JP2011047293A - Exhaust emission purifying apparatus - Google Patents

Exhaust emission purifying apparatus Download PDF

Info

Publication number
JP2011047293A
JP2011047293A JP2009194649A JP2009194649A JP2011047293A JP 2011047293 A JP2011047293 A JP 2011047293A JP 2009194649 A JP2009194649 A JP 2009194649A JP 2009194649 A JP2009194649 A JP 2009194649A JP 2011047293 A JP2011047293 A JP 2011047293A
Authority
JP
Japan
Prior art keywords
exhaust
additive
injection valve
exhaust passage
introduction pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009194649A
Other languages
Japanese (ja)
Other versions
JP5500909B2 (en
Inventor
Yuji Furuya
雄二 古谷
Takehiro Sugimura
雄大 杉村
Yoshikazu Hayashi
美和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Corp
Original Assignee
Bosch Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bosch Corp filed Critical Bosch Corp
Priority to JP2009194649A priority Critical patent/JP5500909B2/en
Publication of JP2011047293A publication Critical patent/JP2011047293A/en
Application granted granted Critical
Publication of JP5500909B2 publication Critical patent/JP5500909B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission purifying apparatus that prevents fixing or crystallization of an additive on the perimeter of an injection hole of an additive injection valve or inside an introduction pipe, facilitates to cause the entire spray of the additive to directly come into collision with a mixer, while reducing thermal damage to the additive injection valve, and evenly supplies the additive to an exhaust emission purifying catalyst. <P>SOLUTION: In an exhaust emission purifying apparatus, an exhaust emission purifying catalyst is disposed within an exhaust passage 11 of an internal combustion engine, an additive injection valve 21 is attached via an introduction pipe 19 to an exhaust passage on an upstream side of the exhaust emission purifying catalyst, and a mixer 18 is provided at a position at which a spray of the additive injected from the additive injection valve 21 comes into collision. Enlarged taper portions 16, 17 in an enlarging shape in a downstream direction of an exhaust gas flow are formed in an exhaust passage 11 on the upstream side of the exhaust emission purifying catalyst, and the introduction pipe 19 is connected to the enlarged taper portions 16, 17. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は排気浄化触媒と添加剤を用いて内燃機関の排気ガスを浄化するための排気浄化装置に関するものである。特に、導入管を介して排気通路に添加剤噴射弁が取り付けられているとともに、添加剤噴射弁から噴射された添加剤と排気ガスとの混合器が排気通路に設けられている排気浄化装置に関するものである。   The present invention relates to an exhaust purification device for purifying exhaust gas of an internal combustion engine using an exhaust purification catalyst and an additive. In particular, the present invention relates to an exhaust emission control device in which an additive injection valve is attached to an exhaust passage through an introduction pipe, and a mixer of additive and exhaust gas injected from the additive injection valve is provided in the exhaust passage. Is.

従来、自動車等に搭載された内燃機関の排気ガス中にはNOX(窒素酸化物)やPM(微粒子状物質)等が含まれている。NOXを浄化するための排気浄化装置の一つとして、内燃機関の排気通路内に排気浄化触媒の一種であるSCR触媒(NOX選択還元触媒)を配設するとともに、SCR触媒の上流側から添加剤として尿素水(尿素水溶液)を添加することにより、NOXを浄化する尿素SCRシステムがある。また、NSC触媒(NOX吸蔵還元触媒)を排気通路内に配設し、添加剤として燃料を用いてNOXを浄化するNSCシステムなどもある。 Conventionally, exhaust gas of an internal combustion engine mounted on an automobile or the like contains NO x (nitrogen oxide), PM (particulate matter), and the like. As one of the exhaust purification devices for purifying NO x , an SCR catalyst (NO x selective reduction catalyst) which is a kind of exhaust purification catalyst is disposed in the exhaust passage of the internal combustion engine, and from the upstream side of the SCR catalyst. by adding urea water (urea aqueous solution) as an additive, there is a urea SCR system for purifying NO X. There is also an NSC system in which an NSC catalyst (NO x storage reduction catalyst) is disposed in an exhaust passage and NO x is purified using fuel as an additive.

PMを浄化するための排気浄化装置としては、酸化触媒を付したパティキュレートフィルタを内燃機関の排気通路内に配設した排気浄化装置などがある。この排気浄化装置では、PMを一旦パティキュレートフィルタによって捕獲した後、酸化触媒に燃料などを添加して酸化触媒で発生した酸化熱によってPMを燃焼させて浄化する。また、酸化触媒をパティキュレートフィルタの上流側の排気通路に配設して、酸化触媒で生じた酸化熱をパティキュレートフィルタに捕らえられたPMの浄化に利用するものもある。この場合においても酸化触媒に対して燃料の添加が成される。   As an exhaust gas purification device for purifying PM, there is an exhaust gas purification device in which a particulate filter provided with an oxidation catalyst is disposed in an exhaust passage of an internal combustion engine. In this exhaust purification device, after PM is once captured by a particulate filter, fuel is added to the oxidation catalyst, and the PM is burned and purified by the oxidation heat generated in the oxidation catalyst. In some cases, an oxidation catalyst is disposed in the exhaust passage on the upstream side of the particulate filter, and the oxidation heat generated by the oxidation catalyst is used to purify PM trapped in the particulate filter. Even in this case, fuel is added to the oxidation catalyst.

上述のような各排気浄化システムにおいては、夫々の触媒の上流側で添加された尿素水や燃料などの添加剤が排気ガスの浄化に利用されずに触媒を通過してしまうことを防止するために、排気浄化触媒の上流側の排気通路に混合器が設けられることがある。混合器によって添加剤と排気ガスは混合されつつ排気通路の前面全体に渡って広く均一に分散させられる。   In each exhaust purification system as described above, in order to prevent additives such as urea water and fuel added on the upstream side of each catalyst from passing through the catalyst without being used for exhaust gas purification. In addition, a mixer may be provided in the exhaust passage upstream of the exhaust purification catalyst. The additive and the exhaust gas are mixed and dispersed widely and uniformly over the entire front surface of the exhaust passage by the mixer.

また、添加剤を噴射するための添加剤噴射弁は電磁ソレノイドや樹脂カバー、ノズルプレート等を備えており、これらは他の構成部材と比較して耐熱性が低いので、添加剤噴射弁に排気熱の多くが直接伝わることを低減するために、添加剤噴射弁は導入管を介して排気通路に取り付けられることがある。また、噴射された添加剤の噴霧の中心軸と排気ガス流の中心軸との交差角をなるべく小さくすることで、噴射された添加剤の噴霧を排気通路の壁面等に付着させることなく排気ガスと良好に混合させるためにも、導入管を介して排気通路に添加剤噴射弁が取り付けられることがある(例えば、特許文献1及び2を参照)。   In addition, the additive injection valve for injecting the additive is provided with an electromagnetic solenoid, a resin cover, a nozzle plate, and the like, and these have lower heat resistance than other components, so the additive injection valve is exhausted to the additive injection valve. In order to reduce the direct transfer of much of the heat, the additive injection valve may be attached to the exhaust passage via an inlet tube. Further, by reducing the intersecting angle between the central axis of the spray of the injected additive and the central axis of the exhaust gas flow as much as possible, the exhaust gas is prevented from adhering to the wall surface of the exhaust passage. In some cases, an additive injection valve is attached to the exhaust passage through the introduction pipe (see, for example, Patent Documents 1 and 2).

特開2009−41370号公報 (図2等)JP 2009-41370 A (FIG. 2 etc.) 特開2009−138598号公報 (図1等)JP 2009-138598 A (FIG. 1 etc.)

