JP2011044333A - Method of manufacturing lithium secondary battery - Google Patents

Method of manufacturing lithium secondary battery Download PDF

Info

Publication number
JP2011044333A
JP2011044333A JP2009191757A JP2009191757A JP2011044333A JP 2011044333 A JP2011044333 A JP 2011044333A JP 2009191757 A JP2009191757 A JP 2009191757A JP 2009191757 A JP2009191757 A JP 2009191757A JP 2011044333 A JP2011044333 A JP 2011044333A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium
charging
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009191757A
Other languages
Japanese (ja)
Inventor
Atsushi Yoshida
淳 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009191757A priority Critical patent/JP2011044333A/en
Publication of JP2011044333A publication Critical patent/JP2011044333A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a lithium secondary battery with better battery performance (for instance, capable of obtaining higher capacity). <P>SOLUTION: The method is for manufacturing a lithium secondary battery equipped with a positive electrode containing an olivine type phosphate compound as a positive electrode active material, a negative electrode, and nonaqueous electrolyte solution. The method includes a step of assembling a lithium secondary battery consisting of the positive electrode, the negative electrode and the nonaqueous electrolyte solution, and a step of applying initial charging to the lithium secondary battery thus assembled. At the initial charging step, a preliminary charge and discharge is carried out by one cycle including a charging process so that a desorption rate of lithium in the positive electrode active material becomes 10-85%, and then, full charging is carried out. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウム二次電池の製造方法に関する。   The present invention relates to a method for manufacturing a lithium secondary battery.

近年、軽量で高エネルギー密度が得られるリチウム二次電池は、車両搭載用高出力電源として好ましく用いられるものとして期待されている。かかるリチウム二次電池は、正極と負極との間にセパレータを介在させた状態で構成される電極体を備えており、該正負極間におけるリチウム(Li)イオンの移動によって充放電が行われる。この種のリチウム二次電池に関する従来技術としては特許文献1〜3が挙げられる。   In recent years, lithium secondary batteries that are lightweight and have a high energy density are expected to be preferably used as high-output power supplies for vehicles. Such a lithium secondary battery includes an electrode body configured with a separator interposed between a positive electrode and a negative electrode, and is charged and discharged by movement of lithium (Li) ions between the positive and negative electrodes. Patent documents 1-3 are mentioned as conventional technology about this kind of lithium secondary battery.

この種のリチウム二次電池においては、Liイオンを可逆的に吸蔵・放出し得る正極活物質が正極集電体上に保持された構成の正極を備えている。例えば、正極に用いられる正極活物質の一つとして、リチウムと遷移金属元素とを含み、いわゆるオリビン型の構造を有するリン酸化合物(例えば、LiFePOやLiMnPO等のオリビン型リン酸塩)が挙げられる。かかるオリビン型リン酸化合物は、理論容量が高く(例えば、LiFePOでは170mAh/g)、低コストで充電時の熱安定性に優れることから、有望な正極活物質として注目されている。 This type of lithium secondary battery includes a positive electrode having a configuration in which a positive electrode active material capable of reversibly occluding and releasing Li ions is held on a positive electrode current collector. For example, as one of the positive electrode active materials used for the positive electrode, a phosphate compound containing lithium and a transition metal element and having a so-called olivine structure (for example, an olivine phosphate such as LiFePO 4 or LiMnPO 4 ) is used. Can be mentioned. Such an olivine-type phosphate compound has been attracting attention as a promising positive electrode active material because it has a high theoretical capacity (for example, 170 mAh / g for LiFePO 4 ) and is excellent in thermal stability at low cost.

特開2001−325988号公報JP 2001-325988 A 特開2008−504662号公報JP 2008-504662 A 特開2003−109662号公報JP 2003-109662 A

ところで、このようなリチウム二次電池では、電池として組み立てられた後、最初の充電処理(すなわち、正極、負極、電解液等の電池構成要素を組み立てた後に初めて行う充電処理。以下「初期充電」という。)が行われる(特許文献1〜3)。上述のようなオリビン型リン酸化合物を正極活物質として用いた電池では、リン酸化合物のレドックス電位が高いため、初期充電における正極電位の上限を比較的高電位に設定することが望ましい。しかしながら、正極の上限電位を高電位に設定すると、正極活物質から多量のリチウムが脱離するため、正極活物質の結晶構造が不安定となり、正極活物質と非水電解液との反応性が増大する。その結果、正極活物質表面において非水電解液との不可逆反応が起こり易くなり、不可逆容量が発生し、電池の容量が大幅に低下するという問題があった。   By the way, in such a lithium secondary battery, after being assembled as a battery, an initial charging process (that is, a charging process that is performed only after assembling battery components such as a positive electrode, a negative electrode, and an electrolytic solution. (Patent Documents 1 to 3). In a battery using the olivine-type phosphate compound as described above as the positive electrode active material, it is desirable to set the upper limit of the positive electrode potential in the initial charging to a relatively high potential because the redox potential of the phosphate compound is high. However, when the upper limit potential of the positive electrode is set to a high potential, a large amount of lithium is desorbed from the positive electrode active material, so that the crystal structure of the positive electrode active material becomes unstable, and the reactivity between the positive electrode active material and the non-aqueous electrolyte is reduced. Increase. As a result, there is a problem that an irreversible reaction with the non-aqueous electrolyte easily occurs on the surface of the positive electrode active material, irreversible capacity is generated, and the capacity of the battery is greatly reduced.

本発明はかかる点に鑑みてなされたものであり、その主な目的は、より電池性能の良い(例えばより高い容量が得られる)リチウム二次電池の製造方法を提供することである。   This invention is made | formed in view of this point, The main objective is to provide the manufacturing method of a lithium secondary battery with better battery performance (for example, higher capacity is obtained).

本発明により提供される方法は、正極活物質としてオリビン型リン酸化合物を含む正極と、負極と、非水電解液とを備えるリチウム二次電池を製造する方法である。この製造方法は、正極と負極と非水電解液とを備えるリチウム二次電池を組み立てる工程と、組み立てたリチウム二次電池に対して初期充電を行う工程とを包含する。そして、上記初期充電工程では、上記正極活物質におけるリチウムの脱離率が10%〜85%となるように充電する過程を含む予備充放電を少なくとも1サイクル行い、その後、満充電することを特徴とする。   The method provided by the present invention is a method for producing a lithium secondary battery comprising a positive electrode containing an olivine-type phosphate compound as a positive electrode active material, a negative electrode, and a non-aqueous electrolyte. This manufacturing method includes a step of assembling a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and a step of performing initial charging on the assembled lithium secondary battery. In the initial charging step, at least one cycle of preliminary charging / discharging including a process of charging so that a lithium desorption rate in the positive electrode active material is 10% to 85% is performed, and then the battery is fully charged. And

本発明の方法によれば、正極活物質に含まれるリチウムの10%〜85%が脱離するように充電する過程を含む予備充放電を少なくとも1サイクル行い、その後、満充電状態(即ち正極活物質に含まれるほぼ全てのリチウムが抜けた状態)にするので、最初から満充電する従来の態様に比べて、不可逆容量が発生しにくくなる。そのため、より理論容量に近い放電容量を得ることができる。   According to the method of the present invention, at least one cycle of pre-charging / discharging including a process of charging so that 10% to 85% of lithium contained in the positive electrode active material is desorbed is performed. Therefore, the irreversible capacity is less likely to occur compared to the conventional mode in which the lithium is fully charged from the beginning. Therefore, a discharge capacity closer to the theoretical capacity can be obtained.

