a+12ab+4bc+10ca+c)+3bcE} ・・・(10)
A main pipe formed in a substantially horizontal direction and buried in the ground, a first branch pipe connected to the main pipe and rising in a substantially vertical direction, and provided on the ground and substantially perpendicular to the first branch pipe A second branch pipe connected to the second branch pipe, a third branch pipe connected to the second branch pipe substantially horizontally and perpendicular to the second branch pipe, and the third branch A stress evaluation device for a pipe structure having a support part for supporting the pipe from below,
A distance a from the connection with the main pipe to the second branch pipe connection in the first branch pipe; a distance b from the connection with the first branch pipe to the third branch pipe connection; and the distance c from the connection portion between the second branch pipes to the support part, longitudinal elastic modulus E of each branch pipe, and the transverse modulus of elasticity G, the outer diameter d o of the branch pipe, but is input in advance, in the storage means By storing δ, which is a displacement in the vertical direction relative to the main pipe in the support portion, and inputting it by the input means, the following equation (10) held in the storage means: The piping unit stress is calculated by the control unit, and the control unit determines that the calculated stress is less than or equal to a predetermined value, and determines that the calculated stress exceeds a predetermined value. A stress evaluation device for a piping structure, wherein a calculation result is displayed on a display means.
σ = {3EGd o (2a + 2b + c) δ} / {cG (12a 2 + 12ab + 4bc + 10ca + c 2 ) + 3bc 2 E} (10)
JP2009197658A 2009-08-28 2009-08-28 Stress evaluation method and stress evaluation apparatus for piping structure Active JP5378113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009197658A JP5378113B2 (en) 2009-08-28 2009-08-28 Stress evaluation method and stress evaluation apparatus for piping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009197658A JP5378113B2 (en) 2009-08-28 2009-08-28 Stress evaluation method and stress evaluation apparatus for piping structure

Publications (2)

Publication Number Publication Date
JP2011047844A true JP2011047844A (en) 2011-03-10
JP5378113B2 JP5378113B2 (en) 2013-12-25

Family

ID=43834315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009197658A Active JP5378113B2 (en) 2009-08-28 2009-08-28 Stress evaluation method and stress evaluation apparatus for piping structure

Country Status (1)

Country Link
JP (1) JP5378113B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215879A (en) * 1985-03-20 1986-09-25 株式会社クボタ Method of designing piping of sinking type buried duct
JPH09242933A (en) * 1996-03-01 1997-09-16 Osaka Gas Co Ltd Ground subsidence management method of embedded pipe
JPH10293776A (en) * 1997-04-21 1998-11-04 Hitachi Plant Eng & Constr Co Ltd Piping temporary set simulation device and piping manufacture method
JP2002062199A (en) * 2000-08-22 2002-02-28 Mitsubishi Heavy Ind Ltd Method for selecting priority inspection point of piping and its selection system
JP2003177067A (en) * 2001-12-12 2003-06-27 Tokyo Gas Co Ltd Method and apparatus for analyzing earthquake resisting strength of piping network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61215879A (en) * 1985-03-20 1986-09-25 株式会社クボタ Method of designing piping of sinking type buried duct
JPH09242933A (en) * 1996-03-01 1997-09-16 Osaka Gas Co Ltd Ground subsidence management method of embedded pipe
JPH10293776A (en) * 1997-04-21 1998-11-04 Hitachi Plant Eng & Constr Co Ltd Piping temporary set simulation device and piping manufacture method
JP2002062199A (en) * 2000-08-22 2002-02-28 Mitsubishi Heavy Ind Ltd Method for selecting priority inspection point of piping and its selection system
JP2003177067A (en) * 2001-12-12 2003-06-27 Tokyo Gas Co Ltd Method and apparatus for analyzing earthquake resisting strength of piping network

Also Published As

Publication number Publication date
JP5378113B2 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
WO2012059736A2 (en) Parameter sensing and monitoring
BRPI0618533A2 (en) system and method for calculating a level of dynamic traction at a plurality of points along a length of a structure
CN104294860A (en) P-Y curve measuring device in pile-soil interaction shaking table test
Han et al. Coupling analysis of finite element and finite volume method for the design and construction of FPSO crane
You et al. Two-dimensional deformation estimation of beam-like structures using inverse finite-element method: Theoretical study and experimental validation
Hughs et al. Live-load distribution factors for prestressed concrete, spread box-girder bridge
Campagnari et al. Estimation of axial load in tie-rods using experimental and operational modal analysis
JP5736769B2 (en) Pump barrel vibration prediction method
JP5378113B2 (en) Stress evaluation method and stress evaluation apparatus for piping structure
JP2007039879A (en) Damage rate estimating method of pile foundation and damage rate estimating system of pile foundation
Tan et al. Time domain simulation of the 3D bending hysteresis behavior of an unbonded flexible riser
JP2005315611A (en) Horizontal load testing method of pile
Qian et al. Mode mixity for circular hollow section X joints with weld toe cracks
Vassart et al. Parametrical study on the behaviour of steel and composite cellular beams under fire conditions
JP3868858B2 (en) Bending pipe stress evaluation method, stress evaluation apparatus, program, storage medium
Adebar et al. Effective stiffness for linear dynamic analysis of concrete shear wall buildings: CSA A23. 3-2014
JP4903727B2 (en) Mitigation of settlement stress in buried pipes
Soman et al. Kalman filter based data fusion for neutral axis tracking in wind turbine towers
Das et al. Assessment of damage in prismatic beams using modal parameters
JP4917898B2 (en) Pipe linear measuring device, pipe linear measuring method, program, buried pipe stress relief method during construction of buried pipe
Melissianos et al. Upheaval buckling of onshore buried steel pipelines with flexible joints
Jordal et al. Novel Sensor Technology for Identifying Subsea Power Cables’ and Umbilicals’ Axial Stiffness
JP4415299B2 (en) Piping equipment design method
WO2023286253A1 (en) Computation device, equipment analysis method, and program
JP3868849B2 (en) Bending pipe stress evaluation method, stress evaluation apparatus, program, storage medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120813

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130917

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5378113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250