JP2011047326A - Control device for exhaust passage switching type internal combustion engine - Google Patents

Control device for exhaust passage switching type internal combustion engine Download PDF

Info

Publication number
JP2011047326A
JP2011047326A JP2009196216A JP2009196216A JP2011047326A JP 2011047326 A JP2011047326 A JP 2011047326A JP 2009196216 A JP2009196216 A JP 2009196216A JP 2009196216 A JP2009196216 A JP 2009196216A JP 2011047326 A JP2011047326 A JP 2011047326A
Authority
JP
Japan
Prior art keywords
exhaust passage
ignition timing
internal combustion
combustion engine
switching valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009196216A
Other languages
Japanese (ja)
Inventor
Tomohiro Ohisa
智弘 大久
Kazuhiko Kanetoshi
和彦 兼利
Masahiro Toyohara
正裕 豊原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2009196216A priority Critical patent/JP2011047326A/en
Publication of JP2011047326A publication Critical patent/JP2011047326A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To perform correction according to a change in an exhaust state by gradually changing ignition timing when switching an exhaust passage, and to improve torque fluctuations by improving ignition timing control performance according to an in-cylinder air-fuel mixture. <P>SOLUTION: The ignition timing from the starting of the switching of an exhaust passage selector valve to the completion of the switching thereof is calculated based on the following results: a reference ignition timing calculation result in closing the exhaust passage selector valve, calculating the ignition timing when the exhaust passage selector valve is opened by an exhaust passage selector valve driving means; a reference ignition timing calculation result in closing the exhaust passage selector valve, calculating the ignition timing when the exhaust passage selector valve is closed by the exhaust passage selector valve driving means; a determination result for a condition for switching the exhaust passage selector valve, switching the exhaust passage selector valve based on the operating condition of an internal combustion engine; a calculation result with the actual operating state of the exhaust passage selector valve detected or estimated; and a calculation result for an ignition timing damper correction coefficient, calculating a variation in the ignition timing when switching the exhaust passage selector valve and calculating the amount of ignition timing damper correction from the starting of the switching of the exhaust passage selector valve to the completion of the switching thereof. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、内燃機関の点火時期制御装置に係り、特に、複数備えられた排気通路を切替える制御を行うものにおいて、点火時期の補正を最適に行う内燃機関の制御装置に関する。   The present invention relates to an ignition timing control apparatus for an internal combustion engine, and more particularly to an internal combustion engine control apparatus that optimally corrects an ignition timing in a control system that switches a plurality of exhaust passages.

内燃機関の排気性能向上のため、排気管に備え付けられる触媒の早期活性化が行われている。その方法として、排気管の複数の排気通路を切替えて排気通路毎に備えられた複数の触媒を使い分けている。排気通路を切替えて複数の触媒を使い分ける目的として、従来用いられる触媒に加え小容量で熱伝導性の良い早期活性化触媒を用いて、触媒が活性する時間を短縮化するものがある。例えば、特許文献1所載の技術では、触媒が活性するまで早期活性化触媒を利用するために排気通路を切替えている。この時、触媒温度を早期に上昇させるため点火時期を遅角側に変更して排気温度を上昇させている。   In order to improve the exhaust performance of an internal combustion engine, the catalyst provided in the exhaust pipe is activated early. As a method for this, a plurality of exhaust passages of the exhaust pipe are switched to selectively use a plurality of catalysts provided for each exhaust passage. The purpose of switching the exhaust passage and selectively using a plurality of catalysts is to use an early activation catalyst having a small capacity and good thermal conductivity in addition to the conventionally used catalyst to shorten the time for which the catalyst is activated. For example, in the technique described in Patent Document 1, the exhaust passage is switched to use the early activation catalyst until the catalyst is activated. At this time, in order to raise the catalyst temperature early, the ignition timing is changed to the retard side to raise the exhaust gas temperature.

特開平5−321643号公報JP-A-5-321643

しかしながら、排気通路切替えによる排気圧力の変化に内燃機関の点火時期が対応できない場合、トルク変動が増加することにより運転性が悪化する可能性がある。   However, when the ignition timing of the internal combustion engine cannot cope with the change in the exhaust pressure due to the switching of the exhaust passage, the operability may be deteriorated due to an increase in torque fluctuation.

本発明は、上記の課題を解決するためになされたもので、排気通路を切替える場合の気筒内混合気に対応するために排気通路状態変化に応じて点火時期変化を滑らかにすることで、トルク変動を改善する内燃機関の制御装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problem. In order to cope with the in-cylinder mixture when the exhaust passage is switched, the ignition timing change is made smooth according to the change in the exhaust passage state, so that the torque is increased. An object of the present invention is to provide a control device for an internal combustion engine that improves fluctuations.

