JP2011045189A - Method and device for shielding electromagnetic wave in radio power transmission system, and radio power transmission device - Google Patents

Method and device for shielding electromagnetic wave in radio power transmission system, and radio power transmission device Download PDF

Info

Publication number
JP2011045189A
JP2011045189A JP2009191638A JP2009191638A JP2011045189A JP 2011045189 A JP2011045189 A JP 2011045189A JP 2009191638 A JP2009191638 A JP 2009191638A JP 2009191638 A JP2009191638 A JP 2009191638A JP 2011045189 A JP2011045189 A JP 2011045189A
Authority
JP
Japan
Prior art keywords
power transmission
coil
power
shielding member
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009191638A
Other languages
Japanese (ja)
Other versions
JP5531500B2 (en
Inventor
Hiroyasu Kawano
浩康 川野
Satoshi Shimokawa
聡 下川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009191638A priority Critical patent/JP5531500B2/en
Publication of JP2011045189A publication Critical patent/JP2011045189A/en
Application granted granted Critical
Publication of JP5531500B2 publication Critical patent/JP5531500B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Near-Field Transmission Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To restrain unwanted radiation of electromagnetic waves in radio power transmission, and to restrain a decrease in efficiency of power transportation as much as possible. <P>SOLUTION: In a method of shielding electromagnetic waves in a radio power transmission system 1 utilizing a magnetic field to transmit power by radio from a power transmission system coil SC to a power reception system coil JC, a power-transmission-side magnetic shielding member 31 comprising a magnetic body is disposed at a side opposite to a power transmission side by the power transmission system coil SC in the power transmission system coil SC, and an electric field shielding member 33 comprising a conductive material is disposed at a side orthogonally crossing a power transmission direction by the power transmission system coil SC. Also, a power-reception-side magnetic shielding member 32 comprising a magnetic body is disposed at a side opposite to a power reception side by the power reception system coil JC in the power reception system coil JC. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、無線電力伝送システムにおける電磁波遮蔽方法および装置、無線電力伝送システム、並びに無線電力送電装置に関する。   The present invention relates to an electromagnetic wave shielding method and apparatus in a wireless power transmission system, a wireless power transmission system, and a wireless power transmission apparatus.

無線で電力を伝送する、所謂無線電力伝送またはワイヤレス電力供給(WPS:Wireless Power Supply ) においては、電磁誘導を利用することにより、空間的に離れた2点間でケーブルを用いることなく電力(エネルギ)の送受電を行なう。また、2点間の距離、つまり電力の伝送距離を大きくするために、磁界共鳴(磁場共鳴、磁気共鳴、磁界共鳴モードともいう)を利用することが提案されている(特許文献1)。   In so-called wireless power transmission or wireless power supply (WPS) in which power is transmitted wirelessly, by using electromagnetic induction, power (energy) can be used without using a cable between two spatially separated points. ). In order to increase the distance between two points, that is, the transmission distance of electric power, it has been proposed to use magnetic field resonance (also referred to as magnetic field resonance, magnetic resonance, or magnetic field resonance mode) (Patent Document 1).

無線電力伝送においては、電磁波(高周波電磁界) を仲立ちとして電力が空間を輸送されるため、無線電力伝送装置を波源として空間に電磁波が放射される。放射された電磁波は、通信機器または電子機器などにとっては雑音となるため、その強度は低い方が好ましく、電波法などによっても規制されている。   In wireless power transmission, since electric power is transported through space with an electromagnetic wave (high frequency electromagnetic field) as an intermediary, electromagnetic waves are radiated into the space using the wireless power transmission device as a wave source. The radiated electromagnetic wave becomes noise for communication equipment or electronic equipment, so that the intensity is preferably low, and is also regulated by the Radio Law.

一般に、電磁波の不要な放射を抑止するために、波源の周囲(空間)の全体を1種類の電磁波遮蔽体で囲むことが行なわれる。例えば、波源の周囲を銅板またはアルミニウム板で囲む。または、波源の周囲をパーマロイ材で囲む。電磁波遮蔽体によって、波源から外部に出ようとする電磁波が吸収され、電磁波エネルギが消費される。   In general, in order to suppress unnecessary radiation of electromagnetic waves, the entire circumference (space) of a wave source is surrounded by one type of electromagnetic wave shield. For example, a wave source is surrounded by a copper plate or an aluminum plate. Alternatively, surround the wave source with permalloy material. The electromagnetic wave shielding body absorbs the electromagnetic wave that is about to go out from the wave source, and consumes electromagnetic wave energy.

特表2009−501510Special table 2009-501510

さて、無線電力伝送を行うに際し、波源の周囲の全体を電磁波遮蔽体で囲んだ場合に、電磁波遮蔽体による磁界エネルギの吸収および消費が起こり、これが電力輸送効率の低下に直結することになる。   Now, when performing wireless power transmission, if the entire periphery of the wave source is surrounded by an electromagnetic wave shielding body, the electromagnetic wave shielding body absorbs and consumes magnetic field energy, which directly leads to a decrease in power transport efficiency.

本発明は、このような点に鑑みてなされたものであり、無線電力伝送において電磁波の不要な放射を抑え、かつ電力輸送効率の低下をできるだけ抑えることを目的とする。   The present invention has been made in view of such a point, and an object of the present invention is to suppress unnecessary radiation of electromagnetic waves in wireless power transmission and to suppress reduction in power transport efficiency as much as possible.

ここに開示された実施形態によると、送電系コイルから受電系コイルへ磁界を利用して無線で電力を伝送する無線電力伝送システムにおける電磁波遮蔽方法において、前記送電系コイルにおける、当該送電系コイルによる送電側と反対側に、磁性体を配置し、前記送電系コイルによる送電方向と直交する側に導電体を配置する。   According to an embodiment disclosed herein, in an electromagnetic wave shielding method in a wireless power transmission system that wirelessly transmits power from a power transmission system coil to a power reception system coil, the power transmission system coil includes the power transmission system coil. A magnetic body is disposed on the side opposite to the power transmission side, and a conductor is disposed on the side orthogonal to the direction of power transmission by the power transmission coil.

好ましくは、前記受電系コイルにおける、当該受電系コイルによる受電側と反対側に、磁性体を配置してもよい。また、前記導電体は、前記送電系コイルから前記受電系コイルに至るまでの空間を囲むように配置してもよい。前記導電体として、非磁性金属を用いることができる。   Preferably, a magnetic body may be arranged on the side opposite to the power receiving side of the power receiving coil in the power receiving coil. The conductor may be disposed so as to surround a space from the power transmission system coil to the power reception system coil. A nonmagnetic metal can be used as the conductor.

本発明によると、無線電力伝送において電磁波の不要な放射を抑え、かつ電力輸送効率の低下をできるだけ抑えることができる。   According to the present invention, it is possible to suppress unnecessary radiation of electromagnetic waves in wireless power transmission and to suppress a decrease in power transport efficiency as much as possible.

本実施形態の無線電力伝送システムを示す斜視図である。It is a perspective view which shows the wireless power transmission system of this embodiment. 本実施形態の無線電力伝送方法を示す図である。It is a figure which shows the wireless power transmission method of this embodiment. 本実施形態の無線電力伝送システムの正面断面図である。It is a front sectional view of the wireless power transmission system of this embodiment. 磁気遮蔽部材による磁気遮蔽作用を説明する図である。It is a figure explaining the magnetic shielding effect | action by a magnetic shielding member. 電界遮蔽部材による電界遮蔽作用を説明する図である。It is a figure explaining the electric field shielding effect by an electric field shielding member. 電磁波遮蔽装置による電磁界遮蔽作用を説明する図である。It is a figure explaining the electromagnetic field shielding effect | action by an electromagnetic wave shielding apparatus. 無線電力伝送システムの他の実施形態を示す斜視図である。It is a perspective view which shows other embodiment of a wireless power transmission system. 無線電力伝送方法の他の例を説明するための図である。It is a figure for demonstrating the other example of the wireless power transmission method. 本実施形態の無線電力伝送システムをモバイル機器の充電に適用した例を示す図である。It is a figure which shows the example which applied the wireless power transmission system of this embodiment to charge of a mobile device. 本実施形態の無線電力伝送システムをモバイル機器の充電に適用した他の例を示す図である。It is a figure which shows the other example which applied the wireless power transmission system of this embodiment to charge of a mobile device. 本実施形態の無線電力伝送システムをモバイル機器の充電に適用した他の例を示す図である。It is a figure which shows the other example which applied the wireless power transmission system of this embodiment to charge of a mobile device. 本実施形態の無線電力伝送システムを車両の充電に適用した例を示す図である。It is a figure which shows the example which applied the wireless power transmission system of this embodiment to charge of a vehicle. 本実施形態の無線電力伝送システムを車両の充電に適用した他の例を示す図である。It is a figure which shows the other example which applied the wireless power transmission system of this embodiment to charge of a vehicle. 本実施形態の無線電力伝送システムを車両の充電に適用した他の例を示す図である。It is a figure which shows the other example which applied the wireless power transmission system of this embodiment to charge of a vehicle.

図1ないし図3において、無線電力伝送システム1は、送電系コイルSC、受電系コイルJC、交流電圧源11、負荷となるデバイス21、送電側磁気遮蔽部材31、受電側磁気遮蔽部材32、および電界遮蔽部材33を備える。   1 to 3, the wireless power transmission system 1 includes a power transmission coil SC, a power reception coil JC, an AC voltage source 11, a load device 21, a power transmission side magnetic shielding member 31, a power reception side magnetic shielding member 32, and An electric field shielding member 33 is provided.

図2において、送電系コイルSCは、電力供給コイル12および送電共振コイル13を備える。電力供給コイル12は、銅線またはアルミニウム線などの金属線が円周状に複数回巻かれたものであり、その両端に交流電圧源11による交流電圧(高周波電圧)が印加される。   In FIG. 2, the power transmission coil SC includes a power supply coil 12 and a power transmission resonance coil 13. The power supply coil 12 is formed by winding a metal wire such as a copper wire or an aluminum wire a plurality of times around the circumference, and an AC voltage (high-frequency voltage) from the AC voltage source 11 is applied to both ends thereof.

