JP2011047718A - Mass measuring device - Google Patents

Mass measuring device Download PDF

Info

Publication number
JP2011047718A
JP2011047718A JP2009194800A JP2009194800A JP2011047718A JP 2011047718 A JP2011047718 A JP 2011047718A JP 2009194800 A JP2009194800 A JP 2009194800A JP 2009194800 A JP2009194800 A JP 2009194800A JP 2011047718 A JP2011047718 A JP 2011047718A
Authority
JP
Japan
Prior art keywords
vibration
mass
measured
support base
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009194800A
Other languages
Japanese (ja)
Inventor
Takeshi Mizuno
毅 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saitama University NUC
Original Assignee
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saitama University NUC filed Critical Saitama University NUC
Priority to JP2009194800A priority Critical patent/JP2011047718A/en
Publication of JP2011047718A publication Critical patent/JP2011047718A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a precise mass measuring device capable of measuring mass without utilizing gravity. <P>SOLUTION: The mass measuring device includes an actuator 50 for generating harmonic external force and measures inertia mass of an object to be measured. The mass measuring device includes: a supporting rack 30 for mounting the actuator 50; a spring element 31 for supporting the supporting rack 30 to base 20; attenuation type dynamic absorbers 40, 41, 42 mounted to the supporting rack 30 to suppress vibration of the supporting rack 30; and PLLs (Phase Locked Loop) 61, 62, 63 for controlling harmonic external force generated from the actuator 50, such that the phase of the harmonic external force to a displacement phase of the vibration absorption vibrating body 40 of the attenuation type dynamic absorber is maintained to be a phase difference of 180°. The object to be measured is mounted to the supporting rack 30, or the vibration absorption vibrating body 40 of the attenuation type dynamic absorber. Mass is measured by utilizing a fixed point of a dynamic absorber system, thus precisely obtaining inertia mass of the object to be measured. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、無重力環境でも使用可能な質量測定装置に関し、特に、精度の向上を図るものである。   The present invention relates to a mass measuring apparatus that can be used even in a weightless environment, and in particular, aims to improve accuracy.

現在、国際宇宙ステーションの建設も進み、宇宙において日常的に実験が行われる日も近い。宇宙環境は、無重力(厳密には微小重力)であるため、各種実験で試料の質量を測定する場合に、重力を利用する天秤のような装置は用いることができない。このように、重力質量が測定できない環境では、運動の法則「(質量)×(加速度)=(力)」を利用して慣性質量が測定される。   Currently, the construction of the International Space Station is progressing, and it is almost time for experiments to be conducted in space on a daily basis. Since the space environment is weightless (strictly, microgravity), when measuring the mass of a sample in various experiments, a device such as a balance that uses gravity cannot be used. In this way, in an environment where the gravitational mass cannot be measured, the inertial mass is measured using the law of motion “(mass) × (acceleration) = (force)”.

本発明者等は、先に、慣性質量を測定する質量測定装置を下記非特許文献1等に提案している。
図6は、この装置の原理図を示している。
この装置は、ばね要素15を介してベース20に結合された支持台10と、測定対象物13を取り付けた測定対象物取付台12と、測定対象物13及び測定対象物取付台12を振動するために支持台10に取り付けたアクチュエータ11と、支持台10の振動を吸収するために支持台10に取り付けたばね要素16及び錘(吸振振動体)14から成る非減衰形の動吸振器とを備えている。
The present inventors have previously proposed a mass measuring apparatus for measuring inertial mass in the following Non-Patent Document 1 and the like.
FIG. 6 shows a principle diagram of this apparatus.
This apparatus vibrates a support base 10 coupled to a base 20 via a spring element 15, a measurement object attachment base 12 to which a measurement object 13 is attached, a measurement object 13 and a measurement object attachment base 12. Therefore, an actuator 11 attached to the support base 10 and a non-damping type dynamic vibration absorber made up of a spring element 16 and a weight (vibration vibration body) 14 attached to the support base 10 to absorb the vibration of the support base 10 are provided. ing.

ここで、測定対象物13の質量をmu、測定対象物取付台12の質量をmb、支持台10の質量をmp、吸振振動体14の質量(吸振質量)をma、ばね要素16のばね定数をka、ばね要素15のばね定数をkp、振動体14の上方変位をxa、支持台10の上方変位をxp、測定対象物取付台12の上方変位をxbとし、また、アクチュエータ11の駆動力をFbsinωtのように与えることとすると、この系の運動方程式は、次の(数1)(数2)(数3)のように表される。
Here, the mass of the measurement object 13 is m u , the mass of the measurement object mounting base 12 is m b , the mass of the support base 10 is m p , the mass of the vibration-absorbing vibrator 14 (vibration-absorption mass) is m a , 16 spring constant of k a, the spring constant of the spring element 15 k p, the upper displacement of the vibrating body 14 x a, the upper displacement of the support table 10 x p, the upper displacement of the measuring object mount 12 x b If the driving force of the actuator 11 is given as F b sin ωt, the equation of motion of this system is expressed as the following (Equation 1) (Equation 2) (Equation 3).

定常解を求めるために xp=Xpsinωt 、xa=Xasinωt と置き、(数1)(数2)に代入すると、次式(数4)(数5)が得られる。
ここで、
としている。
If x p = X p sin ωt and x a = X a sin ωt are set in order to obtain a steady solution and are substituted into (Equation 1) and (Equation 2), the following equations (Equation 4) and (Equation 5) are obtained.
here,
It is said.

これらの方程式から、支持台10の振幅Xpは、アクチュエータ11による加振振動数ωが動吸振器の固有振動数ωa と一致するとき、Xp=0になることが分かる。このとき、(数1)〜(数3)から(mb+mu)の振動振幅Xbを求めると、次式(数9)のようになる。
(mb+mu)Xb=−maa (数9)
ここで、ma及びmbは既知であるから、Xa及びXbを測定すれば、次式(数10)から測定対象物の質量muを求めることができる。
From these equations, it can be seen that the amplitude X p of the support base 10 becomes X p = 0 when the vibration frequency ω of the actuator 11 matches the natural frequency ω a of the dynamic vibration absorber. At this time, when the vibration amplitude X b of (m b + m u ) is obtained from (Equation 1) to (Equation 3), the following equation (Equation 9) is obtained.
(M b + m u ) X b = −m a X a (Equation 9)
Here, since m a and m b are known, by measuring X a and X b , the mass m u of the measurement object can be obtained from the following equation (Equation 10).

