JP2011045480A - Health measuring instrument - Google Patents

Health measuring instrument Download PDF

Info

Publication number
JP2011045480A
JP2011045480A JP2009195358A JP2009195358A JP2011045480A JP 2011045480 A JP2011045480 A JP 2011045480A JP 2009195358 A JP2009195358 A JP 2009195358A JP 2009195358 A JP2009195358 A JP 2009195358A JP 2011045480 A JP2011045480 A JP 2011045480A
Authority
JP
Japan
Prior art keywords
unit
user
bone
light
health
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009195358A
Other languages
Japanese (ja)
Other versions
JP5426964B2 (en
Inventor
Kazuhiro Ide
和宏 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2009195358A priority Critical patent/JP5426964B2/en
Publication of JP2011045480A publication Critical patent/JP2011045480A/en
Application granted granted Critical
Publication of JP5426964B2 publication Critical patent/JP5426964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a health measuring instrument capable of determining surely the risk of bone fracture. <P>SOLUTION: The risk of falling of a user is calculated based on a muscular amount level as a body composition component and a parameter as a gravity center trembling characteristic, in a falling risk determining part 30d provided with a body composition component measuring part 30c for calculating the body composition component of a user, and a gravity center trembling measuring part 30b for measuring the gravity center trembling characteristic of a body, by a load sensor 20 provided in a stepstool loaded with a foot of the user. A bone information measuring part is provided also to measure a bone characteristic of the user, and a control part 30 is provided as a fracture risk determining part to determine the risk of fracture of the user, based on the risk of falling calculated by the falling risk determining part and the bone characteristic calculated by the bone information measuring part. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、使用者の骨折リスクを判定する健康測定装置に関するものである。   The present invention relates to a health measuring device for determining a fracture risk of a user.

近年、運動不足部や栄養バランスの偏りにより、骨密度が低下し、骨が脆くなる等の理由から骨折する者の数が増加しており、骨の健康状態を測定する種々の健康測定装置が開発されている(例えば特許文献1参照)。   In recent years, due to lack of exercise and biased nutritional balance, bone density has decreased and the number of people who have broken bones has increased due to bones becoming brittle, and various health measurement devices that measure bone health are available. It has been developed (see, for example, Patent Document 1).

特許文献1の健康測定装置では、光の強度を変化させて計測対象の内部に光を照射する光照射部と、照射された光の内で計測対象の内部から反射される反射光を受光する受光部と、照射された光の強度に対応する受光した反射光の強度の変化傾向を算出する変化傾向算出手段と、この変化傾向に基づいて計測対象の密度(骨密度)を算出する算出部とで構成されるものが開示されている。つまり、上記健康測定装置は、光照射部から照射される光の強度を適宜変化させ、反射光の強度の変化から骨密度を評価・計測するものである。   In the health measurement device of Patent Document 1, a light irradiation unit that irradiates light into the measurement target by changing the intensity of light, and reflected light reflected from the measurement target within the irradiated light is received. A light receiving unit, a change trend calculating means for calculating the change tendency of the intensity of the reflected light received corresponding to the intensity of the irradiated light, and a calculation unit for calculating the density (bone density) of the measurement object based on the change tendency What is comprised is disclosed. That is, the health measuring apparatus changes the intensity of light emitted from the light irradiation unit as appropriate, and evaluates and measures the bone density from the change in the intensity of reflected light.

特開2008−155011号公報JP 2008-155011 A

ところで、上記の健康測定装置は、使用者の骨密度を計測し、その結果を表示するものである。しかしながら、骨密度の評価・計測だけでは、使用者の骨折がどの程度起きやすい、つまり骨折が起こるリスク(骨折リスク)がどの程度なのか使用者に報知することは難しく、この問題の改善が望まれている。   By the way, the above-described health measuring device measures the bone density of the user and displays the result. However, it is difficult to inform the user of how likely the fracture of the user is, that is, the risk of the fracture (fracture risk) by evaluating and measuring the bone density alone. It is rare.

本発明は、上記課題を解決するためになされたものであって、その目的は、より確実に骨折リスクを判定することができる健康測定装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a health measuring device that can more reliably determine a fracture risk.

上記課題を解決するために、請求項1に記載の発明は、使用者の体組成成分を算出する体組成計測部と、前記使用者の足部が載せられる踏み台に設けられた荷重センサにより身体の重心動揺特性を計測する重心動揺計測部とを有し、前記体組成成分と前記重心動揺特性とに基づき転倒リスクを算出する転倒リスク判定部と、前記使用者の骨特性を測定する骨情報測定部とを備え、前記転倒リスクと前記骨特性に基づき前記使用者の骨折リスクを判定する骨折リスク判定部を有したことをその要旨とする。   In order to solve the above-mentioned problem, the invention according to claim 1 is characterized in that a body composition measuring unit for calculating a body composition component of a user and a load sensor provided on a step platform on which the user's foot is placed. A fall risk determination unit that calculates a fall risk based on the body composition component and the center of gravity shake characteristic, and bone information that measures the bone characteristics of the user The gist of the present invention is to include a fracture risk determination unit that includes a measurement unit and determines a fracture risk of the user based on the fall risk and the bone characteristics.

この発明では、使用者の体組成成分を算出する体組成計測部と、使用者の足部が載せられる踏み台に設けられた荷重センサにより身体の重心動揺特性を計測する重心動揺計測部とが備えられる転倒リスク判定部にて、体組成成分と重心動揺特性とに基づき使用者の転倒リスクが算出される。また、使用者の骨特性を測定する骨情報測定部が備えられ、転倒リスク判定部にて算出される転倒リスクと前記骨情報測定部にて算出される骨特性に基づき、使用者の骨折リスクを判定する骨折リスク判定部が備えられる。ここで「体組成成分」とは使用者の脂肪量及び筋肉量等の事を指し、また「骨特性」とは、骨量、骨密度及び骨強度のいずれか1つの事を指し、これ以降同様の意味として使用する。このように、使用者の骨特性に加え、体組成成分と重心動揺特性とを基にして使用者の転びやすさ(バランス能力)を示す転倒リスクを算出し、骨特性と転倒リスク基づいて骨折リスクを求めることで、より確実に骨折リスクを判定することができる。   The present invention includes a body composition measurement unit that calculates a body composition component of the user and a center of gravity oscillation measurement unit that measures the center of gravity oscillation characteristic of the body using a load sensor provided on a step on which the user's foot is placed. The fall risk determination unit calculates the fall risk of the user based on the body composition component and the center of gravity fluctuation characteristic. In addition, a bone information measurement unit for measuring the bone characteristics of the user is provided, and the fracture risk of the user is calculated based on the fall risk calculated by the fall risk determination unit and the bone characteristics calculated by the bone information measurement unit. A fracture risk determination unit for determining whether or not Here, “body composition component” refers to the fat mass and muscle mass of the user, and “bone characteristics” refers to any one of bone mass, bone density, and bone strength. The same meaning is used. Thus, in addition to the bone characteristics of the user, the fall risk indicating the user's ease of falling (balance ability) is calculated based on the body composition component and the center-of-gravity fluctuation characteristic, and the fracture is calculated based on the bone characteristics and the fall risk. By determining the risk, the fracture risk can be determined more reliably.

請求項2に記載の発明は、請求項1に記載の健康測定装置において、前記骨情報測定部は、前記使用者の生体表面に光を照射する光照射部と、該光照射部により生体表面に照射されて骨を含む生体内部を伝播した光を受光する受光部とを有し、前記受光部にて取得した光量に基づいて前記骨特性の内の骨密度を算出することをその要旨とする。   According to a second aspect of the present invention, in the health measurement device according to the first aspect, the bone information measuring unit includes a light irradiation unit that irradiates light on the biological surface of the user, and a biological surface formed by the light irradiation unit. And a light receiving unit that receives light propagated through the inside of the living body including the bone, and calculating the bone density of the bone characteristics based on the amount of light acquired by the light receiving unit; To do.

この発明では、骨情報測定部には、使用者の生体表面に光を照射する光照射部と、この光照射部により生体表面に照射されて骨を含む生体内部を伝播した光を受光する受光部とが備えられる。骨情報測定部により、受光部にて取得した光量に基づいて骨特性の内の骨密度が算出される。このように、光照射部と受光部を備え、骨特性の内の骨密度を骨情報測定部にて算出する構成であっても上記請求項1の効果と同様の効果を奏することができる。また、X線等を用いない簡易な構成によって骨特性(骨密度)を算出することができる。   In the present invention, the bone information measurement unit includes a light irradiation unit that irradiates light on the surface of the user's living body, and a light reception unit that receives the light that has been irradiated on the surface of the living body by the light irradiation unit and propagated through the living body including bone. Part. The bone information measuring unit calculates the bone density in the bone characteristics based on the light amount acquired by the light receiving unit. Thus, even if it is a structure provided with a light irradiation part and a light-receiving part and calculating the bone density in a bone characteristic in a bone information measurement part, there can exist an effect similar to the effect of the said Claim 1. FIG. In addition, bone characteristics (bone density) can be calculated with a simple configuration that does not use X-rays or the like.