本発明に係る内燃機関の制御装置は、複数の排気通路を有する内燃機関の排気管と、前記排気管の複数の排気通路を切替える排気通路切替え弁と、前記内燃機関の回転数を検出する回転数検出手段と、前記内燃機関の吸気状態を検出する吸気状態検出手段と、前記内燃機関の温度状態を検出する冷却水温検出手段と、前記内燃機関の要求駆動状態を検出するアクセル開度検出手段と、前記吸気状態検出手段の検出値から前記内燃機関の負荷を算出する負荷算出手段と、前記アクセル開度検出手段の検出値から前記内燃機関の駆動量となるトルクを算出するトルク検出手段と、前記排気通路切替え弁を駆動するための電気的駆動信号を与える排気通路切替え弁駆動手段を有し、
前記排気通路切替え弁の切替え開始から切替え完了までの点火時期を補正すること
切替え開始時および切替え完了時の点火時期は前記排気通路切替え弁開/閉弁時それぞれの点火時期の最適値に基づいて算出すること
前記排気通路切替え弁開/閉弁時それぞれの点火時期の最適値は少なくとも前記トルクと回転数と負荷と冷却水温のいずれかに基づいて算出すること
前記排気通路切替え弁の切替え開始から切替え完了までの点火時期を補正する点火時期ダンパ補正係数算出手段は前記排気通路切替え弁の実動作状態の検出または推定に基づいて算出すること
前記排気通路切替え弁切替え時の排気効率の変化量は排気通路面積の検出値または推定値に基づいて算出すること
を特徴とする内燃機関の制御装置とする。
An internal combustion engine control apparatus according to the present invention includes an exhaust pipe of an internal combustion engine having a plurality of exhaust passages, an exhaust passage switching valve that switches the plurality of exhaust passages of the exhaust pipe, and a rotation that detects the rotational speed of the internal combustion engine. Number detection means, intake state detection means for detecting the intake state of the internal combustion engine, cooling water temperature detection means for detecting the temperature state of the internal combustion engine, and accelerator opening degree detection means for detecting the requested drive state of the internal combustion engine Load calculating means for calculating the load of the internal combustion engine from the detection value of the intake state detection means, and torque detection means for calculating the torque that becomes the driving amount of the internal combustion engine from the detection value of the accelerator opening detection means And an exhaust passage switching valve driving means for providing an electric drive signal for driving the exhaust passage switching valve,
Correcting the ignition timing from the start of switching of the exhaust passage switching valve to the completion of switching The ignition timing at the start of switching and at the completion of switching is based on the optimum value of the ignition timing at the opening / closing of the exhaust passage switching valve. Calculating the optimum value of the ignition timing when the exhaust passage switching valve is opened / closed based on at least one of the torque, the rotational speed, the load, and the coolant temperature From the start of switching of the exhaust passage switching valve The ignition timing damper correction coefficient calculating means for correcting the ignition timing until the completion of switching is calculated based on the detection or estimation of the actual operating state of the exhaust passage switching valve. The amount of change in the exhaust efficiency when the exhaust passage switching valve is switched is A control device for an internal combustion engine, characterized in that it is calculated based on a detected value or an estimated value of an exhaust passage area.

前記の如く構成された本発明の内燃機関の制御装置は、排気状態に応じた点火時期補正をすることが可能となるので、燃焼の安定化および運転性の安定化の改善に貢献することができる。   The control apparatus for an internal combustion engine of the present invention configured as described above can correct the ignition timing in accordance with the exhaust state, which can contribute to the improvement of the stabilization of combustion and the stability of operability. it can.

本発明に係る内燃機関の制御装置は、排気通路切替え時における切替え開始から切替え完了までの点火時期を段階的に補正し滑らかにすることにより、排気状態の変化に応じた補正を行い気筒内混合気に応じた点火時期制御性能を向上することが可能となるので、燃焼を安定化させ運転性改善に貢献することができる。   The control device for an internal combustion engine according to the present invention corrects the ignition timing from the start of switching to the completion of switching at the time of exhaust passage switching in a stepwise manner, and performs correction according to the change in the exhaust state to perform in-cylinder mixing. Since it is possible to improve the ignition timing control performance according to the ki, it is possible to stabilize combustion and contribute to improvement of drivability.

本実施形態の内燃機関となるエンジンの全体構成図。1 is an overall configuration diagram of an engine serving as an internal combustion engine of the present embodiment. 図1の内燃機関制御装置による排気通路切替え時の排気圧力および内部EGR量およびトルク変動を示す図。The figure which shows the exhaust pressure at the time of the exhaust passage switching by the internal combustion engine control apparatus of FIG. 図1の内燃機関制御装置による点火時期変化時のトルクおよび燃費およびサージトルクを示す図。The figure which shows the torque at the time of the ignition timing change by the internal combustion engine control apparatus of FIG. 1, fuel consumption, and surge torque. 図1の内燃機関制御装置による排気通路切替え弁駆動指令と開度ならびにそれらに応じた点火時期設定によるトルク変動を示す本発明制御タイムチャート。FIG. 3 is a control time chart of the present invention showing an exhaust passage switching valve drive command and an opening degree by the internal combustion engine control device of FIG. 図1の内燃機関制御装置による排気通路面積と排気通路切替え弁開度および排気通路面積と排気効率の関係を示す図。The figure which shows the relationship between the exhaust passage area by the internal combustion engine control apparatus of FIG. 1, an exhaust passage switching valve opening degree, an exhaust passage area, and exhaust efficiency. 図1の内燃機関制御装置による排気通路切替え弁の開度と点火時期ダンパ係数による補正方法を示す図。The figure which shows the correction method by the opening degree of the exhaust passage switching valve and ignition timing damper coefficient by the internal combustion engine control device of FIG. 図1の内燃機関制御装置による本発明制御フローチャート。The control flowchart of this invention by the internal combustion engine control apparatus of FIG.

