JP2011045806A - Gaseous mercury removal agent and method for removing gaseous mercury in gas including metal mercury and/or vapor - Google Patents

Gaseous mercury removal agent and method for removing gaseous mercury in gas including metal mercury and/or vapor Download PDF

Info

Publication number
JP2011045806A
JP2011045806A JP2009194653A JP2009194653A JP2011045806A JP 2011045806 A JP2011045806 A JP 2011045806A JP 2009194653 A JP2009194653 A JP 2009194653A JP 2009194653 A JP2009194653 A JP 2009194653A JP 2011045806 A JP2011045806 A JP 2011045806A
Authority
JP
Japan
Prior art keywords
mercury
gaseous mercury
gaseous
removing agent
manganese oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009194653A
Other languages
Japanese (ja)
Inventor
Yasushi Shiotani
靖 塩谷
Tsuneyoshi Takase
経義 高瀬
Eiji Sasaoka
英司 笹岡
Azhar Uddin Mohammad
アズハ ウッディン モハマッド
Junya Takenami
潤哉 竹並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
Sued Chemie Catalysts Japan Inc
Original Assignee
Okayama University NUC
Sued Chemie Catalysts Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC, Sued Chemie Catalysts Japan Inc filed Critical Okayama University NUC
Priority to JP2009194653A priority Critical patent/JP2011045806A/en
Publication of JP2011045806A publication Critical patent/JP2011045806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gaseous mercury removal agent in which problems of the conventional dry absorbents are solved and which can be made to efficiently absorb gaseous mercury in natural gas including metal mercury and/or vapors of mercury compounds, gaseous mercury included in the exhaust gas produced when fossil fuel is burned or gaseous mercury in the gas obtained by gasifying heavy oil, residual liquids thereof, coal, biomass or the like, and to provide a method for removing gaseous mercury. <P>SOLUTION: The gaseous mercury removal agent is manganese oxide having ≥100 m<SP>2</SP>/g, preferably, 200-500 m<SP>2</SP>/g specific surface area and used for removing gaseous mercury from the gas including metal mercury and/or vapors of mercury compounds. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明はガス状水銀の除去剤及びその除去方法に関する。さらに詳述すると、天然ガス中のガス状水銀、化石燃料を燃焼した排ガス中に含まれるガス状水銀や重質油あるいはその残留残液、石炭、バイオマスなどをガス化して得られたガス中のガス状水銀の除去剤と水銀除去方法に関する。   The present invention relates to a gaseous mercury removing agent and a method for removing the same. More specifically, gaseous mercury in natural gas, gaseous mercury and heavy oil contained in the exhaust gas combusted with fossil fuel, or its residual liquid, coal, biomass, etc. The present invention relates to a gaseous mercury remover and a mercury removal method.

石炭、原油、ナフサ、天然ガスなどには水銀が含まれる場合があることが知られている。(非特許文献1、2)これらの原料や燃料を燃焼したり、ガス化した際には、ガス中にガス状水銀が発生することとなる。このようなガス状水銀は、具体的には金属水銀と酸化水銀の二つの化学形態で存在し、例えば、石炭などをガス化した還元性のガス中ではほぼ全てが金属水銀となるが、燃料を燃焼した酸化性の排ガス中には金属水銀と酸化水銀が含まれるものと考えられている。   Coal, crude oil, naphtha, natural gas, etc. are known to contain mercury. (Non-Patent Documents 1 and 2) When these raw materials and fuels are burned or gasified, gaseous mercury is generated in the gas. Such gaseous mercury specifically exists in two chemical forms, metallic mercury and mercury oxide. For example, almost all of the reducing gas, which is gasified from coal or the like, becomes metallic mercury. It is thought that the oxidizing exhaust gas combusting methane contains metallic mercury and mercury oxide.