請求項3に記載の発明は、請求項2に記載の健康測定装置において、前記踏み台の前記足部を載せる上面に下側に凸となる窪み部が形成され、前記光照射部及び前記受光部は、それらを外光から遮光すべく前記窪み部内に設けられたことをその要旨とする。   According to a third aspect of the present invention, in the health measuring device according to the second aspect, a concave portion that protrudes downward is formed on an upper surface of the footrest on which the foot portion is placed, and the light irradiation portion and the light receiving portion. The gist of the present invention is that they are provided in the recess so as to shield them from external light.

この発明では、踏み台の前記足部を載せる上面に下側に凸となる窪み部が形成され、光照射部及び受光部は、それらを外光から遮光すべく窪み部内に設けられる。つまり、光照射部及び受光部を外光から遮光することで、骨密度の計測に必要となる光に対してその他の光、つまりノイズが加わることを抑制することができ、より確実且つ正確に骨密度の計測を行うことができる。また、窪み部を形成したことにより、測定部位(足部の裏側)の位置決めを容易に行うことが可能となる。   In the present invention, a concave portion that protrudes downward is formed on the upper surface of the footrest on which the foot portion is placed, and the light emitting portion and the light receiving portion are provided in the concave portion to shield them from external light. In other words, by shielding the light irradiating unit and the light receiving unit from external light, it is possible to suppress the addition of other light, that is, noise to the light necessary for bone density measurement, and more reliably and accurately. Bone density can be measured. In addition, since the depression is formed, the measurement site (the back side of the foot) can be easily positioned.

請求項4に記載の発明は、請求項2に記載の健康測定装置において、前記踏み台の幅方向中央には、前記踏み台の上面から前記幅方向と直交する方向に延出する中央壁部が設けられ、前記光照射部及び前記受光部は、前記使用者の足部内側の骨密度を算出すべく、前記中央壁部の幅方向両側面の少なくとも一方に設けられたことをその要旨とする。   According to a fourth aspect of the present invention, in the health measuring apparatus according to the second aspect, a central wall portion extending in a direction perpendicular to the width direction from the upper surface of the step is provided at the center in the width direction of the step. The gist of the present invention is that the light irradiating unit and the light receiving unit are provided on at least one of both side surfaces in the width direction of the central wall in order to calculate the bone density inside the user's foot.

この発明では、踏み台の幅方向中央には、踏み台の上面から幅方向と直交する方向に延出する中央壁部が設けられ、光照射部及び受光部は、使用者の足部内側の骨密度を算出すべく、中央壁部の幅方向両側面の少なくとも一方に設けられる。このように、足部の内側の骨密度を算出する構成とすることで、例えば足部裏よりも皮下脂肪(皮下組織)が薄い足部の内側で測定できるため、骨密度の測定精度を向上させることが可能となる。   In this invention, a central wall portion extending in a direction perpendicular to the width direction from the upper surface of the platform is provided at the center in the width direction of the platform, and the light irradiation unit and the light receiving unit are bone density inside the user's foot. Is provided on at least one of both side surfaces in the width direction of the central wall portion. In this way, the bone density inside the foot is calculated, so that the measurement of bone density is improved because, for example, the fat under the skin (subcutaneous tissue) is thinner than the back of the foot. It becomes possible to make it.

請求項5に記載の発明は、請求項2に記載の健康測定装置において、前記踏み台の幅方向外側には、前記踏み台の上面から前記幅方向と直交する方向に延出する側壁部が設けられ、前記光照射部及び前記受光部は、前記使用者の足部外側の骨密度を算出すべく、前記踏み台の幅方向中央側の前記側壁部側面に設けられたことをその要旨とする。   According to a fifth aspect of the present invention, in the health measuring device according to the second aspect, a side wall portion extending in a direction perpendicular to the width direction from the upper surface of the step is provided on the outer side in the width direction of the step. The gist of the present invention is that the light irradiating unit and the light receiving unit are provided on the side surface of the side wall portion on the center side in the width direction of the platform so as to calculate the bone density outside the foot of the user.

この発明では、踏み台の幅方向外側には、踏み台の上面から幅方向と直交する方向に延出する側壁部が設けられ、光照射部及び受光部は、使用者の足部外側の骨密度を算出すべく、踏み台の幅方向中央側の側壁部側面に設けられる。このように、足部の外側の骨密度を算出する構成とすることで、例えば足部裏よりも皮下脂肪(皮下組織)が薄い足部の外側で測定できるため、骨密度の測定精度を向上させることが可能となる。   In this invention, a side wall portion extending in a direction perpendicular to the width direction is provided from the top surface of the platform in the width direction outside of the platform, and the light irradiation unit and the light receiving unit have a bone density outside the user's foot. In order to calculate, it is provided in the side wall part side surface of the width direction center side of a step. In this way, the bone density on the outside of the foot is calculated so that, for example, subcutaneous fat (subcutaneous tissue) can be measured outside the foot, which is thinner than the back of the foot, improving bone density measurement accuracy. It becomes possible to make it.

請求項6に記載の発明は、請求項2に記載の健康測定装置において、前記使用者の両手で把持可能な把持部を有し、前記光照射部及び前記受光部は、前記使用者の手指の骨密度を算出すべく、前記把持部に設けられたことをその要旨とする。   According to a sixth aspect of the present invention, in the health measurement device according to the second aspect, the health measuring device has a grip portion that can be gripped by both hands of the user, and the light irradiation portion and the light receiving portion are the fingers of the user. In order to calculate the bone density, the gist is provided in the grip portion.

この発明では、使用者の両手で把持可能な把持部が備えられ、光照射部及び受光部は、使用者の手指の骨密度を算出すべく、把持部に設けられる。このように、使用者の手指の骨密度を算出する構成であっても請求項1及び請求項2の効果と同様の効果を奏することができる。   In this invention, the grip part which can be gripped with both hands of the user is provided, and the light irradiation part and the light receiving part are provided in the grip part in order to calculate the bone density of the user's fingers. Thus, even if it is the structure which calculates the bone density of a user's finger | toe, there can exist an effect similar to the effect of Claim 1 and Claim 2.

請求項7に記載の発明は、請求項6に記載の健康測定装置において、前記把持部は、前記使用者の手指を挿入可能な挿入部を備え、前記光照射部及び前記受光部は、前記挿入部内に設けられたことをその要旨とする。   According to a seventh aspect of the present invention, in the health measurement device according to the sixth aspect, the gripping portion includes an insertion portion into which the user's finger can be inserted, and the light irradiation unit and the light receiving unit are The gist is that it is provided in the insertion portion.

この発明では、把持部には、使用者の手指を挿入可能な挿入部が備えられ、光照射部及び受光部は、挿入部内に設けられる。このように、手指を挿入可能な挿入部を備え、その内部に光照射部及び受光部を設けたことで、光照射部及び受光部を外光から遮光することで、骨密度の計測に必要となる光に対してその他の光、つまりノイズが加わることを抑制することができ、より確実且つ正確に骨密度の計測を行うことができる。   In this invention, the holding part is provided with an insertion part into which a user's finger can be inserted, and the light irradiation part and the light receiving part are provided in the insertion part. In this way, it is necessary to measure bone density by providing an insertion part into which fingers can be inserted and providing a light irradiation part and a light receiving part inside it, thereby shielding the light irradiation part and the light receiving part from external light. Therefore, it is possible to suppress the addition of other light, that is, noise, to the light that becomes, and the bone density can be measured more reliably and accurately.

請求項8に記載の発明は、請求項1に記載の健康測定装置において、前記骨情報測定部は、生体電気インピーダンスにより前記骨特性を算出することをその要旨とする。
この発明では、骨情報測定部では生体電気インピーダンスにより骨特性が算出される。このような構成であっても請求項1に記載の効果と同様の効果を奏することができる。
The gist of an eighth aspect of the present invention is the health measurement apparatus according to the first aspect, wherein the bone information measuring unit calculates the bone characteristics based on bioelectrical impedance.
In the present invention, the bone information measuring unit calculates the bone characteristics based on the bioelectric impedance. Even if it is such a structure, the effect similar to the effect of Claim 1 can be show | played.

本発明によれば、より確実に骨折リスクを判定することができる健康測定装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the health measuring apparatus which can determine a fracture risk more reliably can be provided.