以下、図面に基づき本発明の内燃機関における排気通路切替え制御装置の一実施形態について説明する。図1は本発明を実施するシステム構成全体の概略を示したものである。
エンジン1は、複数の気筒2及びピストン3からなる多気筒エンジンである。各気筒2に吸入される空気はエアクリーナ30の入口部から取り入れられ、空気流量計(エアフロセンサ31)を通り、吸気流量を制御する電制絞り弁(スロットル34)が収容されたスロットルボディ33を通ってコレクタ35に入る。ここで、スロットル34は、アクセルペダル38の踏み込み量に対応するためアクセル開度センサ39の出力信号に基づいてスロットル駆動モータ37を駆動することによって操作される。吸入空気量はスロットル駆動モータ37の駆動制御によって制御できるようになっている。コレクタ35に至った吸入空気は、エンジン1の各気筒2に接続された各吸気管36に分配され吸気弁11が開弁した後、各気筒2に導かれる。ここで、前記空気流量計31からは、前記吸気流量を表す信号がエンジン制御装置(コントロールユニット100)に出力されている。また、スロットルボディ33には、スロットル34の開度を検出するスロットル開度センサ32が取り付けられており、その信号もコントロールユニット100に出力される。
Hereinafter, an embodiment of an exhaust passage switching control device for an internal combustion engine according to the present invention will be described with reference to the drawings. FIG. 1 shows an outline of the entire system configuration for carrying out the present invention.
The engine 1 is a multi-cylinder engine including a plurality of cylinders 2 and pistons 3. The air sucked into each cylinder 2 is taken from the inlet of the air cleaner 30, passes through an air flow meter (air flow sensor 31), and enters a throttle body 33 containing an electrically controlled throttle valve (throttle 34) that controls the intake flow rate. And enters the collector 35. Here, the throttle 34 is operated by driving the throttle drive motor 37 based on the output signal of the accelerator opening sensor 39 in order to correspond to the depression amount of the accelerator pedal 38. The intake air amount can be controlled by drive control of the throttle drive motor 37. The intake air reaching the collector 35 is distributed to each intake pipe 36 connected to each cylinder 2 of the engine 1, and after the intake valve 11 is opened, it is guided to each cylinder 2. Here, a signal representing the intake flow rate is output from the air flow meter 31 to the engine control device (control unit 100). A throttle opening sensor 32 that detects the opening of the throttle 34 is attached to the throttle body 33, and the signal is also output to the control unit 100.

一方、ガソリン等の燃料は、燃料噴射弁(インジェクタ27)から各吸気管36に噴射される。各吸気管36内で混合された吸入空気と噴射燃料は、点火コイル9で高電圧化された点火信号により点火プラグ10で着火されて燃焼する。燃焼後の排気は、排気管40を通りエンジン1から排出される。排気管40は2つの経路に分岐しており、その一方には排気通路切替え弁41が備えられている。このとき、コントロールユニット100は排気通路切替え弁駆動モータ42に駆動信号を出力し、前記排気通路切替え弁41を駆動して排気通路が切替わる。排気通路切替え弁駆動モータ42により駆動した排気通路切替え弁41の開度は、排気通路切替え弁開度センサ43によりコントロールユニット100に出力される。   On the other hand, fuel such as gasoline is injected into each intake pipe 36 from a fuel injection valve (injector 27). The intake air and the injected fuel mixed in each intake pipe 36 are ignited by the ignition plug 10 and burned by the ignition signal that has been increased in voltage by the ignition coil 9. Exhaust gas after combustion passes through the exhaust pipe 40 and is discharged from the engine 1. The exhaust pipe 40 is branched into two paths, and an exhaust passage switching valve 41 is provided on one of them. At this time, the control unit 100 outputs a drive signal to the exhaust passage switching valve drive motor 42 and drives the exhaust passage switching valve 41 to switch the exhaust passage. The opening degree of the exhaust passage switching valve 41 driven by the exhaust passage switching valve drive motor 42 is output to the control unit 100 by the exhaust passage switching valve opening degree sensor 43.

排気通路切替え弁41が開状態の場合、分岐された排気管40の各々の排気圧力に応じて通過する排気量は変化する。一方、排気通路切替え弁41が閉状態の場合、排気は排気通路切替え弁41を備えた排気通路をバイパスし、他方の排気管の排気圧力に応じた排気量分が通過する。このとき、排気管40に取り付けられたA/Fセンサ44は排気から空燃比を検出し、空燃比を表す信号をコントロールユニット100に出力する。   When the exhaust passage switching valve 41 is in an open state, the amount of exhaust gas that passes through varies depending on the exhaust pressure of each of the branched exhaust pipes 40. On the other hand, when the exhaust passage switching valve 41 is in the closed state, the exhaust bypasses the exhaust passage provided with the exhaust passage switching valve 41, and an exhaust amount corresponding to the exhaust pressure of the other exhaust pipe passes. At this time, the A / F sensor 44 attached to the exhaust pipe 40 detects the air-fuel ratio from the exhaust and outputs a signal representing the air-fuel ratio to the control unit 100.