送電共振コイル13は、銅線またはアルミニウム線などの金属線が円周状に巻かれたコイル131と、コイル131の両端に接続されたコンデンサ132とからなり、それらによる共振回路を形成する。共振周波数f0 は次の式で示される。   The power transmission resonance coil 13 includes a coil 131 in which a metal wire such as a copper wire or an aluminum wire is wound circumferentially, and a capacitor 132 connected to both ends of the coil 131, thereby forming a resonance circuit. The resonance frequency f0 is expressed by the following equation.

f0 =1/〔2π(LC)-1/ 2 〕 ……(1)
なお、Lはコイル131のインダクタンス、Cはコンデンサ132の静電容量である。
f0 = 1 / [2π (LC) -1 / 2 ] (1)
Note that L is the inductance of the coil 131, and C is the capacitance of the capacitor 132.

送電共振コイル13のコイル131は、例えばワンターンコイルである。コンデンサ132は、例えばセラミックコンデンサである。コイル131の直径を例えば100mm程度とし、コンデンサ132の静電容量を例えば0.04μF程度とすると、共振周波数f0 は、2MHz程度となる。   The coil 131 of the power transmission resonance coil 13 is, for example, a one-turn coil. The capacitor 132 is a ceramic capacitor, for example. If the diameter of the coil 131 is, for example, about 100 mm and the capacitance of the capacitor 132 is, for example, about 0.04 μF, the resonance frequency f0 is about 2 MHz.

送電系コイルSCは、一種の送信アンテナ、例えばループアンテナまたはダイポールアンテナと見ることも可能である。   The power transmission coil SC can also be regarded as a kind of transmission antenna, for example, a loop antenna or a dipole antenna.

電力供給コイル12と送電共振コイル13とは、電磁的に違いに密に結合するよう、例えば同一平面上にかつ同心上に配置されている。例えば、送電共振コイル13の直径が100mm程度の場合に、電力供給コイル12の直径は80mm程度とされており、送電共振コイル13の内周側に電力供給コイル12が嵌まり込んだ状態で配置される。この状態で、交流電圧源11から電力供給コイル12に交流電圧が供給されたときに、電力供給コイル12に生じた交番磁界による電磁誘導によって送電共振コイル13に共振電流が流れる。つまり、電磁誘導によって、電力供給コイル12から送電共振コイル13に電力が供給される。   The power supply coil 12 and the power transmission resonance coil 13 are disposed, for example, on the same plane and concentrically so as to be electromagnetically and closely coupled with each other. For example, when the diameter of the power transmission resonance coil 13 is about 100 mm, the diameter of the power supply coil 12 is set to about 80 mm, and the power supply coil 12 is fitted in the inner peripheral side of the power transmission resonance coil 13. Is done. In this state, when an AC voltage is supplied from the AC voltage source 11 to the power supply coil 12, a resonance current flows through the power transmission resonance coil 13 by electromagnetic induction caused by an alternating magnetic field generated in the power supply coil 12. That is, electric power is supplied from the power supply coil 12 to the power transmission resonance coil 13 by electromagnetic induction.

受電系コイルJCは、受電共振コイル22および電力取出コイル23を備える。受電共振コイル22は、銅線またはアルミニウム線などの金属線が円周状に巻かれたコイル221と、コイル221の両端に接続されたコンデンサ222とからなる。受電共振コイル22の共振周波数f0 は、コイル221のインダクタンスおよびコンデンサ222の静電容量に基づいて上の(1)式で示される。   The power receiving system coil JC includes a power receiving resonance coil 22 and a power extraction coil 23. The power receiving resonance coil 22 includes a coil 221 around which a metal wire such as a copper wire or an aluminum wire is wound, and a capacitor 222 connected to both ends of the coil 221. The resonance frequency f0 of the power receiving resonance coil 22 is expressed by the above equation (1) based on the inductance of the coil 221 and the capacitance of the capacitor 222.

受電共振コイル22のコイル221は、例えばワンターンコイルである。コンデンサ222は、例えばセラミックコンデンサである。受電共振コイル22は、送電共振コイル13と同様な仕様となっている。   The coil 221 of the power receiving resonance coil 22 is, for example, a one-turn coil. The capacitor 222 is a ceramic capacitor, for example. The power receiving resonance coil 22 has the same specifications as the power transmission resonance coil 13.

電力取出コイル23は、銅線またはアルミニウム線などの金属線が円周状に複数回巻かれたものであり、その両端に負荷であるデバイス21が接続されている。   The power extraction coil 23 is formed by winding a metal wire such as a copper wire or an aluminum wire a plurality of times in a circumferential shape, and a device 21 as a load is connected to both ends thereof.

受電共振コイル22と電力取出コイル23とは、電磁的に違いに密に結合するよう、例えば送電系コイルSCの場合と同様に同一平面上にかつ同心上に配置されている。この状態で、受電共振コイル22に共振電流が流れると、それによって発生した交番磁界による電磁誘導によって電力取出コイル23に電流が流れる。つまり、電磁誘導によって、受電共振コイル22から電力取出コイル23に電力が送られる。   The power receiving resonance coil 22 and the power extraction coil 23 are disposed on the same plane and concentrically as in the case of the power transmission coil SC, for example, so as to be electromagnetically and closely coupled. In this state, when a resonance current flows through the power receiving resonance coil 22, a current flows through the power extraction coil 23 by electromagnetic induction caused by the alternating magnetic field generated thereby. That is, electric power is transmitted from the power receiving resonance coil 22 to the power extraction coil 23 by electromagnetic induction.

送電系コイルSCと受電系コイルJCとは、磁界共鳴によって無線で電力を伝送するため、図2に示されるように、コイル面が互いに平行になるように、かつコイル軸心が互いに一致するかまたは余りずれないように、互いに適当な距離をおいて配置される。   Since the power transmission coil SC and the power reception coil JC transmit power wirelessly by magnetic field resonance, are the coil surfaces parallel to each other and the coil axes coincide with each other as shown in FIG. Alternatively, they are arranged at an appropriate distance from each other so that they do not shift too much.

図2に示す無線電力伝送システム1において、コイル軸心KSに沿う方向が磁界KKの主な放射方向であり、それと直角の方向DSが電界DKの主な放射方向である。送電系コイルSCから受電系コイルJCに向かう方向が送電方向SHである。   In the wireless power transmission system 1 shown in FIG. 2, the direction along the coil axis KS is the main radiation direction of the magnetic field KK, and the direction DS perpendicular thereto is the main radiation direction of the electric field DK. The direction from the power transmission coil SC to the power reception coil JC is the power transmission direction SH.

図1および図3に示すように、無線電力伝送システム1において、電磁波の不要な放射を抑え、かつ電力輸送効率の低下をできるだけ抑えるために、電磁波遮蔽装置3が設けられる。   As shown in FIGS. 1 and 3, in the wireless power transmission system 1, an electromagnetic wave shielding device 3 is provided in order to suppress unnecessary radiation of electromagnetic waves and to suppress a decrease in power transport efficiency as much as possible.

電磁波遮蔽装置3は、送電系コイルSCにおける当該送電系コイルSCによる送電側と反対側に配置された磁性体からなる送電側磁気遮蔽部材31、受電系コイルJCにおける当該受電系コイルJCによる受電側と反対側に配置された磁性体からなる受電側磁気遮蔽部材32、および、送電系コイルSCによる送電方向と直交する側に配置された導電体からなる電界遮蔽部材33を備える。   The electromagnetic wave shielding device 3 includes a power transmission side magnetic shielding member 31 made of a magnetic material disposed on the opposite side to the power transmission side of the power transmission system coil SC and a power reception side of the power reception system coil JC. A power receiving side magnetic shielding member 32 made of a magnetic material arranged on the opposite side of the magnetic field, and an electric field shielding member 33 made of a conductor arranged on the side perpendicular to the direction of power transmission by the power transmission coil SC.

送電側磁気遮蔽部材31および受電側磁気遮蔽部材32は、磁気遮蔽を行うためのものであり、次の条件に当てはまる材料が用いられる。
(1) 透磁率の高い材料、つまり強磁性体の性質を持つ磁性材料である。透磁率が高いほど、磁気遮蔽効果が大きい。そして、使用する周波数(高周波)において複素透磁率の実数部が大きく虚数部の小さいものが好ましい。複素透磁率の虚数部が小さいことにより、磁気損失が小さくなる。保持力は小さくてよいので軟磁性材料が好ましい。
(2) 電気抵抗率(面抵抗)の大きい材料が好ましい。電気抵抗率が大きいことによって、電磁誘導による渦電流が発生し難いため、電流損が少ない。したがって、送電側磁気遮蔽部材31および受電側磁気遮蔽部材32の電気抵抗率または電気抵抗は、少なくとも電界遮蔽部材33のそれよりも大きい。
The power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member 32 are for performing magnetic shielding, and materials satisfying the following conditions are used.
(1) A material having high magnetic permeability, that is, a magnetic material having a ferromagnetic property. The higher the magnetic permeability, the greater the magnetic shielding effect. And the thing with a large real part of complex permeability and a small imaginary part is preferable in the frequency (high frequency) to be used. Since the imaginary part of the complex permeability is small, the magnetic loss is reduced. Since the holding force may be small, a soft magnetic material is preferable.
(2) A material having a large electric resistivity (surface resistance) is preferable. Due to the high electrical resistivity, eddy currents due to electromagnetic induction are less likely to occur, so there is little current loss. Therefore, the electric resistivity or electric resistance of the power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member 32 is at least larger than that of the electric field shielding member 33.

したがって、送電側磁気遮蔽部材31および受電側磁気遮蔽部材32の材料として、透磁率が高く電気抵抗率の大きいフェライトが好適に用いられる。その他、鋼、珪素鋼、パーマロイなどの軟磁性材料を用いることができる。また、種々の磁性粉を含有した樹脂材を用いることもできる。また、樹脂材などの表面に磁性塗膜を形成したものを用いてもよい。   Therefore, as a material for the power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member 32, ferrite having a high magnetic permeability and a high electrical resistivity is preferably used. In addition, soft magnetic materials such as steel, silicon steel, and permalloy can be used. Also, resin materials containing various magnetic powders can be used. Moreover, you may use what formed the magnetic coating film on the surface, such as a resin material.