実際の質量測定装置は、圧電素子で形成されたアクチュエータ11と、圧電素子を駆動するアンプと、支持台10、吸振振動体14及び測定対象物取付台12の位置を検出する変位センサと、変位センサで検知された信号の振幅を測定するFFTアナライザとを備えている。
測定対象物13の質量を測定する場合、アンプに動吸振器単体の固有振動数と等しい振動数を持つ正弦波を入力して圧電素子を駆動する。圧電素子は、駆動信号の周波数で伸縮し、それにより測定対象物13及び測定対象物取付台12が振動する。定常状態では、動吸振器の吸振振動体14が、この振動を打ち消すように同周期・逆位相で振動する。そのため、支持台10は、定常状態に達すると、振動しなくなる(実際には、後述するようにある程度振動は残留する)。定常状態に達した後、変位センサの検知信号から吸振振動体14の振動振幅Xaと測定対象物取付台12の振動振幅XbとをFFTアナライザで測定し、測定結果を(数10)に代入して測定対象物12の質量muを推定する。
An actual mass measuring apparatus includes an actuator 11 formed of a piezoelectric element, an amplifier that drives the piezoelectric element, a displacement sensor that detects the positions of the support base 10, the vibration-absorbing vibrator 14, and the measurement object mounting base 12, and a displacement And an FFT analyzer that measures the amplitude of the signal detected by the sensor.
When measuring the mass of the measuring object 13, a piezoelectric element is driven by inputting a sine wave having a frequency equal to the natural frequency of the dynamic vibration absorber alone to the amplifier. The piezoelectric element expands and contracts at the frequency of the drive signal, whereby the measurement object 13 and the measurement object mounting base 12 vibrate. In the steady state, the vibration-absorbing vibration body 14 of the dynamic vibration absorber vibrates at the same period and opposite phase so as to cancel this vibration. Therefore, when the support 10 reaches a steady state, the support 10 does not vibrate (actually, some vibration remains as described later). After reaching a steady state, from the detection signal of the displacement sensor and the vibration amplitude X a vibration absorbing vibration member 14 and the vibration amplitude X b of the measuring object mount 12 measured by FFT analyzer, the measurement result (the number 10) assignment to estimate the mass m u of the measuring object 12.

水野,佐藤,石野:非減衰形動吸振器を利用した振動式質量測定装置の開発,日本機械学会論文集(C編),68巻,665号 (2002),37.Mizuno, Sato, Ishino: Development of vibration-type mass measuring device using non-damping type dynamic vibration absorber, Transactions of the Japan Society of Mechanical Engineers (C), 68, 665 (2002), 37.

しかし、従来の質量測定装置では、定常状態の支持台10を観察すると、図7に示すように、振幅20μm程度の微小振動が残留している。
この残留振動の原因として、次のことが考えられる。
従来の質量測定装置では、非減衰の動吸振器を用いているが、微小な抵抗を受けても減衰は発生するから、完全に非減衰の状態に保つことは困難である。
また、この質量測定装置では、アクチュエータ11による振動を動吸振器の固有振動数に完全に同期させることが困難である。
この定常状態の残留振動は、測定精度を低下させる一因になる。
However, in the conventional mass measuring apparatus, when the support 10 in a steady state is observed, a minute vibration having an amplitude of about 20 μm remains as shown in FIG.
The following can be considered as the cause of this residual vibration.
In the conventional mass measuring apparatus, a non-attenuating dynamic vibration absorber is used. However, since attenuation occurs even when a minute resistance is applied, it is difficult to maintain a completely non-attenuating state.
Further, in this mass measuring device, it is difficult to completely synchronize the vibration caused by the actuator 11 with the natural frequency of the dynamic vibration absorber.
This steady-state residual vibration contributes to a decrease in measurement accuracy.

本発明は、こうした事情を考慮して創案したものであり、重力を利用せずに質量を計測できる、高精度な質量測定装置を提供することを目的としている。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a highly accurate mass measuring apparatus capable of measuring mass without using gravity.

本発明は、調和外力を発生する振動発生手段を有し、被測定物の慣性質量を計測する質量測定装置であって、前記振動発生手段を取り付けた支持台と、前記支持台を基盤に支持するばね要素と、前記支持台の振動を抑制するために当該支持台に取り付けた、ばね要素、吸振振動体及びダンパーを有する減衰形動吸振器と、前記減衰形動吸振器の吸振振動体の変位位相に対して前記調和外力の位相が180°の位相差を保つように前記振動発生手段から発生する前記調和外力を制御するPLL(位相同期ループ:Phase Locked Loop)と、を備え、前記被測定物を、前記支持台または減衰形動吸振器の吸振振動体に取り付けることを特徴とする。
動吸振器を完全な非減衰の状態で使用することは困難であるため、この質量測定装置では、逆に、ばね要素と吸振振動体とダンパーとを有する減衰形動吸振器を使用している。減衰形動吸振器の吸振振動体の変位に関する周波数応答曲線は、減衰の値に依存しない点(定点)を通り、この定点では、外力と吸振振動体変位との位相差が180°になる。そのため、この質量測定装置では、減衰形動吸振器の吸振振動体の変位位相に対して振動発生手段から発生する調和外力の位相が180°の位相差を保つようにPLLで制御し、動吸振器系の定点を利用して質量測定を実行する。
The present invention is a mass measuring device having vibration generating means for generating a harmonic external force and measuring the inertial mass of a measurement object, and a support base to which the vibration generating means is attached, and a support base supported by the base. A damping element having a spring element, a vibration absorbing vibration body and a damper attached to the support base in order to suppress vibration of the support base, and a vibration absorbing vibration body of the damping dynamic vibration absorber. A PLL (Phase Locked Loop) that controls the harmonic external force generated from the vibration generating means so as to maintain a phase difference of 180 ° with respect to the displacement phase. The measurement object is attached to the vibration-absorbing vibration body of the support base or the damped dynamic vibration absorber.
Since it is difficult to use a dynamic vibration absorber in a completely non-damped state, this mass measuring device, on the contrary, uses a damped dynamic vibration absorber having a spring element, a vibration-absorbing vibration body, and a damper. . The frequency response curve related to the displacement of the vibration-absorbing vibration body of the damping dynamic vibration absorber passes through a point (fixed point) that does not depend on the attenuation value, and at this fixed point, the phase difference between the external force and the vibration-dissipating vibration body displacement is 180 °. For this reason, in this mass measuring apparatus, the dynamic vibration damping is controlled by the PLL so that the phase of the harmonic external force generated from the vibration generating means maintains a phase difference of 180 ° with respect to the displacement phase of the vibration-absorbing vibration body of the damping dynamic vibration absorber. Perform mass measurement using fixed points of the system.

また、本発明の質量測定装置では、前記減衰形動吸振器の吸振振動体の変位を検出する変位センサを備える。   The mass measuring apparatus of the present invention further includes a displacement sensor that detects the displacement of the vibration-absorbing vibration body of the damping dynamic vibration absorber.

また、本発明の質量測定装置では、前記被測定物を前記支持台に取り付けた場合、前記被測定物の質量をmu、前記支持台の質量をmp、前記減衰形動吸振器の吸振振動体の質量をma、前記支持台を基盤に支持するばね要素のばね定数をkp、前記吸振振動体の変位をXajωt、前記調和外力をFejωtとして、
u=−maa(kp/F)−mp
により前記被測定物の質量を求めることができる。
In the mass measuring apparatus of the present invention, when the object to be measured is attached to the support base, the mass of the object to be measured is m u , the mass of the support base is m p , and the vibration absorption of the damped dynamic vibration absorber Assuming that the mass of the vibrating body is m a , the spring constant of the spring element that supports the support base is k p , the displacement of the vibration-absorbing vibrating body is X a e jωt , and the harmonic external force is Fe jωt ,
m u = −m a X a (k p / F) −m p
Thus, the mass of the object to be measured can be obtained.