エンジン1のクランク軸4に取り付けられたクランク角センサ5は、クランク軸4の回転位置を検出し、その角度信号をコントロールユニット100に出力する。また、排気弁12を駆動するカム軸7に取り付けられたカム角センサ8は、カム軸7の回転位置を検出し、その角度信号をコントロールユニット100に出力する。また、エンジン1に取り付けられた水温センサ13は、エンジン1の冷却水温を検出し、その検出信号をコントロールユニット100に出力する。   A crank angle sensor 5 attached to the crankshaft 4 of the engine 1 detects the rotational position of the crankshaft 4 and outputs the angle signal to the control unit 100. The cam angle sensor 8 attached to the cam shaft 7 that drives the exhaust valve 12 detects the rotational position of the cam shaft 7 and outputs the angle signal to the control unit 100. The water temperature sensor 13 attached to the engine 1 detects the cooling water temperature of the engine 1 and outputs a detection signal to the control unit 100.

図2は、排気通路切替え弁41の開/閉弁時それぞれの排気圧力および内部EGR量およびトルクを示したものである。上段は排気通路切替え弁41が開/閉弁時それぞれの排気圧力を示したものであり、排気通路切替え弁41が閉弁時は開弁時と比較して排気通路の開口面積が減少するため排気効率が減少し、排気圧力が増加する。中段は排気通路切替え弁41が開/閉弁時それぞれの内部EGR量を示したものである。内部EGRとは内燃機関の吸気弁11と排気弁12のバルブオーバーラップ中に排気が気筒内に戻されることであり、排気通路切替え弁41が閉弁時は開弁時と比較して排気圧力が増加することに伴い、内部EGR量は増加する。下段は排気通路切替え弁41が開/閉弁時それぞれのトルクを示したものである。排気通路切替え弁41が閉弁時は開弁時と比較して内部EGR量が増加することに伴い、各気筒2に流入する新気量が減少することによりトルクが減少する。トルク変動は運転性を悪化させる要因となるため、低減する必要がある。   FIG. 2 shows the exhaust pressure, the internal EGR amount, and the torque when the exhaust passage switching valve 41 is opened / closed. The upper stage shows the respective exhaust pressures when the exhaust passage switching valve 41 is opened / closed, and the opening area of the exhaust passage is reduced when the exhaust passage switching valve 41 is closed compared to when the exhaust passage switching valve 41 is opened. Exhaust efficiency decreases and exhaust pressure increases. The middle row shows the amount of internal EGR when the exhaust passage switching valve 41 is opened / closed. The internal EGR is that the exhaust gas is returned into the cylinder during the valve overlap of the intake valve 11 and the exhaust valve 12 of the internal combustion engine. When the exhaust passage switching valve 41 is closed, the exhaust pressure is compared with the open state. As the value increases, the amount of internal EGR increases. The lower row shows the respective torques when the exhaust passage switching valve 41 is opened / closed. When the exhaust passage switching valve 41 is closed, the amount of fresh air flowing into each cylinder 2 is reduced as the internal EGR amount is increased as compared to when the exhaust passage switching valve 41 is opened. The torque fluctuation is a factor that deteriorates drivability, so it needs to be reduced.

図3は、排気通路切替え弁41開/閉弁時それぞれの各点火時期に対するトルクと燃費と運転性(図中のサージトルク)の関係を示したものである。図中の線Aは、排気通路切替え弁41開弁時を、線Bは、排気通路切替え弁41閉弁時を示している。上段は点火時期とトルクの関係を示したものである。排気通路切替え弁41開/閉弁時ではそれぞれMBT(ここでMBTとは最大トルクを得られる点火時期で出力または燃費の最良点のことであるが、既知の事柄であり詳細な説明は割愛する)が存在する。前記MBTは気筒内の燃焼速度によっても変化するため、排気通路切替え弁41の開/閉弁時それぞれMBTがあり、最大トルク量も異なる。これは内部EGR量が増加することにより気筒内混合気の酸素濃度が減少し火炎伝播速度が低下することで、なされるものである。MBTより点火時期を進角化させると、圧縮上死点前の無駄な圧縮仕事が増大し、機械損失や冷却損失の増大によりトルクは減少する。一方、点火時期の遅角化はピストンへの膨張仕事が減少するためトルクは減少する。中段は点火時期と燃費の関係を示したものである。燃費についてもトルクと同様に最良点である前記MBTを境に進角化または遅角化することで悪化する。下段は点火時期とサージトルク(ここでサージトルクとは燃焼状態のばらつきを表し燃焼安定性が高いほど小さくなるパラメータ)の関係を示したものである。サージトルクは燃焼速度の最適化により向上することができる。点火時期の遅角化は燃焼速度が下がるためサージトルクは悪化する。また、点火時期の進角化は燃焼速度を上げるがノッキングを誘発しサージトルクは悪化する。したがって、前記排気通路切替え弁41の開閉によりMBTが変化するため、本発明では前記排気通路切替え弁41開/閉弁時それぞれのMBTを算出し点火時期を切替える。   FIG. 3 shows the relationship among torque, fuel efficiency, and drivability (surge torque in the figure) for each ignition timing when the exhaust passage switching valve 41 is opened / closed. Line A in the figure indicates when the exhaust passage switching valve 41 is opened, and line B indicates when the exhaust passage switching valve 41 is closed. The upper part shows the relationship between ignition timing and torque. When the exhaust passage switching valve 41 is opened / closed, MBT (here, MBT is the best point of output or fuel consumption at the ignition timing at which the maximum torque can be obtained, but is a known matter and will not be described in detail) ) Exists. Since the MBT also changes depending on the combustion speed in the cylinder, there is an MBT when the exhaust passage switching valve 41 is opened / closed, and the maximum torque amount is also different. This is done by decreasing the oxygen concentration of the in-cylinder mixture and decreasing the flame propagation speed as the internal EGR amount increases. When the ignition timing is advanced from MBT, useless compression work before compression top dead center increases, and torque decreases due to increase in mechanical loss and cooling loss. On the other hand, when the ignition timing is retarded, the expansion work to the piston is reduced, so the torque is reduced. The middle row shows the relationship between ignition timing and fuel consumption. The fuel consumption is also deteriorated by advancing or retarding the MBT, which is the best point, like the torque. The lower row shows the relationship between the ignition timing and surge torque (where the surge torque represents a variation in the combustion state and becomes smaller as the combustion stability is higher). The surge torque can be improved by optimizing the combustion speed. When the ignition timing is retarded, the combustion torque decreases and the surge torque deteriorates. In addition, advancement of the ignition timing increases the combustion speed, but induces knocking and deteriorates the surge torque. Accordingly, since the MBT changes due to the opening and closing of the exhaust passage switching valve 41, the present invention calculates the respective MBT when the exhaust passage switching valve 41 is opened / closed and switches the ignition timing.