上記予備放電におけるリチウムの脱離率は、概ね10%〜85%程度であればよく、通常は30%〜80%程度が好ましく、例えば50%〜80%の範囲であることが好ましい。この範囲から外れると、予備充電時のリチウムの脱離量が多すぎたり少なすぎたりするため、予備充電を行うことによる効果が十分に得られない場合がある。なお、リチウムの脱離率は、例えば、予備充電後のリン酸化合物(正極活物質)の組成分析を誘導結合プラズマ原子発光分析(ICP−AES)で行い、リン酸化合物中に含まれるLiと他の金属元素との組成比を決定し、この組成比からリチウムの脱離率を見積もるとよい。例えば、リチウム二次電池の組み立てに使用したリン酸化合物がLiMnPO(LiとMnとの組成比が1:1)であり、充電後に得られたLiとMnとの組成比(原子数比)が0.3:1の場合、リチウムの脱離率は凡そ70%と見積もることができる。 The lithium desorption rate in the preliminary discharge may be about 10% to 85%, preferably about 30% to 80%, for example, preferably in the range of 50% to 80%. If it is out of this range, the amount of lithium desorbed at the time of preliminary charging may be too much or too little, so that the effect of performing the preliminary charging may not be sufficiently obtained. The lithium desorption rate is determined, for example, by performing inductively coupled plasma atomic emission spectrometry (ICP-AES) composition analysis of the phosphoric acid compound (positive electrode active material) after preliminary charging, It is preferable to determine the composition ratio with other metal elements and estimate the lithium desorption rate from this composition ratio. For example, the phosphoric acid compound used for the assembly of the lithium secondary battery is LiMnPO 4 (composition ratio of Li and Mn is 1: 1), and the composition ratio (atomic ratio) of Li and Mn obtained after charging Is 0.3: 1, the lithium desorption rate can be estimated to be about 70%.

ここに開示されるリチウム二次電池製造方法の好ましい一態様では、上記予備充放電を2サイクル以上繰り返す。予備充放電を2サイクル以上繰り返すことによって、不可逆容量の発生が抑制され、より高い放電容量が得られる。予備充放電のサイクル数は特に限定されないが、通常は2サイクル〜10サイクルにするのが適当であり、概ね3サイクル〜5サイクルにすることが好ましい。この範囲内でサイクル数を増やすほど、より好適な結果が実現され得る。   In the preferable one aspect | mode of the lithium secondary battery manufacturing method disclosed here, the said preliminary charging / discharging is repeated 2 cycles or more. By repeating the pre-charging / discharging for 2 cycles or more, generation of irreversible capacity is suppressed, and higher discharge capacity can be obtained. The number of pre-charging / discharging cycles is not particularly limited, but usually 2 to 10 cycles is appropriate, and approximately 3 to 5 cycles is preferable. As the number of cycles is increased within this range, more favorable results can be achieved.

ここに開示されるリチウム二次電池製造方法の好ましい一態様では、上記リチウムの脱離率をサイクルごとに変えながら、上記予備充放電を繰り返す。リチウムの脱離率(即ち、電池の充電状態)を各サイクルで段階的に変化させることによって、不可逆容量の発生が効果的に抑制され、より高い放電容量が得られる。   In a preferred embodiment of the method for producing a lithium secondary battery disclosed herein, the preliminary charging / discharging is repeated while changing the lithium desorption rate for each cycle. By changing the lithium desorption rate (that is, the state of charge of the battery) stepwise in each cycle, the generation of irreversible capacity is effectively suppressed, and a higher discharge capacity can be obtained.

ここに開示されるリチウム二次電池製造方法の好ましい一態様では、上記リチウムの脱離率をサイクル順に大きくしながら、上記予備充放電を繰り返す。この場合、予備充放電の初回では10%〜60%まで充電し、最終回では60%〜85%まで充電し、且つ初回から最終回に至る間のリチウムの脱離率を順次大きくすることが好ましい。例えば、予備充放電を3サイクル行う場合には、予備充放電の1サイクル目(初回)では30%〜50%まで充電し、2サイクル目では50%〜70%まで充電し、3サイクル目(最終回)では70%〜85%まで充電するとよい。このように、初回から最終回に至る間のリチウムの脱離率を順次大きくしながら満充電に近づけることによって、不可逆容量の発生がより効果的に抑制され、高い放電容量が得られる。   In a preferred embodiment of the method for producing a lithium secondary battery disclosed herein, the preliminary charge / discharge is repeated while increasing the lithium desorption rate in the order of cycles. In this case, it is possible to charge from 10% to 60% in the first preliminary charge / discharge, to charge from 60% to 85% in the final round, and to gradually increase the lithium desorption rate from the first round to the final round. preferable. For example, when 3 cycles of pre-charging / discharging are performed, 30% to 50% is charged in the first cycle (first time) of pre-charging / discharging, 50% to 70% is charged in the second cycle, and the third cycle ( In the last round, it is better to charge up to 70% to 85%. In this way, by gradually increasing the lithium desorption rate from the first time to the last time while approaching full charge, generation of irreversible capacity is more effectively suppressed, and high discharge capacity can be obtained.

ここに開示される技術は、上記オリビン型リン酸化合物がLiMnPOである場合に好ましく適用され得る。LiMnPOは、理論容量が高く、熱安定性に優れることから正極活物質として好ましい性質を有する一方で、初期充電における正極電位の上限を高電位に設定する必要があるため、不可逆容量が発生しやすい。したがって、オリビン型リン酸化合物がLiMnPOである場合には、ここに開示される技術を適用する意義が特に大きい。 The technique disclosed here can be preferably applied when the olivine-type phosphate compound is LiMnPO 4 . LiMnPO 4 has a high theoretical capacity and excellent thermal stability, so that it has preferable properties as a positive electrode active material. On the other hand, it is necessary to set the upper limit of the positive electrode potential in the initial charge to a high potential, so that an irreversible capacity is generated. Cheap. Therefore, when the olivine-type phosphate compound is LiMnPO 4, it is particularly significant to apply the technique disclosed herein.

また、本発明は、ここに開示される製造方法により製造されたリチウム二次電池を提供する。このリチウム二次電池は、ここに開示される初期充電工程を経て製造されているため、初期充電後の電池性能(例えば充放電特性)が良好となる。   The present invention also provides a lithium secondary battery manufactured by the manufacturing method disclosed herein. Since this lithium secondary battery is manufactured through the initial charging step disclosed herein, the battery performance (for example, charge / discharge characteristics) after the initial charging is improved.

このようなリチウム二次電池は、上記のとおり良好な電池性能を示すことから、例えば自動車等の車両に搭載される電池として好適である。したがって本発明によると、ここに開示されるいずれかのリチウム二次電池(複数の電池が接続された組電池の形態であり得る。)を備える車両が提供される。特に、良好な負荷特性が得られることから、該リチウムイオン二次電池を動力源(典型的には、ハイブリッド車両または電気車両の動力源)として備える車両(例えば自動車)が提供される。   Since such a lithium secondary battery exhibits good battery performance as described above, it is suitable as a battery mounted on a vehicle such as an automobile. Therefore, according to the present invention, there is provided a vehicle including any of the lithium secondary batteries disclosed herein (which may be in the form of an assembled battery in which a plurality of batteries are connected). In particular, since good load characteristics can be obtained, a vehicle (for example, an automobile) including the lithium ion secondary battery as a power source (typically, a power source of a hybrid vehicle or an electric vehicle) is provided.