また、電界遮蔽部材33は、電界を遮蔽するものであり、次の条件に当てはまる材料が用いられる。
(3) 導電率の大きい材料が用いられる。高導電率であるほど、電界エネルギの吸収が大きい。
(4) 非磁性材料が好ましい。
The electric field shielding member 33 shields the electric field, and a material that satisfies the following conditions is used.
(3) A material with high conductivity is used. The higher the conductivity, the greater the absorption of electric field energy.
(4) Nonmagnetic materials are preferred.

したがって、電界遮蔽部材33の材料として、銅、アルミニウムなどの非磁性金属が好適に用いられる。電界遮蔽部材33は、導電性樹脂であってもよい。また、樹脂材などの表面に導電性塗膜を形成したものでもよい。   Therefore, a nonmagnetic metal such as copper or aluminum is preferably used as the material of the electric field shielding member 33. The electric field shielding member 33 may be a conductive resin. Moreover, what formed the conductive coating film on the surface, such as a resin material, may be used.

なお、電界遮蔽部材33は、接地されていることが好ましい。電界遮蔽部材33が接地されることによって、電界遮蔽部材33の電位がグランド電位となり、電界によって生じた電流をグランドに流すことができる。   The electric field shielding member 33 is preferably grounded. When the electric field shielding member 33 is grounded, the electric potential of the electric field shielding member 33 becomes the ground potential, and a current generated by the electric field can flow to the ground.

図1および図3に示す無線電力伝送システム1においては、送電系コイルSCおよび受電系コイルJCが円形であるので、図2に示す送電側磁気遮蔽部材31および受電側磁気遮蔽部材32は、送電系コイルSCまたは受電系コイルJCとほぼ同じかそれより大きい直径を有する円板状である。円板の厚さは、例えば0.1〜1mm程度である。伝送電力が大きくなるほど、送電側磁気遮蔽部材31および受電側磁気遮蔽部材32の厚さを厚くすればよい。   In the wireless power transmission system 1 shown in FIGS. 1 and 3, since the power transmission coil SC and the power reception coil JC are circular, the power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member 32 shown in FIG. It has a disc shape having a diameter substantially the same as or larger than that of the system coil SC or the power receiving system coil JC. The thickness of the disk is, for example, about 0.1 to 1 mm. The greater the transmission power, the thicker the power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member 32 should be.

また、電界遮蔽部材33は、送電系コイルSCおよび受電系コイルJCが内部に含まれる程度の大きさの円筒状である。つまり、電界遮蔽部材33は、送電系コイルSCから受電系コイルJCに至るまでの円柱状の空間を囲むように配置されている。   The electric field shielding member 33 has a cylindrical shape that is large enough to contain the power transmission coil SC and the power reception coil JC. That is, the electric field shielding member 33 is disposed so as to surround a cylindrical space from the power transmission system coil SC to the power reception system coil JC.

送電側磁気遮蔽部材31および受電側磁気遮蔽部材32は、送電系コイルSCおよび受電系コイルJCから適当な距離だけ離れて配置されているが、接して配置してもよい。また、電界遮蔽部材33は、送電系コイルSCおよび受電系コイルJCの外周面から僅かに離れる程度の内径を有するが、もっと大きい内径を有していてもよく、送電系コイルSCおよび受電系コイルJCの外周面が接する程度の内径を有していてもよい。送電側磁気遮蔽部材31および受電側磁気遮蔽部材32と電界遮蔽部材33との間は、接していても離れていてもよい。それらが離れている場合に、一方の延長線上に他方が存在するような状態で重なっていることが好ましい。   The power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member 32 are disposed at an appropriate distance from the power transmission system coil SC and the power reception system coil JC, but may be disposed in contact with each other. The electric field shielding member 33 has an inner diameter that is slightly away from the outer peripheral surfaces of the power transmission system coil SC and the power reception system coil JC, but may have a larger inner diameter, and the power transmission system coil SC and the power reception system coil. You may have an internal diameter of the grade which the outer peripheral surface of JC touches. The power transmission side magnetic shielding member 31, the power receiving side magnetic shielding member 32, and the electric field shielding member 33 may be in contact or separated from each other. When they are separated, it is preferable that they overlap with each other so that the other exists on one extension line.

交流電圧源11は、電力供給コイル12に、送電共振コイル13および受電共振コイル22の共振周波数f0 に応じた周波数の交流電力(高周波電力)を供給する。例えば、共振周波数f0 が2MHzである場合に、交流電圧源11は周波数が2MHz程度の高周波電力を送電共振コイル13に供給する。   The AC voltage source 11 supplies the power supply coil 12 with AC power (high frequency power) having a frequency corresponding to the resonance frequency f 0 of the power transmission resonance coil 13 and the power reception resonance coil 22. For example, when the resonance frequency f0 is 2 MHz, the AC voltage source 11 supplies high-frequency power having a frequency of about 2 MHz to the power transmission resonance coil 13.

上に述べたように、送電共振コイル13および受電共振コイル22のサイズ、巻き数、コンデンサの容量などによって、種々の共振周波数f0 とすることができる。例えば、数KHzから数GHz、さらには数THzまでの種々の周波数帯域の周波数を用いることが可能である。   As described above, various resonance frequencies f0 can be set according to the size, the number of turns, the capacitor capacity, and the like of the power transmission resonance coil 13 and the power reception resonance coil 22. For example, it is possible to use frequencies in various frequency bands from several KHz to several GHz, and even several THz.

デバイス21として、電力取出コイル23から出力される交流電力で動作する種々の回路または機器などを用いることができる。例えば、整流回路、インバータ、DC−DCコンバータなどを組み合わせて用いることができる。また、デバイス21として、二次電池を充電するための充電装置を用いることができる。この場合には、実質的な負荷は二次電池となる。その他、モータ、ソレノイド、種々の電子回路または電気回路をデバイス21とすることができる。   As the device 21, various circuits or devices that operate with AC power output from the power extraction coil 23 can be used. For example, a rectifier circuit, an inverter, a DC-DC converter, or the like can be used in combination. Further, as the device 21, a charging device for charging a secondary battery can be used. In this case, the substantial load is the secondary battery. In addition, a motor, a solenoid, various electronic circuits, or an electric circuit can be used as the device 21.

図4(B)に示すように、送電側磁気遮蔽部材31および受電側磁気遮蔽部材32が存在しない場合に、送電系コイルSCによる磁界(放射磁界)KKは、送電系コイルSCおよび受電系コイルJCの外方へも多く放射される。なお、図4に示す磁界KKは、磁力線または磁束の方向をも示す。   As shown in FIG. 4B, when the power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member 32 are not present, the magnetic field (radiated magnetic field) KK by the power transmission system coil SC is equal to the power transmission system coil SC and the power reception system coil. A lot is emitted to the outside of JC. Note that the magnetic field KK shown in FIG. 4 also indicates the direction of magnetic field lines or magnetic flux.

図4(A)に示すように、送電側磁気遮蔽部材31および受電側磁気遮蔽部材32を設けた場合に、放射磁界になるはずだった磁束が送電側磁気遮蔽部材31および受電側磁気遮蔽部材32に吸い込まれ、磁界KKが外部に放射されることが抑止される。   As shown in FIG. 4A, when the power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member 32 are provided, the magnetic flux that should have become a radiating magnetic field is converted to the power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member. 32 is suppressed from being radiated to the outside by being sucked in by 32.

図5(B)に示すように、電界遮蔽部材33がない場合に、送電系コイルSCによる磁界に基づく電界(放射電界)DKは、送電系コイルSCおよび受電系コイルJCで挟まれた円柱状の空間の外方へも多く放射される。なお、図5に示す電界DKは、電気力線または電束の方向をも示す。   As shown in FIG. 5B, when there is no electric field shielding member 33, the electric field (radiated electric field) DK based on the magnetic field by the power transmission system coil SC is a cylindrical shape sandwiched between the power transmission system coil SC and the power reception system coil JC. A lot of radiation is also emitted outside the space. Note that the electric field DK shown in FIG. 5 also indicates the direction of the lines of electric force or the electric flux.

図5(A)に示すように、電界遮蔽部材33を設けた場合に、放射電界になるはずだった電界エネルギが電界遮蔽部材33に吸収され、電界DKが外部に放射されることが抑止される。電界遮蔽部材33に吸収された電界エネルギは、グランドへ流れる電流となる。電界遮蔽部材33が接地されていない場合には、電界遮蔽部材33において渦電流となり、熱エネルギとなって放散される。   As shown in FIG. 5A, when the electric field shielding member 33 is provided, the electric field energy that should have been a radiation electric field is absorbed by the electric field shielding member 33 and the electric field DK is prevented from being radiated to the outside. The The electric field energy absorbed by the electric field shielding member 33 becomes a current flowing to the ground. When the electric field shielding member 33 is not grounded, it becomes an eddy current in the electric field shielding member 33 and is dissipated as thermal energy.

図6(B)に示すように、電磁波遮蔽装置3を設けない場合に、送電系コイルSCによる磁界KKおよび電界DKは外方へ放射される。   As shown in FIG. 6B, when the electromagnetic wave shielding device 3 is not provided, the magnetic field KK and the electric field DK by the power transmission coil SC are radiated outward.

図6(A)に示すように、電磁波遮蔽装置3を設けた場合に、放射磁界または放射電界になるはずだった磁束および電界エネルギが電磁波遮蔽装置3に吸収され、外部に放射されることが抑止される。   As shown in FIG. 6A, when the electromagnetic wave shielding device 3 is provided, the magnetic flux and electric field energy that should have become a radiating magnetic field or a radiated electric field may be absorbed by the electromagnetic wave shielding device 3 and radiated to the outside. Deterred.