また、本発明の質量測定装置では、前記被測定物を前記支持台に取り付けた場合、前記被測定物の質量をmu、前記支持台の質量をmp、前記支持台を基盤に支持するばね要素のばね定数をkp、前記調和外力の角周波数をωとして、
u=−(kp/ω2)−mp
により前記被測定物の質量を求めることもできる。
Further, the mass measuring device of the present invention, when attaching the object to be measured on the support base, for supporting the mass of the object to be measured m u, wherein the support base of the mass m p, the support base foundation Assuming that the spring constant of the spring element is k p and the angular frequency of the harmonic external force is ω,
m u = − (k p / ω 2 ) −m p
Thus, the mass of the object to be measured can also be obtained.

また、本発明の質量測定装置では、前記被測定物を前記減衰形動吸振器の吸振振動体に取り付けた場合、前記被測定物の質量をmu、前記支持台の質量をmp、前記吸振振動体の質量をma、前記支持台を基盤に支持するばね要素のばね定数をkp、前記吸振振動体の変位をXajωt、前記調和外力をFejωtとして、
u=−(mp/Xa)(F/kp)−ma
により前記被測定物の質量を求めることができる。
In the mass measuring apparatus of the present invention, when the object to be measured is attached to the vibration-absorbing vibration body of the damped dynamic vibration absorber, the mass of the object to be measured is m u , the mass of the support base is m p , The mass of the vibration oscillating body is m a , the spring constant of the spring element that supports the support base is k p , the displacement of the vibration oscillating body is X a e jωt , and the harmonic external force is Fe jωt ,
m u = − (m p / X a ) (F / k p ) −m a
Thus, the mass of the object to be measured can be obtained.

また、本発明の質量測定装置は、前記振動発生手段を取り付けた支持台と、前記支持台に取り付けた前記振動発生手段の他端に結合した加振振動体と、前記支持台を基盤に支持するばね要素と、前記支持台の振動を抑制するために当該支持台に取り付けた、ばね要素、吸振振動体及びダンパーを有する減衰形動吸振器と、前記減衰形動吸振器の吸振振動体の変位位相に対して前記加振振動体の変位位相が180°の位相差を保つように前記振動発生手段から発生する前記調和外力を制御するPLLと、を設け、前記被測定物を、前記加振振動体または減衰形動吸振器の吸振振動体に取り付けるように構成することができる。
この質量測定装置は、減衰形動吸振器の作用によって、支持台の振動が抑制されるので、支持台から基盤に伝達する振動は小さい。そのため、宇宙構造物の中で質量測定を行っても、周囲の構造物に伝わる振動は小さい。
Further, the mass measuring device of the present invention includes a support base to which the vibration generating means is attached, a vibrating vibrator coupled to the other end of the vibration generating means attached to the support base, and a support base that supports the support base. A damping element having a spring element, a vibration absorbing vibration body and a damper attached to the support base in order to suppress vibration of the support base, and a vibration absorbing vibration body of the damping dynamic vibration absorber. A PLL for controlling the harmonic external force generated from the vibration generating means so that the displacement phase of the vibrating vibrator maintains a phase difference of 180 ° with respect to the displacement phase. It can be configured to be attached to a vibration-absorbing vibration body or a vibration-absorbing vibration body of a damped dynamic vibration absorber.
In this mass measuring apparatus, since the vibration of the support base is suppressed by the action of the damped dynamic vibration absorber, the vibration transmitted from the support base to the base is small. Therefore, even if mass measurement is performed in a space structure, vibration transmitted to surrounding structures is small.

この質量測定装置では、前記加振振動体及び吸振振動体の変位をそれぞれ検出する変位センサを設ける。   In this mass measuring device, a displacement sensor is provided for detecting the displacements of the excitation vibration body and the vibration absorption body.

この質量測定装置において、前記被測定物を前記加振振動体に取り付けた場合、前記被測定物の質量をmu、前記加振振動体の質量をmb、前記減衰形動吸振器の吸振振動体の質量をma、前記加振振動体の変位をXbjωt、前記吸振振動体の変位をXajωtとして、
u=−ma(Xa/Xb)−mb
により前記被測定物の質量を求めることができる。
In this mass measurement device, the case where the object to be measured attached to the vibrating vibrating body mass m u of the object to be measured, the mass m b of vibration vibrator, vibration absorbing of the damping Katachido Absorber Assuming that the mass of the vibrating body is m a , the displacement of the vibrating vibrator is X b e jωt , and the displacement of the vibration-absorbing vibrator is X a e jωt ,
m u = −m a (X a / X b ) −m b
Thus, the mass of the object to be measured can be obtained.

また、この質量測定装置において、前記被測定物を前記減衰形動吸振器の吸振振動体に取り付けた場合、前記被測定物の質量をmu、前記加振振動体の質量をmb、前記吸振振動体の質量をma、前記加振振動体の変位をXbjωt、前記吸振振動体の変位をXajωtとして、
u=−mb(Xb/Xa)−ma
により前記被測定物の質量を求めることができる。
Further, in the mass measuring unit, when said measured object mounted on the vibration absorbing vibration of the damping Katachido absorber, mass m u of the object to be measured, mass m b of the excitation vibration body, the Assuming that the mass of the vibration-absorbing vibrator is m a , the displacement of the vibration-vibrating body is X b e jωt , and the displacement of the vibration-absorbing vibrator is X a e jωt ,
m u = −m b (X b / X a ) −m a
Thus, the mass of the object to be measured can be obtained.

本発明の質量測定装置は、被測定物の慣性質量を高精度に求めることができる。   The mass measuring apparatus of the present invention can determine the inertial mass of the object to be measured with high accuracy.

本発明の第1の実施形態に係る質量測定装置の構成を示す図The figure which shows the structure of the mass measuring device which concerns on the 1st Embodiment of this invention. 図1の装置の原理図Fig. 1 Principle of the device 減衰形動吸振器の周波数特性を示す図(その1)Figure showing the frequency characteristics of a damped dynamic vibration absorber (Part 1) 減衰形動吸振器の周波数特性を示す図(その2)Figure showing the frequency characteristics of a damped dynamic vibration absorber (Part 2) 本発明の第2の実施形態に係る質量測定装置の構成を示す図The figure which shows the structure of the mass measuring apparatus which concerns on the 2nd Embodiment of this invention. 従来の質量測定装置の構成を示す図The figure which shows the structure of the conventional mass measuring device 従来の質量測定装置の残留振動を示す図Diagram showing residual vibration of a conventional mass measuring device

(第1の実施形態)
図1は、本発明の第1の実施形態に係る質量測定装置の構成を示している。
この装置は、ばね要素31によりベース20に支持された支持台30と、支持台30に振動を与えるアクチュエータ50と、支持台30の振動を抑制するために支持台30に取り付けた“ばね要素41、ダンパー42及び吸振振動体40”から成る減衰形動吸振器と、吸振振動体40の変位を検出する変位センサ51と、制御信号を受けてアクチュエータ50を駆動する電圧増幅器(アンプ)64と、変位センサ51の検出信号に基づいてアンプ64を制御するPLL(位相同期ループ:Phase Locked Loop)とを備えている。
(First embodiment)
FIG. 1 shows a configuration of a mass measuring apparatus according to the first embodiment of the present invention.
This apparatus includes a support base 30 supported by a base 20 by a spring element 31, an actuator 50 that vibrates the support base 30, and a “spring element 41 attached to the support base 30 to suppress the vibration of the support base 30. A damped dynamic vibration absorber comprising a damper 42 and a vibration-absorbing vibration body 40 ″, a displacement sensor 51 for detecting the displacement of the vibration-absorbing vibration body 40, a voltage amplifier (amplifier) 64 for driving the actuator 50 in response to a control signal, A PLL (Phase Locked Loop) that controls the amplifier 64 based on the detection signal of the displacement sensor 51 is provided.