これらのガスに含まれるガス状水銀は、環境保全の観点から、使用される設備の腐食などに対する設備保全、下流側で使用される各触媒の劣化防止の観点から、十分に除去する必要がある。既存のガス状水銀を除去する技術として、ガス温度を予め低下させて吸収液で洗浄する湿式除去方式と活性炭による吸着除去(特許文献1)や金属硫化物による反応除去(特許文献2)や金や銀を酸化物に担持した剤によるアマルガム反応による除去(特許文献3)などの乾式除去方式がある。   Gaseous mercury contained in these gases must be removed sufficiently from the viewpoint of environmental protection, from the viewpoint of equipment maintenance against corrosion of the equipment used, and prevention of deterioration of each catalyst used downstream. . Existing technologies for removing gaseous mercury include a wet removal method in which the gas temperature is lowered in advance and washing with an absorbing solution, adsorption removal with activated carbon (Patent Document 1), reaction removal with metal sulfide (Patent Document 2), gold Further, there is a dry removal method such as removal by an amalgam reaction using an agent having silver supported on an oxide (Patent Document 3).

しかしながら、湿式除去法では、ガス状水銀のうち水溶性の酸化水銀は吸収液に溶解して除去されるが、非水溶性の金属水銀は捕捉されにくく、十分な除去が困難である。また、装置内の腐食や排水処理の問題がある。   However, in the wet removal method, water-soluble mercury oxide in gaseous mercury is dissolved and removed in the absorbing solution, but water-insoluble metal mercury is difficult to be captured and is difficult to remove sufficiently. In addition, there are problems of corrosion in the apparatus and wastewater treatment.

一方、乾式除去方法に関して、活性炭や金属硫化物、銀、金を担持した吸収剤などは、除去性能が十分ではない。硫化物については、特に、長時間、使用していると硫黄分が下流側に流出する恐れがある。また、活性炭は、物理吸着を原理とした除去方法のために、温度、圧力などの運転条件の変動により、除去効率も変動したり、脱離などの恐れもある。このように、乾式吸収法による固体吸収剤では、反応吸収で、かつ、より大きな吸収能力が求められている。   On the other hand, with respect to the dry removal method, activated carbon, metal sulfides, silver and gold-carrying absorbents, etc. do not have sufficient removal performance. With regard to sulfides, there is a risk that sulfur content may flow out downstream, especially when used for a long time. In addition, activated carbon is a removal method based on the principle of physical adsorption, so that the removal efficiency may vary or the desorption may occur due to fluctuations in operating conditions such as temperature and pressure. Thus, the solid absorbent by the dry absorption method is required to have a larger absorption capacity by reaction absorption.

環境省ホームページ平成19年度第1回有害金属対策基調検討会(http://www.env.go.jp/chemi/tmms/1901/index.html)Ministry of the Environment homepage 2007 first toxic metal countermeasures keynote study meeting (http://www.env.go.jp/chemi/tmms/1901/index.html) 平成15年度石油学会技術進歩賞2003 Japan Petroleum Institute Technical Progress Award

特開平11−050066号公報Japanese Patent Laid-Open No. 11-050066 特開平05−171160号公報JP 05-171160 A 国際公開第94/15710号パンフレットWO94 / 15710 pamphlet

従って、本発明の目的は、従来の乾式吸収剤の問題点を解決し、かつ、効率よく、天然ガス中のガス状水銀、化石燃料を燃焼した排ガス中に含まれるガス状水銀や重質油あるいはその残留残液、石炭、バイオマスなどをガス化して得られたガス中のガス状水銀を吸収することが可能なガス状水銀除去剤及びその除去方法を提供することにある。   Accordingly, an object of the present invention is to solve the problems of the conventional dry absorbent and efficiently, gaseous mercury in natural gas, gaseous mercury or heavy oil contained in exhaust gas combusted with fossil fuel Alternatively, it is an object of the present invention to provide a gaseous mercury removing agent capable of absorbing gaseous mercury in a gas obtained by gasifying the residual liquid, coal, biomass and the like, and a method for removing the gaseous mercury removing agent.

そこで、本発明者らは、上記課題を解決するために鋭意検討したところ、比表面積が100m/g以上、好ましくは200〜500m/gを有する酸化マンガンが、ガス状水銀の除去能力が非常に高いことを見出した。 Therefore, the present inventors have conducted intensive studies in order to solve the above problems, and as a result, manganese oxide having a specific surface area of 100 m 2 / g or more, preferably 200 to 500 m 2 / g, has the ability to remove gaseous mercury. I found it very expensive.