本実施形態における健康測定装置の概略構成図。The schematic block diagram of the health measuring apparatus in this embodiment. 同上における健康測定装置の概略構成を説明するための説明図。Explanatory drawing for demonstrating schematic structure of the health measuring apparatus same as the above. 同上における健康測定装置の概略構成を説明するための説明図。Explanatory drawing for demonstrating schematic structure of the health measuring apparatus same as the above. 同上における電気的構成を説明するためのブロック図。The block diagram for demonstrating the electrical structure in the same as the above. 同上における操作部の拡大図。The enlarged view of the operation part in the same as the above. 重心位置の軌跡、重心位置の最大移動範囲を表す矩形面積ついて説明するための説明図。Explanatory drawing for demonstrating the rectangular area showing the locus | trajectory of a gravity center position, and the maximum movement range of a gravity center position. 転倒リスクの判定領域を説明するための説明図。Explanatory drawing for demonstrating the fall risk determination area | region. 骨折リスクの判定領域を説明するための説明図。Explanatory drawing for demonstrating the determination area | region of a fracture risk. 別例における健康測定装置の概略構成を説明するための説明図。Explanatory drawing for demonstrating schematic structure of the health measuring apparatus in another example. 別例における健康測定装置の概略構成を説明するための説明図。Explanatory drawing for demonstrating schematic structure of the health measuring apparatus in another example. 別例における健康測定装置の概略構成を説明するための説明図。Explanatory drawing for demonstrating schematic structure of the health measuring apparatus in another example. 別例における健康測定装置の概略構成を説明するための説明図。Explanatory drawing for demonstrating schematic structure of the health measuring apparatus in another example. 別例における健康測定装置の概略構成を説明するための説明図。Explanatory drawing for demonstrating schematic structure of the health measuring apparatus in another example. 別例における健康測定装置の概略構成を説明するための説明図。Explanatory drawing for demonstrating schematic structure of the health measuring apparatus in another example. 別例における健康測定装置の操作部について説明するための説明図。Explanatory drawing for demonstrating the operation part of the health measuring apparatus in another example. 別例における健康測定装置の操作部について説明するための説明図。Explanatory drawing for demonstrating the operation part of the health measuring apparatus in another example. 別例における手の指の骨の構造について説明するための説明図。Explanatory drawing for demonstrating the structure of the bone of the finger of the hand in another example. 別例における健康測定装置の概略構成を説明するための説明図。Explanatory drawing for demonstrating schematic structure of the health measuring apparatus in another example. (a)(b)は、別例における健康測定装置の把持部について説明するための説明図。(A) (b) is explanatory drawing for demonstrating the holding part of the health measuring apparatus in another example. (a)(b)は、別例における健康測定装置の把持部について説明するための説明図。(A) (b) is explanatory drawing for demonstrating the holding part of the health measuring apparatus in another example. 別例における健康測定装置の操作部について説明するための説明図。Explanatory drawing for demonstrating the operation part of the health measuring apparatus in another example. 別例における健康測定装置の操作部について説明するための説明図。Explanatory drawing for demonstrating the operation part of the health measuring apparatus in another example. 別例における健康測定装置の操作部について説明するための説明図。Explanatory drawing for demonstrating the operation part of the health measuring apparatus in another example. 別例における健康測定装置の操作部について説明するための説明図。Explanatory drawing for demonstrating the operation part of the health measuring apparatus in another example. 別例における健康測定装置の操作部について説明するための説明図。Explanatory drawing for demonstrating the operation part of the health measuring apparatus in another example. 別例における健康測定装置の操作部について説明するための説明図。Explanatory drawing for demonstrating the operation part of the health measuring apparatus in another example.

以下、本発明を具体化した一実施形態を図面に従って説明する。
図1は、健康測定装置の概略構成を示す。本実施形態の健康測定装置10の踏み台11は、使用者が両足部を乗せるように扁平直方体状に形成されている。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, an embodiment of the invention will be described with reference to the drawings.
FIG. 1 shows a schematic configuration of a health measuring device. The step 11 of the health measuring device 10 of this embodiment is formed in a flat rectangular parallelepiped shape so that the user can place both feet.

踏み台11の上面11aには、足部電極12a〜12dと、骨情報測定部13とが設けられている。尚、足部電極12a〜12dの内の足部電極12a,12b及び骨情報測定部13は、踏み台11の上面11a後部(図1において下側)に形成される2つの窪み部14(図2参照)に設けられている。また、窪み部14は、本装置10使用時において、図3に示すように使用者の踵Kが位置するように想定されたものであり、この窪み部14よりも前部側に前後方向に長い略矩形状となるように形成された足部電極12c,12dが配置されている。   Foot electrodes 12 a to 12 d and a bone information measuring unit 13 are provided on the upper surface 11 a of the step 11. Of the foot electrodes 12a to 12d, the foot electrodes 12a and 12b and the bone information measuring unit 13 are formed of two hollow portions 14 (see FIG. 2) formed on the rear surface (lower side in FIG. 1) of the upper surface 11a of the step board 11. Reference). Further, the depression 14 is assumed so that the user's heel K is located as shown in FIG. 3 when the apparatus 10 is used. The leg electrodes 12c and 12d formed so as to have a long and substantially rectangular shape are arranged.

足部電極12a,12bには所定の露出孔が形成されており、骨情報測定部13を構成する発光素子13a及び受光素子13bが前記露出孔から一部を露出させた状態で配置されている。発光素子13a及び受光素子13bの距離は約10mm、各素子13a,13bの径は約3mm程度であり、図3に示すように発光素子13aにて使用者の踵Kに光が照射され、骨を含む生体内部を伝播した反射光が受光素子13bにて受光されるようになっている。また、発光素子13aは例えば中心波長800nm〜850nmのLEDで構成され、受光素子13bはフォトダイオードで構成される。尚、発光素子13aから出力される光の波長は例えば750nm〜2500nmの近赤外領域の範囲であれば波長を変更してもよく、皮下組織や骨等の生体への透過性がよい。   Predetermined exposure holes are formed in the foot electrodes 12a and 12b, and the light emitting element 13a and the light receiving element 13b constituting the bone information measuring unit 13 are arranged in a state in which a part is exposed from the exposure hole. . The distance between the light emitting element 13a and the light receiving element 13b is about 10 mm, and the diameter of each element 13a, 13b is about 3 mm. As shown in FIG. The reflected light propagating through the inside of the living body including the light is received by the light receiving element 13b. Further, the light emitting element 13a is constituted by an LED having a central wavelength of 800 nm to 850 nm, for example, and the light receiving element 13b is constituted by a photodiode. Note that the wavelength of the light output from the light emitting element 13a may be changed as long as it is in the near infrared region of, for example, 750 nm to 2500 nm, and the permeability to a living body such as a subcutaneous tissue or bone is good.

また、図1に示すように、踏み台11の前部には操作部15が着脱自在に取着されている。操作部15は、扁平直方体状に形成されており、図5に示すようにその幅方向(左右方向)両側には2つずつ、計4つの手電極16a〜16dが設けられており、幅方向中央には、操作スイッチ等からなる入力部17と、液晶パネルから構成され種々の情報が表示される表示部18とが設けられている。踏み台11の後部(図1において下方)側面には、健康測定装置10をON/OFFする電源スイッチ19が備えられている。また、踏み台11の四隅には、荷重検出手段としての荷重センサ20が内蔵されている。尚、荷重センサ20は、図2に示すように、支持板21に支持されるとともに、踏み台11に体重等の荷重がかかると荷重は上板22及びリブ23を介して荷重センサ20に伝達されるようになっている。   Moreover, as shown in FIG. 1, the operation part 15 is attached to the front part of the step stand 11 so that attachment or detachment is possible. The operation unit 15 is formed in a flat rectangular parallelepiped shape, and as shown in FIG. 5, four hand electrodes 16 a to 16 d are provided in total, two on each side in the width direction (left and right direction). In the center, an input unit 17 composed of operation switches and the like, and a display unit 18 configured with a liquid crystal panel and displaying various information are provided. A power switch 19 for turning on / off the health measuring device 10 is provided on the rear (lower side in FIG. 1) side surface of the step 11. Further, load sensors 20 as load detecting means are built in the four corners of the step 11. As shown in FIG. 2, the load sensor 20 is supported by the support plate 21, and when a load such as a weight is applied to the step board 11, the load is transmitted to the load sensor 20 via the upper plate 22 and the rib 23. It has become so.

健康測定装置10は、例えば前記踏み台11内部に図4に示す制御部30を備える。図4に示すように、制御部30には、前記荷重センサ20の電圧値を検出する荷重検出部31と、インピーダンス測定部32と、骨情報測定部13を構成する発光素子13a及び受光素子13bと、前記入力部17と、前記表示部18と、種種の情報を記憶する記憶部33とが電気的に接続されている。   The health measuring device 10 includes, for example, a control unit 30 shown in FIG. As shown in FIG. 4, the control unit 30 includes a load detection unit 31 that detects a voltage value of the load sensor 20, an impedance measurement unit 32, and a light emitting element 13 a and a light receiving element 13 b that constitute the bone information measurement unit 13. The input unit 17, the display unit 18, and the storage unit 33 that stores various types of information are electrically connected.