PLLは、変位センサ51の検出信号の位相とアンプ64の制御信号の位相とを比較する位相比較器61と、位相比較器61の出力から不要信号成分を除去するループフィルタ62と、入力電圧に応じてアンプ64に出力する制御信号の周波数を制御する電圧制御発振器63とを備えている。また、アクチュエータ50は、例えば、アンプ64から入力する駆動電圧に比例した力を発生するボイスコイルモータから成る。
質量を測定する被測定物は、後述するように、支持台30または吸振振動体40に取り付ける。
The PLL includes a phase comparator 61 that compares the phase of the detection signal of the displacement sensor 51 with the phase of the control signal of the amplifier 64, a loop filter 62 that removes unnecessary signal components from the output of the phase comparator 61, and an input voltage. Accordingly, a voltage controlled oscillator 63 for controlling the frequency of the control signal output to the amplifier 64 is provided. The actuator 50 is formed of a voice coil motor that generates a force proportional to the drive voltage input from the amplifier 64, for example.
An object to be measured whose mass is to be measured is attached to the support base 30 or the vibration-absorbing vibrator 40 as described later.

この系は、次のように動作する。
アンプ64から正弦波形の駆動電圧が供給されたアクチュエータ50は、調和外力を発生し、支持台30が振動する。支持台30が振動すると、この振動を抑える方向に減衰形動吸振器が振動し、吸振振動体40の振動が変位センサ51によって検出される。PLLの電圧制御発振器63は、位相比較器61の比較結果に基づいて、変位センサ51の検出信号の位相と180°の位相差を持つ正弦波形電圧をアンプ64に出力し、アンプ64は、この正弦波形電圧を増幅してアクチュエータ50を駆動する。
そのため、この系の吸振振動体40は、定常状態において、正弦波形電圧と逆位相で振動する。
This system operates as follows.
The actuator 50 to which the sine waveform drive voltage is supplied from the amplifier 64 generates a harmonic external force, and the support base 30 vibrates. When the support base 30 vibrates, the damping dynamic vibration absorber vibrates in a direction to suppress the vibration, and the vibration of the vibration-absorbing vibration body 40 is detected by the displacement sensor 51. Based on the comparison result of the phase comparator 61, the voltage-controlled oscillator 63 of the PLL outputs a sine waveform voltage having a phase difference of 180 ° from the phase of the detection signal of the displacement sensor 51 to the amplifier 64. The amplifier 64 The actuator 50 is driven by amplifying the sinusoidal waveform voltage.
Therefore, the vibration-absorbing vibrator 40 of this system vibrates in a phase opposite to the sinusoidal waveform voltage in a steady state.

ここで、この系の運動について解析する。
図2に示すように、減衰形動吸振器のばね要素41のばね定数をka、ダンパー42の減衰の値をca、吸振振動体40の質量をma、支持台30の質量をmp、支持台30を支持するばね要素31のばね定数をkp、吸振振動体40の上方変位をxa、支持台30の上方変位をxp、アクチュエータ50の駆動力をf(t)とする。
この系の運動方程式は、次の(数11)(数12)のように表される。
(数11)(数12)から次式(数13)(数14)のような伝達関数が得られる。
ここで、
としている。
Here, the motion of this system is analyzed.
As shown in FIG. 2, the spring constant k a of the spring element 41 of the damping Katachido vibration absorber, the value of the attenuation c a damper 42, the mass of the vibration absorbing vibrator 40 m a, the mass of the support table 30 m p , the spring constant of the spring element 31 supporting the support base 30 is k p , the upward displacement of the vibration-absorbing vibrator 40 is x a , the upward displacement of the support base 30 is x p , and the driving force of the actuator 50 is f (t). To do.
The equation of motion of this system is expressed as the following (Equation 11) (Equation 12).
From (Equation 11) and (Equation 12), a transfer function such as the following equations (Equation 13) and (Equation 14) is obtained.
here,
It is said.

この系の定常応答を求めるために(数17)のような解を仮定する。
このとき、xp(t)及びxa(t)の複素振幅は、次式(数18)(数19)のように求められる。
p(jω)は、(数13)のGp(s)のsにjωを代入したものであり、Ga(jω)は、(数14)のGa(s)のsにjωを代入したものである。
ここで、f(t)の角周波数ωと支持台30の系(支持台30+ばね要素31)の自然角周波数(固有振動数)ωpとが次式(数20)のように一致したとする。
In order to obtain the steady-state response of this system, a solution like (Equation 17) is assumed.
At this time, the complex amplitudes of x p (t) and x a (t) are obtained by the following equations (Equation 18) and (Equation 19).
G p (jω) is a value obtained by substituting jω for s of G p (s) in (Equation 13), and G a (jω) is jω in s of G a (s) in (Equation 14). It is a substitution.
Here, it is assumed that the angular frequency ω of f (t) and the natural angular frequency (natural frequency) ω p of the system of the support base 30 (support base 30 + spring element 31) coincide as shown in the following expression (Expression 20). To do.

このとき、(数18)(数19)から、次式(数21)が得られる。
この(数21)は、減衰caの値に依らずに成立する(状態A)。
また、(数21)は、f(t)と吸振振動体40の上方変位との位相差が180°に成ることを示している(状態B)。
これは、(数20)を満たすとき、減衰形動吸振器の周波数応答曲線の定点に位置していることを示している。
At this time, the following equation (Equation 21) is obtained from (Equation 18) and (Equation 19).
This (Equation 21) holds regardless of the value of the attenuation c a (state A).
Further, (Equation 21) indicates that the phase difference between f (t) and the upward displacement of the vibration-absorbing vibrator 40 is 180 ° (state B).
This indicates that when (Equation 20) is satisfied, it is located at a fixed point of the frequency response curve of the damped dynamic vibration absorber.