上記特許文献1及び特許文献2のように添加剤噴射弁が導入管を介して排気通路に取り付けられている排気浄化装置においては、添加剤が噴射される際に導入管内の排気ガスが排気通路へ押し出されることに伴って、導入管内や排気通路内に大きな渦流が発生する。噴射された添加剤の噴霧の一部は、この渦流に巻き込まれて導入管内で滞留し、導入管の壁面や添加剤噴射弁の噴孔周辺に付着する。付着した添加剤は固着や結晶化して添加剤噴射弁の噴孔を塞いだり、導入管内の添加剤の通路を狭めたりして、添加剤の正常な噴霧形成を阻害する。その結果、排気浄化触媒へ添加剤の供給が正常になされず、排気ガスが十分に浄化されないおそれがある。   In the exhaust gas purification apparatus in which the additive injection valve is attached to the exhaust passage through the introduction pipe as in Patent Document 1 and Patent Document 2, the exhaust gas in the introduction pipe is exhausted when the additive is injected. A large eddy current is generated in the introduction pipe and the exhaust passage. Part of the spray of the injected additive is caught in this vortex and stays in the introduction pipe, and adheres to the wall surface of the introduction pipe and the periphery of the injection hole of the additive injection valve. The adhering additive is fixed or crystallized to block the nozzle hole of the additive injection valve, or to narrow the passage of the additive in the introduction pipe, thereby inhibiting normal spray formation of the additive. As a result, the supply of the additive to the exhaust purification catalyst is not normally performed, and the exhaust gas may not be sufficiently purified.

また、添加剤噴射弁には熱害を低減するための冷却装置などが設けられており、冷却装置と排気通路との接触を避けつつ、噴射された添加剤の噴霧の中心軸と排気ガス流の中心軸との交差角を小さくしようとすると導入管が長くなって、添加剤の噴霧が導入管の壁面に付着し易くなる。導入管の壁面に添加剤が付着してしまって混合器に到達しなかったり、添加剤が排気ガスと十分に混合および拡散されず、排気浄化触媒全体へ均一に添加剤の供給がなされなかったりすると、添加剤が十分に供給されなかった部分の排気浄化触媒において排気ガスが十分に浄化されないおそれもある。   In addition, the additive injection valve is provided with a cooling device for reducing heat damage, etc., while avoiding contact between the cooling device and the exhaust passage, the spray axis of the injected additive and the exhaust gas flow If the crossing angle with the central axis is made smaller, the introduction tube becomes longer, and the spray of the additive tends to adhere to the wall surface of the introduction tube. The additive adheres to the wall of the introduction pipe and does not reach the mixer, or the additive is not sufficiently mixed and diffused with the exhaust gas, and the additive is not uniformly supplied to the entire exhaust purification catalyst. As a result, the exhaust gas may not be sufficiently purified in the exhaust purification catalyst in the portion where the additive has not been sufficiently supplied.

導入管内での大きな渦流の発生や、導入管の壁面への添加剤の付着を防ぐために導入管を単に短くすると、添加剤噴射弁と排気通路や排気ガス流との距離が近くなって添加剤噴射弁に排気熱が伝わり易くなるため、添加剤噴射弁の熱による損傷の可能性が高まる。   If the introduction pipe is simply shortened to prevent the generation of large eddy currents in the introduction pipe or the adhesion of the additive to the wall of the introduction pipe, the distance between the additive injection valve and the exhaust passage or the exhaust gas flow will be reduced. Since exhaust heat is easily transmitted to the injection valve, the possibility of damage to the additive injection valve due to heat increases.

本発明は上述のような排気浄化装置において、添加剤噴射弁からの添加剤の噴射に伴う大きな渦流の発生を低減することによって、添加剤噴射弁の噴孔周辺や導入管の内部での添加剤の固着や結晶化を防止することができ、かつ、添加剤噴射弁への熱害を低減しつつ、添加剤の噴霧全体を混合器に直接衝突させることを容易にすることができ、排気浄化触媒へ添加剤を均等に供給することができる排気浄化装置を提供することを目的とする。   In the exhaust emission control device as described above, the present invention reduces the generation of a large vortex accompanying the injection of the additive from the additive injection valve, so that the addition around the nozzle hole of the additive injection valve and inside the introduction pipe It is possible to prevent sticking and crystallization of the agent, and it is possible to easily make the entire spray of the additive collide directly with the mixer while reducing heat damage to the additive injection valve. It is an object of the present invention to provide an exhaust purification device capable of evenly supplying an additive to a purification catalyst.

本発明によれば、内燃機関の排気通路内に排気浄化触媒が配設されており、排気浄化触媒の上流側の排気通路に導入管を介して添加剤噴射弁が取り付けられているとともに、添加剤噴射弁から噴射された添加剤の噴霧が衝突する位置に混合器が設けられている排気浄化装置において、排気ガス流の下流方向に拡大する形状の拡大テーパ部が排気浄化触媒の上流側の排気通路に形成されており、拡大テーパ部に導入管が接続されていることを特徴とする排気浄化装置が提供され、上述した問題を解決することができる(請求項1)。   According to the present invention, the exhaust purification catalyst is disposed in the exhaust passage of the internal combustion engine, and the additive injection valve is attached to the exhaust passage upstream of the exhaust purification catalyst via the introduction pipe. In the exhaust purification apparatus in which the mixer is provided at a position where the spray of additive injected from the agent injection valve collides, the enlarged taper portion having a shape that expands in the downstream direction of the exhaust gas flow is located upstream of the exhaust purification catalyst. An exhaust purification device is provided which is formed in the exhaust passage and has an introduction pipe connected to the enlarged taper portion, and can solve the above-described problem (claim 1).

また、本発明の排気浄化装置を構成するにあたり、排気通路の中心軸と添加剤噴射弁の先端部の頂点とを含む断面において、導入管と拡大テーパ部との接点のうち、上流側の接点をAとし、下流側の接点をBとしたときに、添加剤噴射弁から噴射された添加剤の噴霧の中心軸と接点A及びBを通る直線ABとが直交することが好ましい(請求項2)。   Further, in configuring the exhaust emission control device of the present invention, in the cross section including the central axis of the exhaust passage and the apex of the tip portion of the additive injection valve, the upstream contact among the contacts of the introduction pipe and the enlarged taper portion Is A and B is the downstream contact, it is preferable that the central axis of the spray of the additive injected from the additive injection valve and the straight line AB passing through the contacts A and B are orthogonal to each other. ).

また、本発明の排気浄化装置を構成するにあたり、排気ガス流の下流方向に縮小する形状の縮小テーパ部が排気浄化触媒と混合器との間の排気通路に形成されていることが好ましい(請求項3)。   Further, in configuring the exhaust emission control device of the present invention, it is preferable that a reduction taper portion that is reduced in the downstream direction of the exhaust gas flow is formed in the exhaust passage between the exhaust purification catalyst and the mixer (claim). Item 3).

また、本発明の排気浄化装置を構成するにあたり、排気通路の中心軸と添加剤噴射弁の先端部の頂点とを含む断面において、添加剤噴射弁から噴射された添加剤の噴霧の中心軸が排気通路の中心軸に対して成す角の角度をαとし、排気ガス流の中心軸に対する縮小テーパ部の傾斜角度をγとしたときに、γ=α±30°であることが好ましい(請求項4)。   Further, in configuring the exhaust emission control device of the present invention, in the cross section including the central axis of the exhaust passage and the apex of the tip of the additive injection valve, the central axis of the spray of the additive injected from the additive injection valve is Preferably, γ = α ± 30 °, where α is an angle formed with respect to the central axis of the exhaust passage and γ is an inclination angle of the reduced taper portion with respect to the central axis of the exhaust gas flow. 4).

また、本発明の排気浄化装置を構成するにあたり、排気ガス流の下流方向に拡大する形状の第2の拡大テーパが混合器の下流側の排気通路に形成されていることが好ましい(請求項5)。   In configuring the exhaust emission control device of the present invention, it is preferable that a second expansion taper having a shape expanding in the downstream direction of the exhaust gas flow is formed in the exhaust passage on the downstream side of the mixer. ).