図4は、排気通路切替え弁41に対するコントロールユニット100からの駆動信号と、排気通路切替え弁41開/閉弁時の開度と、その時の点火時期ダンパ補正係数(ここで点火時期ダンパ補正係数とは段階的に点火時期を変化させる係数)およびトルクについて示したタイムチャートである。排気通路切替え弁41は駆動許可判定されると切替え後の点火時期を算出する。ただし、排気通路切替え弁41は開/閉弁時に動作遅れ時間(ここで動作遅れ時間とはコントロールユニット100から排気通路切替え弁41の駆動信号が送信されてから実際に動作開始するまでの時間)が存在し、さらに動作開始から動作終了までの一次遅れ時間が存在する。そのため、排気通路切替え弁の実動作による排気圧力の変化に伴わない点火時期を設定した場合にトルク変動が起こる。そこで点火時期も排気通路切替え弁41の開/閉弁時の動作開始から動作終了までの時間に応じて点火時期変化率を用いて補正する。図中の線Aは、点火時期ダンパ補正無しの場合を示したものであり、排気通路切替え弁41の駆動指令直後に点火時期が要求値から乖離するため、トルク変動が生じ運転性が悪化する。一方、図中の線Bは点火時期ダンパ補正有りの場合を示したものであり、点火時期が排気通路切替え弁41の実動作に追従可能なためトルク変動を抑制できる。   FIG. 4 shows a drive signal from the control unit 100 to the exhaust passage switching valve 41, an opening degree when the exhaust passage switching valve 41 is opened / closed, and an ignition timing damper correction coefficient (here, an ignition timing damper correction coefficient). Is a time chart showing the torque and the torque for changing the ignition timing in stages. The exhaust passage switching valve 41 calculates the ignition timing after switching when the drive permission is determined. However, when the exhaust passage switching valve 41 is opened / closed, the operation delay time (here, the operation delay time is the time from when the drive signal of the exhaust passage switching valve 41 is transmitted from the control unit 100 to when the operation is actually started). In addition, there is a first-order lag time from the start of operation to the end of operation. For this reason, torque fluctuation occurs when an ignition timing is set that does not accompany changes in exhaust pressure due to actual operation of the exhaust passage switching valve. Therefore, the ignition timing is also corrected using the ignition timing change rate according to the time from the start to the end of the operation when the exhaust passage switching valve 41 is opened / closed. Line A in the figure shows the case without ignition timing damper correction, and the ignition timing deviates from the required value immediately after the drive command of the exhaust passage switching valve 41, so that torque fluctuation occurs and the drivability deteriorates. . On the other hand, a line B in the figure shows a case where there is an ignition timing damper correction. Since the ignition timing can follow the actual operation of the exhaust passage switching valve 41, torque fluctuation can be suppressed.

図5は、排気通路面積と排気通路切替え弁開度および排気通路面積と排気効率の関係を示したものである。流体の流量は排気通路面積×密度×流速で表せるため、排気通路面積と排気効率は比例関係で表せる。ここでは排気通路切替え弁開度を検出しているため排気通路切替え弁開度と排気通路面積の関係から排気効率を算出する。   FIG. 5 shows the relationship between the exhaust passage area, the exhaust passage switching valve opening, the exhaust passage area, and the exhaust efficiency. Since the flow rate of the fluid can be expressed as exhaust passage area × density × flow velocity, the exhaust passage area and the exhaust efficiency can be expressed in a proportional relationship. Since the exhaust passage switching valve opening is detected here, the exhaust efficiency is calculated from the relationship between the exhaust passage switching valve opening and the exhaust passage area.