本発明の一実施形態に係るリチウム二次電池の構成を示す模式図である。It is a schematic diagram which shows the structure of the lithium secondary battery which concerns on one Embodiment of this invention. 本発明の一実施形態に係る捲回電極体の構成を示す模式図である。It is a schematic diagram which shows the structure of the wound electrode body which concerns on one Embodiment of this invention. 本発明の一実施形態に係る製造工程フローを示す図である。It is a figure which shows the manufacturing process flow which concerns on one Embodiment of this invention. 本発明の一実施形態に係る予備充放電工程フローを示す図である。It is a figure which shows the preliminary charging / discharging process flow which concerns on one Embodiment of this invention. 性能評価用に作製したコインセルを模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the coin cell produced for performance evaluation. 実施例および比較例の各サイクルのリチウム脱離率を示すグラフである。It is a graph which shows the lithium desorption rate of each cycle of an Example and a comparative example. 実施例および比較例の放電容量の測定結果を示すグラフである。It is a graph which shows the measurement result of the discharge capacity of an Example and a comparative example. 本発明の一実施形態に係るリチウム二次電池を備える車両の側面図である。It is a side view of a vehicle provided with the lithium secondary battery which concerns on one Embodiment of this invention.

以下、図面を参照しながら、本発明による実施の形態を説明する。以下の図面においては、同じ作用を奏する部材・部位には同じ符号を付して説明している。なお、各図における寸法関係(長さ、幅、厚さ等)は実際の寸法関係を反映するものではない。また、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、セパレータや電解質の構成および製法、リチウム二次電池その他の電池の構築に係る一般的技術等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。   Embodiments according to the present invention will be described below with reference to the drawings. In the following drawings, members / parts having the same action are described with the same reference numerals. Note that the dimensional relationship (length, width, thickness, etc.) in each drawing does not reflect the actual dimensional relationship. Further, matters other than those particularly mentioned in the present specification, and matters necessary for the implementation of the present invention (for example, general configurations and manufacturing methods of separators and electrolytes, lithium secondary batteries and other batteries related to construction) Technology, etc.) can be understood as a design matter of those skilled in the art based on the prior art in the field.

特に限定することを意図したものではないが、以下では扁平に捲回された電極体(捲回電極体)と非水電解液とを扁平な箱型(直方体形状)の電池ケースに収容した形態のリチウムイオン二次電池を例としてさらに本実施形態を説明する。   Although not specifically intended to be limited, in the following, a flatly wound electrode body (winding electrode body) and a non-aqueous electrolyte are accommodated in a flat box-shaped (cuboid shape) battery case. This embodiment will be further described by taking a lithium ion secondary battery as an example.

本発明の一実施形態に係るリチウム二次電池の概略構成を図1〜2に示す。このリチウム二次電池100は、長尺状の正極シート10と長尺状の負極シート20が長尺状のセパレータ40を介して扁平に捲回された形態の電極体(捲回電極体)80が、図示しない非水電解液とともに、該捲回電極体80を収容し得る形状(扁平な箱型)の電池ケース50に収容された構成を有する。   A schematic configuration of a lithium secondary battery according to an embodiment of the present invention is shown in FIGS. The lithium secondary battery 100 includes an electrode body (winding electrode body) 80 in which a long positive electrode sheet 10 and a long negative electrode sheet 20 are wound flatly via a long separator 40. However, it has the structure accommodated in the battery case 50 of the shape (flat box shape) which can accommodate this winding electrode body 80 with the nonaqueous electrolyte solution which is not shown in figure.

電池ケース50は、上端が開放された扁平な直方体状のケース本体52と、その開口部を塞ぐ蓋体54とを備える。電池ケース50を構成する材質としては、アルミニウム、スチール等の金属材料が好ましく用いられる(本実施形態ではアルミニウム)。あるいは、ポリフェニレンサルファイド(PPS)樹脂、ポリイミド樹脂等の樹脂材料を成形してなる電池ケース50であってもよい。電池ケース50の上面(すなわち蓋体54)には、捲回電極体80の正極と電気的に接続する正極端子70と、電極体80の負極20と電気的に接続する負極端子72とが設けられている。電池ケース50の内部には、扁平形状の捲回電極体80が図示しない非水電解液とともに収容される。   The battery case 50 includes a flat cuboid case main body 52 having an open upper end, and a lid 54 that closes the opening. As a material constituting the battery case 50, a metal material such as aluminum or steel is preferably used (in this embodiment, aluminum). Or the battery case 50 formed by shape | molding resin materials, such as a polyphenylene sulfide (PPS) resin and a polyimide resin, may be sufficient. On the upper surface of the battery case 50 (that is, the lid body 54), a positive electrode terminal 70 that is electrically connected to the positive electrode of the wound electrode body 80 and a negative electrode terminal 72 that is electrically connected to the negative electrode 20 of the electrode body 80 are provided. It has been. Inside the battery case 50, a flat wound electrode body 80 is accommodated together with a non-aqueous electrolyte (not shown).

捲回電極体80を構成する構成要素は、従来のリチウムイオン二次電池の捲回電極体と同様でよく、特に制限はない。   The constituent elements constituting the wound electrode body 80 may be the same as those of the wound electrode body of the conventional lithium ion secondary battery, and are not particularly limited.

正極シート10は、図2に示すように、長尺状の正極集電体12の上に上述した正極活物質を主成分とする正極合材層14が付与されて形成されている。正極集電体12にはアルミニウム箔その他の正極に適する金属箔が好適に使用される。   As shown in FIG. 2, the positive electrode sheet 10 is formed by providing a positive electrode mixture layer 14 containing the above-described positive electrode active material as a main component on a long positive electrode current collector 12. For the positive electrode current collector 12, an aluminum foil or other metal foil suitable for the positive electrode is preferably used.

正極に用いられる正極活物質としては、リチウムと遷移金属元素とを含み、いわゆるオリビン型の構造を有するリン酸化合物(例えば、LiFePOやLiMnPO等のオリビン型リン酸塩)が挙げられる。オリビン型リン酸化合物は、一般式LiMPOで表される。式中のMは、少なくとも一種の遷移金属元素からなり、例えば、Mn、Fe、Co、Ni、Mg、Zn、Cr、Ti、Vから選択される一種または二種以上の元素を含んでいる。このようなリチウム含有リン酸化合物(典型的には粒子状)としては、例えば、従来公知の方法で調製されるリン酸化合物粉末をそのまま使用することができる。 Examples of the positive electrode active material used for the positive electrode include phosphoric acid compounds containing lithium and a transition metal element and having a so-called olivine structure (for example, olivine-type phosphates such as LiFePO 4 and LiMnPO 4 ). The olivine-type phosphate compound is represented by the general formula LiMPO 4 . M in the formula is composed of at least one transition metal element, and includes, for example, one or more elements selected from Mn, Fe, Co, Ni, Mg, Zn, Cr, Ti, and V. As such a lithium-containing phosphate compound (typically in particulate form), for example, a phosphate compound powder prepared by a conventionally known method can be used as it is.