すなわち、本発明は、
(1)比表面積が100m/g以上を有する酸化マンガンであること特徴とする金属水銀およびまたは水銀化合物の蒸気を含むガス中のガス状水銀除去剤である。
That is, the present invention
(1) A gaseous mercury removing agent in a gas containing metal mercury and / or a vapor of a mercury compound, characterized by being manganese oxide having a specific surface area of 100 m 2 / g or more.

(2)比表面積が200から500m/gを有する酸化マンガンであること特徴とする金属水銀およびまたは水銀化合物の蒸気を含むガス中のガス状水銀除去剤である。 (2) A gaseous mercury removing agent in a gas containing metal mercury and / or a vapor of a mercury compound, characterized by being manganese oxide having a specific surface area of 200 to 500 m 2 / g.

(3)金属塩類の水溶液と、過マンガン酸塩類水溶液とを混合し、反応させることにより沈殿を生成させ、この沈殿物を充分洗浄した後ろ過し、次いで乾燥させることにより製造される酸化マンガンであることを特徴とする(1)または(2)記載のガス状水銀除去剤である。   (3) A manganese oxide produced by mixing an aqueous solution of a metal salt and an aqueous solution of a permanganate solution and reacting them to form a precipitate. The precipitate is sufficiently washed, filtered, and then dried. It is a gaseous mercury removing agent as described in (1) or (2).

(4)過マンガン酸塩類水溶液に、更にアルカリ化合物類水溶液を添加することにより製造される酸化マンガンであることを特徴とする(3)記載のガス状水銀除去剤である。   (4) The gaseous mercury removing agent according to (3), which is manganese oxide produced by further adding an alkaline compound aqueous solution to the permanganate aqueous solution.

(5)(1)乃至(4)のいずれかに記載のガス状水銀除去剤と、金属水銀およびまたは水銀化合物の蒸気を含むガスを接触させ、ガス状水銀を除去する方法である。   (5) A method for removing gaseous mercury by bringing the gaseous mercury removing agent according to any one of (1) to (4) into contact with a gas containing vapor of metallic mercury and / or a mercury compound.

(6)接触方法は固定床流通方式であることを特徴とする(5)記載の方法である。   (6) The method according to (5), wherein the contact method is a fixed bed distribution method.

本発明の除去剤では、金属水銀およびまたは水銀化合物の蒸気を含むガス状水銀の除去性能が大幅に向上することで、長期の運転が可能であり、かつ、硫化物を含まないので、下流に流出することもない。また、吸着ではなく、化学反応を利用した除去方法であるので、脱離などのトラブルの恐れもないため、工業的価値が大きく、公害防止の観点から有用である。   In the removal agent of the present invention, the removal performance of gaseous mercury containing vapor of metallic mercury and / or mercury compounds is greatly improved, so that long-term operation is possible and no sulfide is contained. There will be no leakage. Moreover, since it is a removal method using a chemical reaction rather than adsorption, there is no risk of troubles such as desorption, so it has a great industrial value and is useful from the viewpoint of pollution prevention.

以下の発明を詳述する。   The following invention will be described in detail.

本発明の除去剤で除去されるガス状水銀は、金属水銀およびまたは水銀化合物の蒸気を含むガス状水銀であり、たとえば天然ガス中のガス状水銀、化石燃料を燃焼した排ガス中に含まれるガス状水銀や重質油あるいはその残留残液、石炭、バイオマスなどをガス化して得られたガス中のガス状水銀であり、特に金属水銀と酸化水銀などの化学形態で存在するガス状水銀である。本発明に適用可能なガス中のガス状水銀の含有量は特に制限がないが、特に有効な範囲は、0.001ppbから100ppm、好ましくは1ppbから1000ppbである。   The gaseous mercury removed by the removing agent of the present invention is gaseous mercury containing vapor of metallic mercury and / or mercury compound, for example, gaseous mercury in natural gas, gas contained in exhaust gas combusted with fossil fuel Gaseous mercury in gas obtained from gasification of gaseous mercury, heavy oil or its residual residue, coal, biomass, etc., especially gaseous mercury present in chemical forms such as metallic mercury and mercury oxide . The content of gaseous mercury in the gas applicable to the present invention is not particularly limited, but a particularly effective range is 0.001 ppb to 100 ppm, preferably 1 ppb to 1000 ppb.