図6は、排気通路切替え弁41の開度と点火時期ダンパ係数による補正方法について示したものである。図中の線Aは、図4で示した点火時期変化率を一点定数として排気通路切替え弁41の一次遅れ時間に従い点火時期を補正したものである。線Bは、点火時期の差分を所定数に分割し(図では5分割)、補正したものである。線Cは、排気通路切替え弁開度を検出し、図5に示した排気通路切替え弁開度と排気効率の非線形関係に従い補正したものである。以上のように点火時期補正分は、時間や差分による分割や排気通路切替え弁開度により算出することができる。   FIG. 6 shows a correction method based on the opening degree of the exhaust passage switching valve 41 and the ignition timing damper coefficient. The line A in the figure is obtained by correcting the ignition timing according to the primary delay time of the exhaust passage switching valve 41 with the ignition timing change rate shown in FIG. Line B is obtained by dividing and correcting the difference in ignition timing into a predetermined number (in the figure, 5 divisions). Line C detects the exhaust passage switching valve opening and corrects it according to the nonlinear relationship between the exhaust passage switching valve opening and the exhaust efficiency shown in FIG. As described above, the ignition timing correction can be calculated based on the division based on the time and the difference and the exhaust passage switching valve opening.

図7は、排気通路切替え弁41を駆動するためのフローチャートである。排気通路切替え弁開弁時基本点火時期算出ブロック200では、エンジン1駆動時にクランク角センサ5および空気流量計31,水温センサ13,アクセル開度センサ39によりエンジン1の運転状態をコントロールユニット100に出力する。その結果、MBTおよび予め点火時期を適合した排気通路切替え弁開弁時のトリミングマップを参照し点火時期を算出する。そして排気通路切替え弁切替え条件判定ブロック201で排気通路切替え弁41の開/閉弁動作の要求を判定する。ここで本判定条件は本発明とは直接関係しないため、詳細の内容は割愛する。排気通路切替え弁切替え条件判定ブロック201により排気通路切替え弁の閉弁要求があると判定すると、排気通路切替え弁閉弁時基本点火時期算出ブロック202によりクランク角センサ5および空気流量計31,水温センサ13,アクセル開度センサ39によりエンジン1の運転状態を前記コントロールユニット100に出力した結果、MBTおよび予め点火時期を適合した排気通路切替え弁閉弁時のトリミングマップを参照し点火時期を算出する。次に排気通路切替え弁閉弁時弁動作遅れ時間算出ブロック203により排気通路切替え弁の動作遅れ時間を予め算出し、動作遅れ時間後に点火時期を変更する。ここで排気通路切替え弁41の状態を検知する手段は動作遅れ時間に限らず、排気通路切替え弁開度センサ43を用いて排気通路切替え弁41の実動作状態から動作遅れを判定することもできる。次に排気通路切替え弁閉弁時点火時期ダンパ補正係数算出ブロック204により点火時期ダンパ補正係数を算出する。排気通路切替え弁閉弁時点火時期ダンパ補正係数は0から1の範囲を取り得る値であり、排気通路切替え弁閉弁時基本点火時期または開時基本点火時期を参照する重み付けを付加するものである。ここで点火時期ダンパ係数の変化度合いは、図6に示した方法で決定することができる。そして排気通路切替え弁閉弁判定ブロック205により排気通路切替え弁41の動作状態を判定する。その結果、閉弁していないと判定された後、点火時期補正ブロック206により排気通路切替え弁閉弁時点火時期ダンパ補正係数=1となるまで点火時期を補正する。一方、排気通路切替え弁切替え条件判定ブロック201により排気通路切替え弁の開弁要求があると判定すると、排気通路切替え弁開弁時弁動作遅れ時間算出ブロック207により排気通路切替え弁の動作遅れ時間を予め算出し、動作遅れ時間後に点火時期を変更する。次に排気通路切替え弁開弁時点火時期ダンパ補正係数算出ブロック208により点火時期ダンパ補正係数を算出する。そして排気通路切替え弁開弁判定ブロック209により排気通路切替え弁41の動作状態を判定する。その結果、開弁していないと判定された後、点火時期補正ブロック206により排気通路切替え弁開弁時点火時期ダンパ補正係数=0となるまで点火時期を補正する。これら両者を繰り返すことで、排気通路切替え弁駆動状態に付随した点火時期に補正することが可能となる。   FIG. 7 is a flowchart for driving the exhaust passage switching valve 41. In the basic ignition timing calculation block 200 when the exhaust passage switching valve is opened, the operating state of the engine 1 is output to the control unit 100 by the crank angle sensor 5, the air flow meter 31, the water temperature sensor 13, and the accelerator opening sensor 39 when the engine 1 is driven. To do. As a result, the ignition timing is calculated with reference to the trimming map at the time of opening the exhaust passage switching valve in which the ignition timing is matched in advance with MBT. Then, an exhaust passage switching valve switching condition determination block 201 determines a request for opening / closing the exhaust passage switching valve 41. Here, since the present determination condition is not directly related to the present invention, the details are omitted. If it is determined by the exhaust passage switching valve switching condition determination block 201 that there is a request for closing the exhaust passage switching valve, the crank angle sensor 5, the air flow meter 31, and the water temperature sensor are calculated by the exhaust passage switching valve closing basic ignition timing calculation block 202. 13. As a result of outputting the operating state of the engine 1 to the control unit 100 by the accelerator opening sensor 39, the ignition timing is calculated with reference to MBT and a trimming map at the time of closing the exhaust passage switching valve adapted to the ignition timing in advance. Next, the operation delay time of the exhaust passage switching valve is calculated in advance by the valve operation delay time calculation block 203 when the exhaust passage switching valve is closed, and the ignition timing is changed after the operation delay time. Here, the means for detecting the state of the exhaust passage switching valve 41 is not limited to the operation delay time, but the operation delay can be determined from the actual operation state of the exhaust passage switching valve 41 using the exhaust passage switching valve opening sensor 43. . Next, an ignition timing damper correction coefficient is calculated by an exhaust passage switching valve closing time fire timing damper correction coefficient calculation block 204. The exhaust passage changeover valve closing point fire timing damper correction coefficient is a value that can take a range of 0 to 1, and adds a weight that refers to the basic ignition timing when the exhaust passage changeover valve is closed or the basic ignition timing when it is opened. is there. Here, the degree of change in the ignition timing damper coefficient can be determined by the method shown in FIG. Then, the exhaust passage switching valve closing determination block 205 determines the operating state of the exhaust passage switching valve 41. As a result, after it is determined that the valve is not closed, the ignition timing correction block 206 corrects the ignition timing until the exhaust passage switching valve closing timing fire timing damper correction coefficient = 1. On the other hand, when the exhaust passage switching valve switching condition determination block 201 determines that there is a request for opening the exhaust passage switching valve, the exhaust passage switching valve operation delay time calculation block 207 calculates the operation delay time of the exhaust passage switching valve. Calculate in advance and change the ignition timing after the operation delay time. Next, an ignition timing damper correction coefficient is calculated by an exhaust passage switching valve opening time fire timing damper correction coefficient calculation block 208. Then, the exhaust passage switching valve opening determination block 209 determines the operating state of the exhaust passage switching valve 41. As a result, after it is determined that the valve is not opened, the ignition timing is corrected by the ignition timing correction block 206 until the exhaust passage switching valve opening timing fire timing damper correction coefficient = 0. By repeating both of these, it is possible to correct the ignition timing associated with the exhaust passage switching valve drive state.