図3は、Xaに関する減衰形動吸振器の周波数応答曲線を示し、図4は、f(t)と吸振振動体40の上方変位との位相差に関する減衰形動吸振器の周波数応答曲線を示している。これらの図が示しているように、減衰caの大きさにより曲線の形状は異なるが、減衰caの値に依存せずに曲線が通過する点(丸印)が存在し、この点が定点と呼ばれている。
この質量測定装置では、動吸振器系の定点を利用して質量測定を行っている。そのためには、(数20)の条件を満たす必要があるが、(数20)の条件を満たすとき、前述するように、前記(状態B)が成立するため、この質量測定装置では、PLLを利用して前記(状態B)を保ち、定点を確保している。
即ち、アクチュエータ50の調和外力(またはそれと比例する信号)と、減衰形動吸振器の吸振振動体40の上方変位との位相を比較し、それがちょうど180°の位相差を持つように、調和外力を生成するアクチュエータ50の駆動周波数ωを調整している。
FIG. 3 shows the frequency response curve of the damped dynamic vibration absorber with respect to X a , and FIG. 4 shows the frequency response curve of the damped dynamic vibration absorber with respect to the phase difference between f (t) and the upward displacement of the vibration damped vibrator 40. Show. As these figures show, although different from the shape of the curve depending on the magnitude of the damping c a, that passes curve without depending on the value of the attenuation c a (circle) is present, this point It is called a fixed point.
In this mass measuring apparatus, mass measurement is performed using a fixed point of a dynamic vibration absorber system. For that purpose, it is necessary to satisfy the condition of (Equation 20). However, when the condition of (Equation 20) is satisfied, as described above, since (State B) is established, in this mass measuring apparatus, the PLL is The above (state B) is maintained by using and a fixed point is secured.
That is, the phase of the harmonic external force of the actuator 50 (or a signal proportional thereto) is compared with the upward displacement of the vibration-absorbing vibration body 40 of the damped dynamic vibration absorber, and the harmonic force is adjusted so that it has a phase difference of exactly 180 °. The drive frequency ω of the actuator 50 that generates the external force is adjusted.

質量を測定する被測定物の質量をmuとし、この被測定物を減衰形動吸振器の吸振振動体40に取り付けたとすると、(数21)から次式(数22)が成立する。
(ma+mu)=−(mp/Xa)(F/kp
u=−(mp/Xa)(F/kp)−ma (数22)
従って、mp、kp、ma及び調和外力の振幅Fを予め定めておけば、減衰形動吸振器の吸振振動体40の振動振幅Xaを測定することにより、被測定物の質量muを推定することができる。
The mass of the measured object to measure the mass and m u, assuming that attach the object to be measured Absorber vibrator 40 of the damping Katachido vibration absorber, the following equation (Equation 22) is established from equation (21).
(M a + m u ) = − (m p / X a ) (F / k p )
m u = − (m p / X a ) (F / k p ) −m a (Equation 22)
Accordingly, if m p , k p , m a and the amplitude F of the harmonic external force are determined in advance, the mass m of the object to be measured can be obtained by measuring the vibration amplitude X a of the vibration absorbing body 40 of the damping dynamic vibration absorber. u can be estimated.

また、被測定物を支持台30に取り付けた場合は、(数21)から次式(数23)が成立する。
(mp+mu)=−maa(kp/F)
u=−maa(kp/F)−mp (数23)
そのため、減衰形動吸振器の吸振振動体40の振動振幅Xaを測定することにより、被測定物の質量muを推定することができる。
When the object to be measured is attached to the support base 30, the following equation (Equation 23) is established from (Equation 21).
(M p + m u ) = − m a X a (k p / F)
m u = −m a X a (k p / F) −m p (Equation 23)
Therefore, by measuring the vibration amplitude X a vibration absorbing vibrator 40 of the damping Katachido vibration absorber, it is possible to estimate the mass m u of the object to be measured.

また、被測定物を支持台30に取り付けた場合は、(数20)から次式(数24)が成立する。
(mp+mu)=−(kp/ω2
u=−(kp/ω2)−mp (数24)
そのため、調和外力の角周波数ωから被測定物の質量muを推定することもできる。
When the object to be measured is attached to the support base 30, the following equation (Equation 24) is established from (Equation 20).
(M p + m u ) = − (k p / ω 2 )
m u = − (k p / ω 2 ) −m p (Equation 24)
Therefore, the mass m u of the object to be measured can be estimated from the angular frequency ω of the harmonic external force.

このように、この質量測定装置は、減衰形動吸振器の定点を利用して質量測定を行っており、そのために、振動発生手段(アクチュエータ)の発生する調和外力の位相が、減衰形動吸振器の吸振振動体の変位位相に対して180°の位相差を持つようにPLLで制御している。PLLは、誤差が10-6のオーダであり、極めて高精度である。そのため、この質量測定装置は、質量を高精度に計測することができる。 As described above, this mass measuring apparatus performs mass measurement using the fixed point of the damped dynamic vibration absorber, and for this reason, the phase of the harmonic external force generated by the vibration generating means (actuator) is It is controlled by the PLL so that it has a phase difference of 180 ° with respect to the displacement phase of the vibration-absorbing vibrating body of the container. The PLL has an error on the order of 10 −6 and is extremely accurate. Therefore, this mass measuring device can measure mass with high accuracy.

(第2の実施形態)
図5は、本発明の第2の実施形態に係る質量測定装置の構成を示している。
この装置は、ばね要素31によりベース20に支持された支持台30と、支持台30に固定されたアクチュエータ50と、アクチュエータ50の他端に結合された加振振動体52と、加振振動体52の変位を検出する変位センサ53と、アクチュエータ50を駆動するアンプ64と、支持台30の振動を抑制するために支持台30に取り付けた“ばね要素41、ダンパー42及び吸振振動体40”から成る減衰形動吸振器と、吸振振動体40の変位を検出する変位センサ51と、加振振動体52の変位位相が減衰形動吸振器の吸振振動体40の変位位相に対して180°の位相差を保つようにアクチュエータ50から発生される調和外力を制御するPLLとを備えている。PLLは、変位センサ51の検出信号の位相と変位センサ53の検出信号の位相とを比較する位相比較器61と、位相比較器61の出力から不要信号成分を除去するループフィルタ62と、入力電圧に応じてアンプ64に出力する正弦波形電圧の周波数を制御する電圧制御発振器63とを備えている。
質量を測定する被測定物は、加振振動体52または吸振振動体40に取り付ける。
(Second Embodiment)
FIG. 5 shows a configuration of a mass measuring apparatus according to the second embodiment of the present invention.
This apparatus includes a support base 30 supported on a base 20 by a spring element 31, an actuator 50 fixed to the support base 30, a vibration vibrating body 52 coupled to the other end of the actuator 50, and a vibration vibration body. From the displacement sensor 53 for detecting the displacement of 52, the amplifier 64 for driving the actuator 50, and the "spring element 41, damper 42 and vibration-absorbing vibrator 40" attached to the support base 30 to suppress the vibration of the support base 30. The displacement type vibration absorber, the displacement sensor 51 for detecting the displacement of the vibration absorption body 40, and the displacement phase of the vibration vibration body 52 are 180 ° with respect to the displacement phase of the vibration absorption body 40 of the attenuation type vibration vibration absorber. And a PLL for controlling the harmonic external force generated from the actuator 50 so as to maintain the phase difference. The PLL includes a phase comparator 61 that compares the phase of the detection signal of the displacement sensor 51 with the phase of the detection signal of the displacement sensor 53, a loop filter 62 that removes unnecessary signal components from the output of the phase comparator 61, and an input voltage. And a voltage controlled oscillator 63 for controlling the frequency of the sinusoidal waveform voltage output to the amplifier 64.
The object to be measured for mass is attached to the vibration vibrator 52 or the vibration vibration body 40.