正極合材層14は、一般的なリチウム二次電池において正極合材層の構成成分として使用され得る一種または二種以上の材料を必要に応じて含有することができる。そのような材料の例として、導電材が挙げられる。該導電材としてはカーボン粉末やカーボンファイバー等のカーボン材料が好ましく用いられる。あるいは、ニッケル粉末等の導電性金属粉末等を用いてもよい。その他、正極合材層の成分として使用され得る材料としては、上記構成材料の結着剤(バインダ)として機能し得る各種のポリマー材料が挙げられる。   The positive electrode mixture layer 14 can contain one or more materials that can be used as components of the positive electrode mixture layer in a general lithium secondary battery, if necessary. An example of such a material is a conductive material. As the conductive material, a carbon material such as carbon powder or carbon fiber is preferably used. Alternatively, conductive metal powder such as nickel powder may be used. In addition, examples of the material that can be used as a component of the positive electrode mixture layer include various polymer materials that can function as a binder for the above constituent materials.

負極シート20は、長尺状の負極集電体22の上にリチウムイオン電池用負極活物質を主成分とする負極合材層24が付与されて形成されている。負極集電体22には銅箔その他の負極に適する金属箔が好適に使用される。負極活物質は従来からリチウム二次電池に用いられる物質の一種または二種以上を特に限定することなく使用することができる。好適例として、グラファイトカーボン、アモルファスカーボン等の炭素系材料、リチウム含有遷移金属酸化物や遷移金属窒化物等が挙げられる。   The negative electrode sheet 20 is formed by applying a negative electrode mixture layer 24 mainly composed of a negative electrode active material for a lithium ion battery on a long negative electrode current collector 22. For the negative electrode current collector 22, a copper foil or other metal foil suitable for the negative electrode is preferably used. As the negative electrode active material, one or more of materials conventionally used in lithium secondary batteries can be used without any particular limitation. Preferable examples include carbon-based materials such as graphite carbon and amorphous carbon, lithium-containing transition metal oxides and transition metal nitrides.

正負極シート10、20間に使用される好適なセパレータシート40としては多孔質ポリオレフィン系樹脂で構成されたものが挙げられる。例えば、厚さ5〜30μm(例えば25μm)程度の合成樹脂製(例えばポリエチレン等のポリオレフィン製)多孔質セパレータシートが好適に使用し得る。   Suitable separator sheets 40 used between the positive and negative electrode sheets 10 and 20 include those made of a porous polyolefin resin. For example, a synthetic resin (for example, polyolefin such as polyethylene) porous separator sheet having a thickness of about 5 to 30 μm (for example, 25 μm) can be suitably used.

ケース本体52内に上記捲回電極体80と共に収容される非水電解液としては、従来のリチウム二次電池に用いられる非水電解液と同様のものを特に限定なく使用することができる。かかる非水電解液は、典型的には、適当な非水溶媒に電解質(支持塩)を含有させた組成を有する。上記非水溶媒としては、例えば、エチレンカーボネート(EC)、エチルメチルカーボネート(EMC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)等を用いることができる。また、上記電解質(支持塩)としては、例えば、LiPF、LiBF、LiAsF、LiCFSO等のリチウム塩を好ましく用いることができる。非水電解液中における電解質濃度は、例えば0.05mol/L〜10mol/L程度であり、好ましくは0.1mol/L〜5mol/L程度であり、通常は1mol/L程度にするとよい。 As the non-aqueous electrolyte accommodated in the case main body 52 together with the wound electrode body 80, the same non-aqueous electrolyte used in conventional lithium secondary batteries can be used without any particular limitation. Such a nonaqueous electrolytic solution typically has a composition in which an electrolyte (supporting salt) is contained in a suitable nonaqueous solvent. As said non-aqueous solvent, ethylene carbonate (EC), ethyl methyl carbonate (EMC), dimethyl carbonate (DMC), diethyl carbonate (DEC), propylene carbonate (PC) etc. can be used, for example. Further, Examples of the electrolyte (supporting salt), for example, LiPF 6, LiBF 4, LiAsF 6, LiCF can 3 be preferably used a lithium salt of SO 3 and the like. The electrolyte concentration in the non-aqueous electrolyte is, for example, about 0.05 mol / L to 10 mol / L, preferably about 0.1 mol / L to 5 mol / L, and usually about 1 mol / L.

続いて、上記構造を有するリチウム二次電池100を例として、本実施形態に係るリチウム二次電池の製造方法について説明する。本実施形態の方法は、正極活物質としてオリビン型リン酸化合物を含む正極と、負極と、非水電解液とを備えるリチウム二次電池を製造する方法である。この製造方法は、図3に示すように、正極と負極と非水電解液とを備えるリチウム二次電池を組み立てる工程(電池組み立て工程)と、組み立てたリチウム二次電池に対して初期充電を行う工程(初期充電工程)とを包含する。以下、電池組み立て工程、初期充電工程の順に説明する。   Next, a method for manufacturing a lithium secondary battery according to this embodiment will be described using the lithium secondary battery 100 having the above structure as an example. The method of this embodiment is a method of manufacturing a lithium secondary battery including a positive electrode containing an olivine-type phosphate compound as a positive electrode active material, a negative electrode, and a nonaqueous electrolytic solution. In this manufacturing method, as shown in FIG. 3, a process of assembling a lithium secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte (battery assembly process), and initial charging of the assembled lithium secondary battery are performed. Process (initial charging process). Hereinafter, the battery assembly process and the initial charging process will be described in this order.

電池組み立て工程は、正極10と負極20と非水電解液とを備えるリチウム二次電池100を組み立てる工程である。この実施形態では、まず、捲回電極体80を構築する。捲回電極体80を構築する際には、図2に示すように、正極シート10と負極シート20とをセパレータシート40を介して積層したシート状電極体を用意する。このとき、セパレータシート40は正極シート10の正極合材層非形成部(正極集電体12の露出部分)が外方にはみ出るように(即ち正極合材層14とセパレータシート40とが対向するように)重ね合せられる。負極シート20も正極シート10と同様に積層され、負極合材層非形成部(負極集電体22の露出部分)がセパレータシート40から外方にはみ出るように(即ち負極合材層24とセパレータシート40とが対向するように)重ね合せられる。かかるシート状電極体を捲回し、次いで得られた捲回体を側面方向から押しつぶして拉げさせることによって扁平形状の捲回電極体80が得られる。   The battery assembling step is a step of assembling the lithium secondary battery 100 including the positive electrode 10, the negative electrode 20, and the non-aqueous electrolyte. In this embodiment, first, the wound electrode body 80 is constructed. When constructing the wound electrode body 80, as shown in FIG. 2, a sheet-like electrode body in which the positive electrode sheet 10 and the negative electrode sheet 20 are laminated via the separator sheet 40 is prepared. At this time, the separator sheet 40 faces the positive electrode mixture layer 14 and the separator sheet 40 so that the positive electrode mixture layer non-forming portion (exposed portion of the positive electrode current collector 12) of the positive electrode sheet 10 protrudes outward. As superimposed). The negative electrode sheet 20 is also laminated in the same manner as the positive electrode sheet 10 so that the negative electrode mixture layer non-formed portion (exposed portion of the negative electrode current collector 22) protrudes outward from the separator sheet 40 (that is, the negative electrode mixture layer 24 and the separator). The sheet 40 is superposed so that it faces the sheet 40. A flat wound electrode body 80 is obtained by winding such a sheet-like electrode body and then crushing the obtained wound body from the side surface direction so as to be ablated.