また、本発明の排気浄化装置を構成するにあたり、拡大テーパ部の下流側の排気通路に混合器が配設されているとともに、混合器の排気ガス通過部分の断面積が拡大テーパ部の上流側の排気通路の断面積よりも大きく形成されていることが好ましい(請求項6)。   In configuring the exhaust emission control device of the present invention, a mixer is disposed in the exhaust passage downstream of the enlarged taper portion, and the cross-sectional area of the exhaust gas passage portion of the mixer is upstream of the enlarged taper portion. Preferably, it is formed larger than the cross-sectional area of the exhaust passage.

請求項1の発明に係る排気浄化装置によれば、導入管を排気通路の拡大テーパ部に接続することによって、添加剤噴射弁への熱の影響を低減しつつ、添加剤噴射弁と混合器との距離を一定とした場合において導入管の体積を小さくすることができる。これにより、添加剤噴射弁からの添加剤の噴射に伴って導入管から排気通路へ押し出される排気ガスの量が低減されるため、大きな渦流の発生が抑制される。この結果、添加剤の噴霧が渦流に巻き込まれて導入管内に滞留し、導入管の壁面や添加剤噴射弁の噴孔周辺に付着して固着したり結晶化したりすることが防止される。   According to the exhaust emission control device of the first aspect of the invention, the additive injection valve and the mixer are connected while reducing the influence of heat on the additive injection valve by connecting the introduction pipe to the enlarged taper portion of the exhaust passage. The volume of the introduction tube can be reduced in the case where the distance to is constant. As a result, the amount of exhaust gas pushed out from the introduction pipe to the exhaust passage along with the injection of the additive from the additive injection valve is reduced, so that the generation of a large vortex is suppressed. As a result, the spray of the additive is caught in the vortex and stays in the introduction pipe, and is prevented from adhering to the wall surface of the introduction pipe or the vicinity of the injection hole of the additive injection valve and being fixed or crystallized.

また、請求項2の発明に係る排気浄化装置によれば、添加剤噴射弁と拡大テーパ部とが所定の配置構成となるように構成することにより、排気通路内に余分な空間が生じることなく、かつ排気通路を複雑な形状とすることなく、添加剤噴射弁と混合器との距離を一定とした場合において導入管の体積を小さくすることができる。   Further, according to the exhaust purification device of the second aspect of the present invention, the additive injection valve and the enlarged taper portion are configured to have a predetermined arrangement configuration, so that no extra space is generated in the exhaust passage. In addition, the volume of the introduction pipe can be reduced when the distance between the additive injection valve and the mixer is constant without making the exhaust passage complicated.

また、請求項3の発明に係る排気浄化装置によれば、排気ガス流の下流方向に縮小する形状の縮小テーパ部を、排気浄化触媒と混合器との間の排気通路に設けることによって、混合器で発生させた乱流を整流化させつつ、排気ガスと添加剤の混合を一層促進させることができる。   According to the exhaust purification device of the third aspect of the present invention, the reduction taper portion having a shape that decreases in the downstream direction of the exhaust gas flow is provided in the exhaust passage between the exhaust purification catalyst and the mixer, thereby mixing the exhaust gas flow. Mixing of the exhaust gas and the additive can be further promoted while rectifying the turbulent flow generated by the vessel.

また、請求項4の発明に係る排気浄化装置によれば、添加剤噴射弁と縮小テーパ部とが所定の配置構成となるように構成することにより、排気浄化装置の全長を過大に延ばすことなく、混合器で発生させた乱流を整流化させつつ、排気ガスと添加剤の混合を一層促進させることができる。   According to the exhaust purification device of the fourth aspect of the present invention, the additive injection valve and the reduced taper portion are configured to have a predetermined arrangement configuration, so that the entire length of the exhaust purification device is not excessively extended. The mixing of the exhaust gas and the additive can be further promoted while rectifying the turbulent flow generated by the mixer.

また、請求項5の発明に係る排気浄化装置によれば、排気ガス流の下流方向に拡大する形状の第2の拡大テーパ部を混合器の下流側の排気通路に設けることにより、混合器で発生させた乱流を排気通路の壁面に沿って拡大させつつ、排気浄化触媒に導くことができるので、排気浄化触媒の入口面全体に均一に添加剤を供給することができる。   According to the exhaust purification device of the fifth aspect of the invention, the second enlarged taper portion having a shape expanding in the downstream direction of the exhaust gas flow is provided in the exhaust passage on the downstream side of the mixer, thereby Since the generated turbulent flow can be guided to the exhaust purification catalyst while expanding along the wall surface of the exhaust passage, the additive can be uniformly supplied to the entire inlet surface of the exhaust purification catalyst.

また、請求項6の発明に係る排気浄化装置によれば、拡大テーパ部の上流側の排気通路の断面積よりも混合器の排気ガス通過部分の断面積が大きく構成されるため、排気通路内での排気抵抗や圧力損失の増大を低減することが可能となる。   According to the exhaust purification device of the sixth aspect of the invention, the cross-sectional area of the exhaust gas passage portion of the mixer is configured to be larger than the cross-sectional area of the exhaust passage upstream of the enlarged taper portion. Thus, it is possible to reduce the exhaust resistance and pressure loss increase.

本発明の実施の形態における排気浄化装置の基本構成を説明するための図である。It is a figure for demonstrating the basic composition of the exhaust gas purification device in embodiment of this invention. 本発明の実施の形態における添加剤噴射弁取付部周辺を説明するための図である。It is a figure for demonstrating the additive injection valve attachment part periphery in embodiment of this invention. 本発明の実施の形態における添加剤噴射弁取付部周辺の排気ガス流の速度分布シミュレーション結果を示す図である。It is a figure which shows the velocity distribution simulation result of the exhaust gas flow around the additive injection valve attachment part in embodiment of this invention. 従来技術おける添加剤噴射弁取付部周辺の排気ガス流の速度分布シミュレーション結果を示す図である。It is a figure which shows the speed distribution simulation result of the exhaust gas flow around the additive injection valve attachment part in a prior art. 本発明の実施の形態における添加剤噴射弁取付部の変形例1を説明するための図である。It is a figure for demonstrating the modification 1 of the additive injection valve attachment part in embodiment of this invention. 本発明の実施の形態における添加剤噴射弁取付部の変形例2を説明するための図である。It is a figure for demonstrating the modification 2 of the additive injection valve attachment part in embodiment of this invention. 本発明の実施の形態における添加剤噴射弁取付部の変形例3を説明するための図である。It is a figure for demonstrating the modification 3 of the additive injection valve attachment part in embodiment of this invention.

以下、本発明に係る排気浄化装置を具体化した実施の形態について、図面を参照しつつ説明する。各図において同符号を付してあるものは同じ部材を示しており、説明を適宜省略している。但し、本実施の形態の排気浄化装置は、本発明の一態様を示すものであり、本発明を限定するものではない。例えば、SCR触媒をNSC触媒や酸化触媒に置き換えて、あるいは、尿素水に代えて燃料等を添加剤として用いるなど、実施の形態の各構成を本発明の範囲で任意に変更することが可能である。   DESCRIPTION OF EMBODIMENTS Hereinafter, an embodiment embodying an exhaust emission control device according to the present invention will be described with reference to the drawings. In the drawings, the same reference numerals denote the same members, and the description thereof is omitted as appropriate. However, the exhaust emission control device of this embodiment shows one aspect of the present invention, and does not limit the present invention. For example, each configuration of the embodiment can be arbitrarily changed within the scope of the present invention, such as replacing the SCR catalyst with an NSC catalyst or an oxidation catalyst, or using fuel or the like as an additive instead of urea water. is there.

1.排気浄化装置の構成
本実施の形態における排気浄化装置10の構成を図1に示す。排気浄化装置10は、車両に搭載されたディーゼルエンジン等の内燃機関5から排出された排気ガス中のNOXを浄化するための装置であり、尿素SCRシステムとして構成されている。
1. Configuration of Exhaust Purification Device FIG. 1 shows the configuration of the exhaust purification device 10 in the present embodiment. The exhaust purification device 10 is a device for purifying NO x in exhaust gas discharged from an internal combustion engine 5 such as a diesel engine mounted on a vehicle, and is configured as a urea SCR system.