本発明で用いられる除去剤は、その比表面積が100m/g以上、好ましくは200から500m/gの範囲にある酸化マンガンである。 The removing agent used in the present invention is manganese oxide having a specific surface area of 100 m 2 / g or more, preferably in the range of 200 to 500 m 2 / g.

酸化マンガンについて、特に、制限はないが、金属塩類を水溶液となした後、アルカリ化合物類水溶液との中和反応や、過マンガン酸塩類水溶液との酸化還元反応を利用した沈殿法により製造することができる。また、過マンガン酸塩類に更にアルカリ化合物類水溶液を添加することもできる。金属塩類としては、二価のマンガン塩として、硝酸塩、硫酸塩、塩化物などを用いるのが望ましい。アルカリ化合物類としてはナトリウム、カリウムの水酸化物、炭酸塩、あるいはアンモニア水などを使用することが望ましい。過マンガン酸塩類としては、過マンガン酸ナトリウム、過マンガン酸カリウム、などを使用することが望ましい。沈殿法により得られた沈殿物は水洗した後、ろ過、乾燥される。   Manganese oxide is not particularly limited, but it must be produced by a precipitation method using a neutralization reaction with an aqueous alkaline compound solution or an oxidation-reduction reaction with an aqueous permanganate solution after forming a metal salt into an aqueous solution. Can do. Further, an aqueous alkali compound solution can be further added to permanganates. As metal salts, it is desirable to use nitrates, sulfates, chlorides, etc. as divalent manganese salts. As alkali compounds, it is desirable to use sodium, potassium hydroxide, carbonate, or ammonia water. As permanganates, it is desirable to use sodium permanganate, potassium permanganate, and the like. The precipitate obtained by the precipitation method is washed with water, filtered and dried.

ガス状水銀除去剤は、既知の一般的な手段により成形して、本発明の吸収剤とすることができる。その形状及びサイズは、その使用形態により様々であり、一般的には直径が1から6mmで長さが3から20mm程度の円柱ペレットが好適に用いられるが、種々のサイズの異形状のペレット、錠剤成形、顆粒状及び破砕粒、また噴霧乾燥による微粒子など、特に、制限はない。   The gaseous mercury removing agent can be molded by known general means to form the absorbent of the present invention. The shape and size vary depending on the form of use. Generally, cylindrical pellets having a diameter of 1 to 6 mm and a length of about 3 to 20 mm are preferably used. There are no particular restrictions on tablet formation, granulation and crushed particles, and fine particles by spray drying.

一般的な押し出し円柱状ペレットの製造方法であるが、ガス状水銀除去剤の粉体をニーダーあるいはマーラーなどの混合混練装置で十分に乾式混合した後に、混合粉体に対して、10から40重量%、好ましくは20から30重量%の範囲で水を添加して混練する。水を添加する際には混練物の不均質が生じないように分割投入することが望ましい。得られた混練物を押し出し成形機あるいはペレタイザーで所定の形状のダイスを用いて円柱状ペレットに成形する。これを100から400℃、好ましくは150から250℃で乾燥する。   This is a general method for producing extruded cylindrical pellets. After the powder of the gaseous mercury removing agent is sufficiently dry-mixed by a mixing and kneading apparatus such as a kneader or Mahler, the mixed powder is 10 to 40 weights. %, Preferably 20 to 30% by weight of water and kneaded. When adding water, it is desirable to divide and add the kneaded material so that heterogeneity does not occur. The obtained kneaded product is formed into a cylindrical pellet using an extrusion molding machine or a pelletizer using a die having a predetermined shape. This is dried at 100 to 400 ° C., preferably 150 to 250 ° C.

得られた吸収剤の比表面積は、100m/g以上、好ましくは200から500m/gであり、好ましくは、250から400m/gである。100m/gより低いと、ガス状水銀の除去能力が十分でなく、好ましくない。粉体のかさ密度およびペレット加工時の粉塵発生の観点から、500m/gより小さいことが好ましい。 The specific surface area of the obtained absorbent is 100 m 2 / g or more, preferably 200 to 500 m 2 / g, and preferably 250 to 400 m 2 / g. If it is lower than 100 m 2 / g, the ability to remove gaseous mercury is not sufficient, which is not preferable. From the viewpoint of the bulk density of the powder and the generation of dust during pellet processing, it is preferably less than 500 m 2 / g.