1 エンジン
2 気筒
3 ピストン
4 クランク軸
5 クランク角センサ
7 カム軸
8 カム角センサ
9 点火コイル
10 点火プラグ
11 吸気弁
12 排気弁
13 水温センサ
27 インジェクタ
30 エアクリーナ
31 エアフロセンサ
32 スロットル開度センサ
33 スロットルボディ
34 スロットル
35 コレクタ
36 吸気管
37 スロットル駆動モータ
38 アクセルペダル
39 アクセル開度センサ
40 排気管
41 排気通路切替え弁
42 排気通路切替え弁駆動モータ
43 排気通路切替え弁開度センサ
44 A/Fセンサ
100 コントロールユニット
1 Engine 2 Cylinder 3 Piston 4 Crankshaft 5 Crank Angle Sensor 7 Cam Shaft 8 Cam Angle Sensor 9 Ignition Coil 10 Spark Plug 11 Intake Valve 12 Exhaust Valve 13 Water Temperature Sensor 27 Injector 30 Air Cleaner 31 Airflow Sensor 32 Throttle Opening Sensor 33 Throttle Body 34 throttle 35 collector 36 intake pipe 37 throttle drive motor 38 accelerator pedal 39 accelerator opening sensor 40 exhaust pipe 41 exhaust passage switching valve 42 exhaust passage switching valve drive motor 43 exhaust passage switching valve opening sensor 44 A / F sensor 100 control unit

Claims (5)