この系は、次のように動作する。
アンプ64から正弦波形の駆動電圧が供給されたアクチュエータ50は、調和外力を発生し、支持台30及び加振振動体52が振動する。加振振動体52の振動は、変位センサ53によって検出される。また、支持台30が振動すると、この振動を抑制するように減衰形動吸振器の吸振振動体40が振動し、吸振振動体40の振動が変位センサ51によって検出される。PLLの位相比較器61は、変位センサ53及び変位センサ51の検出信号の位相差を検出し、電圧制御発振器63は、位相比較器61の比較結果に基づいて、変位センサ51の検出信号の位相と180°の位相差を持つ正弦波形電圧をアンプ64に出力し、アンプ64は、この正弦波形電圧を増幅してアクチュエータ50を駆動する。
そのため、この系では、支持台30を境にして、吸振振動体40と加振振動体52とが、同期して反対方向に動き、定常状態では、吸振振動体40と加振振動体52とが、同調して逆位相で振動する。
This system operates as follows.
The actuator 50 to which the drive voltage having a sine waveform is supplied from the amplifier 64 generates a harmonic external force, and the support base 30 and the vibrating vibrator 52 vibrate. The vibration of the vibrating vibrator 52 is detected by the displacement sensor 53. Further, when the support base 30 vibrates, the vibration-absorbing vibration body 40 of the damped dynamic vibration absorber vibrates so as to suppress this vibration, and the vibration of the vibration-absorbing vibration body 40 is detected by the displacement sensor 51. The phase comparator 61 of the PLL detects the phase difference between the detection signals of the displacement sensor 53 and the displacement sensor 51, and the voltage control oscillator 63 determines the phase of the detection signal of the displacement sensor 51 based on the comparison result of the phase comparator 61. And a sine waveform voltage having a phase difference of 180 ° to the amplifier 64, and the amplifier 64 amplifies the sine waveform voltage to drive the actuator 50.
Therefore, in this system, the vibration-absorbing vibration body 40 and the vibration vibration body 52 are synchronously moved in opposite directions with the support base 30 as a boundary, and in a steady state, the vibration-absorption vibration body 40 and the vibration vibration body 52 are But oscillate in antiphase.

この質量測定装置も、第1の実施形態と同様に、減衰形動吸振器の定点を利用して質量測定を行っており、そのために、振動発生手段(アクチュエータ)の発生する調和外力の位相が、減衰形動吸振器の吸振振動体40の変位位相に対して180°の位相差を持つようにPLLで制御している。   Similarly to the first embodiment, this mass measuring apparatus also performs mass measurement using a fixed point of the damped dynamic vibration absorber, and for this reason, the phase of the harmonic external force generated by the vibration generating means (actuator) is The PLL controls the phase difference of 180 ° with respect to the displacement phase of the vibration-absorbing vibration body 40 of the damping dynamic vibration absorber.

この系の運動方程式について説明する。
加振振動体52の質量をmb、加振振動体52の上方変位をxbとすると、加振振動体52に関する運動方程式が次式(数25)のように表される。
ここで、f(t)は、アクチュエータ50が発生する力を表している。定常応答を求めるために、(数26)のような解を仮定する。
(数25)から、xbの複素振幅は、(数27)のように求められる。
(数20)(数21)(数27)から、次式(数28)が得られる。
The equation of motion of this system will be described.
When the mass of the vibrating vibrator 52 is m b and the upward displacement of the vibrating vibrator 52 is x b , the equation of motion related to the vibrating vibrator 52 is expressed by the following equation (Equation 25).
Here, f (t) represents the force generated by the actuator 50. In order to obtain a steady response, a solution like (Equation 26) is assumed.
From (Equation 25), the complex amplitude of x b is obtained as (Equation 27).
From (Expression 20), (Expression 21), and (Expression 27), the following expression (Expression 28) is obtained.

質量を測定する被測定物の質量をmuとし、この被測定物を減衰形動吸振器の吸振振動体40に取り付けたとすると、(数28)から次式(数29)が成立する。
(ma+mu)=−mb(Xb/Xa
u=−mb(Xb/Xa)−ma (数29)
従って、mb及びmaを予め定めておけば、減衰形動吸振器の吸振振動体40の振動振幅Xa及び加振振動体52の振動振幅Xbを測定することにより、被測定物の質量muを推定することができる。
The mass of the measured object to measure the mass and m u, assuming that attach the object to be measured Absorber vibrator 40 of the damping Katachido vibration absorber, the following equation (Equation 29) is established from equation (28).
(M a + m u ) = − m b (X b / X a )
m u = −m b (X b / X a ) −m a (Equation 29)
Therefore, if m b and m a are determined in advance, the vibration amplitude X a of the vibration-absorbing vibration body 40 and the vibration amplitude X b of the vibration-vibration body 52 of the damped dynamic vibration absorber are measured. The mass m u can be estimated.

また、被測定物を加振振動体52に取り付けた場合は、(数28)から次式(数30)が成立する。
(mb+mu)=−ma(Xa/Xb
u=−ma(Xa/Xb)−mb (数30)
従って、mb及びmaを予め定めておけば、減衰形動吸振器の吸振振動体40の振動振幅Xa及び加振振動体52の振動振幅Xbを測定することにより、被測定物の質量muを推定することができる。
Further, when the object to be measured is attached to the vibrating vibrator 52, the following equation (Equation 30) is established from (Equation 28).
(M b + m u ) = − m a (X a / X b )
m u = −m a (X a / X b ) −m b (Equation 30)
Therefore, if m b and m a are determined in advance, the vibration amplitude X a of the vibration-absorbing vibration body 40 and the vibration amplitude X b of the vibration-vibration body 52 of the damped dynamic vibration absorber are measured. The mass m u can be estimated.

この質量測定装置は、減衰形動吸振器の作用によって支持台30から基盤20に伝わる振動が抑制されるため、宇宙構造物の中で質量測定を行う場合でも、周囲の構造物に伝わる振動は小さい。宇宙構造物は、自重を支える必要が無く、また、打上げコストを削減するために、極限まで軽量化されているから、周囲の構造物への振動の伝搬は避ける必要がある。従って、この質量測定装置は、宇宙での実験に極めて有利な特質を備えている。   In this mass measuring apparatus, since vibrations transmitted from the support base 30 to the base 20 are suppressed by the action of the damped dynamic vibration absorber, even when mass measurement is performed in a space structure, vibrations transmitted to surrounding structures are not affected. small. The space structure does not need to support its own weight, and in order to reduce the launch cost, it is lightened to the utmost limit. Therefore, it is necessary to avoid the propagation of vibrations to surrounding structures. Therefore, this mass measuring device has characteristics that are extremely advantageous for experiments in space.

なお、本発明の質量測定装置は、無重力環境だけでなく、振動が発生している揺動環境や、移動体の内部など、天秤の使用が困難な環境での質量測定に利用可能であり、また、高精度を要するバイオ・医用工学での計測などにも使用できる。   The mass measuring device of the present invention can be used for mass measurement in an environment where it is difficult to use a balance, such as a swinging environment in which vibration is generated as well as a moving body, as well as a zero-gravity environment. It can also be used for measurements in biotechnology and medical engineering that require high accuracy.