このように、電磁波遮蔽装置3によって、磁界KKおよび電界DKが、送電系コイルSCおよび受電系コイルJCによって形成される円柱状の空間にほぼ閉じ込められ、外部への漏れ量が少なくなる。これによって、電磁波の不要な放射が抑えられる。   Thus, the electromagnetic wave shielding device 3 substantially confines the magnetic field KK and the electric field DK in the cylindrical space formed by the power transmission coil SC and the power reception coil JC, and the amount of leakage to the outside is reduced. Thereby, unnecessary radiation of electromagnetic waves is suppressed.

そして、電力輸送の主な担い手である磁気エネルギは、外部に出ることが抑制されるのみであり、送電側磁気遮蔽部材31および受電側磁気遮蔽部材32による損失は最低限度に抑えられるので、電力輸送効率の低下が抑えられる。   And the magnetic energy which is the main bearer of electric power transport is only suppressed from going outside, and the loss due to the power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member 32 is suppressed to the minimum. Reduction in transport efficiency can be suppressed.

すなわち、磁界を電力輸送の仲立ちとする方式の無線電力伝送システム1において、磁界は、2点間をつなぐ方向(コイル軸心KSに沿う方向)に主として空間分布する。他方、電界は、それと直角の方向DSに主として空間分布する。   That is, in the wireless power transmission system 1 using a magnetic field as an intermediate for power transportation, the magnetic field is mainly spatially distributed in a direction connecting two points (a direction along the coil axis KS). On the other hand, the electric field is mainly spatially distributed in a direction DS perpendicular thereto.

また、磁界強度は波源からの距離の3乗に比例して急速に減衰するが、電界強度は波源からの距離の2乗または1乗に比例して緩やかに減衰する。このことから、本実施形態においては、異方的な電磁界遮蔽を行なうことによって、効率的な遮蔽が行われる。   Further, the magnetic field strength rapidly attenuates in proportion to the cube of the distance from the wave source, while the electric field strength attenuates gradually in proportion to the square or the first power of the distance from the wave source. For this reason, in this embodiment, efficient shielding is performed by performing anisotropic electromagnetic field shielding.

上の実施形態において、コンデンサ132,222として、セラミックコンデンサ以外の種類のコンデンサを用いることができる。また、コイル131,221の両端を開放し、浮遊容量をコンデンサ132,222として用いることも可能である。   In the above embodiment, a capacitor other than a ceramic capacitor can be used as the capacitors 132 and 222. Further, both ends of the coils 131 and 221 can be opened, and the stray capacitance can be used as the capacitors 132 and 222.

上の実施形態において、送電側磁気遮蔽部材31および受電側磁気遮蔽部材32は、円板状であったが、正多角形の板状、矩形の板状、その他の形状であってもよい。電界遮蔽部材33は、円筒状であったが、正多角筒状、各筒状、その他の形状であってもよい。   In the above embodiment, the power transmission side magnetic shielding member 31 and the power reception side magnetic shielding member 32 are disk-shaped, but may be a regular polygonal plate shape, a rectangular plate shape, or other shapes. The electric field shielding member 33 has a cylindrical shape, but may have a regular polygonal cylindrical shape, each cylindrical shape, or other shapes.

上に述べた実施形態において、電界遮蔽部材33は、送電系コイルSCから受電系コイルJCに至るまでの円柱状の空間を囲むように配置されている。つまり、電界遮蔽部材33は円筒面を形成する面状のものであるが、メッシュ状のものを用いてもよい。   In the embodiment described above, the electric field shielding member 33 is disposed so as to surround a cylindrical space from the power transmission system coil SC to the power reception system coil JC. That is, the electric field shielding member 33 is a planar member that forms a cylindrical surface, but a mesh member may be used.

すなわち、図7に示す無線電力伝送システム1Bにおいては、ステンレス鋼材からなるメッシュ状の電界遮蔽部材33Bが用いられている。   That is, in the wireless power transmission system 1B shown in FIG. 7, a mesh-shaped electric field shielding member 33B made of stainless steel is used.

電界遮蔽部材33Bのメッシュのピッチは、送電系コイルSCに供給される交流電力の波長に対して十分に短いものとなっている。例えば、メッシュのピッチは、波長の数分の1〜十数分の1程度である。円筒状のメッシュを用いる場合に、リング状のワイヤ間のピッチを十分に短くすることにより、電界遮蔽部材33Bを軸方向に2個またはそれ以上に分断することも可能である。   The pitch of the mesh of the electric field shielding member 33B is sufficiently short with respect to the wavelength of the AC power supplied to the power transmission coil SC. For example, the pitch of the mesh is about one-tenth to one-tenth of the wavelength. When using a cylindrical mesh, the electric field shielding member 33B can be divided into two or more in the axial direction by sufficiently shortening the pitch between the ring-shaped wires.

次に、他の送電系コイルSCおよび受電系コイルJCの他の実施形態について説明する。   Next, other embodiments of other power transmission coil SC and power reception coil JC will be described.

図8に示す無線電力伝送システム1Cでは、送電系コイルSCCとして、送電共振コイル13Bが用いられ、送電共振コイル13Bに直接に交流電圧源11が接続されている。また、受電系コイルJCCとして受電共振コイル22Bが用いられ、受電共振コイル22Bが直接にデバイス21に接続されている。このような無線電力伝送システム1Cに、図1および図3に示した電磁波遮蔽装置3が設けられている。   In the wireless power transmission system 1C illustrated in FIG. 8, a power transmission resonance coil 13B is used as the power transmission coil SCC, and the AC voltage source 11 is directly connected to the power transmission resonance coil 13B. Further, a power receiving resonance coil 22B is used as the power receiving coil JCC, and the power receiving resonance coil 22B is directly connected to the device 21. Such a wireless power transmission system 1C is provided with the electromagnetic wave shielding device 3 shown in FIG. 1 and FIG.

送電系コイルSCCおよび受電系コイルJCCが図8に示す形態であっても、電磁波遮蔽装置3を設けることによって、電磁波の不要な放射が抑えられ、電力輸送効率の低下ができるだけ抑えられる。   Even if the power transmission system coil SCC and the power reception system coil JCC are in the form shown in FIG. 8, by providing the electromagnetic wave shielding device 3, unnecessary radiation of electromagnetic waves can be suppressed, and a decrease in power transport efficiency can be suppressed as much as possible.

次に、上に説明した無線電力伝送システム1,1B,1Cを利用した充電システム2〜2Eについて説明する。   Next, charging systems 2-2E using the wireless power transmission systems 1, 1B, 1C described above will be described.

図9において、充電システム2は、給電装置5によって種々のモバイル機器6を充電する。   In FIG. 9, the charging system 2 charges various mobile devices 6 with the power supply device 5.

給電装置5は、底板51a、側板51b,51c、上板51dなどからなるハウジング51の内部に、送電系コイルSCが設けられている。ハウジング51は合成樹脂または木材などからなる。送電系コイルSCの下側に、磁性体からなる送電側磁気遮蔽部材55が設けられている。そして、送電系コイルSCの周囲4面を囲むように、また上板51dの上にモバイル機器6が載せられたときにその一部の周囲4面を囲むように、導電体からなる電界遮蔽部材56,57が設けられている。   The power feeding device 5 is provided with a power transmission coil SC inside a housing 51 including a bottom plate 51a, side plates 51b and 51c, an upper plate 51d, and the like. The housing 51 is made of synthetic resin or wood. A power transmission side magnetic shielding member 55 made of a magnetic material is provided below the power transmission system coil SC. Then, an electric field shielding member made of a conductor is formed so as to surround the four surrounding surfaces of the power transmission coil SC and so as to surround a part of the four surrounding surfaces when the mobile device 6 is placed on the upper plate 51d. 56 and 57 are provided.

給電装置5には、図示しない電源スイッチおよび交流電圧源などが備えられ、送電系コイルSCに対し必要に応じて交流電力が供給される。つまり、上板51aの上にモバイル機器6が載置されたことを検出するセンサが設けられており、その検出によって送電系コイルSCからモバイル機器6に向かって電磁エネルギが放射される。すなわち、上板51dの上にモバイル機器6が載せられていないときは、送電系コイルSCに電力は供給されない。モバイル機器6が載せられたときに、それが検出され、送電系コイルSCに電力が供給される。   The power feeding device 5 includes a power switch and an AC voltage source (not shown), and AC power is supplied to the power transmission coil SC as necessary. That is, a sensor for detecting that the mobile device 6 is placed on the upper plate 51 a is provided, and electromagnetic energy is radiated from the power transmission coil SC toward the mobile device 6 by the detection. That is, when the mobile device 6 is not placed on the upper plate 51d, power is not supplied to the power transmission coil SC. When the mobile device 6 is placed, it is detected and power is supplied to the power transmission coil SC.

モバイル機器6は、裏板61a、側板61b,61c、表板61dなどからなるハウジング61の内部に、給電装置5の送電系コイルSCと磁界共鳴して無線で電力を受電する受電系コイルJCが設けられている。ハウジング61は合成樹脂などからなる。受電系コイルJCの上側に、磁性体からなる受電側磁気遮蔽部材65が設けられている。   In the mobile device 6, a power receiving coil JC that receives power wirelessly through magnetic resonance with the power transmitting coil SC of the power feeding device 5 is provided in a housing 61 including a back plate 61 a, side plates 61 b and 61 c, and a front plate 61 d. Is provided. The housing 61 is made of synthetic resin or the like. A power receiving side magnetic shielding member 65 made of a magnetic material is provided above the power receiving coil JC.

モバイル機器6には、充電回路および二次電池などを備えた充電池DTが設けられ、充電池DTを電源としてモバイル機器6が動作するようになっている。   The mobile device 6 is provided with a rechargeable battery DT including a charging circuit and a secondary battery, and the mobile device 6 operates with the rechargeable battery DT as a power source.