本発明による除去剤を使用してガス状水銀を除去する方法は、ガス状水銀を含むガスに除去剤を接触させることにより行う。なお、接触方法は任意であるが、特に固定床流通方式が好ましく、この固定床流通方式を採用することにより連続運転が可能となる。   The method for removing gaseous mercury using the removing agent according to the present invention is carried out by bringing the removing agent into contact with a gas containing gaseous mercury. In addition, although a contact method is arbitrary, a fixed bed circulation system is particularly preferable, and continuous operation is possible by adopting this fixed bed circulation system.

この接触処理の際、本発明の除去剤は、−50℃から500℃の温度範囲で使用することができ、好適には0℃から200℃、とくに好ましくは10℃から150℃の温度範囲である。圧力は、通常、0.1気圧から50kg/cmの範囲で使用することができ、好適には、常圧から10kg/cmの範囲である。ガス時間空間速度(GHSV)が100から1,000,000/hrで使用することができる。 In this contact treatment, the removing agent of the present invention can be used in a temperature range of −50 ° C. to 500 ° C., preferably 0 ° C. to 200 ° C., particularly preferably 10 ° C. to 150 ° C. is there. The pressure can be generally used in the range of 0.1 atm to 50 kg / cm 2 , and preferably in the range of normal pressure to 10 kg / cm 2 . Gas hourly space velocity (GHSV) can be used at 100 to 1,000,000 / hr.

以下に実施例および比較例を挙げて、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples and comparative examples, but the present invention is not limited to these.

(ガス状水銀の吸収試験)
1.5mmのペレット状、もしくは、1〜2mmの顆粒に成形した吸収剤0.06mlを石英製反応管に充填した。これを、ガス組成:Hg 4.9ppb、メタン 20%、窒素 バランスのガスを、GHSV:480,000h−1、温度:30℃、常圧の条件下で接触させて、試験を行った。試験時間は2時間、実施した。
(Gas mercury absorption test)
A quartz reaction tube was filled with 0.06 ml of an absorbent formed into a 1.5 mm pellet or a 1-2 mm granule. This was tested by contacting a gas having a gas composition of Hg 4.9 ppb, methane 20%, and nitrogen balance under the conditions of GHSV: 480,000 h-1, temperature: 30 ° C., and normal pressure. The test time was 2 hours.

入口及び出口ガス中の水銀濃度は、原子吸光度計(NIPPON Jarrel Ash Co.製 AA−855)で分析し、2時間後の除去率を算出した。
除去率={(A−B)/A}×100 (%)
なお、上記A及びBは以下の通りである。
A:反応管入口側のガス中の水銀濃度(ppb)
B:反応管出口側のガス中の水銀濃度(ppb)
The mercury concentration in the inlet and outlet gas was analyzed by an atomic absorption meter (AAIP-A manufactured by NIPPON Jarrel Ash Co.), and the removal rate after 2 hours was calculated.
Removal rate = {(A−B) / A} × 100 (%)
The above A and B are as follows.
A: Mercury concentration in the gas on the inlet side of the reaction tube (ppb)
B: Mercury concentration in the gas on the outlet side of the reaction tube (ppb)

(実施例1)
イオン交換水10Lを収容した沈殿槽に硫酸マンガン4水和物を700g加えて、攪拌して硫酸マンガン水溶液を得た。また、別途イオン交換水23Lを収容した沈殿槽に過マンガン酸カリウムを400gを加え、攪拌して、過マンガン酸カリウム水溶液を得た。前記過マンガン酸カリウム水溶液を、30℃に保温した前記硫酸マンガン水溶液に攪拌しながら、添加した後2時間反応させ、沈殿物を生じさせた。この沈殿物をろ過し、イオン交換水で洗浄し、120℃にて8時間乾燥することで、酸化マンガンを得た。得られた酸化マンガンの比表面積は、229m/gであった。
Example 1
700 g of manganese sulfate tetrahydrate was added to a precipitation tank containing 10 L of ion-exchanged water and stirred to obtain an aqueous manganese sulfate solution. In addition, 400 g of potassium permanganate was added to a precipitation tank separately containing 23 L of ion-exchanged water and stirred to obtain a potassium permanganate aqueous solution. The potassium permanganate aqueous solution was added to the manganese sulfate aqueous solution kept at 30 ° C. while stirring, and then reacted for 2 hours to produce a precipitate. This precipitate was filtered, washed with ion-exchanged water, and dried at 120 ° C. for 8 hours to obtain manganese oxide. The specific surface area of the obtained manganese oxide was 229 m 2 / g.