かかる構成の捲回電極体80をケース本体52に収容し、そのケース本体52内に適当な非水電解液を配置(注液)し、そして、ケース本体52の開口部を蓋体54との溶接等により封止することにより、本実施形態に係るリチウム二次電池100の組み立て工程が完成する。なお、ケース本体52と蓋体54との溶接プロセスや電解液の配置(注液)プロセスは、従来のリチウム二次電池の製造で行われている手法と同様にして行うことができる。   The wound electrode body 80 having such a configuration is accommodated in the case main body 52, an appropriate nonaqueous electrolytic solution is disposed (injected) into the case main body 52, and the opening of the case main body 52 is connected to the lid 54. By sealing by welding or the like, the assembly process of the lithium secondary battery 100 according to this embodiment is completed. Note that the welding process between the case body 52 and the lid body 54 and the placement (injection) process of the electrolytic solution can be performed in the same manner as that used in the manufacture of conventional lithium secondary batteries.

初期充電工程では、上記組み立てたリチウム二次電池100に対して初期充電を行う。この初期充電工程では、図3に示すように、正極活物質におけるリチウムの脱離率が10%〜85%となるように充電する過程を含む予備充放電を少なくとも1サイクル行い、その後、満充電する。すなわち、正極活物質に含まれるリチウムの10%〜85%が脱離するように充電する過程を含む予備充放電を行った後、さらにリチウムの脱離率が100%となるまで満充電を実行する。   In the initial charging step, initial charging is performed on the assembled lithium secondary battery 100. In this initial charging step, as shown in FIG. 3, at least one cycle of preliminary charging and discharging including a process of charging so that the lithium desorption rate in the positive electrode active material is 10% to 85% is performed, and then the full charging is performed. To do. That is, after pre-charging / discharging including a process of charging so that 10% to 85% of lithium contained in the positive electrode active material is desorbed, full charge is performed until the lithium desorption rate reaches 100%. To do.

本実施形態の方法によれば、正極活物質に含まれるリチウムの10%〜85%が脱離するように充電する過程を含む予備充放電を少なくとも1サイクル行い、その後、満充電状態(即ち正極活物質に含まれるほぼ全てのリチウムが抜けた状態)にするので、最初から満充電する従来の態様に比べて、不可逆容量が発生しにくくなる。そのため、より理論容量に近い放電容量を得ることができる。   According to the method of the present embodiment, at least one cycle of preliminary charge / discharge including a process of charging so that 10% to 85% of lithium contained in the positive electrode active material is desorbed, and then the fully charged state (that is, the positive electrode) Therefore, the irreversible capacity is less likely to occur compared to the conventional mode in which the lithium is fully charged from the beginning. Therefore, a discharge capacity closer to the theoretical capacity can be obtained.

上記予備放電におけるリチウムの脱離率は、概ね10%〜85%程度であればよく、通常は30%〜80%程度が好ましく、例えば50%〜80%の範囲であることが好ましい。この範囲から外れると、予備充電時のリチウムの脱離量が多すぎたり少なすぎたりするため、予備充電を行うことによる効果が十分に得られない場合がある。   The lithium desorption rate in the preliminary discharge may be about 10% to 85%, preferably about 30% to 80%, for example, preferably in the range of 50% to 80%. If it is out of this range, the amount of lithium desorbed at the time of preliminary charging may be too much or too little, so that the effect of performing the preliminary charging may not be sufficiently obtained.

ここに開示される一態様では、図4に示すように、予備充放電を2サイクル以上繰り返すことが好ましい。予備充放電を2サイクル以上繰り返すことによって、不可逆容量の発生が抑制され、より高い放電容量が得られる。予備充放電のサイクル数は特に限定されないが、通常は2サイクル〜10サイクルにするのが適当であり、概ね3サイクル〜5サイクルにすることが好ましい。この範囲内でサイクル数を増やすほど、より好適な結果が実現され得る(図4では3サイクル)。   In one aspect disclosed herein, as shown in FIG. 4, it is preferable to repeat the pre-charging / discharging two or more cycles. By repeating the pre-charging / discharging for 2 cycles or more, generation of irreversible capacity is suppressed, and higher discharge capacity can be obtained. The number of pre-charging / discharging cycles is not particularly limited, but usually 2 to 10 cycles is appropriate, and approximately 3 to 5 cycles is preferable. As the number of cycles is increased within this range, more favorable results can be achieved (3 cycles in FIG. 4).

ここに開示される技術では、上記リチウムの脱離率をサイクルごとに変えながら、予備充放電を繰り返すことが好ましい。リチウムの脱離率(即ち、電池の充電状態)を各サイクルで段階的に変化させることによって、不可逆容量の発生が効果的に抑制され、より高い放電容量が実現され得る。   In the technique disclosed herein, it is preferable to repeat the preliminary charge / discharge while changing the lithium desorption rate for each cycle. By changing the lithium desorption rate (that is, the state of charge of the battery) stepwise in each cycle, the generation of irreversible capacity can be effectively suppressed and a higher discharge capacity can be realized.

ここに開示される好ましい一態様では、リチウムの脱離率をサイクル順に大きくしながら、予備充放電を繰り返す。この場合、予備充放電の初回では10%〜60%まで充電し、最終回では60%〜85%まで充電し、且つ初回から最終回に至る間のリチウムの脱離率を順次大きくすることが好ましい。例えば、図4に示すように、予備充放電を3サイクル行う場合には、予備充放電の1サイクル目(初回)では50%まで充電し、2サイクル目では70%まで充電し、3サイクル目(最終回)では80%まで充電するとよい。このように、初回から最終回に至る間のリチウムの脱離率を順次大きくしながら満充電状態に近づけることによって、不可逆容量の発生がより効果的に抑制され、高い放電容量が得られる。   In a preferred embodiment disclosed herein, the preliminary charge / discharge is repeated while increasing the lithium desorption rate in the order of cycles. In this case, it is possible to charge from 10% to 60% in the first preliminary charge / discharge, to charge from 60% to 85% in the final round, and to gradually increase the lithium desorption rate from the first round to the final round. preferable. For example, as shown in FIG. 4, when 3 cycles of pre-charging / discharging are performed, charging is performed up to 50% in the first cycle (first time) of pre-charging / discharging, and is charged up to 70% in the second cycle. In the (last round), it is good to charge up to 80%. In this manner, by gradually increasing the lithium desorption rate from the first time to the last time while approaching a fully charged state, generation of irreversible capacity is more effectively suppressed, and a high discharge capacity is obtained.

なお、ここに開示される技術を実施するにあたり、リチウムの脱離率が10%〜85%となるように予備充放電を行うことによって高い放電容量が得られる理由を明らかにする必要はないが、例えば以下のように考えられる。   In implementing the technique disclosed herein, it is not necessary to clarify the reason why a high discharge capacity can be obtained by performing pre-charging / discharging so that the lithium desorption rate is 10% to 85%. For example, it is considered as follows.