荷重検出部31は、荷重センサ20にて使用者の体重等の荷重に応じて出力される電圧値が検出されるようになっている。そしてこの電圧値図示しないA/D変換部にて所定のサンプリング周波数でA/D変換された後、その変換後の値が制御部30の体重計測部30aに出力され、制御部30の体重計測部30aにて使用者の体重値が算出され、その算出した体重値を表示部18に表示される。また、制御部30では、前述のAD変換後の値が記憶部33に記憶されており、使用者の重心動揺の測定する際に用いられる。制御部30の重心動揺計測部30bは、記憶部33に記憶されているA/D変換後の値を読み出し、その値と各荷重センサ20間の距離を用いて、使用者の重心位置座標を算出し、図6に示すような重心位置座標の軌跡Lが得られる。この重心位置座標の軌跡Lのデータを用いて、図6に示すような所定時間内における重心位置の最大移動範囲を表す矩形面積40や、軌跡Lの移動距離を加算した総軌跡長等の重心動揺パラメータXを算出する。重心動揺パラメータXは、例えば矩形面積40が小さいほど高くなるような無次元の指標であり、所定時間(例えば10秒)、操作部15を手で把持して肩の高さまで上げた姿勢を保持した状態で重心動揺の計測が行われるようになっている。   In the load detection unit 31, a voltage value output in accordance with a load such as the weight of the user is detected by the load sensor 20. The voltage value is A / D converted at a predetermined sampling frequency by an A / D conversion unit (not shown), and then the converted value is output to the weight measurement unit 30a of the control unit 30. The weight value of the user is calculated by the unit 30a, and the calculated weight value is displayed on the display unit 18. Further, in the control unit 30, the value after the above-described AD conversion is stored in the storage unit 33, and is used when measuring the sway of the user's center of gravity. The center-of-gravity fluctuation measuring unit 30b of the control unit 30 reads the value after A / D conversion stored in the storage unit 33, and uses the distance between the value and each load sensor 20 to determine the user's center-of-gravity position coordinates. The locus L of the center of gravity position coordinates as shown in FIG. 6 is calculated. Using the data of the locus L of the center of gravity position coordinates, the center of gravity such as a rectangular area 40 representing the maximum movement range of the center of gravity position within a predetermined time as shown in FIG. The shaking parameter X is calculated. The center-of-gravity sway parameter X is a dimensionless index that increases as the rectangular area 40 becomes smaller, for example, and holds the posture in which the operation unit 15 is grasped by hand and raised to the height of the shoulder for a predetermined time (for example, 10 seconds). The center-of-gravity sway is measured in this state.

インピーダンス測定部32は、電流印加用の電極である足部電極12c,12dと手電極16c,16dに対して交流電流を供給する電流供給部35と、電圧測定用の電極である足部電極12a,12bと手電極16a,16bの各電極間の電圧を検出する電圧検出部36と接続されている。ここで、例えば、左手指先から左足部爪先まで電流を印加させたい場合、制御部30は電流供給部35を制御して手電極16cから足部電極12cまで導通させ、例えば周波数50KHz、800μAの電流を印加する。そして、例えば左手掌及び左足部踵間の電圧を検出する場合、制御部30は、電圧検出部36にて手電極16a及び足部電極12a間の電圧を検出する。そして、インピーダンス測定部32は、電流及び電圧からインピーダンスを算出し、制御部30の体組成計測部30cに出力し、制御部30ではインピーダンスから脂肪量や筋肉量等の体組成成分が計測される。   The impedance measuring unit 32 includes a foot electrode 12c, 12d that is an electrode for current application, a current supply unit 35 that supplies an alternating current to the hand electrodes 16c, 16d, and a foot electrode 12a that is an electrode for voltage measurement. , 12b and the hand electrodes 16a, 16b are connected to a voltage detector 36 for detecting a voltage between the electrodes. Here, for example, when it is desired to apply a current from the left fingertip to the left foot toe, the control unit 30 controls the current supply unit 35 to conduct from the hand electrode 16c to the foot electrode 12c, for example, a current having a frequency of 50 KHz and 800 μA. Apply. For example, when detecting the voltage between the left palm and the left footpad, the control unit 30 detects the voltage between the hand electrode 16 a and the foot electrode 12 a by the voltage detection unit 36. The impedance measuring unit 32 calculates the impedance from the current and voltage and outputs the impedance to the body composition measuring unit 30c of the control unit 30. The control unit 30 measures body composition components such as fat mass and muscle mass from the impedance. .

上述の様に重心動揺パラメータXと体組成成分(特に筋肉量)が算出されると、制御部30の転倒リスク判定部30dにおいて使用者の転倒リスクを判定する。ここで、重心動揺パラメータXを算出する場合では、所定時間、同一姿勢を保持した状態、つまり静止立位で測定を行っているため、筋肉を殆ど使っていない。これにより、重心動揺パラメータXのみでは転びやすさを表す転倒リスクを正確に判定できないため、筋肉量レベルYを算出することで転倒リスクをより正確に判定することが可能となっている。   When the center-of-gravity sway parameter X and the body composition component (especially muscle mass) are calculated as described above, the fall risk determination unit 30d of the control unit 30 determines the user's fall risk. Here, when calculating the center-of-gravity sway parameter X, measurement is performed in a state where the same posture is maintained for a predetermined time, that is, in a stationary position, and therefore, muscles are hardly used. Thereby, since the fall risk representing the ease of falling cannot be accurately determined only by the center-of-gravity fluctuation parameter X, the fall risk can be determined more accurately by calculating the muscle mass level Y.

尚、本実施形態では図7に示すように、転倒リスクは重心動揺パラメータXを所定の閾値で2分割させ、体組成成分である筋肉量レベルYを所定の閾値で2分割させた4段階のレベル判定が行えるように構成されている。具体的には、重心動揺パラメータXと筋肉量レベルYとが共に所定の閾値より高い領域Z1では、歩行能力が安定と判断され、転倒リスクが最も低い「転倒リスク1」と制御部30の転倒リスク判定部30dにて判定される。また、重心動揺パラメータXが閾値よりも高く、筋肉量レベルYが閾値よりも低い領域Z2では歩行能力がやや不安定と判断され、「転倒リスク2」と制御部30の転倒リスク判定部30dにて判定される。また、重心動揺パラメータXが閾値よりも低く、筋肉量レベルYが閾値よりも高い領域Z3では歩行能力がやや不安定と判断され、「転倒リスク3」と制御部30の転倒リスク判定部30dにて判定される。更に、重心動揺パラメータXと筋肉量レベルYとが共に閾値よりも低い領域Z4では、歩行能力は不安定と判断され、転倒リスクが最も高い「転倒リスク4」と制御部30の転倒リスク判定部30dにて判定される。   In this embodiment, as shown in FIG. 7, the fall risk is divided into four stages by dividing the center-of-gravity sway parameter X into two at a predetermined threshold and dividing the muscle mass level Y, which is a body composition component, into two at a predetermined threshold. It is configured to perform level judgment. Specifically, in the region Z1 where both the center-of-gravity sway parameter X and the muscle mass level Y are higher than a predetermined threshold, it is determined that the walking ability is stable and the fall risk is the lowest “fall risk 1” and the controller 30 falls. It is determined by the risk determination unit 30d. Further, in the region Z2 where the center-of-gravity sway parameter X is higher than the threshold and the muscle mass level Y is lower than the threshold, it is determined that the walking ability is slightly unstable, and “falling risk 2” and the falling risk determining unit 30d of the control unit 30 are determined. Is determined. Further, in the region Z3 in which the center-of-gravity sway parameter X is lower than the threshold and the muscle mass level Y is higher than the threshold, the walking ability is determined to be slightly unstable, and the “falling risk 3” and the falling risk determining unit 30d of the control unit 30 are determined. Is determined. Furthermore, in the region Z4 where the center-of-gravity sway parameter X and the muscle mass level Y are both lower than the threshold value, the walking ability is determined to be unstable, and “falling risk 4” having the highest falling risk is determined. It is determined at 30d.

図4に示すように、制御部30と接続される発光素子13a及び受光素子13bは、制御部30によりその動作が制御されている。本実施形態では、制御部30は、発光素子13aを駆動して踵Kに対して光を照射する。それと略同時に、制御部30は受光素子13bを駆動し、踵K対して照射されて踵Kの皮下組織K1と踵骨K2等の生体内部を拡散反射しながら伝播した光を受光素子13bにて受光するようになっている。そして、制御部30の骨密度計測部30eは、受光素子13bにて得た光量に応じて踵骨K2の骨密度を算出する。尚、踏み台11に足部を載せることで使用者の体重等の加重がかかるため、皮下組織や骨密度の状態を安定させることができる。さらに、図2及び図3に示すように窪み部14によって外からの光を遮断する効果もあり、精度の高い計測を行うことが可能となっている。   As shown in FIG. 4, the operation of the light emitting element 13 a and the light receiving element 13 b connected to the control unit 30 is controlled by the control unit 30. In this embodiment, the control part 30 drives the light emitting element 13a, and irradiates light with respect to the eaves K. FIG. At substantially the same time, the controller 30 drives the light receiving element 13b, and the light receiving element 13b transmits the light that is irradiated to the eyelid K and propagated while being diffusely reflected inside the living body such as the subcutaneous tissue K1 and the rib K2 of the eyelid K. It is designed to receive light. And the bone density measurement part 30e of the control part 30 calculates the bone density of the radius K2 according to the light quantity obtained with the light receiving element 13b. In addition, since a weight, such as a user's weight, is applied by putting a foot | leg part on the platform 11, the state of a subcutaneous tissue or bone density can be stabilized. Furthermore, as shown in FIG. 2 and FIG. 3, there is an effect of blocking light from the outside by the recessed portion 14, so that highly accurate measurement can be performed.