本発明の質量測定装置は、高精度の質量計測が可能であり、無重力環境や揺動環境、移動体内部など、天秤が使用できない環境、あるいは、高精度の質量計測が必要な各分野で広く利用することができる。   The mass measuring device of the present invention is capable of high-accuracy mass measurement, and is widely used in environments where a balance cannot be used, such as a zero-gravity environment, rocking environment, or inside a moving body, or in various fields where high-accuracy mass measurement is required. Can be used.

10 支持台
11 アクチュエータ
12 測定対象物取付台
13 測定対象物
14 錘(振動体)
15 ばね要素
16 ばね要素
20 ベース
30 支持台
31 ばね要素
40 吸振振動体
41 ばね要素
42 ダンパー
50 アクチュエータ
51 変位センサ
52 加振振動体
53 変位センサ
61 位相比較器
62 ループフィルタ
63 電圧制御発振器
65 電圧増幅器
DESCRIPTION OF SYMBOLS 10 Support stand 11 Actuator 12 Measuring object mounting base 13 Measuring object 14 Weight (vibrating body)
DESCRIPTION OF SYMBOLS 15 Spring element 16 Spring element 20 Base 30 Support base 31 Spring element 40 Vibration-absorbing vibration body 41 Spring element 42 Damper 50 Actuator 51 Displacement sensor 52 Excitation vibration body 53 Displacement sensor 61 Phase comparator 62 Loop filter 63 Voltage control oscillator 65 Voltage amplifier

Claims (9)

調和外力を発生する振動発生手段を有し、被測定物の慣性質量を計測する質量測定装置であって、
前記振動発生手段を取り付けた支持台と、
前記支持台を基盤に支持するばね要素と、
前記支持台の振動を抑制するために当該支持台に取り付けた、ばね要素、吸振振動体及びダンパーを有する減衰形動吸振器と、
前記減衰形動吸振器の吸振振動体の変位位相に対して前記調和外力の位相が180°の位相差を保つように前記振動発生手段から発生する前記調和外力を制御するPLLと、
を備え、前記被測定物を、前記支持台または減衰形動吸振器の吸振振動体に取り付けることを特徴とする質量測定装置。
A mass measuring device having a vibration generating means for generating a harmonic external force and measuring an inertial mass of a measurement object,
A support base to which the vibration generating means is attached;
A spring element for supporting the support on the base;
A damping type dynamic vibration absorber having a spring element, a vibration-absorbing vibration body, and a damper attached to the support base in order to suppress vibration of the support base;
A PLL for controlling the harmonic external force generated from the vibration generating means so that the phase of the harmonic external force maintains a phase difference of 180 ° with respect to the displacement phase of the vibration-absorbing vibration body of the damping dynamic vibration absorber;
A mass measuring apparatus comprising: the object to be measured attached to a vibration-absorbing vibration body of the support base or a damped dynamic vibration absorber.
請求項1に記載の質量測定装置であって、前記減衰形動吸振器の吸振振動体の変位を検出する変位センサを備えることを特徴とする質量測定装置。   The mass measuring apparatus according to claim 1, further comprising a displacement sensor that detects a displacement of a vibration-absorbing vibration body of the damping dynamic vibration absorber. 請求項1または2に記載の質量測定装置であって、前記被測定物が前記支持台に取り付けられ、
前記被測定物の質量をmu、前記支持台の質量をmp、前記減衰形動吸振器の吸振振動体の質量をma、前記支持台を基盤に支持するばね要素のばね定数をkp、前記吸振振動体の変位をXajωt、前記調和外力をFejωtとするとき、
u=−maa(kp/F)−mp
により前記被測定物の質量を求めることを特徴とする質量測定装置。
The mass measuring device according to claim 1 or 2, wherein the object to be measured is attached to the support base,
The mass of the object to be measured is m u , the mass of the support base is m p , the mass of the vibration-absorbing vibration body of the damped dynamic vibration absorber is m a , and the spring constant of the spring element that supports the support base on the basis is k p , when the displacement of the vibration-absorbing vibrator is X a e jωt and the harmonic external force is Fe jωt ,
m u = −m a X a (k p / F) −m p
A mass measuring device for obtaining the mass of the object to be measured by
請求項1または2に記載の質量測定装置であって、前記被測定物が前記支持台に取り付けられ、
前記被測定物の質量をmu、前記支持台の質量をmp、前記支持台を基盤に支持するばね要素のばね定数をkp、前記調和外力の角周波数をωとするとき、
u=−(kp/ω2)−mp
により前記被測定物の質量を求めることを特徴とする質量測定装置。
The mass measuring device according to claim 1 or 2, wherein the object to be measured is attached to the support base,
When the mass of the object to be measured is m u , the mass of the support base is m p , the spring constant of the spring element supporting the support base is k p , and the angular frequency of the harmonic external force is ω,
m u = − (k p / ω 2 ) −m p
A mass measuring device for obtaining the mass of the object to be measured by
請求項1または2に記載の質量測定装置であって、前記被測定物が前記減衰形動吸振器の吸振振動体に取り付けられ、
前記被測定物の質量をmu、前記支持台の質量をmp、前記減衰形動吸振器の吸振振動体の質量をma、前記支持台を基盤に支持するばね要素のばね定数をkp、前記吸振振動体の変位をXajωt、前記調和外力をFejωtとするとき、
u=−(mp/Xa)(F/kp)−ma
により前記被測定物の質量を求めることを特徴とする質量測定装置。
The mass measuring apparatus according to claim 1 or 2, wherein the object to be measured is attached to a vibration-absorbing vibration body of the damped dynamic vibration absorber,
The mass of the object to be measured is m u , the mass of the support base is m p , the mass of the vibration-absorbing vibration body of the damped dynamic vibration absorber is m a , and the spring constant of the spring element that supports the support base on the basis is k p , when the displacement of the vibration-absorbing vibrator is X a e jωt and the harmonic external force is Fe jωt ,
m u = − (m p / X a ) (F / k p ) −m a
A mass measuring device for obtaining the mass of the object to be measured by
調和外力を発生する振動発生手段を有し、被測定物の慣性質量を計測する質量測定装置であって、
前記振動発生手段を取り付けた支持台と、
前記支持台に取り付けた前記振動発生手段の他端に結合した加振振動体と、
前記支持台を基盤に支持するばね要素と、
前記支持台の振動を抑制するために当該支持台に取り付けた、ばね要素、吸振振動体及びダンパーを有する減衰形動吸振器と、
前記減衰形動吸振器の吸振振動体の変位位相に対して前記加振振動体の変位位相が180°の位相差を保つように前記振動発生手段から発生する前記調和外力を制御するPLLと、
を備え、前記被測定物を、前記加振振動体または減衰形動吸振器の吸振振動体に取り付けることを特徴とする質量測定装置。
A mass measuring device having a vibration generating means for generating a harmonic external force and measuring an inertial mass of a measurement object,
A support base to which the vibration generating means is attached;
A vibrating vibrator coupled to the other end of the vibration generating means attached to the support;
A spring element for supporting the support on the base;
A damping type dynamic vibration absorber having a spring element, a vibration-absorbing vibration body, and a damper attached to the support base in order to suppress vibration of the support base;
A PLL for controlling the harmonic external force generated from the vibration generating means so that the displacement phase of the vibration vibrating body maintains a phase difference of 180 ° with respect to the displacement phase of the vibration damping vibration body of the damping dynamic vibration absorber;
A mass measuring apparatus comprising: the vibration measuring body or the vibration-absorbing vibration body of the damped dynamic vibration absorber.
請求項6に記載の質量測定装置であって、前記加振振動体及び吸振振動体の変位をそれぞれ検出する変位センサを備えることを特徴とする質量測定装置。   The mass measuring apparatus according to claim 6, further comprising a displacement sensor that detects the displacement of each of the excitation vibration body and the vibration absorption body. 請求項6または7に記載の質量測定装置であって、前記被測定物が前記加振振動体に取り付けられ、
前記被測定物の質量をmu、前記加振振動体の質量をmb、前記減衰形動吸振器の吸振振動体の質量をma、前記加振振動体の変位をXbjωt、前記吸振振動体の変位をXajωtとするとき、
u=−ma(Xa/Xb)−mb
により前記被測定物の質量を求めることを特徴とする質量測定装置。
The mass measuring device according to claim 6 or 7, wherein the object to be measured is attached to the vibrating vibrator.
The mass m u of the object to be measured, mass m b of the excitation vibration body, the damping Katachido Absorbers mass m a vibration absorbing vibration member, the displacement of the vibration vibrator X b e j? T, When the displacement of the vibration-absorbing vibrator is X a e jωt ,
m u = −m a (X a / X b ) −m b
A mass measuring device for obtaining the mass of the object to be measured by
請求項6または7に記載の質量測定装置であって、前記被測定物が前記減衰形動吸振器の吸振振動体に取り付けられ、
前記被測定物の質量をmu、前記加振振動体の質量をmb、前記吸振振動体の質量をma、前記加振振動体の変位をXbjωt、前記吸振振動体の変位をXajωtとするとき、
u=−mb(Xb/Xa)−ma
により前記被測定物の質量を求めることを特徴とする質量測定装置。
The mass measuring device according to claim 6 or 7, wherein the object to be measured is attached to a vibration-absorbing vibration body of the damped dynamic vibration absorber,
Mass m u of the object to be measured, the vibration mass m b of the vibrator, the vibration absorbing mass m a of the vibrator, the vibrator vibrating body displaces X b e j? T, the displacement of the vibration absorbing vibrator Is X a e jωt ,
m u = −m b (X b / X a ) −m a
A mass measuring device for obtaining the mass of the object to be measured by
JP2009194800A 2009-08-25 2009-08-25 Mass measuring device Pending JP2011047718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194800A JP2011047718A (en) 2009-08-25 2009-08-25 Mass measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194800A JP2011047718A (en) 2009-08-25 2009-08-25 Mass measuring device