すなわち、最初から満充電する従来の態様では、最初の充電において正極活物質から100%近いリチウムが一気に脱離するため、正極活物質の結晶構造が不安定となり、正極活物質と非水電解液との反応性が増大する。その結果、正極活物質表面において非水電解液との不可逆反応(電解液の分解)が起こり易くなり、不可逆容量が発生し、電池の容量が大幅に低下する。これに対し、本実施形態では、リチウムの脱離率を段階的に変えていくので、正極活物質の結晶構造が安定に保たれ、非水電解液との不可逆反応が起こりにくくなる。これにより、不可逆容量の発生が抑制され、高い放電容量が得られたと考えられる。また、段階的な予備充放電を行うことで、正極活物質表面にリチウムの拡散に有用な被膜が形成され、この被膜によって高い放電容量が得られたと考えられる。   That is, in the conventional mode in which the battery is fully charged from the beginning, nearly 100% of lithium is desorbed from the positive electrode active material at the first charge, so that the crystal structure of the positive electrode active material becomes unstable, and the positive electrode active material and the nonaqueous electrolytic solution And the reactivity increases. As a result, an irreversible reaction (decomposition of the electrolytic solution) with the nonaqueous electrolytic solution is likely to occur on the surface of the positive electrode active material, irreversible capacity is generated, and the battery capacity is greatly reduced. On the other hand, in this embodiment, since the lithium desorption rate is changed stepwise, the crystal structure of the positive electrode active material is kept stable, and the irreversible reaction with the nonaqueous electrolytic solution hardly occurs. Thereby, generation | occurrence | production of an irreversible capacity | capacitance was suppressed and it is thought that high discharge capacity was obtained. Moreover, it is considered that a film useful for diffusion of lithium is formed on the surface of the positive electrode active material by performing stepwise preliminary charge / discharge, and a high discharge capacity is obtained by this film.

また、正極活物質内のリチウムの拡散パスは、最初の充電時に形成されると考えられているが、最初から満充電する従来の態様では、最初の充電において正極活物質から全てのリチウムが抜けるため、正極活物質の構造が崩れ、正極活物質内にきちんとした拡散パスを形成することができない。これに対し、本実施形態では、最初の充電時に10%〜85%のリチウムしか脱離しないため、正極活物質の結晶構造を安定に保ちつつ拡散パスを形成できる。ここで生じたリチウムの拡散パスによって、スムーズに放電を行えるようになり、満充電以降も高い放電容量が得られたと考えられる。   In addition, it is considered that the lithium diffusion path in the positive electrode active material is formed at the time of the first charge. However, in the conventional mode in which the charge is fully charged from the beginning, all the lithium is released from the positive electrode active material in the first charge. For this reason, the structure of the positive electrode active material collapses and a proper diffusion path cannot be formed in the positive electrode active material. On the other hand, in this embodiment, since only 10% to 85% of lithium is desorbed at the time of initial charge, a diffusion path can be formed while keeping the crystal structure of the positive electrode active material stable. It is considered that the lithium diffusion path generated here enables smooth discharge, and a high discharge capacity was obtained even after full charge.

このようにして初期充電処理を行った後、電池ケース50の内部で発生したガスを適当なガス抜き処理によってケース外に排出し、電池ケース50を気密に封止することによって、本実施形態に係るリチウム二次電池100の製造が完了する。なお、電池ケース50内のガス抜きプロセスや、電池ケース50の封止プロセスは、従来のリチウム二次電池の製造で行われている手法と同様にして行うことができる。   After performing the initial charging process in this way, the gas generated inside the battery case 50 is discharged out of the case by an appropriate degassing process, and the battery case 50 is hermetically sealed. The manufacture of the lithium secondary battery 100 is completed. In addition, the degassing process in the battery case 50 and the sealing process of the battery case 50 can be performed in the same manner as that used in the manufacture of a conventional lithium secondary battery.

以下、本発明に関する実施例1〜4を説明するが、本発明をかかる具体例に示すものに限定することを意図したものではない。   Examples 1 to 4 relating to the present invention will be described below, but the present invention is not intended to be limited to the specific examples.

<リチウム二次電池の組み立て>
正極活物質としてのLiMnPO粉末とカーボンブラック(導電材)とポリフッ化ビニリデン(PVdF)とを、これらの材料の質量比が75:20:5となるようにN−メチルピロリドン(NMP)中で混合して、ペースト状の正極合材層用組成物を調製した。このペースト状正極合材層用組成物をアルミニウム箔(正極集電体)の片面に層状に塗布して乾燥することにより、該正極集電体の片面に正極合材層が設けられた正極シートを得た。
<Assembly of lithium secondary battery>
LiMnPO 4 powder as a positive electrode active material, carbon black (conductive material) and polyvinylidene fluoride (PVdF) in N-methylpyrrolidone (NMP) so that the mass ratio of these materials is 75: 20: 5. By mixing, a paste-like composition for the positive electrode mixture layer was prepared. The positive electrode sheet in which the positive electrode mixture layer is provided on one side of the positive electrode current collector by applying the paste-like composition for the positive electrode mixture layer in layers on one side of the aluminum foil (positive electrode current collector) and drying it. Got.

上記正極シートを直径16mmの円形に打ち抜いて、正極を作製した。この正極(作用極)と、負極(対極)としての金属リチウム(直径19mm、厚さ0.02mmの金属Li箔を使用した。)と、セパレータ(直径22mm、厚さ0.02mmの多孔質ポリオレフィンシートを使用した。)とを、非水電解液とともにステンレス製容器に組み込んで、直径20mm、厚さ3.2mm(2032型)の図5に示すコインセル60(充放電性能評価用のハーフセル)を構築した。図5中、符号61は正極(作用極)を、符号62は負極(対極)を、符号63は電解液の含浸したセパレータを、符号64はガスケットを、符号65は容器(負極端子)を、符号66は蓋(正極端子)をそれぞれ示す。なお、非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:3:4の体積比で含む混合溶媒に支持塩としてのLiPFを約1mol/リットルの濃度で含有させたものを用いた。 The positive electrode sheet was punched into a circle having a diameter of 16 mm to produce a positive electrode. This positive electrode (working electrode), metallic lithium as a negative electrode (counter electrode) (a metal Li foil having a diameter of 19 mm and a thickness of 0.02 mm), and a separator (a porous polyolefin having a diameter of 22 mm and a thickness of 0.02 mm) And a coin cell 60 (half cell for charge / discharge performance evaluation) shown in FIG. 5 having a diameter of 20 mm and a thickness of 3.2 mm (2032 type). It was constructed. In FIG. 5, reference numeral 61 is a positive electrode (working electrode), reference numeral 62 is a negative electrode (counter electrode), reference numeral 63 is a separator impregnated with an electrolyte, reference numeral 64 is a gasket, reference numeral 65 is a container (negative electrode terminal), Reference numeral 66 denotes a lid (positive electrode terminal). In addition, as a non-aqueous electrolyte solution, LiPF 6 as a supporting salt is approximately mixed in a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) in a volume ratio of 3: 3: 4. The one contained at a concentration of 1 mol / liter was used.