排気浄化装置10は、内燃機関5の排気系に配置された種々のセンサとSCR触媒13、混合器18、尿素水噴射装置20、制御装置25等から構築されている。種々のセンサや尿素水噴射装置20、制御装置25等は、CAN(Controller Area Network)28に接続されており、CAN28上に存在する情報の取得やCAN28上へ情報の出力ができるようになっている。また、このCAN28は内燃機関5の運転状態を制御するための装置(図示せず。以下、「ECU:Engine Control Unit」と称する。)との通信が可能となっており、燃料噴射量や噴射タイミング、内燃機関回転数等の内燃機関5の運転状態に関する情報が読み取り可能となっている。   The exhaust purification device 10 is constructed from various sensors arranged in the exhaust system of the internal combustion engine 5, an SCR catalyst 13, a mixer 18, a urea water injection device 20, a control device 25, and the like. Various sensors, the urea water injection device 20, the control device 25, and the like are connected to a CAN (Controller Area Network) 28, and can acquire information existing on the CAN 28 and output information to the CAN 28. Yes. The CAN 28 can communicate with a device (not shown, hereinafter referred to as “ECU: Engine Control Unit”) for controlling the operation state of the internal combustion engine 5, and can perform fuel injection amount and injection. Information relating to the operating state of the internal combustion engine 5 such as timing and internal combustion engine speed can be read.

内燃機関5の排気系は内燃機関5に排気通路11が接続されるとともに、その排気通路11にはSCR触媒13が配設されて構成されている。内燃機関5とSCR触媒13との間には、添加剤噴射弁取付部14が設けられており、尿素水噴射装置20の添加剤噴射弁21が設置されている。また、SCR触媒13と添加剤噴射弁21との間の排気通路11には混合器18が配設されている。混合器18は公知の構造のものを適宜用いることができ、添加剤噴射弁21から噴射された尿素水の噴霧が直接衝突する位置に配設される。   The exhaust system of the internal combustion engine 5 is configured such that an exhaust passage 11 is connected to the internal combustion engine 5 and an SCR catalyst 13 is disposed in the exhaust passage 11. An additive injection valve mounting portion 14 is provided between the internal combustion engine 5 and the SCR catalyst 13, and an additive injection valve 21 of the urea water injection device 20 is installed. A mixer 18 is disposed in the exhaust passage 11 between the SCR catalyst 13 and the additive injection valve 21. A mixer 18 having a known structure can be used as appropriate, and is disposed at a position where the spray of urea water injected from the additive injection valve 21 directly collides.

排気通路11に配設されたSCR触媒13は、排気通路11内に噴射された尿素水とともに排気ガス中のNOXを接触させることで排気ガス中のNOXをN2(窒素)等に還元して無害化するNOX選択還元触媒であり、公知のものを適宜用いることができる。用いられるSCR触媒によってはアンモニアスリップを防止するためのアンモニア酸化触媒がSCR触媒13の下流側に配設される場合がある。 SCR catalyst 13 disposed in the exhaust passage 11, reducing the NO X in the exhaust gas by contacting the NO X in the exhaust gas with the injected urea water into the exhaust passage 11 to the N 2 (nitrogen) or the like a the NO X selective reducing catalyst to harmless by, it can be used as appropriate known ones. Depending on the SCR catalyst used, an ammonia oxidation catalyst for preventing ammonia slip may be disposed downstream of the SCR catalyst 13.

SCR触媒13の下流側にはNOXセンサ26が、上流側には温度センサ27がそれぞれ設けられており、これらのセンサは排気通路11内部のNOX濃度情報や温度情報を検出して制御装置25やECU等に送信する。ECUについての詳細な説明はここでは省略するが、自動車等で用いられている一般的な内燃機関の制御装置で構わない。 A NO x sensor 26 is provided on the downstream side of the SCR catalyst 13, and a temperature sensor 27 is provided on the upstream side. These sensors detect NO x concentration information and temperature information in the exhaust passage 11 and control the system. Sent to 25, ECU, etc. Although a detailed description of the ECU is omitted here, a control device for a general internal combustion engine used in an automobile or the like may be used.

尿素水噴射装置20は、尿素水タンク22内に貯えられた添加剤としての尿素水をSCR触媒13に供給するための装置である。この尿素水噴射装置20は添加剤噴射弁21、尿素水タンク22、尿素水ポンプ23、尿素水供給管24、制御装置25によって構築される。添加剤噴射弁21はSCR触媒13の上流側の排気通路に設けられた添加剤噴射弁取付部14に取り付けられており、尿素水供給管24等を介して尿素水タンク22内の尿素水が逐次供給されるようになっている。具体的には、尿素水タンク22は尿素水供給管24を介して添加剤噴射弁21が接続されており、尿素水供給管24の途中には尿素水ポンプ23が設けられている。例えば、制御装置25からの駆動信号により回転駆動される電動式ポンプ等が尿素水ポンプ23として用いられ、その出力は尿素水供給管24内の尿素水の圧力値が所定値となるようにフィードバック制御される。   The urea water injection device 20 is a device for supplying urea water as an additive stored in the urea water tank 22 to the SCR catalyst 13. The urea water injection device 20 is constructed by an additive injection valve 21, a urea water tank 22, a urea water pump 23, a urea water supply pipe 24, and a control device 25. The additive injection valve 21 is attached to an additive injection valve mounting portion 14 provided in the exhaust passage upstream of the SCR catalyst 13, and urea water in the urea water tank 22 is passed through the urea water supply pipe 24 and the like. It is supplied sequentially. Specifically, the urea water tank 22 is connected to an additive injection valve 21 via a urea water supply pipe 24, and a urea water pump 23 is provided in the middle of the urea water supply pipe 24. For example, an electric pump or the like that is rotationally driven by a drive signal from the control device 25 is used as the urea water pump 23, and its output is fed back so that the pressure value of the urea water in the urea water supply pipe 24 becomes a predetermined value. Be controlled.

尿素水噴射装置20の始動に伴い尿素水ポンプ23が回転駆動されると、尿素水タンク22から尿素水が汲み上げられ尿素水供給管24を通じて添加剤噴射弁21に供給される。そして、内燃機関5の運転状態やSCR触媒13の温度状態などに応じて添加剤噴射弁21の開閉制御がなされることにより、適切なタイミングで適正量の尿素水が排気通路11内へ噴射される。すると、排気通路11内において尿素水が加水分解されてNH3を生じるとともに、排気ガスとともにSCR触媒13に供給され、SCR触媒13においてNOXの還元反応が行われることによって排気ガスが浄化される。 When the urea water pump 23 is driven to rotate with the start of the urea water injection device 20, urea water is pumped from the urea water tank 22 and supplied to the additive injection valve 21 through the urea water supply pipe 24. Then, by controlling the opening and closing of the additive injection valve 21 in accordance with the operating state of the internal combustion engine 5 and the temperature state of the SCR catalyst 13, an appropriate amount of urea water is injected into the exhaust passage 11 at an appropriate timing. The Then, the urea water is hydrolyzed in the exhaust passage 11 to generate NH 3 and is supplied to the SCR catalyst 13 together with the exhaust gas, and the exhaust gas is purified by the NO x reduction reaction in the SCR catalyst 13. .

なお、本実施の形態においては、尿素水噴射装置20の各アクチュエータの制御は制御装置25によって行うが、ECUにおける一機能としてECUによって行わせることも適宜可能である。   In the present embodiment, the control of each actuator of the urea water injection device 20 is performed by the control device 25, but it is also possible to appropriately perform the control by the ECU as a function in the ECU.

2.添加剤噴射弁取付部
本実施の形態における添加剤噴射弁取付部14の構造を図2(a)〜(b)に示す。図2(b)は図2(a)の添加剤噴射弁取付部14を矢印X方向から見た図に相当する。本実施形態における添加剤噴射弁取付部とは排気通路11に設けられた上流側拡大テーパ部16と下流側拡大テーパ部17、及び上流側拡大テーパ部16及び下流側拡大テーパ部17の間の排気通路を合わせた部分をいう。また、拡大テーパ部とは、排気通路11において排気ガス流の下流側に向かって断面積が徐々に拡大するように形成された部分であって、その断面形状は円形状や角形状などに適宜形成することができる。
2. Additive Injection Valve Mounting Portion The structure of the additive injection valve mounting portion 14 in the present embodiment is shown in FIGS. FIG. 2B corresponds to a view of the additive injection valve mounting portion 14 of FIG. The additive injection valve mounting portion in the present embodiment is an upstream side enlarged taper portion 16 and a downstream side enlarged taper portion 17 provided in the exhaust passage 11, and between the upstream side enlarged taper portion 16 and the downstream side enlarged taper portion 17. The part that combines the exhaust passages. The enlarged taper portion is a portion formed in the exhaust passage 11 so that the cross-sectional area gradually increases toward the downstream side of the exhaust gas flow, and the cross-sectional shape is appropriately changed to a circular shape or a square shape. Can be formed.

上流側拡大テーパ部16には添加剤噴射弁21から添加された尿素水の噴霧を排気通路11へ導くための導入管19が接続されており、上流側拡大テーパ部16と下流側拡大テーパ部17の間の排気通路11内には混合器18が配設されている。   An introduction pipe 19 for guiding the spray of urea water added from the additive injection valve 21 to the exhaust passage 11 is connected to the upstream side enlarged taper part 16, and the upstream side enlarged taper part 16 and the downstream side enlarged taper part A mixer 18 is disposed in the exhaust passage 11 between 17.

導入管19は円筒状に形成されており、その一端には添加剤噴射弁21が接続され、他端は排気通路11の上流側拡大テーパ部16と接続される。また、導入管19の壁面に尿素水の噴霧が付着することを防ぐために、導入管19は添加剤噴射弁21が接続された一端から他端に向けて拡大するテーパ形状に形成されている。なお、尿素水の噴霧形状に応じて導入管19のテーパ形状、径および長さ等は適宜決められる。   The introduction pipe 19 is formed in a cylindrical shape, and an additive injection valve 21 is connected to one end thereof, and the other end is connected to the upstream side enlarged taper portion 16 of the exhaust passage 11. In order to prevent the spray of urea water from adhering to the wall surface of the introduction pipe 19, the introduction pipe 19 is formed in a tapered shape that expands from one end to which the additive injection valve 21 is connected toward the other end. The tapered shape, diameter, length, and the like of the introduction pipe 19 are appropriately determined according to the urea water spray shape.

導入管19が上流側拡大テーパ部16に接続されることによって、直管状の排気通路に導入管19を直接接続した場合に比べて、導入管19の体積を小さくすることができる。この結果、添加剤噴射弁21からの尿素水の噴射に伴って導入管19内から排気通路11へ押し出される排気ガスの量が低減されるため、導入管19内や導入管19出口付近での大きな渦流の発生が抑制される。そして、尿素水の噴霧が渦流に巻き込まれて導入管19内に滞留し、導入管19の壁面や添加剤噴射弁21の噴孔周辺に付着して固着や結晶化することが防止される。   By connecting the introduction pipe 19 to the upstream side enlarged taper portion 16, the volume of the introduction pipe 19 can be reduced as compared with the case where the introduction pipe 19 is directly connected to the straight tubular exhaust passage. As a result, the amount of exhaust gas pushed out from the introduction pipe 19 to the exhaust passage 11 with the injection of urea water from the additive injection valve 21 is reduced, so that in the introduction pipe 19 and in the vicinity of the outlet of the introduction pipe 19 Generation of large eddy currents is suppressed. Then, the spray of urea water is caught in the vortex and stays in the introduction pipe 19, and is prevented from adhering to the wall surface of the introduction pipe 19 and the periphery of the injection hole of the additive injection valve 21 to be fixed or crystallized.

導入管19を上流側拡大テーパ部16に接続することによって排気通路11と導入管19の接触面積が低減されるため、添加剤噴射弁21が熱により損傷する可能性を低減できる。また、排気ガス通過部分の断面積の大きい混合器18を利用することによって排気通路11内での圧力損失が減少して排気ガス流の直進性が向上するため、添加剤噴射弁21が排気ガスから受ける熱量が減少し、添加剤噴射弁21が熱により損傷する可能性をさらに低減できる。   Since the contact area between the exhaust passage 11 and the introduction pipe 19 is reduced by connecting the introduction pipe 19 to the upstream side enlarged taper portion 16, the possibility that the additive injection valve 21 is damaged by heat can be reduced. Further, the use of the mixer 18 having a large cross-sectional area of the exhaust gas passage portion reduces the pressure loss in the exhaust passage 11 and improves the straightness of the exhaust gas flow. Therefore, the possibility that the additive injection valve 21 is damaged by heat can be further reduced.

添加剤噴射弁取付部14における上流側拡大テーパ部16は、添加剤噴射弁21から噴射された添加剤の噴霧の中心軸が排気通路11の中心軸に対して成す角の角度をαとし、導入管19と上流側拡大テーパ部16との上流側の接点Aと導入管19と上流側拡大テーパ部16との下流側の接点Bを通る直線ABと、排気通路11の中心軸とが成す角度(排気ガス流の中心軸に対する上流側拡大テーパ部16の傾斜角度)をβとしたときに、βが90°−α以下となるように形成される。βを90°−αより大きくした場合に比べて排気通路11内に余分な空間を生じさせることなく、且つ、排気通路11を複雑な形状とすることなく、尿素水の噴射に伴う渦流の発生を効果的に抑制できる。   The upstream side enlarged taper portion 16 in the additive injection valve mounting portion 14 is α, the angle of the angle formed by the central axis of the additive spray injected from the additive injection valve 21 with respect to the central axis of the exhaust passage 11, The upstream contact A between the introduction pipe 19 and the upstream enlarged taper portion 16, the straight line AB passing through the downstream contact B between the introduction pipe 19 and the upstream enlarged taper portion 16, and the central axis of the exhaust passage 11 are formed. When the angle (inclination angle of the upstream enlarged taper portion 16 with respect to the central axis of the exhaust gas flow) is β, β is formed to be 90 ° −α or less. Compared with the case where β is larger than 90 ° −α, the generation of vortex accompanying the injection of urea water without generating an extra space in the exhaust passage 11 and without making the exhaust passage 11 complicated. Can be effectively suppressed.

特に、排気通路11の中心軸と添加剤噴射弁21の先端部の頂点とを含む断面において、導入管19と上流側拡大テーパ部16との上流側の接点Aと導入管19と上流側拡大テーパ部16との下流側の接点Bを通る直線ABが、添加剤噴射弁21から噴射された添加剤の噴霧の中心軸と直交するように形成されることが好ましい。添加剤の噴霧の中心軸と直線ABとが直交するように形成されていることにより、添加剤噴射弁21と混合器18との距離を一定とした場合において導入管19の体積をより小さくすることができる。   In particular, in the cross section including the central axis of the exhaust passage 11 and the apex of the tip of the additive injection valve 21, the upstream contact point A between the introduction pipe 19 and the upstream enlarged taper part 16, the introduction pipe 19 and the upstream enlargement. The straight line AB passing through the contact B on the downstream side with the tapered portion 16 is preferably formed so as to be orthogonal to the central axis of the spray of the additive injected from the additive injection valve 21. Since the central axis of the spray of the additive and the straight line AB are perpendicular to each other, the volume of the introduction pipe 19 is reduced when the distance between the additive injection valve 21 and the mixer 18 is constant. be able to.

上流側拡大テーパ部16と下流側拡大テーパ部17間の排気通路11は、上流側拡大テーパ部16の上流側の排気通路11に比べて断面積が大きく形成されており、その排気通路11内には尿素水の噴霧と排気ガスを効率的に混合および拡散するための混合器18が配設されている。混合器18の配設によって生じる排気抵抗や圧力損失を低減するために、混合器18における排気ガスの通過部分の断面積は上流側拡大テーパ部16よりも上流側の排気通路11の断面積よりも大きく形成されている。   The exhaust passage 11 between the upstream enlarged taper portion 16 and the downstream enlarged taper portion 17 has a larger cross-sectional area than the exhaust passage 11 on the upstream side of the upstream enlarged taper portion 16. Is provided with a mixer 18 for efficiently mixing and diffusing the spray of urea water and the exhaust gas. In order to reduce the exhaust resistance and pressure loss caused by the arrangement of the mixer 18, the cross-sectional area of the exhaust gas passage portion in the mixer 18 is larger than the cross-sectional area of the exhaust passage 11 upstream of the upstream enlarged taper portion 16. Is also formed large.

下流側拡大テーパ部17は混合器18下流側に形成されており、SCR触媒13に向けて排気ガス流の下流方向に拡大する形状に形成されている。混合器18で発生させた乱流を下流側拡大テーパ部17によって拡大させつつSCR触媒13に導くことで、SCR触媒13の上流側の前面全体に均一に添加剤を供給することができる。   The downstream expansion taper portion 17 is formed on the downstream side of the mixer 18 and is formed in a shape that expands toward the SCR catalyst 13 in the downstream direction of the exhaust gas flow. By introducing the turbulent flow generated in the mixer 18 to the SCR catalyst 13 while being enlarged by the downstream enlarged taper portion 17, the additive can be uniformly supplied to the entire front surface on the upstream side of the SCR catalyst 13.

つづいて、本実施の形態における添加剤噴射弁取付部14の効果について説明する。上述のように上流側拡大テーパ部16に導入管19を介して添加剤噴射弁21を取り付けた場合おいて、添加剤噴射弁取付部14周辺における排気ガス流の速度分布のシミュレーション結果を図3に示す。また、従来技術との比較のために、直管状の排気通路に導入管を接続した場合における添加剤噴射弁周辺の排気ガス流の速度分布のシミュレーション結果を図4に示す。   Next, the effect of the additive injection valve mounting portion 14 in the present embodiment will be described. FIG. 3 shows the simulation result of the velocity distribution of the exhaust gas flow around the additive injection valve attachment portion 14 when the additive injection valve 21 is attached to the upstream side enlarged taper portion 16 via the introduction pipe 19 as described above. Shown in For comparison with the prior art, FIG. 4 shows a simulation result of the velocity distribution of the exhaust gas flow around the additive injection valve when the introduction pipe is connected to the straight tubular exhaust passage.

まず、図4において導入管19’内の流れに着目すると、導入管19’の開口部下流側の領域Pから添加剤噴射弁21’の噴孔付近の領域Qに向かった後に、領域Qから排気通路11’に対する導入管19’ の開口部上流側の領域Rに向かい、さらに領域Rから領域Pに向かう大きな渦流の存在がみてとれる。添加剤噴射弁21’から噴射された噴霧の一部が、この渦に巻き込まれることにより、渦の流れに乗って添加剤噴射弁21’の噴孔周辺に至って添加剤噴射弁21’に付着したり、導入管19’内で滞留している間に導入管19’の壁面に付着したりする可能性が非常に高くなることが考えられる。壁面等に付着した尿素水は水分の蒸発や熱による変質によって結晶化してしまって、導入管19’内の空間や噴射孔を閉塞してしまう恐れがある。   First, paying attention to the flow in the introduction pipe 19 ′ in FIG. 4, after moving from the area P on the downstream side of the opening of the introduction pipe 19 ′ to the area Q in the vicinity of the injection hole of the additive injection valve 21 ′, Existence of a large vortex flowing toward the region R upstream of the opening of the introduction pipe 19 'with respect to the exhaust passage 11' and further from the region R toward the region P can be seen. Part of the spray injected from the additive injection valve 21 'is caught in this vortex, so that it rides on the vortex and reaches the periphery of the injection hole of the additive injection valve 21' and adheres to the additive injection valve 21 '. It is conceivable that the possibility of adhering to the wall surface of the introduction pipe 19 ′ while staying in the introduction pipe 19 ′ becomes very high. The urea water adhering to the wall surface or the like may crystallize due to evaporation of moisture or alteration due to heat, and may block the space in the introduction pipe 19 'and the injection hole.

一方、図3において導入管19内の流れに着目すると、図4においてみられた大きな渦流が小さくなっていることがみてとれる。導入管19内の渦流の勢いが図4に比べて低下しているので、添加剤噴射弁21から噴射された噴霧の一部が、渦流に巻き込まれる可能性が低減され、添加剤噴射弁21の噴孔周辺や導入管19の壁面に付着する可能性が大幅に低下する。その結果、添加剤噴射弁21の噴孔周辺や導入管19内で尿素水が結晶化してしまって、尿素水の噴霧形成が阻害されてしまったり、SCR触媒13への添加剤の適切な供給が阻害されてしまったりすることが防止される。   On the other hand, paying attention to the flow in the introduction pipe 19 in FIG. 3, it can be seen that the large vortex flow seen in FIG. 4 is reduced. Since the momentum of the vortex flow in the introduction pipe 19 is lower than that in FIG. 4, the possibility that a part of the spray injected from the additive injection valve 21 is caught in the vortex flow is reduced, and the additive injection valve 21. The possibility of adhering to the vicinity of the nozzle hole and the wall surface of the introduction pipe 19 is greatly reduced. As a result, urea water is crystallized around the nozzle hole of the additive injection valve 21 and in the introduction pipe 19, and spray formation of urea water is obstructed, or appropriate supply of the additive to the SCR catalyst 13 is performed. Is prevented from being disturbed.

3.添加剤噴射弁取付部の変形例
添加剤噴射弁取付部14の変形例として、図2(a)における下流側拡大テーパ部17を縮小テーパ部17’として形成した場合の変形例1を図5(a)〜(b)に示す。図5(b)は図5(a)の添加剤噴射弁取付部14を矢印Y方向から見た図に相当する。
3. Modification of Additive Injection Valve Mounting Part As a modification of the additive injection valve mounting part, Modification Example 1 in the case where the downstream side enlarged taper part 17 in FIG. It shows to Fig.5 (a)-(b). FIG. 5B corresponds to a view of the additive injection valve mounting portion 14 of FIG.

変形例1では、縮小テーパ部17’は混合器18の下流側に形成されており、排気ガス流の下流方向に向かって縮小する形状に形成されている。排気通路11の中心軸と添加剤噴射弁21の先端部の頂点とを含む断面において、添加剤噴射弁21から噴射された尿素水の噴霧の中心軸が排気通路11の中心軸に対して成す角の角度をαとしたときに、排気通路11の中心軸に対する上流側拡大テーパ部16の傾斜角度β、および排気通路11の中心軸に対する縮小テーパ部17’の傾斜角度γがそれぞれαとなっている。このように混合器18の下流側に縮小テーパ部17’を設けることによって、混合器18で発生させた乱流を整流させつつ、排気ガスと尿素水との混合をより一層促進させることができる。   In the first modification, the reduction taper portion 17 ′ is formed on the downstream side of the mixer 18, and is formed in a shape that reduces toward the downstream direction of the exhaust gas flow. In the cross section including the central axis of the exhaust passage 11 and the apex of the tip of the additive injection valve 21, the central axis of the urea water spray injected from the additive injection valve 21 forms the central axis of the exhaust passage 11. When the angle of the angle is α, the inclination angle β of the upstream side enlarged taper portion 16 with respect to the central axis of the exhaust passage 11 and the inclination angle γ of the reduction taper portion 17 ′ with respect to the central axis of the exhaust passage 11 are respectively α. ing. As described above, by providing the reduced taper portion 17 ′ on the downstream side of the mixer 18, the mixing of the exhaust gas and the urea water can be further promoted while rectifying the turbulent flow generated in the mixer 18. .

また、縮小テーパ部17’は、その傾斜角度が小さいほど排気ガス流の整流効果が高まるものの全長が長くなってしまうため、排気通路11内の排気ガス流の中心軸に対する縮小テーパ部17’の傾斜角度γをα±30°程度とすることが好ましい。これにより排気浄化装置10の全長を過大に延ばすことなく、排気ガスと添加剤との混合を促進させることができる。   Further, although the reduction taper portion 17 ′ increases the rectification effect of the exhaust gas flow as the inclination angle is small, the overall length becomes long. Therefore, the reduction taper portion 17 ′ The inclination angle γ is preferably about α ± 30 °. Thereby, the mixing of the exhaust gas and the additive can be promoted without excessively extending the entire length of the exhaust gas purification apparatus 10.

次に、導入管19をより短くするために、上流側拡大テーパ部16''の傾斜角度を大きく設定した場合の変形例2を図6(a)〜(b)に示す。図6(b)は図6(a)の添加剤噴射弁取付部14を矢印Y方向から見た図に相当する。排気通路11の中心軸に対する上流側拡大テーパ部16''の傾斜角度βを90°−αとすることで、導入管19''を最短形状として尿素噴射弁21を排気通路11に取り付けることができる。この傾斜角度βを90°−α以上に大きな角度とすると、排気通路11内に余計な空間を過大に形成することになり、かつ排気管の形状が複雑に成なってしまうため好ましくない。   Next, in order to make the introduction pipe 19 shorter, a second modification in the case where the inclination angle of the upstream side enlarged taper portion 16 '' is set large is shown in FIGS. FIG. 6B corresponds to a view of the additive injection valve mounting portion 14 of FIG. By setting the inclination angle β of the upstream side enlarged taper portion 16 ″ with respect to the central axis of the exhaust passage 11 to 90 ° −α, it is possible to attach the urea injection valve 21 to the exhaust passage 11 with the introduction pipe 19 ″ having the shortest shape. it can. If the inclination angle β is larger than 90 ° −α, an excessive space is formed in the exhaust passage 11 and the shape of the exhaust pipe becomes complicated, which is not preferable.

また、この変形例2においては、上述したように、排気通路11の中心軸と添加剤噴射弁21の先端部の頂点とを含む断面において、導入管19と上流側拡大テーパ部16との上流側の接点Aと導入管19と上流側拡大テーパ部16との下流側の接点Bを通る直線ABが、添加剤噴射弁21から噴射された添加剤の噴霧の中心軸と直交するように形成されている。そのため、添加剤噴射弁21と混合器18との距離を一定とした場合において導入管19の体積がより小さくされている。   Further, in the second modification, as described above, in the cross section including the central axis of the exhaust passage 11 and the apex of the distal end portion of the additive injection valve 21, the upstream side of the introduction pipe 19 and the upstream side enlarged taper portion 16 is provided. A straight line AB passing through a contact B on the downstream side, the contact B on the downstream side of the introduction pipe 19 and the upstream enlarged taper portion 16 is formed so as to be orthogonal to the central axis of the spray of the additive injected from the additive injection valve 21. Has been. Therefore, when the distance between the additive injection valve 21 and the mixer 18 is constant, the volume of the introduction pipe 19 is made smaller.

なお、この変形例2では上流側拡大テーパ部16''と縮小テーパ部17’との間の排気通路11の径が非常に大きくなってしまうが、図7(a)〜(b)に示す変形例3のように片側テーパとすることでその大きさを低減できる。   In the second modification, the diameter of the exhaust passage 11 between the upstream side enlarged taper portion 16 '' and the reduced taper portion 17 'becomes very large, as shown in FIGS. 7 (a) to 7 (b). The size can be reduced by using one-side taper as in Modification 3.

5:内燃機関、10:排気浄化装置、11:排気通路、13:SCR触媒、14:添加剤噴射弁取付部、16:上流側拡大テーパ部、17:下流側拡大テーパ部、18:混合器、19:導入管、20:尿素水噴射装置、21:添加剤噴射弁、22:尿素水タンク、23:尿素水供給ポンプ、24:尿素水供給管、25:制御装置、26:NOXセンサ、27:温度センサ、28:CAN 5: Internal combustion engine, 10: Exhaust gas purification device, 11: Exhaust passage, 13: SCR catalyst, 14: Additive injection valve mounting part, 16: Upstream side expansion taper part, 17: Downstream side expansion taper part, 18: Mixer , 19: introduction pipe, 20: urea water injection device, 21: additive injection valve, 22: urea water tank, 23: urea water supply pump, 24: urea water supply pipe, 25: control device, 26: NO X sensor , 27: Temperature sensor, 28: CAN

Claims (6)

内燃機関の排気通路内に排気浄化触媒が配設されており、前記排気浄化触媒の上流側の前記排気通路に導入管を介して添加剤噴射弁が取り付けられているとともに、前記添加剤噴射弁から噴射された添加剤の噴霧が衝突する位置に混合器が設けられている排気浄化装置において、
排気ガス流の下流方向に拡大する形状の拡大テーパ部が前記排気浄化触媒の上流側の前記排気通路に形成されており、前記拡大テーパ部に前記導入管が接続されていることを特徴とする排気浄化装置。
An exhaust purification catalyst is disposed in an exhaust passage of the internal combustion engine, and an additive injection valve is attached to the exhaust passage upstream of the exhaust purification catalyst via an introduction pipe, and the additive injection valve In the exhaust emission control device in which the mixer is provided at a position where the spray of the additive injected from
An enlarged taper portion having a shape that expands in the downstream direction of the exhaust gas flow is formed in the exhaust passage on the upstream side of the exhaust purification catalyst, and the introduction pipe is connected to the enlarged taper portion. Exhaust purification device.
前記排気通路の中心軸と前記添加剤噴射弁の先端部の頂点とを含む断面において、
前記導入管と前記拡大テーパ部との接点のうち、上流側の接点をAとし、下流側の接点をBとしたときに、前記添加剤噴射弁から噴射された添加剤の噴霧の中心軸と前記接点A及びBを通る直線ABとが直交することを特徴とする請求項1に記載の排気浄化装置。
In a cross section including the central axis of the exhaust passage and the apex of the tip of the additive injection valve,
Of the contacts between the introduction pipe and the enlarged taper portion, when the upstream contact is A and the downstream contact is B, the central axis of the spray of the additive injected from the additive injection valve The exhaust emission control device according to claim 1, wherein a straight line AB passing through the contact points A and B is orthogonal to the straight line AB.
前記排気ガス流の下流方向に縮小する形状の縮小テーパ部が前記排気浄化触媒と前記混合器との間の前記排気通路に形成されていることを特徴とする請求項1または2に記載の排気浄化装置。   3. The exhaust according to claim 1, wherein a reduced taper portion having a shape that decreases in a downstream direction of the exhaust gas flow is formed in the exhaust passage between the exhaust purification catalyst and the mixer. Purification equipment. 前記排気通路の中心軸と前記添加剤噴射弁の先端部の頂点とを含む断面において、
前記添加剤噴射弁から噴射された添加剤の噴霧の中心軸が前記排気通路の中心軸に対して成す角の角度をαとし、前記排気ガス流の中心軸に対する前記縮小テーパ部の傾斜角度をγとしたときに、γ=α±30°であることを特徴とする請求項3に記載の排気浄化装置。
In a cross section including the central axis of the exhaust passage and the apex of the tip of the additive injection valve,
The angle of the angle formed by the central axis of the additive spray injected from the additive injection valve with respect to the central axis of the exhaust passage is α, and the inclination angle of the reduced taper portion with respect to the central axis of the exhaust gas flow is 4. The exhaust emission control device according to claim 3, wherein γ = α ± 30 ° when γ.
前記排気ガス流の下流方向に拡大する形状の第2の拡大テーパが前記混合器の下流側の前記排気通路に形成されていることを特徴とする請求項1または2に記載の排気浄化装置。   3. The exhaust emission control device according to claim 1, wherein a second expansion taper having a shape expanding in a downstream direction of the exhaust gas flow is formed in the exhaust passage on the downstream side of the mixer. 前記拡大テーパ部の下流側の前記排気通路に前記混合器が配設されているとともに、前記混合器の排気ガス通過部分の断面積が前記拡大テーパ部の上流側の前記排気通路の断面積よりも大きく形成されていることを特徴とする請求項1乃至5に記載の排気浄化装置。   The mixer is disposed in the exhaust passage on the downstream side of the enlarged tapered portion, and the sectional area of the exhaust gas passage portion of the mixer is larger than the sectional area of the exhaust passage on the upstream side of the enlarged tapered portion. The exhaust purification device according to any one of claims 1 to 5, wherein the exhaust purification device is also formed to be large.
JP2009194649A 2009-08-25 2009-08-25 Exhaust purification device Active JP5500909B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194649A JP5500909B2 (en) 2009-08-25 2009-08-25 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194649A JP5500909B2 (en) 2009-08-25 2009-08-25 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2011047293A true JP2011047293A (en) 2011-03-10
JP5500909B2 JP5500909B2 (en) 2014-05-21