(実施例2)
実施例1において、過マンガン酸カリウム水溶液に苛性カリウムを460g加えた以外は実施例1と同じ方法にて、実施例2の酸化マンガンを得た。得られた酸化マンガンの比表面積は、395m/gであった。
(Example 2)
In Example 1, manganese oxide of Example 2 was obtained in the same manner as in Example 1 except that 460 g of caustic potassium was added to the aqueous potassium permanganate solution. The specific surface area of the obtained manganese oxide was 395 m 2 / g.

(比較例1)
試薬の酸化マンガン(関東化学)を使用した。試薬の酸化マンガンの比表面積は、61m/gであった。
(Comparative Example 1)
The reagent manganese oxide (Kanto Chemical) was used. The specific surface area of the manganese oxide reagent was 61 m 2 / g.

(比較例2)
アルミナに硝酸銀を銀担持量として、6%になるように、含浸を行い、120℃で14時間乾燥することで、銀担持アルミナ吸収剤を得た。
(Comparative Example 2)
The silver-supported alumina absorbent was obtained by impregnating alumina with 6% silver nitrate as the amount of silver supported and drying at 120 ° C. for 14 hours.

(比較例3)
市販のやし殻の活性炭を使用した。
(Comparative Example 3)
Commercial activated carbon of coconut shell was used.

(比較例4)
市販の硫化鉄を使用した。
(Comparative Example 4)
Commercial iron sulfide was used.

Figure 2011045806
Figure 2011045806

表1より、比表面積が200から500m/gの酸化マンガン除去剤は、比表面積が低い酸化マンガン、銀アルミナ、活性炭、硫化鉄などと比較して、ガス状水銀に対する吸収効果が高いことが示された。 From Table 1, the manganese oxide removing agent having a specific surface area of 200 to 500 m 2 / g has a higher absorption effect on gaseous mercury compared to manganese oxide, silver alumina, activated carbon, iron sulfide and the like having a low specific surface area. Indicated.

本発明によれば、従来のガス状水銀除去剤の問題点を解決でき、かつ、効率的にガス状水銀を吸収することにより除去する除去剤を提案することができ、その工業的価値は大きく、公害防止の観点からも有用である。   ADVANTAGE OF THE INVENTION According to this invention, the problem of the conventional gaseous mercury removal agent can be solved, and the removal agent removed by absorbing gaseous mercury efficiently can be proposed, The industrial value is large. It is also useful from the viewpoint of pollution prevention.

Claims (6)