<初期充電および性能評価>
以上のようにして作製したコインセルに対し、下記の表1に示す条件により、初期充電を行った。ここでは予備充放電後に満充電を行うところまでを含めて「初期充電工程」としている。実施例1について説明すると、組み立て後のセルを20℃の温度環境下におき、下記の(1)〜(3)の条件で予備充放電を3サイクル行い、その後、下記の(4)の条件で満充電を行い、初期充電工程を完了した。そして、満充電後の放電容量(即ち、4サイクル目の放電容量)を測定して評価した。なお、リチウムの脱離率は、充電操作後のLiMnPOの組成分析を誘導結合プラズマ原子発光分析(ICP−AES)で行い、LiMnPO中に含まれるLiとMnとの組成比を決定し、この組成比からリチウムの脱離率を見積もった。例えば、充電後に得られたLiとMnとの組成比が0.3:1の場合、リチウムの脱離率は70%と見積もった。
<Initial charging and performance evaluation>
The coin cell manufactured as described above was initially charged under the conditions shown in Table 1 below. Here, the “initial charging process” includes the process up to full charge after preliminary charge / discharge. Example 1 will be described. The assembled cell is placed in a temperature environment of 20 ° C., and pre-charging / discharging is performed for 3 cycles under the following conditions (1) to (3). Thereafter, the following condition (4) is satisfied. Was fully charged and the initial charging process was completed. Then, the discharge capacity after full charge (that is, the discharge capacity at the fourth cycle) was measured and evaluated. The lithium desorption rate is determined by performing inductively coupled plasma atomic emission spectrometry (ICP-AES) composition analysis of LiMnPO 4 after the charging operation, and determining the composition ratio of Li and Mn contained in LiMnPO 4 . The lithium desorption rate was estimated from this composition ratio. For example, when the composition ratio of Li and Mn obtained after charging was 0.3: 1, the lithium desorption rate was estimated to be 70%.

(1)0.05Cの定電流にてリチウムの脱離率が50%(極間電圧が4.18V)となるまで充電を行い、次いで、0.05の定電流にて極間電圧が2.0V(下限電圧)になるまで放電を行った。
(2)0.05Cの定電流にてリチウムの脱離率が70%(極間電圧が4.22V)となるまで充電を行い、次いで、0.05の定電流にて極間電圧が2.0V(下限電圧)になるまで放電を行った。
(3)0.05Cの定電流にてリチウムの脱離率が80%(極間電圧が4.33V)となるまで充電を行い、次いで、0.05の定電流にて極間電圧が2.0V(下限電圧)になるまで放電を行った。
(4)0.05Cの定電流にてリチウムの脱離率が100%(極間電圧が4.80V)となるまで充電を行い、次いで、0.05の定電流にて極間電圧が2.0V(下限電圧)になるまで放電を行った。
(1) Charging is performed at a constant current of 0.05 C until the lithium desorption rate reaches 50% (interelectrode voltage is 4.18 V), and then the interelectrode voltage is 2 at a constant current of 0.05. Discharge was performed until the voltage reached 0.0 V (lower limit voltage).
(2) Charging is performed at a constant current of 0.05 C until the lithium desorption rate reaches 70% (interelectrode voltage is 4.22 V), and then the interelectrode voltage is 2 at a constant current of 0.05. Discharge was performed until the voltage reached 0.0 V (lower limit voltage).
(3) Charging is performed at a constant current of 0.05 C until the lithium desorption rate is 80% (interelectrode voltage is 4.33 V), and then the interelectrode voltage is 2 at a constant current of 0.05. Discharge was performed until the voltage reached 0.0 V (lower limit voltage).
(4) Charging is performed at a constant current of 0.05 C until the lithium desorption rate reaches 100% (interelectrode voltage is 4.80 V), and then the interelectrode voltage is 2 at a constant current of 0.05. Discharge was performed until the voltage reached 0.0 V (lower limit voltage).

Figure 2011044333
Figure 2011044333

他の実施例2〜4についても、上記(1)〜(4)のリチウムの脱離率を表1のように変えたこと以外は実施例1と同様にして初期充電を行った。実施例4について説明すると、組み立て後のセルに対し、リチウムの脱離率が80%になるように予備充放電を1サイクル行い、その後、リチウムの脱離率が100%になるように満充電を行い、初期充電工程を完了した。放電後、さらに満充放電を2サイクル行い、全体で4サイクル目の放電容量を測定した。また、比較のため、組み立て後のセルに対し、リチウムの脱離率が100%になるように満充放電を4サイクル行い、4サイクル目の放電容量を測定した。実施例1〜4および比較例の各サイクルのリチウムの脱離率を図6に示す。また、4サイクル目の放電容量の測定結果を図7に示す。   For other Examples 2 to 4, initial charge was performed in the same manner as in Example 1 except that the lithium desorption rates of the above (1) to (4) were changed as shown in Table 1. Example 4 will be described. The assembled cell is subjected to a pre-charge / discharge cycle so that the lithium desorption rate is 80%, and then fully charged so that the lithium desorption rate is 100%. To complete the initial charging process. After the discharge, two full charge / discharge cycles were performed, and the discharge capacity at the fourth cycle was measured as a whole. For comparison, the assembled cell was charged and discharged for 4 cycles so that the lithium desorption rate was 100%, and the discharge capacity at the 4th cycle was measured. FIG. 6 shows the lithium desorption rate in each cycle of Examples 1 to 4 and the comparative example. Moreover, the measurement result of the discharge capacity of the 4th cycle is shown in FIG.

図7から分かるように、予備充放電を行った実施例1〜4のセルは、予備充放電を行わなかった比較例のセルに比べて、放電容量が明らかに向上した。このことから、予備充放電を行うことによって高容量が得られることが確認された。また、予備充放電を2サイクル以上行った実施例1〜3のセルは、1サイクルの実施例4のセルに比べて、放電容量がさらに向上した。このことから、予備充放電を2サイクル以上(好ましくは3サイクル)繰り返すことで、より高容量が得られることが確認された。さらに、実施例1、2と実施例3の比較から、予備充放電の初回を30〜50%まで充電することによって、より高い放電容量が得られることが確認された。特に予備充放電の初回を50%まで充電した実施例1のセルは、放電容量が145mAh/gとなり、理論容量に近い容量が実現された。   As can be seen from FIG. 7, the discharge capacities of the cells of Examples 1 to 4 that were subjected to the preliminary charge / discharge were clearly improved compared to the cells of the comparative example that were not subjected to the preliminary charge / discharge. From this, it was confirmed that a high capacity can be obtained by performing preliminary charge / discharge. In addition, the cells of Examples 1 to 3 in which the pre-charging / discharging was performed for two cycles or more further improved the discharge capacity as compared with the cell of Example 4 of one cycle. From this, it was confirmed that a higher capacity can be obtained by repeating the pre-charging / discharging for 2 cycles or more (preferably 3 cycles). Furthermore, it was confirmed from the comparison of Examples 1 and 2 and Example 3 that a higher discharge capacity can be obtained by charging 30 to 50% of the first preliminary charge / discharge. In particular, the cell of Example 1 that was charged to 50% in the first preliminary charge / discharge had a discharge capacity of 145 mAh / g, and a capacity close to the theoretical capacity was realized.

以上、本発明を好適な実施形態により説明してきたが、こうした記述は限定事項ではなく、勿論、種々の改変が可能である。   As mentioned above, although this invention was demonstrated by suitable embodiment, such description is not a limitation matter and of course various modifications are possible.