図9(B)に示すように、給電装置5の上板51dの上にモバイル機器6を載せることにより、送電系コイルSCから受電系コイルJCに向かって磁界共鳴により電力が伝送される。受電系コイルJCから出力される交流電力によって、充電池DTが充電される。   As shown in FIG. 9B, by placing the mobile device 6 on the upper plate 51d of the power feeding device 5, power is transmitted from the power transmission system coil SC to the power reception system coil JC by magnetic field resonance. The rechargeable battery DT is charged by the AC power output from the power receiving coil JC.

送電側磁気遮蔽部材55、電界遮蔽部材56,57、および受電側磁気遮蔽部材65によって、電磁波遮蔽装置4が構成されている。   The electromagnetic wave shielding device 4 is configured by the power transmission side magnetic shielding member 55, the electric field shielding members 56 and 57, and the power receiving side magnetic shielding member 65.

なお、給電装置5に設けた電界遮蔽部材56,57は、上板51dの上方に突出しているが、その突出部分をなくし、これに代えてモバイル機器6の側板61b,61cに電界遮蔽部材56,57の一部を設けてもよい。   The electric field shielding members 56 and 57 provided in the power feeding device 5 protrude above the upper plate 51d, but the protruding portion is eliminated, and instead the electric field shielding members 56 are provided on the side plates 61b and 61c of the mobile device 6. , 57 may be provided.

また、給電装置5の上板51dの上に1個のモバイル機器6が載るようになっているが、複数個のモバイル機器6を載せてそれらに内蔵された複数の受電系コイルJCに同時に電力を伝送するようにしてもよい。その場合に、送電系コイルSCを受電系コイルJCよりも大きくし、複数の受電系コイルJCが送電系コイルSCと対向するようにすればよい。または、複数の送電系コイルSCを配置すればよい。   In addition, one mobile device 6 is mounted on the upper plate 51d of the power feeding device 5. However, a plurality of mobile devices 6 are mounted and power is simultaneously supplied to a plurality of power receiving coils JC built in them. May be transmitted. In that case, the power transmission system coil SC may be made larger than the power reception system coil JC, and a plurality of power reception system coils JC may be opposed to the power transmission system coil SC. Alternatively, a plurality of power transmission coils SC may be arranged.

図10において、充電システム2Bは、給電装置5Bによって種々のモバイル機器6を充電する。図9に示す例と同様の機能を有する部分には同様の符号を付して説明を省略しまたは簡略化する。以下同様である。   In FIG. 10, the charging system 2B charges various mobile devices 6 with the power supply device 5B. Parts having the same functions as those in the example shown in FIG. 9 are denoted by the same reference numerals, and description thereof is omitted or simplified. The same applies hereinafter.

給電装置5Bは、底板51a、側板51b,51c、上板51d、スライド板51e、蓋板51f、天板51gなどからなるハウジング51の内部に、送電系コイルSCが設けられている。ハウジング51は合成樹脂などからなる。送電系コイルSCの下側に、磁性体からなる送電側磁気遮蔽部材55が設けられている。そして、送電系コイルSCの周囲4面を囲むように、また上板51dの上にモバイル機器6が載せられたときにその一部の周囲4面を囲むように、導電体からなる電界遮蔽部材56,57,57bが設けられている。   In the power feeding device 5B, a power transmission coil SC is provided inside a housing 51 including a bottom plate 51a, side plates 51b and 51c, an upper plate 51d, a slide plate 51e, a lid plate 51f, a top plate 51g, and the like. The housing 51 is made of synthetic resin or the like. A power transmission side magnetic shielding member 55 made of a magnetic material is provided below the power transmission system coil SC. Then, an electric field shielding member made of a conductor is formed so as to surround the four surrounding surfaces of the power transmission coil SC and so as to surround a part of the four surrounding surfaces when the mobile device 6 is placed on the upper plate 51d. 56, 57, 57b are provided.

モバイル機器6は、ハウジング61の内部に、給電装置5の送電系コイルSCと磁界共鳴して無線で電力を受電する受電系コイルJCが設けられている。受電系コイルJCの上側に、磁性体からなる受電側磁気遮蔽部材65が設けられている。   In the mobile device 6, a power receiving coil JC that wirelessly receives power by magnetic field resonance with the power transmitting coil SC of the power feeding device 5 is provided inside the housing 61. A power receiving side magnetic shielding member 65 made of a magnetic material is provided above the power receiving coil JC.

図10(B)に示すように、給電装置5のスライド板51eの上にモバイル機器6を載せ、スライド板51eを給電装置5の上板51dの上にスライドさせて押し込む。この状態がセンサなどによって検出され、送電系コイルSCに電力が供給され、送電系コイルSCから受電系コイルJCに向かって磁界共鳴によって電力が伝送される。   As shown in FIG. 10B, the mobile device 6 is placed on the slide plate 51e of the power feeding device 5, and the slide plate 51e is slid onto the upper plate 51d of the power feeding device 5 and pushed. This state is detected by a sensor or the like, power is supplied to the power transmission coil SC, and power is transmitted from the power transmission coil SC to the power reception coil JC by magnetic field resonance.

図11において、充電システム2Cは、給電装置5Cによって種々のモバイル機器6を充電する。   In FIG. 11, the charging system 2 </ b> C charges various mobile devices 6 with the power feeding device 5 </ b> C.

給電装置5Cは、底板51a、側板51b,51c、上板51d、蓋板51e,51fなどからなるハウジング51の内部に、送電系コイルSCが設けられている。ハウジング51は合成樹脂などからなる。送電系コイルSCの下側に、磁性体からなる送電側磁気遮蔽部材55が設けられている。そして、送電系コイルSCの周囲4面を囲むように、また上板51dの上にモバイル機器6が載せられたときにその一部の周囲4面を囲むように、導電体からなる電界遮蔽部材56,57,57bが設けられている。   In the power feeding device 5C, a power transmission coil SC is provided inside a housing 51 including a bottom plate 51a, side plates 51b and 51c, an upper plate 51d, lid plates 51e and 51f, and the like. The housing 51 is made of synthetic resin or the like. A power transmission side magnetic shielding member 55 made of a magnetic material is provided below the power transmission system coil SC. Then, an electric field shielding member made of a conductor is formed so as to surround the four surrounding surfaces of the power transmission coil SC and so as to surround a part of the four surrounding surfaces when the mobile device 6 is placed on the upper plate 51d. 56, 57, 57b are provided.

送電側磁気遮蔽部材55、電界遮蔽部材56,57,57b、および受電側磁気遮蔽部材65によって、電磁波遮蔽装置4Cが構成されている。   The power transmission side magnetic shielding member 55, the electric field shielding members 56, 57, and 57b, and the power receiving side magnetic shielding member 65 constitute an electromagnetic wave shielding device 4C.

モバイル機器6は、ハウジング61の内部に、給電装置5の送電系コイルSCと磁界共鳴して無線で電力を受電する受電系コイルJCが設けられている。受電系コイルJCの上側に、磁性体からなる受電側磁気遮蔽部材65が設けられている。   In the mobile device 6, a power receiving coil JC that wirelessly receives power by magnetic field resonance with the power transmitting coil SC of the power feeding device 5 is provided inside the housing 61. A power receiving side magnetic shielding member 65 made of a magnetic material is provided above the power receiving coil JC.

図11(B)に示すように、給電装置5の上板51dの上にモバイル機器6を載せ、蓋板51e,51fを閉じる。この状態がセンサなどによって検出され、送電系コイルSCから受電系コイルJCに向かって磁界共鳴によって電力が伝送される。   As shown in FIG. 11B, the mobile device 6 is placed on the upper plate 51d of the power feeding device 5, and the lid plates 51e and 51f are closed. This state is detected by a sensor or the like, and electric power is transmitted from the power transmission system coil SC to the power reception system coil JC by magnetic field resonance.

図12において、充電システム2Dは、給電装置5Dによって、電気自動車などの種々の車両7を充電する。   In FIG. 12, the charging system 2D charges various vehicles 7 such as an electric vehicle with the power feeding device 5D.

給電装置5Dは、底板51a、側板51b,51c、上板51dなどからなるハウジング51の内部に、送電系コイルSCが設けられている。送電系コイルSCの下側に、磁性体からなる送電側磁気遮蔽部材55が設けられている。そして、送電系コイルSCの周囲4面を囲むように、固定された電界遮蔽部材56a,57a、およびスライド可能な電界遮蔽部材56b,57bが設けられている。スライド可能な電界遮蔽部材56b,57bは、上板51dの上に車両7が載ったときに上方へスライド移動し、車両7の一部の周囲4面を囲む。   In the power feeding device 5D, a power transmission coil SC is provided inside a housing 51 including a bottom plate 51a, side plates 51b and 51c, an upper plate 51d, and the like. A power transmission side magnetic shielding member 55 made of a magnetic material is provided below the power transmission system coil SC. Then, fixed electric field shielding members 56a and 57a and slidable electric field shielding members 56b and 57b are provided so as to surround the four surfaces around the power transmission coil SC. The slidable electric field shielding members 56b and 57b slide and move upward when the vehicle 7 is placed on the upper plate 51d, and surround a portion of the periphery 4 of the vehicle 7.

給電装置5Dには、図示しない電源スイッチおよび交流電圧源などが備えられ、送電系コイルSCに対し必要に応じて交流電力が供給される。また、上板51aの上に車両7が載ったことを検出するセンサが設けられており、その検出によって送電系コイルSCから車両7に向かって電磁エネルギが放射される。   The power supply device 5D includes a power switch and an AC voltage source (not shown), and AC power is supplied to the power transmission coil SC as necessary. In addition, a sensor for detecting that the vehicle 7 is placed on the upper plate 51 a is provided, and electromagnetic energy is radiated from the power transmission coil SC toward the vehicle 7 by the detection.

車両7は、その車体STに、裏板61a、側板61b,61c、表板61dなどからなるハウジング61が設けられる。ハウジング61の内部に、給電装置5の送電系コイルSCと磁界共鳴して無線で電力を受電する受電系コイルJCが設けられている。受電系コイルJCの上側に、磁性体からなる受電側磁気遮蔽部材65が設けられている。   The vehicle 7 is provided with a housing 61 including a back plate 61a, side plates 61b and 61c, a front plate 61d, and the like on the vehicle body ST. Inside the housing 61, a power receiving coil JC that wirelessly receives power by magnetic field resonance with the power transmitting coil SC of the power feeding device 5 is provided. A power receiving side magnetic shielding member 65 made of a magnetic material is provided above the power receiving coil JC.