上述のように、制御部30にて転倒リスクと骨密度とが算出されると、制御部30では転倒リスクと骨密度に基づいて骨折リスクを判定するようになっている。尚、本実施形態では図8に示すように骨折リスクは転倒リスクを所定の閾値で2分割させ、骨密度を所定の閾値で2分割させた4段階のレベル判定が行えるように構成されている。具体的には、骨密度が閾値より高く、転倒リスクが閾値よりも低い領域A1では、最も骨折を起こしにくい「骨折リスク1」と制御部30にて判定される。また、骨密度が閾値よりも低く、転倒リスクも閾値より低い領域A2では、転倒しにくいが転倒した場合に骨折し易いことから「骨折リスク2」と制御部30にて判定される。また、骨密度が閾値よりも高く、転倒リスクが閾値よりも高い領域A3では、骨折しにくいが転倒しやすいため「骨折リスク3」と制御部30にて判定される。更に、骨密度が閾値よりも低く、転倒リスクが閾値よりも低い領域A4では、最も骨折し易い「骨折リスク4」と制御部30にて判定される。例えば、転倒リスクと骨密度に基づいて制御部30にて算出した骨折リスクに関する結果Gが、図5に示すように表示部18に表示されるようになっている。尚、本実施形態では、結果Gの場合、骨密度は閾値よりも高く良好であるが、転倒リスクが閾値よりも高いため「骨折リスク3」と判断される。   As described above, when the fall risk and the bone density are calculated by the control unit 30, the control unit 30 determines the fracture risk based on the fall risk and the bone density. In the present embodiment, as shown in FIG. 8, the fracture risk is configured so that four-step level determination can be performed by dividing the fall risk into two at a predetermined threshold and dividing the bone density into two at a predetermined threshold. . Specifically, in the region A1 where the bone density is higher than the threshold and the fall risk is lower than the threshold, the control unit 30 determines that “fracture risk 1” is the least likely to cause a fracture. Further, in the region A2 where the bone density is lower than the threshold and the fall risk is also lower than the threshold, the controller 30 determines that “fracture risk 2” because it is difficult to fall but is easy to fracture when it falls. Further, in the region A3 where the bone density is higher than the threshold and the fall risk is higher than the threshold, the control unit 30 determines that the bone fracture risk is 3 because the fracture is difficult but the fall is easy. Furthermore, in the region A4 where the bone density is lower than the threshold and the fall risk is lower than the threshold, the control unit 30 determines that “fracture risk 4” is the easiest to fracture. For example, the result G regarding the fracture risk calculated by the control unit 30 based on the fall risk and the bone density is displayed on the display unit 18 as shown in FIG. In the present embodiment, in the case of the result G, the bone density is higher than the threshold value and good, but the fall risk is higher than the threshold value, so it is determined as “fracture risk 3”.

上述のように本実施形態の健康測定装置10では、使用者の骨特性である骨密度の計測に加え、体組成成分と重心動揺特性とを基にして使用者の転びやすさ(バランス能力)を示す転倒リスクを算出し、骨特性(骨密度)と転倒リスク基づいて骨折リスクを求めることで、より確実に骨折リスクを判定することができる。また、その骨折リスクが骨密度に起因するのか、転倒リスクに起因するのかも報知することができる。   As described above, in the health measurement device 10 of the present embodiment, in addition to the measurement of the bone density that is the bone characteristic of the user, the user's ease of rolling (balance ability) based on the body composition component and the center of gravity fluctuation characteristic. The fracture risk can be determined more reliably by calculating the risk of falling and calculating the risk of fracture based on the bone characteristics (bone density) and the risk of falling. Also, it can be notified whether the fracture risk is due to bone density or the fall risk.

次に、本実施形態の特徴的な作用効果を記載する。
(1)使用者の体組成成分を算出する体組成計測部30cと、使用者の足部が載せられる踏み台11に設けられた荷重センサ20により身体の重心動揺特性を計測する重心動揺計測部30bとが備えられる転倒リスク判定部30dにて、体組成成分としての筋肉量レベルYと重心動揺特性としてのパラメータXとに基づき使用者の転倒リスクが算出される。また、使用者の骨特性を測定する骨情報測定部13が備えられ、転倒リスク判定部にて算出される転倒リスクと骨情報測定部13にて算出される骨特性に基づき、使用者の骨折リスクを判定する骨折リスク判定部としての制御部30が備えられる。このように、使用者の骨特性(骨密度)に加え、体組成成分である筋肉量レベルYと重心動揺特性である重心動揺パラメータXとを基にして使用者の転びやすさ(バランス能力)を示す転倒リスクを算出する。そして、骨特性(骨密度)と転倒リスク基づいて骨折リスクを求めることで、より確実に骨折リスクを判定することができる。また、その骨折リスクが骨密度に起因するのか、転倒リスクに起因するのかも報知することができる。
Next, characteristic effects of the present embodiment will be described.
(1) A body composition measuring unit 30c that calculates a body composition component of the user and a center-of-gravity fluctuation measuring unit 30b that measures the body's center-of-gravity fluctuation characteristics by the load sensor 20 provided on the step 11 on which the user's foot is placed. In the fall risk determination unit 30d provided with the above, the fall risk of the user is calculated based on the muscle mass level Y as the body composition component and the parameter X as the center of gravity fluctuation characteristic. Further, a bone information measuring unit 13 for measuring the bone characteristics of the user is provided. Based on the fall risk calculated by the fall risk determining unit and the bone characteristics calculated by the bone information measuring unit 13, the fracture of the user The control part 30 as a fracture risk determination part which determines a risk is provided. In this way, in addition to the user's bone characteristics (bone density), the user's ease of rolling (balance ability) based on the muscle mass level Y, which is a body composition component, and the center of gravity swing parameter X, which is a center of gravity swing characteristic. The risk of falling is calculated. And by calculating | requiring a fracture risk based on a bone characteristic (bone density) and a fall risk, a fracture risk can be determined more reliably. Also, it can be notified whether the fracture risk is due to bone density or the fall risk.

(2)骨情報測定部13には、使用者の生体表面に光を照射する光照射部しての発光素子13aと、この発光素子13aにより生体表面に照射されて骨を含む生体内部を伝播した光を受光する受光部としての受光素子13bとが備えられる。骨情報測定部13により、受光素子13bにて取得した光量に基づいて骨特性の内の骨密度が算出される。このように、発光素子13aと受光素子13bとを備え、骨特性の内の骨密度を骨情報測定部13(制御部30)にて算出、つまりX線等を用いない簡易な構成によって骨特性(骨密度)を算出することができる。   (2) The bone information measuring unit 13 has a light emitting element 13a as a light irradiating unit that irradiates light on the surface of the living body of the user, and is propagated through the living body including the bone by being irradiated on the living body surface by the light emitting element 13a. And a light receiving element 13b as a light receiving portion for receiving the received light. The bone information measuring unit 13 calculates the bone density in the bone characteristics based on the light amount acquired by the light receiving element 13b. As described above, the light emitting element 13a and the light receiving element 13b are provided, and the bone density in the bone characteristic is calculated by the bone information measuring unit 13 (control unit 30), that is, the bone characteristic is obtained by a simple configuration without using X-rays or the like. (Bone density) can be calculated.

(3)踏み台11の足部を載せる上面に下側に凸となる窪み部14が形成され、発光素子13a及び受光素子13bは、それらを外光から遮光すべく窪み部14内に設けられる。つまり、発光素子13a及び受光素子13bを外光から遮光することで、骨密度の計測に必要となる光に対してその他の光、つまりノイズが加わることを抑制することができ、より確実且つ正確に骨密度の計測を行うことができる。また、窪み部14を形成したことにより、測定部位(足部の裏側)の位置決めを容易に行うことが可能となる。   (3) A depression 14 that protrudes downward is formed on the upper surface on which the foot of the step 11 is placed, and the light emitting element 13a and the light receiving element 13b are provided in the depression 14 to shield them from external light. That is, by shielding the light emitting element 13a and the light receiving element 13b from external light, it is possible to suppress the addition of other light, that is, noise, to the light necessary for bone density measurement, and more reliably and accurately. In addition, bone density can be measured. In addition, since the recess 14 is formed, the measurement site (the back side of the foot) can be easily positioned.