比表面積が100m/g以上を有する酸化マンガンであること特徴とする金属水銀およびまたは水銀化合物の蒸気を含むガス中のガス状水銀除去剤。 A gaseous mercury removing agent in gas containing metallic mercury and / or mercury compound vapor, characterized in that it is manganese oxide having a specific surface area of 100 m 2 / g or more. 比表面積が200から500m/gを有する酸化マンガンであること特徴とする請求項1に記載の金属水銀およびまたは水銀化合物の蒸気を含むガス中のガス状水銀除去剤。 The gaseous mercury removing agent in a gas containing vapor of metallic mercury and / or mercury compound according to claim 1, which is manganese oxide having a specific surface area of 200 to 500 m 2 / g. 金属塩類の水溶液と、過マンガン酸塩類水溶液とを混合し、反応させることにより沈殿を生成させ、この沈殿物を充分洗浄した後ろ過し、次いで乾燥させることにより製造される酸化マンガンであることを特徴とする請求項1または2に記載のガス状水銀除去剤。   An aqueous solution of a metal salt and an aqueous solution of a permanganate solution are mixed and reacted to form a precipitate. The precipitate is thoroughly washed, filtered, and then dried. The gaseous mercury removing agent according to claim 1 or 2, characterized by the above. 過マンガン酸塩類水溶液に、更にアルカリ化合物類水溶液を添加することにより製造される酸化マンガンであることを特徴とする請求項3記載のガス状水銀除去剤。   The gaseous mercury removing agent according to claim 3, wherein the gaseous mercury removing agent is manganese oxide produced by further adding an alkaline compound aqueous solution to the permanganate aqueous solution. 請求項1乃至4のいずれかに記載のガス状水銀除去剤と、金属水銀およびまたは水銀化合物の蒸気を含むガスを接触させ、ガス状水銀を除去する方法。   A method for removing gaseous mercury by contacting the gaseous mercury removing agent according to any one of claims 1 to 4 with a gas containing vapor of metallic mercury and / or a mercury compound. 接触方法は固定床流通方式であることを特徴とする請求項5記載の方法。   6. The method according to claim 5, wherein the contact method is a fixed bed flow system.
JP2009194653A 2009-08-25 2009-08-25 Gaseous mercury removal agent and method for removing gaseous mercury in gas including metal mercury and/or vapor Pending JP2011045806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009194653A JP2011045806A (en) 2009-08-25 2009-08-25 Gaseous mercury removal agent and method for removing gaseous mercury in gas including metal mercury and/or vapor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009194653A JP2011045806A (en) 2009-08-25 2009-08-25 Gaseous mercury removal agent and method for removing gaseous mercury in gas including metal mercury and/or vapor

Publications (1)

Publication Number Publication Date
JP2011045806A true JP2011045806A (en) 2011-03-10

Family

ID=43832673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009194653A Pending JP2011045806A (en) 2009-08-25 2009-08-25 Gaseous mercury removal agent and method for removing gaseous mercury in gas including metal mercury and/or vapor

Country Status (1)

Country Link
JP (1) JP2011045806A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515924A (en) * 2012-05-01 2015-06-04 フューエル テック インコーポレーテッド Dry method, apparatus, composition and system for reducing mercury, sulfur oxides and HCl
US20180071712A1 (en) * 2015-03-24 2018-03-15 Clariant Catalysts (Japan) K.K. Agent for adsorption of ruthenium from aqueous solution and method for adsorption of ruthenium from aqueous solution

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694259A (en) * 1979-12-28 1981-07-30 Shibata Kagaku Kikai Kogyo Kk Method for measurement of slight amount of mercury
JPH03186317A (en) * 1989-12-14 1991-08-14 Tokyo Gas Co Ltd Method for removal of sulfur compound in gas and desulfurization agent therefor
JPH07118019A (en) * 1993-08-27 1995-05-09 Mitsui Toatsu Chem Inc Production of manganese dioxide
JPH07247122A (en) * 1994-03-10 1995-09-26 Japan Metals & Chem Co Ltd Activated manganese dioxide and method for producing the same
JPH08173796A (en) * 1994-09-02 1996-07-09 Sakai Chem Ind Co Ltd Nitrogen oxide oxidizing adsorbent and nitrogen oxide removing method
WO2004011376A1 (en) * 2002-07-26 2004-02-05 Sued-Chemie Catalysts Japan, Inc. Manganese compound, process for producing the same, and method of utilization of the same
JP2005518938A (en) * 2002-03-06 2005-06-30 エンバイロスクラブ テクノロジーズ コーポレイション Manganese oxide regeneration, pretreatment and precipitation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694259A (en) * 1979-12-28 1981-07-30 Shibata Kagaku Kikai Kogyo Kk Method for measurement of slight amount of mercury
JPH03186317A (en) * 1989-12-14 1991-08-14 Tokyo Gas Co Ltd Method for removal of sulfur compound in gas and desulfurization agent therefor
JPH07118019A (en) * 1993-08-27 1995-05-09 Mitsui Toatsu Chem Inc Production of manganese dioxide
JPH07247122A (en) * 1994-03-10 1995-09-26 Japan Metals & Chem Co Ltd Activated manganese dioxide and method for producing the same
JPH08173796A (en) * 1994-09-02 1996-07-09 Sakai Chem Ind Co Ltd Nitrogen oxide oxidizing adsorbent and nitrogen oxide removing method
JP2005518938A (en) * 2002-03-06 2005-06-30 エンバイロスクラブ テクノロジーズ コーポレイション Manganese oxide regeneration, pretreatment and precipitation
WO2004011376A1 (en) * 2002-07-26 2004-02-05 Sued-Chemie Catalysts Japan, Inc. Manganese compound, process for producing the same, and method of utilization of the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515924A (en) * 2012-05-01 2015-06-04 フューエル テック インコーポレーテッド Dry method, apparatus, composition and system for reducing mercury, sulfur oxides and HCl
KR101826105B1 (en) * 2012-05-01 2018-02-06 퓨얼 테크 인코포레이티드 DRY PROCESS, APPARATUS, COMPOSITIONS AND SYSTEMS FOR REDUCING MERCURY, SULFUR OXIDES AND HCl
US20180071712A1 (en) * 2015-03-24 2018-03-15 Clariant Catalysts (Japan) K.K. Agent for adsorption of ruthenium from aqueous solution and method for adsorption of ruthenium from aqueous solution
EP3276013A4 (en) * 2015-03-24 2018-12-19 Clariant Catalysts (Japan) K.K. Agent for adsorption of ruthenium from aqueous solution and method for adsorption of ruthenium from aqueous solution
US10449510B2 (en) 2015-03-24 2019-10-22 Clariant Catalysts (Japan) K.K. Agent for adsorption of ruthenium from aqueous solution and method for adsorption of ruthenium from aqueous solution