本発明に係るリチウム二次電池は、上記のとおり高い放電容量が得られ、より良好な電池性能を示すことから、特に自動車等の車両に搭載されるモーター(電動機)用電源として好適に使用し得る。したがって本発明は、図8に模式的に示すように、かかるリチウム二次電池100(典型的には複数直列接続してなる組電池)を電源として備える車両(典型的には自動車、特にハイブリッド自動車、電気自動車、燃料電池自動車のような電動機を備える自動車)1を提供する。   Since the lithium secondary battery according to the present invention has a high discharge capacity as described above and exhibits better battery performance, it is preferably used as a power source for a motor (electric motor) mounted on a vehicle such as an automobile. obtain. Therefore, the present invention, as schematically shown in FIG. 8, is a vehicle (typically an automobile, particularly a hybrid automobile) provided with such a lithium secondary battery 100 (typically, a battery pack formed by connecting a plurality of series batteries) as a power source. , An automobile equipped with an electric motor such as an electric vehicle and a fuel cell vehicle.

10 正極シート
12 正極集電体
14 正極合材層
20 負極シート
22 負極集電体
24 負極合材層
40 セパレータシート
50 電池ケース
52 ケース本体
54 蓋体
70 正極端子
72 負極端子
80 捲回電極体
100 リチウム二次電池
DESCRIPTION OF SYMBOLS 10 Positive electrode sheet 12 Positive electrode collector 14 Positive electrode mixture layer 20 Negative electrode sheet 22 Negative electrode collector 24 Negative electrode mixture layer 40 Separator sheet 50 Battery case 52 Case main body 54 Lid body 70 Positive electrode terminal 72 Negative electrode terminal 80 Winding electrode body 100 Lithium secondary battery

Claims (7)

正極活物質としてオリビン型リン酸化合物を含む正極と、負極と、非水電解液とを備えるリチウム二次電池を製造する方法であって、
以下の工程:
正極と負極と非水電解液とを備えるリチウム二次電池を組み立てる工程;および、
前記組み立てたリチウム二次電池に対して初期充電を行う工程;
を包含し、
前記初期充電工程では、前記正極活物質におけるリチウムの脱離率が10%〜85%となるように充電する過程を含む予備充放電を少なくとも1サイクル行い、その後、満充電することを特徴とする、リチウム二次電池の製造方法。
A method for producing a lithium secondary battery comprising a positive electrode containing an olivine-type phosphate compound as a positive electrode active material, a negative electrode, and a non-aqueous electrolyte,
The following steps:
Assembling a lithium secondary battery comprising a positive electrode, a negative electrode, and a non-aqueous electrolyte; and
Performing an initial charge on the assembled lithium secondary battery;
Including
In the initial charging step, at least one cycle of pre-charging / discharging including a process of charging so that a lithium desorption rate in the positive electrode active material is 10% to 85% is performed, and then full charging is performed. And a method for producing a lithium secondary battery.
前記予備充放電を2サイクル以上繰り返す、請求項1に記載の製造方法。   The manufacturing method of Claim 1 which repeats the said preliminary charging / discharging 2 cycles or more. 前記リチウムの脱離率をサイクルごとに変えながら、前記予備充放電を繰り返す、請求項2に記載の製造方法。   The manufacturing method according to claim 2, wherein the preliminary charge / discharge is repeated while changing the lithium desorption rate for each cycle. 前記リチウムの脱離率をサイクル順に大きくしながら、前記予備充放電を繰り返す、請求項2または3に記載の製造方法。   The manufacturing method according to claim 2, wherein the preliminary charging / discharging is repeated while increasing the lithium desorption rate in order of cycles. 前記予備充放電の初回では10%〜60%まで充電し、最終回では60%〜85%まで充電し、且つ初回から最終回に至る間のリチウムの脱離率を順次大きくする、請求項2から4の何れか一つに記載の製造方法。   The initial charge of the preliminary charge / discharge is charged to 10% to 60%, charged to 60% to 85% at the final time, and the lithium desorption rate from the first time to the final time is sequentially increased. To 4. The production method according to any one of 4 to 4. 前記オリビン型リン酸化合物がLiMnPOである、請求項1から5の何れか一つに記載の製造方法。 The production method according to claim 1, wherein the olivine-type phosphate compound is LiMnPO 4 . 請求項1から6の何れか一つに記載の方法により製造されたリチウム二次電池を備える車両。   A vehicle comprising a lithium secondary battery manufactured by the method according to any one of claims 1 to 6.
JP2009191757A 2009-08-21 2009-08-21 Method of manufacturing lithium secondary battery Withdrawn JP2011044333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009191757A JP2011044333A (en) 2009-08-21 2009-08-21 Method of manufacturing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009191757A JP2011044333A (en) 2009-08-21 2009-08-21 Method of manufacturing lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2011044333A true JP2011044333A (en) 2011-03-03

Family

ID=43831607

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009191757A Withdrawn JP2011044333A (en) 2009-08-21 2009-08-21 Method of manufacturing lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2011044333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113258A (en) * 2017-01-12 2018-07-19 ストアドット リミテッド Extension of cycle life of quick charge lithium ion battery
DE102020213063A1 (en) 2020-10-15 2022-04-21 Robert Bosch Gesellschaft mit beschränkter Haftung Method for providing a battery cell and use of such

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018113258A (en) * 2017-01-12 2018-07-19 ストアドット リミテッド Extension of cycle life of quick charge lithium ion battery
JP7059016B2 (en) 2017-01-12 2022-04-25 ストアドット リミテッド Increased cycle life of fast-charging lithium-ion batteries
DE102020213063A1 (en) 2020-10-15 2022-04-21 Robert Bosch Gesellschaft mit beschränkter Haftung Method for providing a battery cell and use of such
WO2022079169A1 (en) 2020-10-15 2022-04-21 Robert Bosch Gmbh Method for providing a battery cell and use of such a battery cell

Similar Documents

Publication Publication Date Title
JP5344236B2 (en) Method for manufacturing lithium secondary battery
JP5854279B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP5618698B2 (en) Non-aqueous electrolyte battery
JPWO2012070153A1 (en) Negative electrode active material for lithium ion secondary battery
JP2011090876A (en) Lithium secondary battery and method of manufacturing the same
JP6479984B2 (en) Non-aqueous electrolyte battery and battery pack
JP2013201077A (en) Nonaqueous electrolytic secondary battery
JP2016062644A (en) Lithium ion secondary battery and method for manufacturing the same
JP7096979B2 (en) Lithium ion secondary battery
JP5214172B2 (en) Electrode manufacturing method and storage device manufacturing method
JP2011029139A (en) Lithium secondary battery and method of manufacturing the same
JP2009199929A (en) Lithium secondary battery
JP2019160587A (en) Nonaqueous electrolyte secondary battery and battery pack including the same
JP2012064537A (en) Lithium ion secondary battery
JP2014120404A (en) Secondary battery
JP5282966B2 (en) Lithium ion secondary battery
JP2019016494A (en) Method for manufacturing multilayer electrode body and method for manufacturing power storage element
JP2013197052A (en) Lithium ion power storage device
JP2021018893A (en) Non-aqueous electrolyte secondary battery
JP6120065B2 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2013073718A (en) Nonaqueous electrolyte secondary battery
JP5741942B2 (en) Capacity recovery method for lithium secondary battery
JP2011044333A (en) Method of manufacturing lithium secondary battery
CN111435729B (en) Lithium ion secondary battery
JP5975291B2 (en) Method for producing non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121106