尚、本発明の実施形態は、以下のように変更してもよい。
・上記実施形態では、窪み部14に骨情報測定部13を構成する発光素子13a及び受光素子13bを設ける構成としたが、発光素子13a及び受光素子13bの配置場所はこれに限らない。
In addition, you may change embodiment of this invention as follows.
In the above embodiment, the light emitting element 13a and the light receiving element 13b constituting the bone information measuring unit 13 are provided in the hollow part 14, but the arrangement location of the light emitting element 13a and the light receiving element 13b is not limited thereto.

例えば、図9及び図10に示すように、踏み台11上面11aにおける後部側の幅方向略中央位置に、使用者の足部の内側と当接可能な中央壁部50を設け、中央壁部50の左右側面50aのそれぞれには、発光素子13a及び受光素子13bを設ける構成としてもよい。尚、本構成において中央壁部50は、幅方向幅及び前後方向幅がともに約20mmで、高さが約40mm形成されており、上面11aから高さ20mm付近に発光素子13a及び受光素子13bが前後方向に並ぶように配置されている。但し、図11に示すように発光素子13a及び受光素子13bを上面11aの面方向と直交する方向(鉛直方向)に並列配置させる構成であってもよい。また、図9及び図10に示す中央壁部50を図12に示すように例えば前方向にずらした中央壁部51に発光素子13a及び受光素子13bを設ける構成としてもよい。   For example, as shown in FIG. 9 and FIG. 10, a central wall 50 that can contact the inner side of the user's foot is provided at a substantially central position in the width direction on the rear side of the upper surface 11 a of the step 11. The left and right side surfaces 50a may be provided with a light emitting element 13a and a light receiving element 13b. In this configuration, the central wall portion 50 has a width in the width direction and a width in the front-rear direction of about 20 mm and a height of about 40 mm. The light-emitting element 13 a and the light-receiving element 13 b are located near the height of 20 mm from the upper surface 11 a. They are arranged in the front-rear direction. However, as shown in FIG. 11, the light emitting element 13a and the light receiving element 13b may be arranged in parallel in a direction (vertical direction) orthogonal to the surface direction of the upper surface 11a. Further, as shown in FIG. 12, the light emitting element 13a and the light receiving element 13b may be provided on the central wall 51 that is shifted forward, for example, as shown in FIG.

また、上記のように中央壁部50,51を設ける構成において、特に言及していないが、図13に示すように使用者(人)の足部の内側面に沿って側面52aを凸状に形成した中央壁部52を設けてもよい。このような構成とすることで、精度良く骨密度を算出することが可能となる。   Moreover, in the structure which provides the center wall parts 50 and 51 as mentioned above, although it does not mention in particular, as shown in FIG. 13, the side surface 52a is made convex along the inner side surface of a user (person). The formed center wall 52 may be provided. By setting it as such a structure, it becomes possible to calculate a bone density accurately.

また、例えば、図14に示すように踏み台11上面11aにおける後部側の幅方向両側に、使用者の足部外側面と当接可能な側壁部60を設け、側壁部60の対向方向である踏み台11の幅方向中央側の側面61に、発光素子13a及び受光素子13bを設ける構成としてもよい。   Further, for example, as shown in FIG. 14, side wall portions 60 that can come into contact with the outer surface of the foot portion of the user are provided on both sides in the width direction on the rear side of the upper surface 11 a of the step platform 11. 11 may be provided with the light emitting element 13a and the light receiving element 13b on the side surface 61 on the center side in the width direction.

上述のように、足部の内側及び外側から骨密度を計測する構成とすることで、足部裏よりも皮下組織(皮下脂肪)が抑えられ、精度良く骨密度を計測することが可能となる。
また、例えば15に示すように操作部15に発光素子13a及び受光素子13bを設けるように構成してもよい。図15及び図16に示すように、操作部15の幅方向両側に指ガイド70が設けられている。この指ガイド70は、操作部15の前後(上下)方向に長い、矩形状に形成されており、指ガイド70には、その長手方向である前後方向に発光素子13a及び受光素子13bが設けられている。そして、例えば、図16に示すように、使用者の親指が指ガイド70と当接されるとともに、その他の指にて操作部15の裏面側が把持されることで、図17に示すように親指THの基節骨75若しくは第一中手指76付近の手の内側が指ガイド70と接触することとなり、親指THの骨75,76の骨密度を算出することができる。
As described above, by adopting a configuration in which bone density is measured from the inside and outside of the foot, subcutaneous tissue (subcutaneous fat) is suppressed from the back of the foot, and bone density can be accurately measured. .
Further, for example, a light emitting element 13a and a light receiving element 13b may be provided in the operation unit 15 as shown in FIG. As shown in FIGS. 15 and 16, finger guides 70 are provided on both sides of the operation unit 15 in the width direction. The finger guide 70 is formed in a rectangular shape that is long in the front-rear (up-and-down) direction of the operation unit 15. The finger guide 70 is provided with a light-emitting element 13 a and a light-receiving element 13 b in the front-rear direction that is the longitudinal direction. ing. Then, for example, as shown in FIG. 16, the user's thumb is brought into contact with the finger guide 70, and the back side of the operation unit 15 is held by the other fingers, so that the thumb as shown in FIG. The TH proximal phalange 75 or the inside of the hand near the first middle finger 76 comes into contact with the finger guide 70, and the bone density of the bones 75 and 76 of the thumb TH can be calculated.

・上記実施形態では、操作部15を略扁平直方体形状としたが、これに限らない。例えば、図18に示すように踏み台11内部に操作部15を埋設し、踏み台11の前部にはコードにて接続される把持部80を設ける構成であってもよい。ここで把持部80を円筒状に形成されるとともに、図19(b)に示すようにその外表面には親指用ガイド81と、図19(a)に示すように人差し指用ガイド82が設けられている。人差し指用ガイド82には発光素子13a及び受光素子13bが設けられている。このような構成において、把持部80が把持されると人差し指用ガイド82には、図17に示すように人差し指FFの基節骨83若しくは第一中手骨84付近の手の内側が接触することになり、使用者の人差し指FFの骨83,84の骨密度を算出することができる。   -In above-mentioned embodiment, although the operation part 15 was made into the substantially flat rectangular parallelepiped shape, it is not restricted to this. For example, as shown in FIG. 18, the operation unit 15 may be embedded in the step 11 and a grip 80 connected by a cord may be provided at the front of the step 11. Here, the grip portion 80 is formed in a cylindrical shape, and a thumb guide 81 and an index finger guide 82 as shown in FIG. 19A are provided on the outer surface thereof as shown in FIG. ing. The index finger guide 82 is provided with a light emitting element 13a and a light receiving element 13b. In such a configuration, when the grip 80 is gripped, the index finger guide 82 comes into contact with the inner side of the hand near the proximal phalange 83 or the first metacarpal bone 84 of the index finger FF as shown in FIG. The bone density of the bones 83 and 84 of the user's index finger FF can be calculated.

また、上記人差し指FFの骨83,84の骨密度を算出する構成に加え、図20(a)(b)に示すように、中指用ガイド85、薬指用ガイド86及び小指用ガイド87を設け、各指用ガイド85,86,87に発光素子13a及び受光素子13bを設け、各指の骨密度を計測する構成としてもよい。また、いずれかの指の骨密度を計測する構成を採用してもよい。   In addition to the structure for calculating the bone density of the bones 83 and 84 of the index finger FF, as shown in FIGS. 20A and 20B, a middle finger guide 85, a ring finger guide 86, and a little finger guide 87 are provided. A light emitting element 13a and a light receiving element 13b may be provided in each finger guide 85, 86, 87, and the bone density of each finger may be measured. Moreover, you may employ | adopt the structure which measures the bone density of either finger | toe.

・上記実施形態では、特に言及していないが、図21に示すように操作部15の幅方向両側面15aに使用者の手の指(例えば親指以外の指)を挿入可能な挿入部90を形成し、挿入部90に発光素子13a及び受光素子13bを設ける構成としてもよい。また、図22に示すように、発光素子13a及び受光素子13bは挿入部90に人差し指FFと対応する位置に予め設定しておくことで使用者の人差し指FFの骨密度を算出することができる。   In the above embodiment, although not specifically mentioned, as shown in FIG. 21, an insertion portion 90 capable of inserting a finger of a user's hand (for example, a finger other than the thumb) on both side surfaces 15 a in the width direction of the operation portion 15 is provided. It is good also as a structure which forms and provides the light emitting element 13a and the light receiving element 13b in the insertion part 90. FIG. In addition, as shown in FIG. 22, the light emitting element 13a and the light receiving element 13b can calculate the bone density of the user's index finger FF by setting the insertion unit 90 in a position corresponding to the index finger FF in advance.

また、図23に示すように操作部15の裏面15b側に使用者の手の指(例えば親指以外の指)を挿入可能な挿入部91を形成し、挿入部91に発光素子13a及び受光素子13bを設ける構成としてもよい。また、図24に示すように、発光素子13a及び受光素子13bは挿入部90に人差し指FFと対応する位置に予め設定しておくことで使用者の人差し指FFの骨密度を算出することができる。   Further, as shown in FIG. 23, an insertion portion 91 into which a finger of a user's hand (for example, a finger other than the thumb) can be inserted is formed on the back surface 15b side of the operation portion 15, and the light emitting element 13a and the light receiving element are formed in the insertion portion 91. It is good also as a structure which provides 13b. Further, as shown in FIG. 24, the bone density of the user's index finger FF can be calculated by previously setting the light emitting element 13a and the light receiving element 13b in the insertion portion 90 at a position corresponding to the index finger FF.

上記構成を採用することで、挿入部90,91内部において骨密度を算出する構成となるため、発光素子13a及び受光素子13bを外光から遮光することで、骨密度の計測に必要となる光に対してその他の光、つまりノイズが加わることを抑制することができ、より確実且つ正確に骨密度の計測を行うことができる。   By adopting the above configuration, the bone density is calculated inside the insertion portions 90 and 91. Therefore, the light necessary for measuring the bone density is obtained by shielding the light emitting element 13a and the light receiving element 13b from external light. On the other hand, the addition of other light, that is, noise can be suppressed, and the bone density can be measured more reliably and accurately.

また、図25及び図26に示すように操作部15の幅方向側面15aに、幅方向外側を向くように発光素子13a及び受光素子13bを配置する構成としてもよい。例えば、図26に示すように親指THにて操作部15の表面側、その他の指で裏面側、使用者の掌が側面15aと当接するように把持することで使用者の掌の骨密度を算出することができる。   25 and 26, the light emitting element 13a and the light receiving element 13b may be arranged on the side surface 15a in the width direction of the operation unit 15 so as to face the outside in the width direction. For example, as shown in FIG. 26, the bone density of the user's palm can be increased by grasping the thumb TH so that the front side of the operation unit 15 and the back side of the operation unit 15 are in contact with the side 15a. Can be calculated.

・上記実施形態では、発光素子13a及び受光素子13bにて骨特性(骨密度)を計測する構成としたが、生体電気インピーダンスにて骨量を推定する構成を採用してもよい。
・上記実施形態では矩形面積40を重心動揺パラメータXとして用いたが、軌跡Lの総軌跡長或いは総軌跡長を矩形面積40で除算したパラメータを重心動揺パラメータXとして用いても良い。
In the above embodiment, the bone characteristic (bone density) is measured by the light emitting element 13a and the light receiving element 13b. However, a structure in which the bone mass is estimated by bioelectric impedance may be adopted.
In the above embodiment, the rectangular area 40 is used as the center of gravity fluctuation parameter X. However, the total locus length of the locus L or a parameter obtained by dividing the total locus length by the rectangular area 40 may be used as the center of gravity fluctuation parameter X.

・上記実施形態では、受光素子13bを1つのフォトダイオードで構成したが、複数の素子(フォトダイオード)にて構成してもよい。このような構成とすることで、複数の素子において発生する受光量の誤差に起因した骨密度の計測値のズレを抑制することができる。尚、受光素子13bはフォトダイオードに限らずフォトトランジスタであってもよく、要は、発光素子13aにより照射される光を受光できる素子を用いればよい。   In the above embodiment, the light receiving element 13b is configured by one photodiode, but may be configured by a plurality of elements (photodiodes). By adopting such a configuration, it is possible to suppress the deviation of the measurement value of the bone density caused by the error in the amount of received light generated in the plurality of elements. The light receiving element 13b is not limited to a photodiode but may be a phototransistor. In short, an element that can receive light emitted from the light emitting element 13a may be used.

10…健康測定装置、11…踏み台、11a…上面、13…骨情報測定部、13a…発光素子(光照射部)、13b…受光素子(受光部)、14…窪み部、15a…側面、20…荷重センサ、22…受光部、30…制御部(骨折リスク判定部)、30b…重心動揺計測部、30c…体組成計測部、30d…転倒リスク判定部、50,51,52…中央壁部、60…側壁部、75,76,83,84…骨、80…把持部、90,91…挿入部。   DESCRIPTION OF SYMBOLS 10 ... Health measuring device, 11 ... Step, 11a ... Upper surface, 13 ... Bone information measurement part, 13a ... Light emitting element (light irradiation part), 13b ... Light receiving element (light receiving part), 14 ... Depression part, 15a ... Side surface, 20 DESCRIPTION OF SYMBOLS ... Load sensor, 22 ... Light receiving part, 30 ... Control part (fracture risk judgment part), 30b ... Center of gravity fluctuation measurement part, 30c ... Body composition measurement part, 30d ... Fall risk judgment part, 50, 51, 52 ... Central wall part , 60 ... sidewall portion, 75, 76, 83, 84 ... bone, 80 ... gripping portion, 90, 91 ... insertion portion.

Claims (8)

使用者の体組成成分を算出する体組成計測部と、前記使用者の足部が載せられる踏み台に設けられた荷重センサにより身体の重心動揺特性を計測する重心動揺計測部とを有し、前記体組成成分と前記重心動揺特性とに基づき転倒リスクを算出する転倒リスク判定部と、
前記使用者の骨特性を測定する骨情報測定部と
を備え、
前記転倒リスクと前記骨特性に基づき前記使用者の骨折リスクを判定する骨折リスク判定部を有したことを特徴とする健康測定装置。
A body composition measurement unit that calculates a body composition component of the user, and a center of gravity oscillation measurement unit that measures a center of gravity oscillation characteristic of a body by a load sensor provided on a step on which the user's foot is placed, and A fall risk determination unit that calculates a fall risk based on a body composition component and the center of gravity fluctuation characteristic;
A bone information measuring unit for measuring the bone characteristics of the user,
A health measurement apparatus comprising: a fracture risk determination unit that determines a fracture risk of the user based on the fall risk and the bone characteristics.
請求項1に記載の健康測定装置において、
前記骨情報測定部は、前記使用者の生体表面に光を照射する光照射部と、該光照射部により生体表面に照射されて骨を含む生体内部を伝播した光を受光する受光部とを有し、前記受光部にて取得した光量に基づいて前記骨特性の内の骨密度を算出することを特徴とする健康測定装置。
The health measurement device according to claim 1,
The bone information measuring unit includes: a light irradiating unit that irradiates light on the surface of the user's living body; and a light receiving unit that receives light that has been irradiated on the living body surface by the light irradiating unit and propagated inside the living body including bone. And a health measuring device that calculates a bone density of the bone characteristics based on the amount of light acquired by the light receiving unit.
請求項2に記載の健康測定装置において、
前記踏み台の前記足部を載せる上面に下側に凸となる窪み部が形成され、
前記光照射部及び前記受光部は、それらを外光から遮光すべく前記窪み部内に設けられたことを特徴とする健康測定装置。
The health measuring device according to claim 2,
A depression that protrudes downward is formed on the upper surface of the footrest on which the foot is placed,
The health measuring device, wherein the light irradiating unit and the light receiving unit are provided in the recess so as to shield them from external light.
請求項2に記載の健康測定装置において、
前記踏み台の幅方向中央には、前記踏み台の上面から前記幅方向と直交する方向に延出する中央壁部が設けられ、
前記光照射部及び前記受光部は、前記使用者の足部内側の骨密度を算出すべく、前記中央壁部の幅方向両側面の少なくとも一方に設けられたことを特徴とする健康測定装置。
The health measuring device according to claim 2,
At the center in the width direction of the step, there is provided a central wall portion extending from the upper surface of the step in a direction perpendicular to the width direction,
The health measuring device, wherein the light irradiating unit and the light receiving unit are provided on at least one of both side surfaces in the width direction of the central wall in order to calculate a bone density inside the user's foot.
請求項2に記載の健康測定装置において、
前記踏み台の幅方向外側には、前記踏み台の上面から前記幅方向と直交する方向に延出する側壁部が設けられ、
前記光照射部及び前記受光部は、前記使用者の足部外側の骨密度を算出すべく、前記踏み台の幅方向中央側の前記側壁部側面に設けられたことを特徴とする健康測定装置。
The health measuring device according to claim 2,
On the outer side in the width direction of the step, a side wall portion extending from the upper surface of the step in a direction orthogonal to the width direction is provided,
The health measuring device, wherein the light irradiating unit and the light receiving unit are provided on a side surface of the side wall portion at the center side in the width direction of the platform so as to calculate a bone density outside the foot portion of the user.
請求項2に記載の健康測定装置において、
前記使用者の両手で把持可能な把持部を有し、
前記光照射部及び前記受光部は、前記使用者の手指の骨密度を算出すべく、前記把持部に設けられたことを特徴とする健康測定装置。
The health measuring device according to claim 2,
Having a gripper that can be gripped by both hands of the user;
The health measuring apparatus according to claim 1, wherein the light irradiation unit and the light receiving unit are provided in the grip unit to calculate a bone density of the user's finger.
請求項6に記載の健康測定装置において、
前記把持部は、前記使用者の手指を挿入可能な挿入部を備え、
前記光照射部及び前記受光部は、前記挿入部内に設けられたことを特徴とする健康測定装置。
The health measurement device according to claim 6,
The grip portion includes an insertion portion into which the user's finger can be inserted;
The health measuring device, wherein the light irradiation part and the light receiving part are provided in the insertion part.
請求項1に記載の健康測定装置において、
前記骨情報測定部は、生体電気インピーダンスにより前記骨特性を算出することを特徴とする健康測定装置。
The health measurement device according to claim 1,
The health information measuring apparatus, wherein the bone information measuring unit calculates the bone characteristics based on bioelectrical impedance.
JP2009195358A 2009-08-26 2009-08-26 Health measuring device Active JP5426964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009195358A JP5426964B2 (en) 2009-08-26 2009-08-26 Health measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009195358A JP5426964B2 (en) 2009-08-26 2009-08-26 Health measuring device