複数の排気通路を有する排気管と、
前記排気管の複数の排気通路を切替える排気通路切替え弁と、
を有する内燃機関の制御装置において、
前記内燃機関の回転数を検出する回転数検出手段と、
前記内燃機関の吸気状態を検出する吸気状態検出手段と、
前記内燃機関の温度状態を検出する冷却水温検出手段と、
前記内燃機関の要求駆動状態を検出するアクセル開度検出手段と、
前記吸気状態検出手段の検出値から前記内燃機関の負荷を算出する負荷算出手段と、
前記アクセル開度検出手段の検出値から前記内燃機関の駆動量となるトルクを算出するトルク検出手段と、
前記排気通路切替え弁を駆動するための電気的駆動信号を与える排気通路切替え弁駆動手段とを有し、
前記排気通路切替え弁の切替え開始から切替え完了までの点火時期を補正することを特徴とする内燃機関の制御装置。
An exhaust pipe having a plurality of exhaust passages;
An exhaust passage switching valve for switching a plurality of exhaust passages of the exhaust pipe;
In a control device for an internal combustion engine having
A rotational speed detection means for detecting the rotational speed of the internal combustion engine;
Intake state detection means for detecting the intake state of the internal combustion engine;
A coolant temperature detecting means for detecting a temperature state of the internal combustion engine;
An accelerator opening detecting means for detecting a required drive state of the internal combustion engine;
Load calculating means for calculating the load of the internal combustion engine from the detection value of the intake air condition detecting means;
Torque detecting means for calculating a torque to be a driving amount of the internal combustion engine from a detection value of the accelerator opening detecting means;
An exhaust passage switching valve driving means for providing an electric drive signal for driving the exhaust passage switching valve;
A control apparatus for an internal combustion engine, wherein an ignition timing from the start of switching of the exhaust passage switching valve to the completion of switching is corrected.
請求項1に記載の内燃機関の制御装置において、切替え開始時および切替え完了時の点火時期は前記排気通路切替え弁開/閉弁時それぞれの点火時期の最適値に基づいて算出することを特徴とする内燃機関の制御装置。   2. The control apparatus for an internal combustion engine according to claim 1, wherein the ignition timing at the start of switching and at the completion of switching is calculated based on optimum values of the respective ignition timings when the exhaust passage switching valve is opened / closed. A control device for an internal combustion engine. 請求項1から2に記載の内燃機関の制御装置において、前記排気通路切替え弁開/閉弁時それぞれの点火時期の最適値は少なくとも前記トルクと回転数と負荷と冷却水温のいずれかに基づいて算出することを特徴とする内燃機関の制御装置。   3. The control device for an internal combustion engine according to claim 1, wherein the optimum value of the ignition timing when the exhaust passage switching valve is opened / closed is based on at least one of the torque, the rotational speed, the load, and the coolant temperature. A control device for an internal combustion engine, characterized in that it calculates. 請求項1から3に記載の内燃機関の制御装置において、前記排気通路切替え弁の切替え開始から切替え完了までの点火時期を補正する点火時期ダンパ補正係数算出手段は前記排気通路切替え弁の実動作状態の検出または推定に基づいて算出することを特徴とする内燃機関の制御装置。   4. The control apparatus for an internal combustion engine according to claim 1, wherein an ignition timing damper correction coefficient calculating means for correcting an ignition timing from the start of switching of the exhaust passage switching valve to the completion of switching is an actual operating state of the exhaust passage switching valve. A control apparatus for an internal combustion engine, characterized in that calculation is performed based on detection or estimation of the engine. 請求項1から4に記載の内燃機関の制御装置において、前記排気通路切替え弁切替え時の排気効率の変化量は排気通路面積の検出値または推定値に基づいて算出することを特徴とする内燃機関の制御装置。   5. The control apparatus for an internal combustion engine according to claim 1, wherein the amount of change in exhaust efficiency when the exhaust passage switching valve is switched is calculated based on a detected value or an estimated value of the exhaust passage area. Control device.
JP2009196216A 2009-08-27 2009-08-27 Control device for exhaust passage switching type internal combustion engine Pending JP2011047326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009196216A JP2011047326A (en) 2009-08-27 2009-08-27 Control device for exhaust passage switching type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009196216A JP2011047326A (en) 2009-08-27 2009-08-27 Control device for exhaust passage switching type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2011047326A true JP2011047326A (en) 2011-03-10

Family

ID=43833902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009196216A Pending JP2011047326A (en) 2009-08-27 2009-08-27 Control device for exhaust passage switching type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2011047326A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032246A (en) * 2011-09-29 2013-04-10 本田技研工业株式会社 Ignition timing controlling apparatus for engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032246A (en) * 2011-09-29 2013-04-10 本田技研工业株式会社 Ignition timing controlling apparatus for engine
JP2013072406A (en) * 2011-09-29 2013-04-22 Honda Motor Co Ltd Ignition timing control device of engine
US9151264B2 (en) 2011-09-29 2015-10-06 Honda Motor Co., Ltd. Ignition timing controlling apparatus for engine, and vehicle incorporating the same
DE102012217548B4 (en) 2011-09-29 2018-04-26 Honda Motor Co., Ltd. Ignition timing control device for a motor

Similar Documents

Publication Publication Date Title
JP5668763B2 (en) Control device for multi-cylinder internal combustion engine
US20090017987A1 (en) Control Method and Control Device for Engine
JP2006046084A (en) Ignition timing controller for internal combustion engine
US20130305713A1 (en) Control device for internal combustion engine with turbo-supercharger
JP2009068388A (en) Control device for internal combustion engine
WO2012108287A1 (en) Control device for internal combustion engine equipped with supercharger
JP2010275871A (en) Engine control device
JP2009013922A (en) Control device of internal-combustion engine
JP2011012610A (en) Control device for variable-cylinder internal combustion engine
JP2011122544A (en) Internal combustion engine
JP2009203918A (en) Operation control method of gasoline engine
JP6241412B2 (en) Control device for internal combustion engine
JP2009079557A (en) Engine controller
JP2014020265A (en) Control device for internal combustion engine
JP2007040219A (en) Control device of internal combustion engine
JP2019060311A (en) Control device for internal combustion engine, and control method for internal combustion engine
JP2015014257A (en) Ignition timing control device for internal combustion engine
JP2011047326A (en) Control device for exhaust passage switching type internal combustion engine
JP4660462B2 (en) Control device for internal combustion engine
JP4518251B2 (en) Control device for internal combustion engine
JP2006220062A (en) Controller of hydrogen addition internal combustion engine
JP2009264138A (en) Engine control device
JP2018017200A (en) Controller of internal combustion engine
JP2009180098A (en) Fuel controller of engine
JP2004316545A (en) Control device by cylinder for compression ignition type internal combustion engine