車両7には、充電回路および二次電池などを備えた充電池DTが設けられ、充電池DTを電源として車両7が走行しまた動作するようになっている。   The vehicle 7 is provided with a rechargeable battery DT including a charging circuit and a secondary battery, and the vehicle 7 travels and operates using the rechargeable battery DT as a power source.

なお、送電系コイルSCおよび受電系コイルJCとして、直径が例えば500mm程度のものを用いることができる。   In addition, as the power transmission coil SC and the power receiving coil JC, those having a diameter of, for example, about 500 mm can be used.

送電側磁気遮蔽部材55、電界遮蔽部材56,56b,57,57b、および受電側磁気遮蔽部材65によって、電磁波遮蔽装置4Dが構成されている。   The electromagnetic wave shielding device 4D is configured by the power transmission side magnetic shielding member 55, the electric field shielding members 56, 56b, 57, 57b, and the power receiving side magnetic shielding member 65.

図12(B)に示すように、給電装置5の上板51dの上に車両7が侵入すると、それが検出され、電界遮蔽部材56b,57bが自動的に上方へスライド移動し、その後、送電系コイルSCから受電系コイルJCに向かって磁界共鳴により電力が伝送される。受電系コイルJCから出力される交流電力によって、充電池DTが充電される。   As shown in FIG. 12B, when the vehicle 7 enters the upper plate 51d of the power feeding device 5, it is detected, and the electric field shielding members 56b and 57b are automatically slid upward, and then the power transmission Electric power is transmitted from the system coil SC toward the power receiving system coil JC by magnetic field resonance. The rechargeable battery DT is charged by the AC power output from the power receiving coil JC.

一般に、車両7の車体STは金属体で構成されている。したがって、車両7においては車体STが電界遮蔽部材56b,57bの役目を果たすので、図13に示すように電界遮蔽部材56b,57bの長さを短くしてもよい。   Generally, the vehicle body ST of the vehicle 7 is made of a metal body. Therefore, since the vehicle body ST serves as the electric field shielding members 56b and 57b in the vehicle 7, the lengths of the electric field shielding members 56b and 57b may be shortened as shown in FIG.

つまり、図13において、電界遮蔽部材56b,57bは、その上端が、車体STの下端(底面)の位置とほぼ同じとされている。このようにすると、電界遮蔽部材56b,57bによる突出部分が少なくなり、電界遮蔽部材56b,57bの移動量も少なくてすむ。   That is, in FIG. 13, the upper ends of the electric field shielding members 56b and 57b are substantially the same as the position of the lower end (bottom surface) of the vehicle body ST. In this way, the protruding portions by the electric field shielding members 56b and 57b are reduced, and the amount of movement of the electric field shielding members 56b and 57b can be reduced.

図12および図13に示す例では、電界遮蔽部材56b,57bをスライド可能としたので、車両7は、図の左右いずれの方向からも侵入しまたは発車することができる。しかし、一方の側からのみ侵入しまたは発車するのであれば、電界遮蔽部材56b,57bのいずれか一方のみをスライド可能とし、他方を固定とすることができる。   In the example shown in FIGS. 12 and 13, since the electric field shielding members 56b and 57b are slidable, the vehicle 7 can enter or depart from either the left or right direction in the figure. However, if the vehicle enters only from one side or departs, only one of the electric field shielding members 56b and 57b can be slid and the other can be fixed.

すなわち、図14に示す充電システム2Eにおいて、給電装置5Eは、3方の電界遮蔽部材56が固定され、一方の電界遮蔽部材57bのみがスライド可能となっている。図14(A)に示すように、非充電時において、電界遮蔽部材57bは下端位置にある。車両7が侵入した後で、図14(B)に示すように、電界遮蔽部材57bは上方にスライド移動し、この状態で充電池DTの充電が行われる。   That is, in the charging system 2E shown in FIG. 14, the electric power feeding device 5E has three electric field shielding members 56 fixed thereto, and only one electric field shielding member 57b is slidable. As shown in FIG. 14A, the electric field shielding member 57b is in the lower end position during non-charging. After the vehicle 7 enters, as shown in FIG. 14B, the electric field shielding member 57b slides upward, and the rechargeable battery DT is charged in this state.

なお、この場合に、給電装置5に、車両7をUターンさせるためのターンテーブルを設けてもよい。   In this case, the power feeding device 5 may be provided with a turntable for making the vehicle 7 make a U-turn.

上に述べたいずれの実施形態においても、電磁波遮蔽装置3,4によって、電磁波の不要な放射が抑えられ、電力輸送効率の低下が抑えられる。例えば、磁界KKおよび電界DKともに、−40dB程度の減衰を与えるように遮蔽可能である。また、従来のように空間の全体を囲む必要がないので、軽量化および低コスト化が可能である。   In any of the above-described embodiments, the electromagnetic wave shielding devices 3 and 4 suppress unnecessary radiation of electromagnetic waves and suppress a decrease in power transport efficiency. For example, both the magnetic field KK and the electric field DK can be shielded so as to give an attenuation of about −40 dB. Further, since it is not necessary to enclose the entire space as in the prior art, it is possible to reduce the weight and cost.

上の実施形態において、送電系コイルSCから受電系コイルJCに対し、直接的に磁界共鳴による電力の伝送を行ったが、送電系コイルSCおよび受電系コイルJCと磁界共鳴する中継用コイルを設け、中継用コイルを介して間接形に電力の伝送を行ってもよい。これによると、送電系コイルSCと受電系コイルJCとの配置の自由度が向上する。   In the above embodiment, power is directly transmitted from the power transmission coil SC to the power reception coil JC by magnetic field resonance, but a relay coil that magnetically resonates with the power transmission coil SC and the power reception coil JC is provided. The power may be transmitted indirectly through a relay coil. According to this, the freedom degree of arrangement | positioning with the power transmission system coil SC and the power receiving system coil JC improves.

上の実施形態においては、送電系コイルSCから受電系コイルJCに対し、磁界共鳴を利用して電力の伝送を行う例について説明した。しかし、磁界共鳴を利用することなく、磁界による電磁誘導を利用した電力の伝送についても、本発明を適用することができる。つまり、送電系コイルSCから受電系コイルJCへ電磁誘導によって電力の伝送を行う場合に、上に説明した電磁波遮蔽装置3,4を用いることによって、電磁波の不要な放射を抑え、かつ電力輸送効率の低下をできるだけ抑えることができる。   In the above embodiment, an example has been described in which power is transmitted from the power transmission system coil SC to the power reception system coil JC using magnetic field resonance. However, the present invention can be applied to power transmission using electromagnetic induction by a magnetic field without using magnetic field resonance. That is, when power is transmitted from the power transmission coil SC to the power reception coil JC by electromagnetic induction, unnecessary electromagnetic radiation is suppressed and power transport efficiency is reduced by using the electromagnetic wave shielding devices 3 and 4 described above. Can be suppressed as much as possible.

上の実施形態においては、給電装置5によってモバイル機器6または車両7の充電を行ったが、自走ロボット、その他の機器、装置、または物体に対し、無線で電力を供給することが可能である。   In the above embodiment, the mobile device 6 or the vehicle 7 is charged by the power supply device 5. However, it is possible to supply power wirelessly to a self-propelled robot, other devices, devices, or objects. .

その他、送電側磁気遮蔽部材31,55、受電側磁気遮蔽部材32,65、電界遮蔽部材33,56,57、電力供給コイル12、送電共振コイル13、送電系コイルSC、受電系コイルJC、電磁波遮蔽装置3,4、給電装置5、モバイル機器6、車両7、または無線電力伝送システム1の各部または全体の構成、構造、回路、形状、個数、材料、配置などは、本発明の主旨に沿って適宜変更することができる。   In addition, power transmission side magnetic shielding members 31, 55, power reception side magnetic shielding members 32, 65, electric field shielding members 33, 56, 57, power supply coil 12, power transmission resonance coil 13, power transmission system coil SC, power reception system coil JC, electromagnetic wave The configuration, structure, circuit, shape, number, material, arrangement, etc. of each part or the whole of the shielding devices 3 and 4, the power feeding device 5, the mobile device 6, the vehicle 7, or the wireless power transmission system 1 are in accordance with the gist of the present invention. Can be changed as appropriate.