Publications (2)

Publication Number Publication Date
JP2011045480A true JP2011045480A (en) 2011-03-10
JP5426964B2 JP5426964B2 (en) 2014-02-26

Family

ID=43832420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009195358A Active JP5426964B2 (en) 2009-08-26 2009-08-26 Health measuring device

Country Status (1)

Country Link
JP (1) JP5426964B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2777483A3 (en) * 2013-03-14 2014-11-05 Tanita Corporation Motor function evaluation device and motor function evaluation method
CN106137132A (en) * 2013-03-14 2016-11-23 株式会社百利达 Motion function evaluating apparatus and method, arithmetic unit and method
JP2017099922A (en) * 2017-01-24 2017-06-08 株式会社タニタ Motor function evaluation device, and motor function evaluation method
WO2020166561A1 (en) * 2019-02-14 2020-08-20 富士フイルム株式会社 Bone fracture risk evaluation value acquisition device, operation method therefor, and bone fracture risk evaluation value acquisition program
JP2021065317A (en) * 2019-10-18 2021-04-30 富士フイルム株式会社 Information processing device, information processing method, and information processing program
JPWO2022224916A1 (en) * 2021-04-19 2022-10-27

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199728A (en) * 2001-10-23 2003-07-15 Tanita Corp Apparatus for determining life difficulty-related physical information
JP2005245724A (en) * 2004-03-04 2005-09-15 Tanita Corp Biological impedance measuring device and body composition measuring apparatus
JP2007007267A (en) * 2005-07-01 2007-01-18 Kanazawa Univ Bone density measuring equipment
JP2007125074A (en) * 2005-11-01 2007-05-24 Aloka Co Ltd Bone fracture risk evaluation system
JP2007167184A (en) * 2005-12-20 2007-07-05 Konica Minolta Sensing Inc Biological information measuring apparatus
JP2008504080A (en) * 2004-07-03 2008-02-14 ジュリアス−マキシミリアンズ−ユニバーシテート ワーズバーグ Force evaluation apparatus and force evaluation method for measuring balance characteristics
JP2008102728A (en) * 2006-10-19 2008-05-01 Hitachi Information & Control Solutions Ltd Personal authentication device
JP2008206633A (en) * 2007-02-26 2008-09-11 Sensor:Kk Means for evaluating bone density of ossa digitorum and utltrasonic measuring apparatus
JP2008237070A (en) * 2007-03-27 2008-10-09 Unitec Foods Co Ltd Bone/muscle strength-promoting composition for elderly person
JP2010099414A (en) * 2008-10-27 2010-05-06 Panasonic Electric Works Co Ltd Bone density measuring apparatus

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003199728A (en) * 2001-10-23 2003-07-15 Tanita Corp Apparatus for determining life difficulty-related physical information
JP2005245724A (en) * 2004-03-04 2005-09-15 Tanita Corp Biological impedance measuring device and body composition measuring apparatus
JP2008504080A (en) * 2004-07-03 2008-02-14 ジュリアス−マキシミリアンズ−ユニバーシテート ワーズバーグ Force evaluation apparatus and force evaluation method for measuring balance characteristics
JP2007007267A (en) * 2005-07-01 2007-01-18 Kanazawa Univ Bone density measuring equipment
JP2007125074A (en) * 2005-11-01 2007-05-24 Aloka Co Ltd Bone fracture risk evaluation system
JP2007167184A (en) * 2005-12-20 2007-07-05 Konica Minolta Sensing Inc Biological information measuring apparatus
JP2008102728A (en) * 2006-10-19 2008-05-01 Hitachi Information & Control Solutions Ltd Personal authentication device
JP2008206633A (en) * 2007-02-26 2008-09-11 Sensor:Kk Means for evaluating bone density of ossa digitorum and utltrasonic measuring apparatus
JP2008237070A (en) * 2007-03-27 2008-10-09 Unitec Foods Co Ltd Bone/muscle strength-promoting composition for elderly person
JP2010099414A (en) * 2008-10-27 2010-05-06 Panasonic Electric Works Co Ltd Bone density measuring apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7011000719; 今本喜久子 他: '高齢者の転倒・骨折発生に関わる身体的リスク要因-骨指標,下肢筋力および重心動揺の経時的変化-' 滋賀医科大学看護学ジャーナル Vol.3, No.1, 20050220, pages 13-19 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2777483A3 (en) * 2013-03-14 2014-11-05 Tanita Corporation Motor function evaluation device and motor function evaluation method
CN106137132A (en) * 2013-03-14 2016-11-23 株式会社百利达 Motion function evaluating apparatus and method, arithmetic unit and method
US9808184B2 (en) 2013-03-14 2017-11-07 Tanita Corporation Motor function evaluation device and motor function evaluation method
JP2017099922A (en) * 2017-01-24 2017-06-08 株式会社タニタ Motor function evaluation device, and motor function evaluation method
JPWO2020166561A1 (en) * 2019-02-14 2021-12-02 富士フイルム株式会社 Fracture risk assessment value acquisition device and its operation method, and fracture risk assessment value acquisition program
WO2020166561A1 (en) * 2019-02-14 2020-08-20 富士フイルム株式会社 Bone fracture risk evaluation value acquisition device, operation method therefor, and bone fracture risk evaluation value acquisition program
US11850084B2 (en) 2019-02-14 2023-12-26 Fujifilm Corporation Fracture risk evaluation value acquisition device, method for operating fracture risk evaluation value acquisition device, and non-transitory computer readable medium
JP2021065317A (en) * 2019-10-18 2021-04-30 富士フイルム株式会社 Information processing device, information processing method, and information processing program
JP7241000B2 (en) 2019-10-18 2023-03-16 富士フイルム株式会社 Information processing device, information processing method, and information processing program
JP2023065639A (en) * 2019-10-18 2023-05-12 富士フイルム株式会社 Information processing device, information processing method, and information processing program
JP7436723B2 (en) 2019-10-18 2024-02-22 富士フイルム株式会社 Information processing device, information processing method, and information processing program
JPWO2022224916A1 (en) * 2021-04-19 2022-10-27
JP7253298B2 (en) 2021-04-19 2023-04-06 合同会社画像技術研究所 Biometric information acquisition device

Also Published As

Publication number Publication date
JP5426964B2 (en) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5426964B2 (en) Health measuring device
US10733866B2 (en) Walker-assist device
JP4830789B2 (en) Body motion detection device, information transmission device, Nordic walking stock, and walking exercise amount calculation system
JP2009056010A (en) Body composition scale
JP4990719B2 (en) Health measuring device
JP5704164B2 (en) Body fat measuring device
JP3621338B2 (en) Game and body movement measuring device
EP2687155A1 (en) Moisture meter and body moisture meter
JP2013226189A (en) Blood pressure measurement device
JP6448015B2 (en) Motor function measuring device, method, and program
JP4640492B2 (en) Bone density measuring device
JP2005087226A (en) Body composition information acquisition apparatus
JP2007330549A (en) Body composition analyzer
WO2011118276A1 (en) Body fat measurement device
JP2009254788A (en) Muscle evaluation device and muscle performance and/or training menu-determining method
JP2008061825A (en) Lower limb training device
JP2009279308A (en) Training machine for monitoring exercise load amount
EP1092389B1 (en) Bioelectrical impedance measuring apparatus with handgrip
JP2017086520A (en) Occupational therapy support device
WO2017046957A1 (en) Walking stick for rehabilitation, gait analysis system, and gait analysis method
US10271759B2 (en) Body fat measurement device
JP4686308B2 (en) Lower limb training device
JP2003169783A (en) Body fat measuring instrument
KR200492563Y1 (en) Extension column for measuring body impedance
JP2010194033A (en) Biological information measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5426964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150