Similar Documents

Publication Publication Date Title
Wiheeb et al. Present technologies for hydrogen sulfide removal from gaseous mixtures
JP5662162B2 (en) Contaminant removal from gas streams
JP6496104B2 (en) Halogen compound absorbent and method for producing synthesis gas using the same
Shan et al. Removal of elemental mercury from flue gas using microwave/ultrasound-activated Ce–Fe magnetic porous carbon derived from biomass straw
RU2394632C2 (en) Removal of sulfur by iron carbonate absorbent
Liu et al. Regenerable CuO-based adsorbents for low temperature desulfurization application
Liu et al. Removal of gaseous hydrogen sulfide by a photo-Fenton wet oxidation scrubbing system
CN103949144B (en) A kind of method and device purifying the flue gas containing sulfur dioxide
JP2015150538A5 (en)
Zhao et al. Integrated dynamic and steady state method and its application on the screening of MoS2 nanosheet-containing adsorbents for Hg0 capture
Wang et al. Absorption of H2S from gas streams by the wet ultraviolet/persulfate oxidation process: mechanism and kinetics
Lin et al. Removal of HCl in flue gases by calcined limestone at high temperatures
Tolentino et al. Influence of hydrocarbons on hydrogen chloride removal from refinery off-gas by zeolite NaY derived from rice husks
CN102271786A (en) Preparation of a solid containing zinc oxide used for purifying a gas or a liquid
Lin et al. Simultaneous HCl/SO2 capture by calcined limestone from hot gases
JP2011045806A (en) Gaseous mercury removal agent and method for removing gaseous mercury in gas including metal mercury and/or vapor
Zhang et al. Simultaneous removal of elemental mercury and arsine from a reducing atmosphere using chloride and cerium modified activated carbon
Pham Xuan et al. Valorization of calcium carbonate-based solid wastes for the treatment of hydrogen sulfide from the gas phase
Tsubouchi et al. Removal of hydrogen chloride gas using honeycomb-supported natural soda ash
Lee et al. SO2 removal and regeneration of MgO-based sorbents promoted with titanium oxide
WO2019016927A1 (en) Hydrogen chloride removing agent
Zhu et al. Interference effect of experimental parameters on the mercury removal mechanism of biomass char under an oxy-fuel atmosphere
JP7212053B2 (en) How to remove heavy metals from liquids
WO2010064325A1 (en) Zinc oxide composition and process for production thereof
AU2017247530B2 (en) Process for the removal of heavy metals from fluids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131016