1,1B,1C 無線電力伝送システム
3,3B,3C 電磁波遮蔽装置
4,4B〜4E 電磁波遮蔽装置
5,5B〜5E 給電装置(無線電力送電装置、無線電力伝送システム)
6 モバイル機器(無線電力伝送システム)
7 車両(無線電力伝送システム)
11 交流電圧源
12 電力供給コイル
13 送電共振コイル
21 デバイス
22 受電共振コイル
23 電力取出コイル
31 送電側磁気遮蔽部材(磁性体)
32 受電側磁気遮蔽部材(磁性体)
33 電界遮蔽部材(導電体)
55 送電側磁気遮蔽部材(磁性体)
56 電界遮蔽部材(導電体)
57 電界遮蔽部材(導電体)
65 受電側磁気遮蔽部材(磁性体)
SC 送電系コイル
JC 受電系コイル
DT 充電池
KK 磁界
DK 電界
1, 1B, 1C Wireless power transmission system 3, 3B, 3C Electromagnetic wave shielding device 4, 4B-4E Electromagnetic wave shielding device 5, 5B-5E Power feeding device (wireless power transmission device, wireless power transmission system)
6 Mobile devices (wireless power transmission system)
7 Vehicle (wireless power transmission system)
DESCRIPTION OF SYMBOLS 11 AC voltage source 12 Power supply coil 13 Power transmission resonance coil 21 Device 22 Power reception resonance coil 23 Power extraction coil 31 Power transmission side magnetic shielding member (magnetic material)
32 Power receiving side magnetic shielding member (magnetic material)
33 Electric field shielding member (conductor)
55 Power transmission side magnetic shielding member (magnetic material)
56 Electric field shielding member (conductor)
57 Electric field shielding member (conductor)
65 Power-receiving-side magnetic shielding member (magnetic material)
SC Power transmission coil JC Power reception coil DT Rechargeable battery KK Magnetic field DK Electric field

Claims (11)

送電系コイルから受電系コイルへ磁界を利用して無線で電力を伝送する無線電力伝送システムにおける電磁波遮蔽方法において、
前記送電系コイルにおける、当該送電系コイルによる送電側と反対側に、磁性体を配置し、
前記送電系コイルによる送電方向と直交する側に導電体を配置する、
無線電力伝送システムにおける電磁波遮蔽方法。
In an electromagnetic wave shielding method in a wireless power transmission system that wirelessly transmits power from a power transmission coil to a power reception coil using a magnetic field,
In the power transmission coil, on the side opposite to the power transmission side by the power transmission coil, a magnetic body is disposed,
Arranging a conductor on the side perpendicular to the power transmission direction by the power transmission coil;
An electromagnetic wave shielding method in a wireless power transmission system.
前記受電系コイルにおける、当該受電系コイルによる受電側と反対側に、磁性体を配置する、
請求項1記載の無線電力伝送システムにおける電磁波遮蔽方法。
In the power receiving coil, a magnetic material is disposed on the side opposite to the power receiving side by the power receiving coil.
The electromagnetic wave shielding method in the wireless power transmission system according to claim 1.
前記磁性体の電気抵抗は、前記導電体の電気抵抗よりも大きい、
請求項2記載の無線電力伝送システムにおける電磁波遮蔽方法。
The electrical resistance of the magnetic material is greater than the electrical resistance of the conductor,
The electromagnetic wave shielding method in the wireless power transmission system according to claim 2.
前記導電体として、非磁性金属を用いる、
請求項1ないし3のいずれかに記載の無線電力伝送システムにおける電磁波遮蔽方法。
A nonmagnetic metal is used as the conductor.
The electromagnetic wave shielding method in the wireless power transmission system according to claim 1.
送電系コイルから受電系コイルへ磁界を利用して無線で電力を伝送する無線電力伝送システムにおける電磁波遮蔽装置において、
前記送電系コイルにおける当該送電系コイルによる送電側と反対側に配置された磁性体からなる送電側磁気遮蔽部材と、
前記受電系コイルにおける当該受電系コイルによる受電側と反対側に配置された磁性体からなる受電側磁気遮蔽部材と、
前記送電系コイルによる送電方向と直交する側に配置された導電体からなる電界遮蔽部材と、
を有する無線電力伝送システムにおける電磁波遮蔽装置。
In an electromagnetic wave shielding device in a wireless power transmission system that wirelessly transmits power from a power transmission coil to a power reception coil using a magnetic field,
A power transmission side magnetic shielding member made of a magnetic material disposed on the side opposite to the power transmission side by the power transmission system coil in the power transmission system coil;
A power receiving side magnetic shielding member made of a magnetic material disposed on a side opposite to a power receiving side of the power receiving system coil in the power receiving system coil;
An electric field shielding member made of a conductor disposed on the side perpendicular to the direction of power transmission by the power transmission coil;
An electromagnetic shielding device in a wireless power transmission system.
送電系コイルと、
前記送電系コイルとの磁界を介した相互作用により前記送電系コイルから無線で電力を受電する受電系コイルと、
前記送電系コイルにおける当該送電系コイルによる送電側と反対側に配置された磁性体からなる送電側磁気遮蔽部材と、
前記受電系コイルにおける当該受電系コイルによる受電側と反対側に配置された磁性体からなる受電側磁気遮蔽部材と、
前記送電系コイルによる送電方向と直交する側に配置された導電体からなる電界遮蔽部材と、
を有する無線電力伝送システム。
A power transmission coil;
A power receiving coil that wirelessly receives power from the power transmitting coil by interaction with the power transmitting coil via a magnetic field;
A power transmission side magnetic shielding member made of a magnetic material disposed on the side opposite to the power transmission side by the power transmission system coil in the power transmission system coil;
A power receiving side magnetic shielding member made of a magnetic material disposed on a side opposite to a power receiving side of the power receiving system coil in the power receiving system coil;
An electric field shielding member made of a conductor disposed on the side perpendicular to the direction of power transmission by the power transmission coil;
A wireless power transmission system.
外部の受電系コイルとの磁界を介した相互作用により前記受電系コイルに対し無線で電力を送電するための送電系コイルと、
前記送電系コイルにおける当該送電系コイルによる送電側と反対側に配置された磁性体からなる磁気遮蔽部材と、
前記送電系コイルによる送電方向と直交する側に配置された導電体からなる電界遮蔽部材と、
を有する無線電力送電装置。
A power transmission system coil for wirelessly transmitting power to the power reception system coil through interaction with an external power reception system coil via a magnetic field;
A magnetic shielding member made of a magnetic material disposed on the side opposite to the power transmission side by the power transmission system coil in the power transmission system coil;
An electric field shielding member made of a conductor disposed on the side perpendicular to the direction of power transmission by the power transmission coil;
A wireless power transmission device.
前記磁気遮蔽部材の電気抵抗は、前記電界遮蔽部材の電気抵抗よりも大きい、
請求項7記載の無線電力伝送システムにおける電磁波遮蔽方法。
The electrical resistance of the magnetic shielding member is greater than the electrical resistance of the electric field shielding member,
The electromagnetic wave shielding method in the wireless power transmission system according to claim 7.
前記電界遮蔽部材が、前記送電系コイルから外部に配置される前記受電系コイルに至るまでの空間を囲むように配置された、
請求項7または8記載の無線電力送電装置。
The electric field shielding member is disposed so as to surround a space from the power transmission system coil to the power reception system coil disposed outside.
The wireless power transmission device according to claim 7 or 8.
前記電界遮蔽部材として非磁性金属が用いられた、
請求項7ないし9のいずれかに記載の無線電力送電装置。
Non-magnetic metal was used as the electric field shielding member,
The wireless power transmission apparatus according to claim 7.
前記磁気遮蔽部材としてフェライトが用いられた、
請求項7ないし10のいずれかに記載の無線電力送電装置。
Ferrite was used as the magnetic shielding member,
The wireless power transmission apparatus according to claim 7.
JP2009191638A 2009-08-21 2009-08-21 Electromagnetic wave shielding device and wireless power transmission device in wireless power transmission system Expired - Fee Related JP5531500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191638A JP5531500B2 (en) 2009-08-21 2009-08-21 Electromagnetic wave shielding device and wireless power transmission device in wireless power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191638A JP5531500B2 (en) 2009-08-21 2009-08-21 Electromagnetic wave shielding device and wireless power transmission device in wireless power transmission system

Publications (2)

Publication Number Publication Date
JP2011045189A true JP2011045189A (en) 2011-03-03
JP5531500B2 JP5531500B2 (en) 2014-06-25

Family

ID=43832186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191638A Expired - Fee Related JP5531500B2 (en) 2009-08-21 2009-08-21 Electromagnetic wave shielding device and wireless power transmission device in wireless power transmission system

Country Status (1)

Country Link
JP (1) JP5531500B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102593964A (en) * 2012-03-20 2012-07-18 中国人民解放军国防科学技术大学 Direction-adaptive magnetic coupling resonant wireless power supply method and device
WO2013021801A1 (en) * 2011-08-09 2013-02-14 Fdk株式会社 Contactless chargeable secondary battery and contactless charger
JP2013110949A (en) * 2011-10-24 2013-06-06 Nec Tokin Corp Non contact power transmission apparatus and electronic apparatus
JP2013146148A (en) * 2012-01-16 2013-07-25 Toyota Motor Corp Vehicle
WO2013117973A2 (en) 2012-02-06 2013-08-15 Toyota Jidosha Kabushiki Kaisha Power transmitting device, power receiving device and power transfer system
WO2013132616A1 (en) * 2012-03-07 2013-09-12 パイオニア株式会社 Power transmitting apparatus
EP2701282A1 (en) * 2011-04-22 2014-02-26 Yazaki Corporation Resonance-type non-contact power supply system
KR101371058B1 (en) * 2011-12-07 2014-03-10 한양대학교 산학협력단 Coil assembly for power transmission, coil assembly for power receiving and wireless power transfer apparatus using electric resonance
JP2014113021A (en) * 2012-11-01 2014-06-19 Yazaki Corp Power feeding section, power receiving section, and power supply system
JP5547359B1 (en) * 2013-09-10 2014-07-09 中国電力株式会社 Non-contact power supply system and non-contact power supply method
KR20150015473A (en) * 2012-04-23 2015-02-10 봄바디어 트랜스포테이션 게엠베하 Providing a land vehicle, in particular a rail vehicle or a road automobile, with electric energy by induction
US9355773B2 (en) 2012-08-07 2016-05-31 Samsung Electronics Co., Ltd. Apparatus and method for shielding leakage magnetic field in wireless power transmission system
JP2016226072A (en) * 2015-05-27 2016-12-28 Tdk株式会社 Wireless power supply device and wireless power transmission system
JP2016226073A (en) * 2015-05-27 2016-12-28 Tdk株式会社 Wireless power transmission system
EP3240141A1 (en) * 2016-04-28 2017-11-01 Toshiba TEC Kabushiki Kaisha Contactless power transmission device and contactless power transmission/reception apparatus
JP2017204938A (en) * 2016-05-11 2017-11-16 株式会社リューテック Wireless power supply device
JP2017229231A (en) * 2017-07-20 2017-12-28 株式会社東芝 Electromagnetic wave leakage prevention device and radio power transmission system
JP2019193505A (en) * 2018-04-27 2019-10-31 矢崎総業株式会社 Power transmission communication unit
KR102212714B1 (en) * 2020-06-25 2021-02-05 배한희 Portable induction with magnetic field shielding case
CN113410917A (en) * 2021-06-23 2021-09-17 上海交通大学 High-efficient redundant wireless power transmission device
JP2021175291A (en) * 2020-04-27 2021-11-01 株式会社Ihi建材工業 Vehicle power supply device and roadbed unit