Publications (1)

Publication Number Publication Date
JP2011047718A true JP2011047718A (en) 2011-03-10

Family

ID=43834207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194800A Pending JP2011047718A (en) 2009-08-25 2009-08-25 Mass measuring device

Country Status (1)

Country Link
JP (1) JP2011047718A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042667A1 (en) * 2011-09-20 2013-03-28 株式会社イシダ Mass measurement device
JP2013079931A (en) * 2011-09-20 2013-05-02 Ishida Co Ltd Mass measurement device
JP2013185846A (en) * 2012-03-06 2013-09-19 Ishida Co Ltd Mass measurement device
JP2013195197A (en) * 2012-03-19 2013-09-30 Ishida Co Ltd Mass measuring apparatus
JP2013213749A (en) * 2012-04-03 2013-10-17 Ishida Co Ltd Mass measuring device
CN104930974A (en) * 2015-06-15 2015-09-23 厦门理工学院 No-fixed displacement meter capable of directly measuring dynamic displacement of measurement point
KR101825054B1 (en) * 2016-09-21 2018-02-05 한양대학교 산학협력단 Apparatus and method for meauring welding stiffness of welding structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042667A1 (en) * 2011-09-20 2013-03-28 株式会社イシダ Mass measurement device
JP2013079931A (en) * 2011-09-20 2013-05-02 Ishida Co Ltd Mass measurement device
CN103814279A (en) * 2011-09-20 2014-05-21 株式会社石田 Mass measurement device
US9140598B2 (en) 2011-09-20 2015-09-22 Ishida Co., Ltd. Mass measurement device
JP2013185846A (en) * 2012-03-06 2013-09-19 Ishida Co Ltd Mass measurement device
JP2013195197A (en) * 2012-03-19 2013-09-30 Ishida Co Ltd Mass measuring apparatus
JP2013213749A (en) * 2012-04-03 2013-10-17 Ishida Co Ltd Mass measuring device
CN104930974A (en) * 2015-06-15 2015-09-23 厦门理工学院 No-fixed displacement meter capable of directly measuring dynamic displacement of measurement point
KR101825054B1 (en) * 2016-09-21 2018-02-05 한양대학교 산학협력단 Apparatus and method for meauring welding stiffness of welding structure

Similar Documents

Publication Publication Date Title
JP2011047718A (en) Mass measuring device
KR101178692B1 (en) Coriolis gyro
US9739613B2 (en) Microelectromechanical structure with enhanced rejection of acceleration noise
JP5991431B2 (en) Improved vibratory gyroscope
Prikhodko et al. Sub-degree-per-hour silicon MEMS rate sensor with 1 million Q-factor
CN105547274B (en) A kind of active shake weakening control method for machine laser gyroscope shaking
WO2010051560A1 (en) Vibratory gyroscope utilizing a frequency-based measurement and providing a frequency output
JP2020134515A (en) Multiaxial gyroscope having synchronization frame
JP2014055935A (en) Vibration isolated micro-electromechanical system structures, and manufacturing methods of them
Nekrasov et al. Influence of translational vibrations, shocks and acoustic noise on MEMS gyro performance
JP3314187B2 (en) Force compensator for inertial mass measurement
Aktakka et al. On-chip characterization of scale-factor of a MEMS gyroscope via a micro calibration platform
Hou et al. Effect of die attachment on key dynamical parameters of micromachined gyroscopes
Wen et al. Modeling and analysis of temperature effect on MEMS gyroscope
Yin et al. Structure-decoupled dual-mass MEMS gyroscope with self-adaptive closed-loop detection
Efimovskaya et al. Multi-degree-of-freedom MEMS coriolis vibratory gyroscopes designed for dynamic range, robustness, and sensitivity
Kehrberg et al. Modal analysis of MEMS using ultrasonic base excitation
Mizuno Development of mass measurement devices for zero-gravity experiments
Ovchinnikova et al. Control of vibrations in a micromechanical gyroscope using inertia properties of standing elastic waves
RU161310U1 (en) SENSITIVE ELEMENT OF ANGULAR SPEED SENSOR
Mo et al. Quadrature error and offset error suppression methods for micro-gyroscopes
Li et al. Design and simulations of a resonant accelerometer
EA019467B1 (en) Vibration gyroscope
Nguyen et al. Design and Simulation of Micromachined Gyroscope Based on Finite Element Method
Zeng et al. A Novel Electromagnetic Suspended Rate Integrating Vibratory Gyroscope