Family

ID=43833872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194649A Active JP5500909B2 (en) 2009-08-25 2009-08-25 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP5500909B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147205A1 (en) * 2011-04-28 2012-11-01 トヨタ自動車株式会社 Exhaust gas purifier for internal combustion engine
CN103867265A (en) * 2012-12-14 2014-06-18 福特汽车萨纳伊股份有限公司 Mixer system
JP2014163276A (en) * 2013-02-25 2014-09-08 Toyota Motor Corp Addition valve supporting device
WO2015053256A1 (en) 2013-10-09 2015-04-16 ヤンマー株式会社 Exhaust-gas purification device
JP2015209799A (en) * 2014-04-25 2015-11-24 三菱ふそうトラック・バス株式会社 Internal combustion engine exhaust emission control system
US9421496B2 (en) 2011-04-28 2016-08-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
US9435241B2 (en) 2011-03-28 2016-09-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506581A (en) * 2002-11-15 2006-02-23 カタリティカ エナジー システムズ, インコーポレイテッド Apparatus and method for reducing NOx emissions from lean burn engines
JP2006214388A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008128111A (en) * 2006-11-21 2008-06-05 Hino Motors Ltd Additive evaporation acceleration structure for exhaust emission control device
JP2008128045A (en) * 2006-11-17 2008-06-05 Mitsubishi Motors Corp Exhaust emission control device
WO2008111254A1 (en) * 2007-03-12 2008-09-18 Bosch Corporation Exhaust gas purification apparatus for internal combustion engine
DE102007052262A1 (en) * 2007-11-02 2009-05-07 Bayerische Motoren Werke Aktiengesellschaft Reducing agent i.e. nitrogen oxide, mixing and evaporating device for e.g. diesel operated internal-combustion engine, of motor vehicle, has lattice-like exhaust gas-permeable and reducing agent-subjectable structure arranged in channel
JP2009156070A (en) * 2007-12-25 2009-07-16 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2009156067A (en) * 2007-12-25 2009-07-16 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2010138783A (en) * 2008-12-11 2010-06-24 Shin Ace:Kk Post processing apparatus for internal combustion engine, exhaust gas purification apparatus, and exhaust gas purifying method using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006506581A (en) * 2002-11-15 2006-02-23 カタリティカ エナジー システムズ, インコーポレイテッド Apparatus and method for reducing NOx emissions from lean burn engines
JP2006214388A (en) * 2005-02-04 2006-08-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
JP2008128045A (en) * 2006-11-17 2008-06-05 Mitsubishi Motors Corp Exhaust emission control device
JP2008128111A (en) * 2006-11-21 2008-06-05 Hino Motors Ltd Additive evaporation acceleration structure for exhaust emission control device
WO2008111254A1 (en) * 2007-03-12 2008-09-18 Bosch Corporation Exhaust gas purification apparatus for internal combustion engine
DE102007052262A1 (en) * 2007-11-02 2009-05-07 Bayerische Motoren Werke Aktiengesellschaft Reducing agent i.e. nitrogen oxide, mixing and evaporating device for e.g. diesel operated internal-combustion engine, of motor vehicle, has lattice-like exhaust gas-permeable and reducing agent-subjectable structure arranged in channel
JP2009156070A (en) * 2007-12-25 2009-07-16 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2009156067A (en) * 2007-12-25 2009-07-16 Mitsubishi Motors Corp Exhaust emission control device for internal combustion engine
JP2010138783A (en) * 2008-12-11 2010-06-24 Shin Ace:Kk Post processing apparatus for internal combustion engine, exhaust gas purification apparatus, and exhaust gas purifying method using the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9435241B2 (en) 2011-03-28 2016-09-06 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
WO2012147205A1 (en) * 2011-04-28 2012-11-01 トヨタ自動車株式会社 Exhaust gas purifier for internal combustion engine
CN103502591A (en) * 2011-04-28 2014-01-08 丰田自动车株式会社 Exhaust gas purifier for internal combustion engine
JP5664771B2 (en) * 2011-04-28 2015-02-04 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
US9421496B2 (en) 2011-04-28 2016-08-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification apparatus for internal combustion engine
CN103867265A (en) * 2012-12-14 2014-06-18 福特汽车萨纳伊股份有限公司 Mixer system
JP2014163276A (en) * 2013-02-25 2014-09-08 Toyota Motor Corp Addition valve supporting device
WO2015053256A1 (en) 2013-10-09 2015-04-16 ヤンマー株式会社 Exhaust-gas purification device
KR20160065197A (en) 2013-10-09 2016-06-08 얀마 가부시키가이샤 Exhaust-gas purification device
US9732652B2 (en) 2013-10-09 2017-08-15 Yanmar Co., Ltd. Exhaust-gas purification device
JP2015209799A (en) * 2014-04-25 2015-11-24 三菱ふそうトラック・バス株式会社 Internal combustion engine exhaust emission control system

Also Published As

Publication number Publication date
JP5500909B2 (en) 2014-05-21

Similar Documents

Publication Publication Date Title
JP5500909B2 (en) Exhaust purification device
JP5714844B2 (en) Exhaust gas purification device
JP3892452B2 (en) Engine exhaust purification system
EP3279440B1 (en) Exhaust purification unit
JP4943499B2 (en) Exhaust gas purification device for internal combustion engine
JP4779959B2 (en) Exhaust purification device
US9995194B2 (en) System for preventing the urea crystal formation within an exhaust gas after treatment system
JP2007198316A (en) Device and method for controlling exhaust gas of internal combustion engine
WO2015018971A1 (en) Method, apparatus and system for aftertreatment of exhaust gas
JP2011111927A (en) Exhaust emission control device of internal combustion engine
CN102159810A (en) Mixing device in exhaust gas pipe
JP2009041371A (en) Exhaust emission control device and mixer unit of internal combustion engine
CN110431289B (en) Exhaust system
JP2005127271A (en) Urea water vaporizer
JP2009085050A (en) Additive injection valve, additive injection device and exhaust emission control system
JP2010144569A (en) Selective reduction catalyst device
JP2008138594A (en) Nox cleaning device
JP2008267288A (en) Exhaust emission control device
JP2008180202A (en) Exhaust emission control device
JP2008240722A (en) Exhaust emission control device
JP2009036150A (en) Reducer-adding device of internal combustion engine
JP2009041370A (en) Exhaust emission control device of internal combustion engine
JP2010112230A (en) Exhaust emission control device
JP2011106412A (en) Exhaust emission control device for internal combustion engine
JP2009030561A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20130730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140311

R151 Written notification of patent or utility model registration

Ref document number: 5500909

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250