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200725A (en) * 1998-12-29 2000-07-18 Tokin Corp Non-contact power transmission device
JP2003164076A (en) * 2001-11-27 2003-06-06 Nippon Signal Co Ltd:The Power supply system and crossing gate using the same
JP2004534495A (en) * 2001-05-23 2004-11-11 アン,テ・ヨン Non-contact power supply for implantable medical devices
JP2006340936A (en) * 2005-06-10 2006-12-21 Hitachi High-Technologies Corp Magnetic field shielding device and magnetic field measuring apparatus
JP2008004901A (en) * 2006-06-26 2008-01-10 Nippon Hoso Kyokai <Nhk> Radio wave shielding plate and radio wave shielding system using metal mesh
JP2009055745A (en) * 2007-08-28 2009-03-12 Panasonic Electric Works Co Ltd Noncontact feeder system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000200725A (en) * 1998-12-29 2000-07-18 Tokin Corp Non-contact power transmission device
JP2004534495A (en) * 2001-05-23 2004-11-11 アン,テ・ヨン Non-contact power supply for implantable medical devices
JP2003164076A (en) * 2001-11-27 2003-06-06 Nippon Signal Co Ltd:The Power supply system and crossing gate using the same
JP2006340936A (en) * 2005-06-10 2006-12-21 Hitachi High-Technologies Corp Magnetic field shielding device and magnetic field measuring apparatus
JP2008004901A (en) * 2006-06-26 2008-01-10 Nippon Hoso Kyokai <Nhk> Radio wave shielding plate and radio wave shielding system using metal mesh
JP2009055745A (en) * 2007-08-28 2009-03-12 Panasonic Electric Works Co Ltd Noncontact feeder system

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2701282A4 (en) * 2011-04-22 2015-03-25 Yazaki Corp Resonance-type non-contact power supply system
EP2701282A1 (en) * 2011-04-22 2014-02-26 Yazaki Corporation Resonance-type non-contact power supply system
US9484149B2 (en) 2011-04-22 2016-11-01 Yazaki Corporation Resonance-type non-contact power supply system
CN103858307B (en) * 2011-08-09 2016-10-05 Fdk株式会社 Contactless charging battery, contact-less charger
WO2013021801A1 (en) * 2011-08-09 2013-02-14 Fdk株式会社 Contactless chargeable secondary battery and contactless charger
JP2013038967A (en) * 2011-08-09 2013-02-21 Fdk Corp Non-contact charging type secondary battery and non-contact charger
CN103858307A (en) * 2011-08-09 2014-06-11 Fdk株式会社 Contactless chargeable secondary battery and contactless charger
US9438066B2 (en) 2011-08-09 2016-09-06 Fdk Corporation Contactless rechargeable secondary battery and contactless battery charger
JP2013110949A (en) * 2011-10-24 2013-06-06 Nec Tokin Corp Non contact power transmission apparatus and electronic apparatus
KR101371058B1 (en) * 2011-12-07 2014-03-10 한양대학교 산학협력단 Coil assembly for power transmission, coil assembly for power receiving and wireless power transfer apparatus using electric resonance
CN104205257B (en) * 2012-01-16 2017-03-29 丰田自动车株式会社 Vehicle
WO2013108108A2 (en) 2012-01-16 2013-07-25 Toyota Jidosha Kabushiki Kaisha Vehicle
JP2013146148A (en) * 2012-01-16 2013-07-25 Toyota Motor Corp Vehicle
CN104205257A (en) * 2012-01-16 2014-12-10 丰田自动车株式会社 Vehicle
US10202045B2 (en) 2012-01-16 2019-02-12 Toyota Jidosha Kabushiki Kaisha Vehicle with shielded power receiving coil
WO2013117973A2 (en) 2012-02-06 2013-08-15 Toyota Jidosha Kabushiki Kaisha Power transmitting device, power receiving device and power transfer system
CN104093592A (en) * 2012-02-06 2014-10-08 丰田自动车株式会社 Power transmitting device, power receiving device and power transfer system
WO2013117973A3 (en) * 2012-02-06 2014-01-23 Toyota Jidosha Kabushiki Kaisha Power transmitting device, power receiving device and power transfer system
JP2013162644A (en) * 2012-02-06 2013-08-19 Toyota Motor Corp Power transmitting device, power receiving device, and power transmission system
JPWO2013132616A1 (en) * 2012-03-07 2015-07-30 パイオニア株式会社 Power transmission equipment
WO2013132616A1 (en) * 2012-03-07 2013-09-12 パイオニア株式会社 Power transmitting apparatus
CN102593964A (en) * 2012-03-20 2012-07-18 中国人民解放军国防科学技术大学 Direction-adaptive magnetic coupling resonant wireless power supply method and device
KR20150015473A (en) * 2012-04-23 2015-02-10 봄바디어 트랜스포테이션 게엠베하 Providing a land vehicle, in particular a rail vehicle or a road automobile, with electric energy by induction
US9751415B2 (en) 2012-04-23 2017-09-05 Bombardier Transportation Gmbh Providing a land vehicle, in particular a rail vehicle or a road automobile, with electric energy by induction
KR102055354B1 (en) 2012-04-23 2019-12-12 봄바디어 트랜스포테이션 게엠베하 Providing a land vehicle, in particular a rail vehicle or a road automobile, with electric energy by induction
JP2015520064A (en) * 2012-04-23 2015-07-16 ボンバルディアー トランスポーテーション ゲゼルシャフト ミット ベシュレンクテル ハフツング Supplying electrical energy by induction to land vehicles, especially rail vehicles or road vehicles
US9355773B2 (en) 2012-08-07 2016-05-31 Samsung Electronics Co., Ltd. Apparatus and method for shielding leakage magnetic field in wireless power transmission system
JP2014113021A (en) * 2012-11-01 2014-06-19 Yazaki Corp Power feeding section, power receiving section, and power supply system
US9859718B2 (en) 2012-11-01 2018-01-02 Yazaki Corporation Power supply unit, power receiving unit, and power supply system
WO2015037046A1 (en) 2013-09-10 2015-03-19 中国電力株式会社 Contactless power feeding system, and contactless power feeding method
JP5547359B1 (en) * 2013-09-10 2014-07-09 中国電力株式会社 Non-contact power supply system and non-contact power supply method
JP2016226072A (en) * 2015-05-27 2016-12-28 Tdk株式会社 Wireless power supply device and wireless power transmission system
JP2016226073A (en) * 2015-05-27 2016-12-28 Tdk株式会社 Wireless power transmission system
EP3240141A1 (en) * 2016-04-28 2017-11-01 Toshiba TEC Kabushiki Kaisha Contactless power transmission device and contactless power transmission/reception apparatus
JP2017204938A (en) * 2016-05-11 2017-11-16 株式会社リューテック Wireless power supply device
JP2017229231A (en) * 2017-07-20 2017-12-28 株式会社東芝 Electromagnetic wave leakage prevention device and radio power transmission system
JP2019193505A (en) * 2018-04-27 2019-10-31 矢崎総業株式会社 Power transmission communication unit
CN110417130A (en) * 2018-04-27 2019-11-05 矢崎总业株式会社 Power transmission communication unit
JP2021175291A (en) * 2020-04-27 2021-11-01 株式会社Ihi建材工業 Vehicle power supply device and roadbed unit
JP2021184695A (en) * 2020-04-27 2021-12-02 株式会社Ihi建材工業 Vehicle power supply device and roadbed unit
JP7101850B2 (en) 2020-04-27 2022-07-15 株式会社Ihi建材工業 Vehicle power supply and road base unit
KR102212714B1 (en) * 2020-06-25 2021-02-05 배한희 Portable induction with magnetic field shielding case
CN113410917A (en) * 2021-06-23 2021-09-17 上海交通大学 High-efficient redundant wireless power transmission device
CN113410917B (en) * 2021-06-23 2022-08-02 上海交通大学 High-efficient redundant wireless power transmission device

Also Published As

Publication number Publication date
JP5531500B2 (en) 2014-06-25

Similar Documents

Publication Publication Date Title
JP5531500B2 (en) Electromagnetic wave shielding device and wireless power transmission device in wireless power transmission system
KR102121919B1 (en) Apparatus for transferring power
US10581284B2 (en) Wireless charger and wireless power receiver
US9672976B2 (en) Multi-mode wireless charging
JP6233780B2 (en) Wireless power transmission system
US10243411B2 (en) Wireless charger with uniform H-field generator and EMI reduction
US9160205B2 (en) Magnetically permeable structures
KR102506374B1 (en) wireless power transmission device
Choi et al. Coreless transmitting coils with conductive magnetic shield for wide-range ubiquitous IPT
JP2014113021A (en) Power feeding section, power receiving section, and power supply system
JP2015186426A (en) Power reception system
CN110534919A (en) Near field antenna
KR20160073303A (en) Wireless charger and wireless power receiver
WO2013153736A1 (en) Wireless power transmitting apparatus, power transmitting apparatus, and power receiving apparatus
Kim et al. Electromagnetic interference and radiation from wireless power transfer systems
KR101853491B1 (en) Coil Structure for Wireless Power Transfer and Wireless Power Transfer System
JP6232191B2 (en) Power feeding unit, power receiving unit, and power feeding system
Lee et al. Multiple dipole receiving coils for 2-D omnidirectional wireless mobile charging under wireless power zone
JP2013214613A (en) Coil unit and power transmission device having coil unit
CN210744833U (en) Wireless charger and auxiliary charging device thereof
EP2996220B1 (en) Wireless power reception device
KR102041988B1 (en) Wireless power transfer device
JP2016004990A (en) Resonator
KR20200016084A (en) Wireless charging pad and wireless charging apparatus
KR102109104B1 (en) Apparatus for transferring power

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140407

R150 Certificate of patent or registration of utility model

Ref document number: 5531500

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees