JP2011044245A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2011044245A
JP2011044245A JP2009189889A JP2009189889A JP2011044245A JP 2011044245 A JP2011044245 A JP 2011044245A JP 2009189889 A JP2009189889 A JP 2009189889A JP 2009189889 A JP2009189889 A JP 2009189889A JP 2011044245 A JP2011044245 A JP 2011044245A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
aqueous electrolyte
battery
nonaqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009189889A
Other languages
Japanese (ja)
Other versions
JP5263683B2 (en
Inventor
Yohei Shibata
洋平 柴田
Hiroe Nakagawa
裕江 中川
Tokuo Inamasu
徳雄 稲益
Toshiyuki Onda
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa Corp
Original Assignee
GS Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa Corp filed Critical GS Yuasa Corp
Priority to JP2009189889A priority Critical patent/JP5263683B2/en
Publication of JP2011044245A publication Critical patent/JP2011044245A/en
Application granted granted Critical
Publication of JP5263683B2 publication Critical patent/JP5263683B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery with suppressed discharge capacity deterioration due to repeated charge and discharge and with little electric resistance rise after repeated charge and discharge. <P>SOLUTION: The nonaqueous electrolyte secondary battery with a cathode containing iron phosphate lithium compound and lithium transition metal oxide which has an α-NaFeO<SB>2</SB>type crystal structure and with nonaqueous electrolyte, is characterized by the nonaqueous electrolyte which includes a fluorinated phosphoric ester compound. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

近年、携帯電話、ノートパソコン等の携帯機器類または電気自動車などの電源として、エネルギー密度が比較的高い、リチウムイオン二次電池に代表される非水電解質二次電池が注目されている。   In recent years, non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries having a relatively high energy density have attracted attention as power sources for portable devices such as mobile phones and notebook computers, or electric vehicles.

従来、非水電解質二次電池としては、例えば、作動電圧が比較的高いという点で、Li、Mn、Ni、及びCoを含む複合酸化物などの、α−NaFeO2型結晶構造を有するリチウム遷移金属酸化物を含む正極材料を備えたものが知られている。
また、非水電解質二次電池としては、例えば、比較的高温条件下においても発火原因となり得る酸素を放出しにくく電池の安全性を高く保ち得るという点で、リン酸鉄リチウム(LiFePO4)などのLi含有ポリアニオン型リン酸化合物を含む正極材料を備えたものが知られている。
Conventionally, as a non-aqueous electrolyte secondary battery, for example, a lithium transition having an α-NaFeO 2 type crystal structure such as a composite oxide containing Li, Mn, Ni, and Co in terms of a relatively high operating voltage. What is provided with the positive electrode material containing a metal oxide is known.
In addition, as the non-aqueous electrolyte secondary battery, for example, lithium iron phosphate (LiFePO 4 ) is used in that it is difficult to release oxygen that can cause ignition even under relatively high temperature conditions, and the safety of the battery can be kept high. A material having a positive electrode material containing a Li-containing polyanionic phosphate compound is known.

一方で、これら従来の非水電解質二次電池の性能に鑑み、作動電圧の高さと電池の安全性とを兼ね備えた非水電解質二次電池を提供すべく、α−NaFeO2型結晶構造を有するリチウム遷移金属酸化物と、Li含有ポリアニオン型リン酸化合物とを混合してなる正極材料を備えた非水電解質二次電池が知られている(例えば、特許文献1)。 On the other hand, in view of the performance of these conventional non-aqueous electrolyte secondary batteries, in order to provide a non-aqueous electrolyte secondary battery having both high operating voltage and battery safety, it has an α-NaFeO 2 type crystal structure. A non-aqueous electrolyte secondary battery including a positive electrode material obtained by mixing a lithium transition metal oxide and a Li-containing polyanionic phosphate compound is known (for example, Patent Document 1).

しかしながら、斯かる非水電解質二次電池においては、充放電を繰り返すことに伴って放電容量が下がったり、繰り返し充放電後の電気抵抗が高くなったりするという問題がある。   However, such a nonaqueous electrolyte secondary battery has a problem that the discharge capacity decreases with repeated charge / discharge, and the electrical resistance after repeated charge / discharge increases.

特開2006−252895号公報JP 2006-252895 A

従って、α−NaFeO2型結晶構造を有するリチウム遷移金属酸化物を含む活物質と、Li含有ポリアニオン型リン酸化合物を含む活物質とを混合してなる正極材料を備えながらも、充放電を繰り返すことに伴う放電容量の低下が抑制され且つ繰り返し充放電後の電気抵抗が上昇しにくい非水電解質二次電池が要望されている。 Therefore, charging / discharging is repeated while providing a positive electrode material formed by mixing an active material containing a lithium transition metal oxide having an α-NaFeO 2 type crystal structure and an active material containing a Li-containing polyanionic phosphate compound. There is a demand for a nonaqueous electrolyte secondary battery in which a decrease in discharge capacity accompanying the above is suppressed and an electrical resistance after repeated charge and discharge is hardly increased.

本発明は、上記の問題点、要望点等に鑑み、充放電を繰り返すことに伴う放電容量の低下が抑制され且つ繰り返し充放電後の電気抵抗が上昇しにくい非水電解質二次電池を提供することを課題とする。   The present invention provides a non-aqueous electrolyte secondary battery that suppresses a decrease in discharge capacity that accompanies repeated charge and discharge, and that does not easily increase the electrical resistance after repeated charge and discharge, in view of the above-described problems and demands. This is the issue.

上記課題を解決すべく、本発明に係る非水電解質二次電池は、Li含有ポリアニオン型リン酸化合物とα−NaFeO2型結晶構造を有するリチウム遷移金属酸化物とを含有する正極と、非水電解質とを備えた非水電解質二次電池であって、前記非水電解質がフッ素化リン酸エステル化合物を含むことを特徴とする。 In order to solve the above problems, a non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode containing a Li-containing polyanionic phosphate compound and a lithium transition metal oxide having an α-NaFeO 2 type crystal structure, and a non-aqueous solution. A non-aqueous electrolyte secondary battery including an electrolyte, wherein the non-aqueous electrolyte includes a fluorinated phosphate ester compound.

本発明に係る非水電解質二次電池は、前記フッ素化リン酸エステル化合物がトリフルオロアルキルリン酸エステル化合物であることが好ましい。   In the nonaqueous electrolyte secondary battery according to the present invention, the fluorinated phosphate compound is preferably a trifluoroalkyl phosphate compound.

また、本発明に係る非水電解質二次電池は、前記Li含有ポリアニオン型リン酸化合物がリン酸鉄リチウム化合物であることが好ましい。   In the nonaqueous electrolyte secondary battery according to the present invention, the Li-containing polyanionic phosphate compound is preferably a lithium iron phosphate compound.

また、本発明に係る非水電解質二次電池は、前記フッ素化リン酸エステル化合物を前記非水電解質に5〜50体積%含むことが好ましい。   Moreover, it is preferable that the nonaqueous electrolyte secondary battery which concerns on this invention contains the said fluorinated phosphate ester compound 5-50 volume% in the said nonaqueous electrolyte.

本発明に係る非水電解質二次電池は、充放電を繰り返すことに伴う放電容量の低下が抑制され且つ繰り返し充放電後の電気抵抗の上昇が抑制されるという効果を奏する。   The nonaqueous electrolyte secondary battery according to the present invention has an effect that a decrease in discharge capacity due to repeated charge / discharge is suppressed and an increase in electrical resistance after repeated charge / discharge is suppressed.

以下、本発明に係る非水電解質二次電池の一実施形態について説明する。   Hereinafter, an embodiment of a non-aqueous electrolyte secondary battery according to the present invention will be described.

本実施形態の非水電解質二次電池は、Li含有ポリアニオン型リン酸化合物とα−NaFeO2型結晶構造を有するリチウム遷移金属酸化物とを含有する正極と、非水電解質とを備えた非水電解質二次電池であって、前記非水電解質がフッ素化リン酸エステル化合物を含むものである。 The nonaqueous electrolyte secondary battery of the present embodiment is a nonaqueous electrolyte comprising a positive electrode containing a Li-containing polyanionic phosphate compound and a lithium transition metal oxide having an α-NaFeO 2 type crystal structure, and a nonaqueous electrolyte. In the electrolyte secondary battery, the non-aqueous electrolyte includes a fluorinated phosphate compound.

詳しくは、本実施形態の非水電解質二次電池は、Li含有ポリアニオン型リン酸化合物とα−NaFeO2型結晶構造を有するリチウム遷移金属酸化物とを含有する正極と、負極と、電解質塩及び非水溶媒を含有する非水電解質とを備えた非水電解質二次電池であって、前記非水電解質がフッ素化リン酸エステル化合物を含んでいるものである。
さらに本実施形態の非水電解質二次電池には、正極と負極との間にセパレータが備えられ得る。また、これら構成物を包装する外装体が備えられ得る。
また、前記非水電解質二次電池の態様としては、特に限定されるものではなく、例えば、正極、負極および単層又は複層のセパレータを有するコイン電池やボタン電池、さらに、正極、負極およびロール状のセパレータを有する円筒型電池、角型電池、扁平型電池等が挙げられる。
Specifically, the non-aqueous electrolyte secondary battery of the present embodiment includes a positive electrode containing a Li-containing polyanionic phosphate compound and a lithium transition metal oxide having an α-NaFeO 2 type crystal structure, a negative electrode, an electrolyte salt, and A non-aqueous electrolyte secondary battery comprising a non-aqueous electrolyte containing a non-aqueous solvent, wherein the non-aqueous electrolyte contains a fluorinated phosphate compound.
Furthermore, the nonaqueous electrolyte secondary battery of the present embodiment can be provided with a separator between the positive electrode and the negative electrode. Moreover, the exterior body which packages these structures may be provided.
Further, the embodiment of the non-aqueous electrolyte secondary battery is not particularly limited. For example, a coin battery or a button battery having a positive electrode, a negative electrode, and a single-layer or multi-layer separator, a positive electrode, a negative electrode, and a roll. And a cylindrical battery, a square battery, a flat battery, and the like having a cylindrical separator.

前記フッ素化リン酸エステル化合物は、好ましくは、フルオロアルキルリン酸エステル化合物であり、より好ましくは、トリフルオロアルキルリン酸エステル化合物である。   The fluorinated phosphate ester compound is preferably a fluoroalkyl phosphate ester compound, and more preferably a trifluoroalkyl phosphate ester compound.

前記トリフルオロアルキルリン酸エステル化合物としては、例えば、リン酸トリ(2,2−ジフルオロエチル)、リン酸トリ(2,2,3,3−テトラフルオロプロピル)、リン酸トリ(2,2,3,3,4,4−ヘキサフルオロブチル)、リン酸トリ(1H,1H,5H−オクタフルオロペンチル)、リン酸トリ(1H,1H,7H−ドデカフルオロへプチル)、リン酸トリ(1H,1H,3H,7H−パーフルオロへプチル)、リン酸トリ(1H,1H,9H−ヘキサデカフルオロノニル)、リン酸トリ(2,2,2−トリフルオロエチル)、リン酸トリ(2,2,3,3,3−ペンタフルオロプロピル),リン酸トリ(1H,1H−パーフルオロブチル),リン酸トリ(1H,1H−パーフルオロペンチル),リン酸トリ(1H,1H−パーフルオロへプチル),リン酸トリ(1H,1H−パーフルオロノニル),リン酸トリ(1,1−ジフルオロエチル),リン酸トリ(1,1,2,2−テトラフルオロプロピル)等の単独又はそれら2種以上の混合物等を挙げることができるが、これらに限定されるものではない。なかでも、前記トリフルオロアルキルリン酸エステル化合物としては、リン酸トリ(2,2,3,3−テトラフルオロプロピル)又はリン酸トリ(2,2,2−トリフルオロエチル)が好ましく、リン酸トリ(2,2,3,3−テトラフルオロプロピル)がより好ましい。   Examples of the trifluoroalkyl phosphate compound include tri (2,2-difluoroethyl phosphate), tri (2,2,3,3-tetrafluoropropyl) phosphate, and tri (2,2, 3,3,4,4-hexafluorobutyl), triphosphate (1H, 1H, 5H-octafluoropentyl), triphosphate (1H, 1H, 7H-dodecafluoroheptyl), triphosphate (1H, 1H, 3H, 7H-perfluoroheptyl), triphosphate (1H, 1H, 9H-hexadecafluorononyl), tri (2,2,2-trifluoroethyl) phosphate, tri (2,2 , 3,3,3-pentafluoropropyl), triphosphate (1H, 1H-perfluorobutyl), triphosphate (1H, 1H-perfluoropentyl), triphosphate (1H, 1H) Perfluoroheptyl), tri (1H, 1H-perfluorononyl) phosphate, tri (1,1-difluoroethyl) phosphate, tri (1,1,2,2-tetrafluoropropyl) phosphate alone Alternatively, a mixture of two or more thereof can be exemplified, but the invention is not limited to these. Among these, as the trifluoroalkyl phosphate compound, tri (2,2,3,3-tetrafluoropropyl) phosphate or tri (2,2,2-trifluoroethyl) phosphate is preferable, and phosphoric acid Tri (2,2,3,3-tetrafluoropropyl) is more preferred.

前記フッ素化リン酸エステル化合物が前記非水電解質に含まれる量は、特に限定されるものではないが、電池の基本性能を備えつつサイクル特性をより優れたものにし得るという点で、5〜50体積%であることが好ましく、5〜45体積%であることがより好ましく、10〜35体積%であることがさらに好ましく、10〜30体積%であることが最も好ましい。   The amount of the fluorinated phosphate compound contained in the non-aqueous electrolyte is not particularly limited, but it is 5 to 50 in that the cycle characteristics can be further improved while providing the basic performance of the battery. It is preferably volume%, more preferably 5 to 45 volume%, still more preferably 10 to 35 volume%, and most preferably 10 to 30 volume%.

前記非水電解質に含有されるフッ素化リン酸エステル化合物以外の非水溶媒、及び電解質塩としては、非水電解質二次電池等で一般的に用いられているものが採用される。   As the nonaqueous solvent other than the fluorinated phosphate ester compound and the electrolyte salt contained in the nonaqueous electrolyte, those generally used in nonaqueous electrolyte secondary batteries and the like are employed.

前記非水溶媒としては、特に限定されるものではなく、一般的に用いられているものを採用することができる。該非水溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、クロロエチレンカーボネート等の環状炭酸エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類;ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;ギ酸メチル、酢酸メチル、酪酸メチル等の鎖状エステル類;テトラヒドロフランまたはその誘導体;1,3−ジオキサン、1,4−ジオキサン、1,2−ジメトキシエタン、1,4−ジブトキシエタン、メチルジグライム等のエーテル類;アセトニトリル、ベンゾニトリル等のニトリル類;ジオキソランまたはその誘導体;エチレンスルフィド、スルホラン、スルトンまたはその誘導体等の単独物、又は、それら2種以上の混合物等を挙げることができる。   The non-aqueous solvent is not particularly limited, and those generally used can be employed. Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, and chloroethylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; dimethyl carbonate, diethyl carbonate, Chain carbonates such as ethyl methyl carbonate; chain esters such as methyl formate, methyl acetate and methyl butyrate; tetrahydrofuran or derivatives thereof; 1,3-dioxane, 1,4-dioxane, 1,2-dimethoxyethane, 1 Ethers such as 1,4-dibutoxyethane and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxolane or derivatives thereof; ethylene sulfide, sulfolane, sultone or derivatives thereof A single substance or a mixture of two or more thereof can be exemplified.

前記電解質塩としては、例えば、LiClO4、LiBF4、LiAsF6、LiPF6、LiCF3SO3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、LiSCN、LiBr、LiI、Li2SO4、Li210Cl10、NaClO4、NaI、NaSCN、NaBr、KClO4、KSCN等のイオン性化合物が挙げられ、これらのイオン性化合物の単独物、又は2種類以上の混合物が挙げられる。 Examples of the electrolyte salt include LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 , LiN (SO 2 CF 3 ) ionic compounds such as (SO 2 C 4 F 9 ), LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , NaClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN, etc. These ionic compounds may be used alone or as a mixture of two or more.

前記非水電解質における前記電解質塩の濃度としては、優れた電池特性を有する非水電解質電池を確実に得るために、0.5〜5.0mol/lが好ましく、さらに好ましくは、1.0〜2.5mol/lである。   The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.5 to 5.0 mol / l, more preferably 1.0 to 1.0 in order to reliably obtain a non-aqueous electrolyte battery having excellent battery characteristics. 2.5 mol / l.

前記正極は、該正極を構成している正極材料として、Li含有ポリアニオン型リン酸化合物とα−NaFeO2型結晶構造を有するリチウム遷移金属酸化物とを含有する。また、該正極は、電子伝導性を有する集電体を含有し得る。 The positive electrode contains, as a positive electrode material constituting the positive electrode, a Li-containing polyanionic phosphate compound and a lithium transition metal oxide having an α-NaFeO 2 type crystal structure. In addition, the positive electrode may contain a current collector having electron conductivity.

前記Li含有ポリアニオン型リン酸化合物としては、例えば、一般式LiMPO4(Mは、Fe、Mn、Co、Ni等の1種又は2種以上の遷移金属元素)で表されるものが挙げられ、具体的には、リン酸マンガンリチウム化合物(LiMnPO4)、リン酸鉄リチウム化合物(LiFePO4)などが挙げられる。ここで、前記Li含有ポリアニオン型リン酸化合物には、前記遷移金属の他、Mg、Al等の金属元素が微量含まれていてもよい。また、PO4の一部がBO3、SiO4等で置換されていてもよい。該Li含有ポリアニオン型リン酸化合物としては、電子伝導性が高く、高率放電特性に優れるという点で、リン酸鉄リチウム化合物が好ましい。 Examples of the Li-containing polyanionic phosphate compound include those represented by the general formula LiMPO 4 (M is one or more transition metal elements such as Fe, Mn, Co, Ni). Specific examples include lithium manganese phosphate compounds (LiMnPO 4 ) and lithium iron phosphate compounds (LiFePO 4 ). Here, the Li-containing polyanionic phosphate compound may contain a trace amount of metal elements such as Mg and Al in addition to the transition metal. Further, a part of PO 4 may be substituted with BO 3 , SiO 4 or the like. The Li-containing polyanionic phosphate compound is preferably a lithium iron phosphate compound from the viewpoint of high electron conductivity and excellent high rate discharge characteristics.

前記リン酸鉄リチウム化合物は、実質的に化学組成が LiFePO4 で表されるものであり、オリビン型結晶構造を有するものである。 The lithium iron phosphate compound has a chemical composition substantially represented by LiFePO 4 and has an olivine type crystal structure.

前記リン酸鉄リチウム化合物の化学組成は、LiFePO4 のみに限られるものではなく、上記組成式における各元素の係数は変動し得る。具体的には、前記リン酸鉄リチウム化合物の化学組成は、Li:P:Fe=0.85〜1.10:1:0.95〜1.05の範囲となり得る。 The chemical composition of the lithium iron phosphate compound is not limited to LiFePO 4, and the coefficient of each element in the composition formula can vary. Specifically, the chemical composition of the lithium iron phosphate compound may be in the range of Li: P: Fe = 0.85 to 1.10: 1: 0.95 to 1.05.

前記リン酸鉄リチウム化合物などの前記Li含有ポリアニオン型リン酸化合物は、通常、粒子状をなしている。該粒子の粒径は、粒度分布測定によって求められるD50の値が、通常、3μm〜30μmであり、正極材料の電子伝導性をより向上させ得るという点で、好ましくは、D50の値が3μm〜15μmであり、より好ましくは、D50の値が10μm〜15μmである。
なお、粒度分布測定によって求められるD50の値は、試料と界面活性剤とを十分に混練したのちに、イオン交換水を加えて超音波で分散させ、レーザー回折・散乱式の粒度分布測定装置(SALD−2000J、島津製作所社製)を用いて20℃において測定して得られるD50の値である。
The Li-containing polyanionic phosphate compound such as the lithium iron phosphate compound is usually in the form of particles. Particles of particle size, the value of D 50 obtained by particle size distribution measurement, typically, a 3Myuemu~30myuemu, in that they may more improve the electron conductivity of the positive electrode material, preferably, the value of D 50 a 3Myuemu~15myuemu, more preferably, the value of D 50 is 10Myuemu~15myuemu.
The D 50 value obtained by the particle size distribution measurement is determined by a laser diffraction / scattering type particle size distribution measuring apparatus after the sample and the surfactant are sufficiently kneaded and then ion-exchanged water is added and dispersed with ultrasonic waves. It is the value of D 50 obtained by measurement at 20 ° C. using (SALD-2000J, manufactured by Shimadzu Corporation).

前記α−NaFeO2型結晶構造を有するリチウム遷移金属酸化物は、リチウムと遷移金属とを含む複合酸化物であり、詳しくは、化学式 Lip[LiqNirMnsCot]O2(q+r+s+t=1)で表されるものである。ここで、[ ]内はα−NaFeO2型結晶構造における遷移金属サイトに存在する原子を表す。pの値は充放電深度によって変動するが、完全放電状態に対応する合成直後のpの値は1.0〜1.2が好ましい。なお、 Lip[LiqNirMnsCot]O2においてq=0であるとき、|r−s|≦0.05であるものが熱的安定性及び充放電サイクル性能に優れる点で好ましい。また、q≠0であるとき、q=x/3、r=y/2、s=(2x/3)+(y/2)、t=1−x−y、x≧0、y≧0及びx+y≦1を同時に満たすものが比較的大きな放電容量を得られる点で好ましく、1/3<x<2/3であるものがより好ましい。 The lithium transition metal oxide having the α-NaFeO 2 type crystal structure is a composite oxide containing lithium and a transition metal. Specifically, the chemical formula Li p [Li q Ni r Mn s Co t ] O 2 (q + r + s + t = 1). Here, the [] represents the atoms present in the transition metal sites in type crystal structure alpha-NaFeO. Although the value of p varies depending on the charge / discharge depth, the value of p immediately after the synthesis corresponding to the complete discharge state is preferably 1.0 to 1.2. In addition, when q = 0 in Li p [Li q Ni r Mn s Co t ] O 2 , a material satisfying | r−s | ≦ 0.05 is excellent in thermal stability and charge / discharge cycle performance. preferable. When q ≠ 0, q = x / 3, r = y / 2, s = (2x / 3) + (y / 2), t = 1−xy, x ≧ 0, y ≧ 0 And satisfying x + y ≦ 1 at the same time are preferable in that a relatively large discharge capacity can be obtained, and those satisfying 1/3 <x <2/3 are more preferable.

具体的には、前記リチウム遷移金属酸化物としては、化学式 LiNi1/3Mn1/3Co1/32、LiNi1/6Mn1/6Co2/32 で表されるものなどが挙げられる。 Specifically, as the lithium transition metal oxide, those represented by the chemical formulas LiNi 1/3 Mn 1/3 Co 1/3 O 2 , LiNi 1/6 Mn 1/6 Co 2/3 O 2 , etc. Is mentioned.

また、前記リチウム遷移金属酸化物は、α−NaFeO2型結晶構造、即ち、層状岩塩型の結晶構造を有するものである。前記リチウム遷移金属酸化物がα−NaFeO2型結晶構造を有することは、一般的な粉末X線回折によって得られるX線回折パターンによって認識できる。 The lithium transition metal oxide has an α-NaFeO 2 type crystal structure, that is, a layered rock salt type crystal structure. It can be recognized from the X-ray diffraction pattern obtained by general powder X-ray diffraction that the lithium transition metal oxide has an α-NaFeO 2 type crystal structure.

前記リチウム遷移金属酸化物は、通常、粒子状をなしている。該粒子の粒径は、粒度分布測定によって求められるD50の値が、通常、3μm〜30μmであり、正極材料の電子伝導性をより向上させ得るという点で、好ましくは、D50の値が3μm〜15μmであり、より好ましくは、D50の値が5μm〜10μmである。
なお、前記リチウム遷移金属酸化物において、粒度分布測定によって求められるD50の値は、上記前記Li含有ポリアニオン型リン酸化合物のD50の値と同様の方法で測定される。
The lithium transition metal oxide is usually in the form of particles. Particles of particle size, the value of D 50 obtained by particle size distribution measurement, typically, a 3Myuemu~30myuemu, in that they may more improve the electron conductivity of the positive electrode material, preferably, the value of D 50 a 3Myuemu~15myuemu, more preferably, the value of D 50 is 5 m to 10 m.
Incidentally, in the lithium transition metal oxide, the value of D 50 obtained by particle size distribution measurement is determined by the value a manner similar to D 50 of the said Li-containing polyanionic phosphate compound.

前記リン酸鉄リチウム化合物などのLi含有ポリアニオン型リン酸化合物と前記リチウム遷移金属酸化物との量比は、前記Li含有ポリアニオン型リン酸化合物に対して前記リチウム遷移金属酸化物が、質量で0.25〜9倍であることが好ましく、1〜9倍であることがより好ましく、3〜9倍であることがさらに好ましく、4〜9倍であることが最も好ましい。斯かる構成により、作動電圧がより高くなり得るという利点がある。   The amount ratio of the Li-containing polyanionic phosphate compound such as the lithium iron phosphate compound and the lithium transition metal oxide is such that the lithium transition metal oxide is 0 by mass with respect to the Li-containing polyanionic phosphate compound. It is preferably 25 to 9 times, more preferably 1 to 9 times, still more preferably 3 to 9 times, and most preferably 4 to 9 times. Such a configuration has the advantage that the operating voltage can be higher.

前記正極に用いられる集電体の材質としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等が挙げられる。
該集電体の形状については、シート状、ネット状等が挙げられる。また、該集電体の厚さは特に限定されないが、通常、1〜500μmのものが採用される。
Examples of the material of the current collector used for the positive electrode include aluminum, titanium, stainless steel, nickel, calcined carbon, a conductive polymer, and conductive glass.
Examples of the shape of the current collector include a sheet shape and a net shape. The thickness of the current collector is not particularly limited, but usually 1 to 500 μm is employed.

前記負極は、例えば、リチウム金属、リチウム合金(リチウム―アルミニウム、リチウム―鉛、リチウム―錫、リチウム―アルミニウム―錫、リチウム―ガリウム、およびウッド合金等のリチウム金属含有合金)の他、リチウムを吸蔵・放出可能な合金、炭素材料(例えばグラファイト、ハードカーボン、低温焼成炭素、非晶質カーボン等)、金属酸化物、リチウム金属酸化物(Li4Ti512等)、ポリリン酸化合物等の負極材料を含み得る。また、該負極は、電子伝導性を有する集電体を含有し得る。 Examples of the negative electrode include lithium metal and lithium alloys (lithium metal-containing alloys such as lithium-aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys) and lithium.・ Dischargeable alloys, carbon materials (eg, graphite, hard carbon, low-temperature fired carbon, amorphous carbon, etc.), metal oxides, lithium metal oxides (Li 4 Ti 5 O 12 etc.), negative electrodes such as polyphosphate compounds Material may be included. The negative electrode may contain a current collector having electronic conductivity.

前記負極材料は、平均粒子径100μm以下の粒子で構成されていることが好ましい。該粒子を所定の大きさにするためには、粉砕機や分級機が用いられ得る。   The negative electrode material is preferably composed of particles having an average particle diameter of 100 μm or less. In order to make the particles have a predetermined size, a pulverizer or a classifier can be used.

前記負極に用いられる集電体の材質としては、銅、ニッケル、鉄、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス等が挙げられる。
該集電体の形状については、シート状、ネット状等が挙げられる。また、該集電体の厚さは特に限定されないが、通常、1〜500μmのものが採用される。
Examples of the material of the current collector used for the negative electrode include copper, nickel, iron, stainless steel, titanium, aluminum, baked carbon, conductive polymer, and conductive glass.
Examples of the shape of the current collector include a sheet shape and a net shape. The thickness of the current collector is not particularly limited, but usually 1 to 500 μm is employed.

前記正極および前記負極には、上述した正極材料、負極材料の他に、導電剤、結着剤、増粘剤、フィラー等が、他の構成成分として含有されていてもよい。   In addition to the positive electrode material and the negative electrode material described above, the positive electrode and the negative electrode may contain a conductive agent, a binder, a thickener, a filler, and the like as other components.

これら他の構成成分は、通常、物理的に略均一に混合できる混合方法で混合されてなるものである。該混合方法としては、V型混合機、S型混合機、擂かい機、ボールミル、遊星ボールミルなどの粉体混合機を乾式又は湿式で混合する混合方法が採用され得る。   These other components are usually mixed by a mixing method that can be physically and substantially uniformly mixed. As the mixing method, a mixing method in which a powder mixer such as a V-type mixer, an S-type mixer, a grinder, a ball mill, a planetary ball mill, or the like is mixed dry or wet may be employed.

前記導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば限定されないが、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛等)、人造黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金等)粉、金属繊維、導電性セラミックス材料等の導電性材料の1種、又はそれらの混合物が挙げられる。   The conductive agent is not limited as long as it is an electron conductive material that does not adversely affect battery performance. For example, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black , Ketjen black, carbon whisker, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) powder, metal fiber, one type of conductive material such as conductive ceramic material, or a mixture thereof.

前記結着剤としては、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、ポリエチレン、ポリプロピレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンターポリマー(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のゴム弾性を有するポリマーの1種、又は2種以上の混合物が挙げられる。   Examples of the binder include thermoplastic resins such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyethylene, and polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, and styrene butadiene. One type of a polymer having rubber elasticity such as rubber (SBR) or fluoro rubber, or a mixture of two or more types may be mentioned.

前記増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース等の多糖類等の1種、又は2種以上の混合物が挙げられる。また、多糖類のようにリチウムと反応する官能基を有する増粘剤は、例えばメチル化するなどしてその官能基を失活させておくことが好ましい。   As said thickener, 1 type, such as polysaccharides, such as carboxymethylcellulose and methylcellulose, or 2 or more types of mixtures is mentioned, for example. Moreover, it is preferable that the thickener which has a functional group which reacts with lithium like a polysaccharide deactivates the functional group, for example by methylating.

前記フィラーとしては、電池性能に悪影響を及ぼさない材料であれば特に限定されず、例えば、ポリプロピレン、ポリエチレン等のオレフィン系ポリマー、無定形シリカ、アルミナ、ゼオライト、ガラス等が挙げられる。   The filler is not particularly limited as long as it does not adversely affect battery performance, and examples thereof include olefin polymers such as polypropylene and polyethylene, amorphous silica, alumina, zeolite, and glass.

前記セパレータとしては、優れたレート特性を示す多孔膜や不織布等が単独で用いられたもの、又は併用されているものが好ましい。   As the separator, those in which a porous film or a nonwoven fabric exhibiting excellent rate characteristics are used alone or in combination are preferable.

前記セパレータの材料としては、例えば、ポリエチレン、ポリプロピレン等に代表されるポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート等に代表されるポリエステル系樹脂、ポリフッ化ビニリデン、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−パーフルオロビニルエーテル共重合体、フッ化ビニリデン−テトラフルオロエチレン共重合体、フッ化ビニリデン−トリフルオロエチレン共重合体、フッ化ビニリデン−フルオロエチレン共重合体、フッ化ビニリデン−ヘキサフルオロアセトン共重合体、フッ化ビニリデン−エチレン共重合体、フッ化ビニリデン−プロピレン共重合体、フッ化ビニリデン−トリフルオロプロピレン共重合体、フッ化ビニリデン−テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−エチレン−テトラフルオロエチレン共重合体等を挙げることができる。   Examples of the material of the separator include polyolefin resins typified by polyethylene and polypropylene, polyester resins typified by polyethylene terephthalate and polybutylene terephthalate, polyvinylidene fluoride, and vinylidene fluoride-hexafluoropropylene copolymer. , Vinylidene fluoride-perfluorovinyl ether copolymer, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, vinylidene fluoride-fluoroethylene copolymer, vinylidene fluoride-hexafluoro Acetone copolymer, vinylidene fluoride-ethylene copolymer, vinylidene fluoride-propylene copolymer, vinylidene fluoride-trifluoropropylene copolymer, vinylidene fluoride-tetrafluoro Styrene - hexafluoropropylene copolymer, vinylidene fluoride - ethylene - can be mentioned tetrafluoroethylene copolymer.

前記外装体の材料としては、例えば、ニッケルメッキした鉄やステンレススチール、アルミニウム、金属樹脂複合フィルム、ガラス等が挙げられる。   Examples of the material of the exterior body include nickel-plated iron, stainless steel, aluminum, a metal resin composite film, and glass.

本実施形態の非水電解質二次電池は、従来公知の一般的な方法によって製造できる。例えば、非水電解質電池用セパレータと正極と負極とを積層する前又は積層した後に、前記非水電解質を注液し、最終的に、外装材で封止することによって製造できる。   The nonaqueous electrolyte secondary battery of this embodiment can be manufactured by a conventionally known general method. For example, it can be manufactured by injecting the nonaqueous electrolyte before or after laminating the separator for the nonaqueous electrolyte battery, the positive electrode and the negative electrode, and finally sealing with an exterior material.

本実施形態の非水電解質二次電池は、上記例示の通りであるが、本発明は、上記例示の非水電解質二次電池に限定されるものではない。
即ち、一般的な非水電解質二次電池において用いられる種々の態様を、本発明の効果を損ねない範囲において、採用することができる。
The non-aqueous electrolyte secondary battery of this embodiment is as illustrated above, but the present invention is not limited to the non-aqueous electrolyte secondary battery illustrated above.
That is, various modes used in a general nonaqueous electrolyte secondary battery can be adopted within a range that does not impair the effects of the present invention.

次に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these.

以下に示す方法により、非水電解質二次電池を製造した。   A nonaqueous electrolyte secondary battery was produced by the method described below.

(実施例1)
<正極の作製>
LiNi1/3Mn1/3Co1/32 79.2質量%(D50=10μm)
LiFePO4 8.8質量%(D50=11μm)
カーボン・ナノファイバー(気相法炭素繊維 商品名「VGCF」昭和電工社製)
2質量%
アセチレンブラック 5質量%
ポリフッ化ビニリデン(PVDF) 5質量%
がN−メチル−2−ピロリドン溶液中で分散しているペーストを調製した。なお、LiNi1/3Mn1/3Co1/32については、X線回折パターンによってα−NaFeO2型結晶構造を有することが確認された。
このペーストを集電体としての厚さ15μmのアルミニウム箔上に塗布し、つぎに、130℃で乾燥することにより、N−メチル−2−ピロリドンを蒸発させた。
この塗布及び乾燥の操作をアルミニウム箔の両面におこない、さらに、両面をロールプレスで圧縮成型することにより正極を作製した。
Example 1
<Preparation of positive electrode>
LiNi 1/3 Mn 1/3 Co 1/3 O 2 79.2% by mass (D 50 = 10 μm)
LiFePO 4 8.8% by mass (D 50 = 11 μm)
Carbon nanofiber (gas phase carbon fiber, trade name “VGCF”, manufactured by Showa Denko KK)
2% by mass
Acetylene black 5% by mass
Polyvinylidene fluoride (PVDF) 5% by mass
Was prepared in a N-methyl-2-pyrrolidone solution. Note that LiNi 1/3 Mn 1/3 Co 1/3 O 2 was confirmed to have an α-NaFeO 2 type crystal structure by an X-ray diffraction pattern.
This paste was applied onto a 15 μm thick aluminum foil as a current collector, and then dried at 130 ° C. to evaporate N-methyl-2-pyrrolidone.
This application and drying operation was performed on both sides of the aluminum foil, and further, both sides were compression molded by a roll press to produce a positive electrode.

<負極の作製>
グラファイト 94質量%
ポリフッ化ビニリデン(PVDF) 6質量%
がN−メチル−2−ピロリドン溶液中で分散しているペーストを調製した。
このペーストを厚さ10μmの銅箔上に塗布し、つぎに、150℃で乾燥することにより、N−メチル−2−ピロリドンを蒸発させた。
この塗布及び乾燥の操作を銅箔の両面におこない、さらに、両面をロールプレスで圧縮成型することにより負極を作製した。
<Production of negative electrode>
94% by mass of graphite
Polyvinylidene fluoride (PVDF) 6% by mass
Was prepared in a N-methyl-2-pyrrolidone solution.
This paste was applied on a copper foil having a thickness of 10 μm, and then dried at 150 ° C. to evaporate N-methyl-2-pyrrolidone.
This application and drying operations were performed on both sides of the copper foil, and further, both sides were compression-molded with a roll press to produce a negative electrode.

<セパレータ>
セパレータとして、厚さ27μmのポリエチレン製微多孔膜を用いた。
<Separator>
As the separator, a polyethylene microporous film having a thickness of 27 μm was used.

<非水電解質の調製>
エチレンカーボネート 20.3(体積比)
ジメチルカーボネート 23.7(体積比)
エチルメチルカーボネート 23.9(体積比)
リン酸トリ(2,2,3,3−テトラフルオロプロピル)(TFPP)
30.0(体積比)
を上記の割合で混合した混合溶媒1リットルに、ビニレンカーボネートを2質量%となるように混合し、さらに1モルのLiPF6を溶解させることにより非水電解質を調製した。この電解質を電解質(a1)とした。
<Preparation of non-aqueous electrolyte>
Ethylene carbonate 20.3 (volume ratio)
Dimethyl carbonate 23.7 (volume ratio)
Ethyl methyl carbonate 23.9 (volume ratio)
Tri (2,2,3,3-tetrafluoropropyl) phosphate (TFPP)
30.0 (volume ratio)
A non-aqueous electrolyte was prepared by mixing 1 liter of a mixed solvent in which the above-mentioned ratio was mixed so that vinylene carbonate was 2% by mass and further dissolving 1 mol of LiPF 6 . This electrolyte was designated as an electrolyte (a1).

<二次電池の作製>
セパレータが上記の正極および負極の間に位置するようにして上記の正極、負極、及びセパレータを巻回したのち、アルミニウム製の角形電槽缶(高さ49.3mm、幅33.7mm、厚みが5.17mm)に収納した。この容器内部に非水電解質(a1)を注入したのちに封口して、電池を製造した。
<Production of secondary battery>
After winding the positive electrode, the negative electrode, and the separator so that the separator is positioned between the positive electrode and the negative electrode, a rectangular battery case made of aluminum (height 49.3 mm, width 33.7 mm, thickness is 5.17 mm). After the nonaqueous electrolyte (a1) was injected into the container, the battery was sealed.

(実施例2)
非水電解として下記の電解質(a2)を用いた点以外は、実施例1と同様にして電池を製造した。即ち、非水電解質としては、下記の組成のものを用いた。
エチレンカーボネート 20.3(体積比)
ジメチルカーボネート 23.7(体積比)
エチルメチルカーボネート 23.9(体積比)
リン酸トリ(2,2,2−トリフルオロエチル)(TFEP)
30.0(体積比)
(Example 2)
A battery was produced in the same manner as in Example 1 except that the following electrolyte (a2) was used as nonaqueous electrolysis. That is, the following composition was used as the non-aqueous electrolyte.
Ethylene carbonate 20.3 (volume ratio)
Dimethyl carbonate 23.7 (volume ratio)
Ethyl methyl carbonate 23.9 (volume ratio)
Tri (2,2,2-trifluoroethyl) phosphate (TFEP)
30.0 (volume ratio)

(実施例3)
非水電解として下記の電解質(a3)を用いた点以外は、実施例1と同様にして電池を製造した。即ち、非水電解質としては、下記の組成のものを用いた。
エチレンカーボネート 26.3(体積比)
ジメチルカーボネート 30.7(体積比)
エチルメチルカーボネート 31.0(体積比)
リン酸トリ(2,2,3,3−テトラフルオロプロピル)(TFPP)
10.0(体積比)
(Example 3)
A battery was produced in the same manner as in Example 1 except that the following electrolyte (a3) was used as nonaqueous electrolysis. That is, the following composition was used as the non-aqueous electrolyte.
Ethylene carbonate 26.3 (volume ratio)
Dimethyl carbonate 30.7 (volume ratio)
Ethyl methyl carbonate 31.0 (volume ratio)
Tri (2,2,3,3-tetrafluoropropyl) phosphate (TFPP)
10.0 (volume ratio)

(実施例4)
非水電解として下記の電解質(a4)を用いた点以外は、実施例1と同様にして電池を製造した。即ち、非水電解質としては、下記の組成のものを用いた。
エチレンカーボネート 14.3(体積比)
ジメチルカーボネート 16.7(体積比)
エチルメチルカーボネート 16.8(体積比)
リン酸トリ(2,2,3,3−テトラフルオロプロピル)(TFPP)
50.0(体積比)
Example 4
A battery was produced in the same manner as in Example 1 except that the following electrolyte (a4) was used as nonaqueous electrolysis. That is, the following composition was used as the non-aqueous electrolyte.
Ethylene carbonate 14.3 (volume ratio)
Dimethyl carbonate 16.7 (volume ratio)
Ethyl methyl carbonate 16.8 (volume ratio)
Tri (2,2,3,3-tetrafluoropropyl) phosphate (TFPP)
50.0 (volume ratio)

(実施例5)
正極の作製において、下記の組成物がN−メチル−2−ピロリドン溶液中で分散しているペーストを調製した点以外は実施例1と同様にして電池を製造した。
LiNi1/3Mn1/3Co1/32 70.4質量%(D50=10μm)
LiFePO4 17.6質量%(D50=11μm)
カーボン・ナノファイバー(気相炭素繊維 商品名「VGCF」昭和電工社製)
2質量%
アセチレンブラック 5質量%
ポリフッ化ビニリデン(PVDF) 5質量%
(Example 5)
A battery was manufactured in the same manner as in Example 1 except that in preparing the positive electrode, a paste in which the following composition was dispersed in an N-methyl-2-pyrrolidone solution was prepared.
LiNi 1/3 Mn 1/3 Co 1/3 O 2 70.4% by mass (D 50 = 10 μm)
LiFePO 4 17.6% by mass (D 50 = 11 μm)
Carbon nanofiber (gas phase carbon fiber, trade name “VGCF”, Showa Denko)
2% by mass
Acetylene black 5% by mass
Polyvinylidene fluoride (PVDF) 5% by mass

(実施例6)
正極の作製において、下記の組成物がN−メチル−2−ピロリドン溶液中で分散しているペーストを調製した点以外は実施例1と同様にして電池を製造した。なお、LiNi1/6Mn1/6Co2/32については、X線回折パターンによってα−NaFeO2型結晶構造を有することが確認された。
LiNi1/6Mn1/6Co2/32 70.4質量%(D50=5μm)
LiFePO4 17.6質量%(D50=11μm)
カーボン・ナノファイバー(気相炭素繊維 商品名「VGCF」昭和電工社製)
2質量%
アセチレンブラック 5質量%
ポリフッ化ビニリデン(PVDF) 5質量%
(Example 6)
A battery was manufactured in the same manner as in Example 1 except that in preparing the positive electrode, a paste in which the following composition was dispersed in an N-methyl-2-pyrrolidone solution was prepared. Note that LiNi 1/6 Mn 1/6 Co 2/3 O 2 was confirmed to have an α-NaFeO 2 type crystal structure by an X-ray diffraction pattern.
LiNi 1/6 Mn 1/6 Co 2/3 O 2 70.4% by mass (D 50 = 5 μm)
LiFePO 4 17.6% by mass (D 50 = 11 μm)
Carbon nanofiber (gas phase carbon fiber, trade name “VGCF”, Showa Denko)
2% by mass
Acetylene black 5% by mass
Polyvinylidene fluoride (PVDF) 5% by mass

(比較例1)
非水電解質として下記の電解質(a5)を用いた点以外は、実施例1と同様にして電池を製造した。即ち、非水電解質としては、
エチレンカーボネート 20.3(体積比)
ジメチルカーボネート 23.7(体積比)
エチルメチルカーボネート 23.9(体積比)
炭酸ジ(2,2,3,3−テトラフルオロプロピル)(TFPC)
30.0(体積比)
を上記の割合で混合した混合溶媒1リットルに、ビニレンカーボネートを2質量%となるように混合し、さらに1モルのLiPF6を溶解させたものを用いた。
(Comparative Example 1)
A battery was produced in the same manner as in Example 1 except that the following electrolyte (a5) was used as the nonaqueous electrolyte. That is, as a non-aqueous electrolyte,
Ethylene carbonate 20.3 (volume ratio)
Dimethyl carbonate 23.7 (volume ratio)
Ethyl methyl carbonate 23.9 (volume ratio)
Di (2,2,3,3-tetrafluoropropyl) carbonate (TFPC)
30.0 (volume ratio)
Into 1 liter of a mixed solvent mixed with the above ratio, vinylene carbonate was mixed to 2% by mass, and 1 mol of LiPF 6 was further dissolved.

(比較例2)
非水電解質として下記の電解質(a6)を用いた点以外は、実施例1と同様にして電池を製造した。即ち、非水電解質としては、
エチレンカーボネート 20.3(体積比)
ジメチルカーボネート 23.7(体積比)
エチルメチルカーボネート 23.9(体積比)
炭酸ジ(2,2,2−トリフルオロエチル)(TFEC)
30.0(体積比)
を上記の割合で混合した混合溶媒1リットルに、ビニレンカーボネートを2質量%となるように混合し、さらに1モルのLiPF6を溶解させたものを用いた。
(Comparative Example 2)
A battery was produced in the same manner as in Example 1 except that the following electrolyte (a6) was used as the nonaqueous electrolyte. That is, as a non-aqueous electrolyte,
Ethylene carbonate 20.3 (volume ratio)
Dimethyl carbonate 23.7 (volume ratio)
Ethyl methyl carbonate 23.9 (volume ratio)
Di (2,2,2-trifluoroethyl) carbonate (TFEC)
30.0 (volume ratio)
A mixture of 1 liter of a mixed solvent in which the above-mentioned ratio was mixed with vinylene carbonate so as to be 2% by mass and further dissolved 1 mol of LiPF 6 was used.

(比較例3)
非水電解質として下記の電解質(a7)を用いた点以外は、実施例1と同様にして電池を製造した。即ち、非水電解質としては、
エチレンカーボネート 20.3(体積比)
ジメチルカーボネート 23.7(体積比)
エチルメチルカーボネート 23.9(体積比)
(2,2,3,3,3−ペンタフルオロプロピル−1,1,2,2−テトラ
フルオロエチル)エーテル(FPFEE)
30.0(体積比)
を上記の割合で混合した混合溶媒1リットルに、ビニレンカーボネートを2質量%となるように混合し、さらに1モルのLiPF6を溶解させたものを用いた。
(Comparative Example 3)
A battery was produced in the same manner as in Example 1 except that the following electrolyte (a7) was used as the nonaqueous electrolyte. That is, as a non-aqueous electrolyte,
Ethylene carbonate 20.3 (volume ratio)
Dimethyl carbonate 23.7 (volume ratio)
Ethyl methyl carbonate 23.9 (volume ratio)
(2,2,3,3,3-pentafluoropropyl-1,1,2,2-tetrafluoroethyl) ether (FPFEE)
30.0 (volume ratio)
Into 1 liter of a mixed solvent mixed with the above ratio, vinylene carbonate was mixed to 2% by mass, and 1 mol of LiPF 6 was further dissolved.

(比較例4)
非水電解質として下記の電解質(a8)を用いた点以外は、実施例1と同様にして電池を製造した。即ち、非水電解質としては、
エチレンカーボネート 29.4(体積比)
ジメチルカーボネート 34.3(体積比)
エチルメチルカーボネート 34.5(体積比)
を上記の割合で混合した混合溶媒1リットルに、ビニレンカーボネートを2質量%となるように混合し、さらに1モルのLiPF6を溶解させたものを用いた。
(Comparative Example 4)
A battery was produced in the same manner as in Example 1 except that the following electrolyte (a8) was used as the nonaqueous electrolyte. That is, as a non-aqueous electrolyte,
Ethylene carbonate 29.4 (volume ratio)
Dimethyl carbonate 34.3 (volume ratio)
Ethyl methyl carbonate 34.5 (volume ratio)
Into 1 liter of a mixed solvent mixed with the above ratio, vinylene carbonate was mixed to 2% by mass, and 1 mol of LiPF 6 was further dissolved.

(比較例5)
非水電解質として電解質(a1)に代えて電解質(a8)を用いた点、正極の作製において、下記の組成物(実施例5と同様)がN−メチル−2−ピロリドン溶液中で分散しているペーストを調製した点以外は実施例1と同様にして電池を製造した。
LiNi1/3Mn1/3Co1/32 70.4質量%(D50=10μm)
LiFePO4 17.6質量%(D50=11μm)
カーボン・ナノファイバー(気相炭素繊維 商品名「VGCF」昭和電工社製)
2質量%
アセチレンブラック 5質量%
ポリフッ化ビニリデン(PVDF) 5質量%
(Comparative Example 5)
In using the electrolyte (a8) instead of the electrolyte (a1) as the nonaqueous electrolyte, in the production of the positive electrode, the following composition (similar to Example 5) was dispersed in the N-methyl-2-pyrrolidone solution. A battery was manufactured in the same manner as in Example 1 except that the paste was prepared.
LiNi 1/3 Mn 1/3 Co 1/3 O 2 70.4% by mass (D 50 = 10 μm)
LiFePO 4 17.6% by mass (D 50 = 11 μm)
Carbon nanofiber (gas phase carbon fiber, trade name “VGCF”, Showa Denko)
2% by mass
Acetylene black 5% by mass
Polyvinylidene fluoride (PVDF) 5% by mass

(比較例6)
非水電解質として電解質(a1)に代えて電解質(a8)を用いた点、正極の作製において、下記の組成物がN−メチル−2−ピロリドン溶液中で分散しているペースト(実施例6と同様)を調製した点以外は実施例1と同様にして電池を製造した。
LiNi1/6Mn1/6Co2/32 70.4質量%(D50=5μm)
LiFePO4 17.6質量%(D50=11μm)
カーボン・ナノファイバー(気相炭素繊維 商品名「VGCF」昭和電工社製)
2質量%
アセチレンブラック 5質量%
ポリフッ化ビニリデン(PVDF) 5質量%
(Comparative Example 6)
A paste in which the following composition is dispersed in an N-methyl-2-pyrrolidone solution in the production of a positive electrode in that the electrolyte (a8) is used instead of the electrolyte (a1) as a nonaqueous electrolyte (Example 6 and A battery was produced in the same manner as in Example 1 except that the same was prepared.
LiNi 1/6 Mn 1/6 Co 2/3 O 2 70.4% by mass (D 50 = 5 μm)
LiFePO 4 17.6% by mass (D 50 = 11 μm)
Carbon nanofiber (gas phase carbon fiber, trade name “VGCF”, Showa Denko)
2% by mass
Acetylene black 5% by mass
Polyvinylidene fluoride (PVDF) 5% by mass

(比較例7)
正極の作製において、
LiNi1/3Mn1/3Co1/32 90質量%(D50=10μm)
アセチレンブラック 5質量%
ポリフッ化ビニリデン(PVDF) 5質量%
がN−メチル−2−ピロリドン溶液中で分散しているペーストを調製した点以外は、実施例1と同様にして電池を製造した。
(Comparative Example 7)
In making the positive electrode,
LiNi 1/3 Mn 1/3 Co 1/3 O 2 90% by mass (D 50 = 10 μm)
Acetylene black 5% by mass
Polyvinylidene fluoride (PVDF) 5% by mass
A battery was produced in the same manner as in Example 1 except that a paste was prepared in which N was dispersed in an N-methyl-2-pyrrolidone solution.

(比較例8)
非水電解質として電解質(a1)に代えて電解質(a8)を用いた点、正極の作製において、
LiNi1/3Mn1/3Co1/32 90質量%
アセチレンブラック 5質量%
ポリフッ化ビニリデン(PVDF) 5質量%
がN−メチル−2−ピロリドン溶液中で分散しているペーストを調製した点以外は、実施例1と同様にして電池を製造した。
(Comparative Example 8)
In using the electrolyte (a8) instead of the electrolyte (a1) as the nonaqueous electrolyte,
LiNi 1/3 Mn 1/3 Co 1/3 O 2 90% by mass
Acetylene black 5% by mass
Polyvinylidene fluoride (PVDF) 5% by mass
A battery was produced in the same manner as in Example 1 except that a paste was prepared in which N was dispersed in an N-methyl-2-pyrrolidone solution.

(比較例9)
正極の作製において、
LiFePO4 90質量%(D50=11μm)
アセチレンブラック、 5質量%
ポリフッ化ビニリデン(PVDF) 5質量%
がN−メチル−2−ピロリドン溶液中で分散しているペーストを調製した点、セパレータとして厚さ27μmポリエチレン製微多孔膜に代えて、厚さ22μmのポリエチレン製微多孔膜を用いた点、及び、集電体としての厚さ15μmのアルミニウム箔に代えて厚さ20μmのアルミニウム箔を用いた点以外は、実施例1と同様にして電池を製造した。
(Comparative Example 9)
In making the positive electrode,
LiFePO 4 90% by mass (D 50 = 11 μm)
Acetylene black, 5% by mass
Polyvinylidene fluoride (PVDF) 5% by mass
A paste prepared by dispersing in a N-methyl-2-pyrrolidone solution, using a polyethylene microporous film having a thickness of 22 μm instead of a 27 μm polyethylene microporous film as a separator, and A battery was produced in the same manner as in Example 1 except that a 20 μm thick aluminum foil was used instead of the 15 μm thick aluminum foil as the current collector.

(比較例10)
非水電解質として、電解質(a1)に代えて電解質(a8)を用いた点以外は、比較例9と同様にして電池を製造した。
(Comparative Example 10)
A battery was produced in the same manner as in Comparative Example 9, except that the electrolyte (a8) was used instead of the electrolyte (a1) as the nonaqueous electrolyte.

「高温サイクル試験」
製造した各電池について、高温サイクル試験を行った。
実施例及び比較例1〜8の電池においては、高温サイクル試験は、45℃にて、充電電流600mA、充電電圧4.20V、充電時間3.0時間の定電流定電圧充電と、放電電流600mA、終止電圧2.00Vの定電流放電とからなる充放電を50サイクル繰り返した。
比較例9,10の電池においては、高温サイクル試験は、45℃にて、充電電流500mA、充電電圧3.60V、充電時間3.0時間の定電流定電圧充電と、放電電流500mA、終止電圧2.00Vの定電流放電とからなる充放電を50サイクル繰り返した。
そして、各電池について、設計容量に対する25℃での初期放電容量の割合を「設計容量に対する初期容量(%)」として算出した。
また、1サイクル目に対する50サイクル目の放電容量の割合を「容量保持率(%)」として算出した。「容量保持率(%)」は、高い方が電池性能としては好ましい。
また、各電池を25℃まで冷却し、SOC50%において、電池の直流抵抗を測定し、初期(サイクル試験前)に対する50サイクル目の直流抵抗の割合を「直流抵抗増加率」として算出した。
また、1kHzのインピーダンスメータをもちいて、放電後の電池の内部抵抗を測定し、初期(サイクル試験前)に対する50サイクル目の内部抵抗の割合を「1kHz交流抵抗増加率」として算出した。
「直流抵抗増加率」及び「1kHz交流抵抗増加率」は、低い方が電池性能としては好ましい。
"High temperature cycle test"
Each manufactured battery was subjected to a high-temperature cycle test.
In the batteries of Examples and Comparative Examples 1 to 8, the high-temperature cycle test was performed at 45 ° C. with a charging current of 600 mA, a charging voltage of 4.20 V, a charging time of 3.0 hours, and a discharging current of 600 mA The charge / discharge consisting of constant current discharge with a final voltage of 2.00 V was repeated 50 cycles.
In the batteries of Comparative Examples 9 and 10, the high-temperature cycle test was performed at 45 ° C. with a charging current of 500 mA, a charging voltage of 3.60 V, a constant current and constant voltage charging of 3.0 hours, a discharging current of 500 mA, and a termination voltage. Charging / discharging consisting of a constant current discharge of 2.00 V was repeated 50 cycles.
For each battery, the ratio of the initial discharge capacity at 25 ° C. to the design capacity was calculated as “initial capacity (%) with respect to the design capacity”.
In addition, the ratio of the discharge capacity at the 50th cycle to the first cycle was calculated as “capacity holding ratio (%)”. A higher “capacity retention ratio (%)” is preferable as battery performance.
Further, each battery was cooled to 25 ° C., and the direct current resistance of the battery was measured at an SOC of 50%, and the ratio of direct current resistance at the 50th cycle with respect to the initial stage (before the cycle test) was calculated as “DC resistance increase rate”.
Further, the internal resistance of the battery after discharge was measured using a 1 kHz impedance meter, and the ratio of the internal resistance at the 50th cycle relative to the initial stage (before the cycle test) was calculated as “1 kHz AC resistance increase rate”.
A lower “DC resistance increase rate” and “1 kHz AC resistance increase rate” are preferable as battery performance.

また、同様にして150サイクル目まで高温サイクル試験を行った。   Similarly, a high-temperature cycle test was conducted up to the 150th cycle.

また、同様にして500サイクル目まで高温サイクル試験を行った。   Similarly, a high-temperature cycle test was conducted up to the 500th cycle.

初期(サイクル試験前)に対する50サイクル目の評価結果を表1及び表2に示す。   Tables 1 and 2 show the evaluation results of the 50th cycle with respect to the initial stage (before the cycle test).

Figure 2011044245
Figure 2011044245

表1からわかるように、α−NaFeO2型結晶構造を有するリチウム遷移金属酸化物とLiFePO4とを混合した正極材料をもちいた電池において、フッ素化リン酸エステル化合物を添加した電解質(a1)または電解質(a2)を用いた場合に、電解質(a5)、電解質(a6)、電解質(a7)、および電解質(a8)を用いた場合と比較して、容量保持率が高く、電気抵抗(直流および1kHz交流抵抗)の増加抑制効果が大きい。 As can be seen from Table 1, in a battery using a positive electrode material in which a lithium transition metal oxide having an α-NaFeO 2 type crystal structure and LiFePO 4 are mixed, an electrolyte (a1) added with a fluorinated phosphate compound or When the electrolyte (a2) is used, the capacity retention is high compared to the case where the electrolyte (a5), the electrolyte (a6), the electrolyte (a7), and the electrolyte (a8) are used, and the electric resistance (DC and 1kHz AC resistance) increase suppression effect is large.

Figure 2011044245
Figure 2011044245

表2からわかるように、非水電解質にフッ素化リン酸エステルが添加されていることにより、電池の容量保持率を優れたものとできる。また、電池の初期容量が比較的高いものになり得るという点で、フッ素化リン酸エステルの添加割合が50体積%以下であることが好ましい。   As can be seen from Table 2, the addition of the fluorinated phosphate ester to the nonaqueous electrolyte can improve the capacity retention of the battery. Moreover, it is preferable that the addition ratio of a fluorinated phosphate ester is 50 volume% or less at the point that the initial capacity of a battery can become a comparatively high thing.

初期(サイクル試験前)に対する150サイクル目の評価結果を表3に示す。   Table 3 shows the evaluation results at the 150th cycle with respect to the initial stage (before the cycle test).

Figure 2011044245
Figure 2011044245

表3から、α−NaFeO2型結晶構造を有するリチウム遷移金属酸化物または,LiFePO4のいずれかを単独で正極に用いた電池(比較例7〜10)においては、電解質(a1)を用いた場合に、電解質(a8)を用いた場合と比較して容量保持率が低いことがわかる。これに対して、α−NaFeO2型結晶構造を有するリチウム遷移金属酸化物とLiFePO4とを混合した正極材料をもちいた電池(実施例5,6,比較例5,6)においては、電解質(a1)を用いた場合に、電解質(a8)を用いた場合と比較して容量保持率が高いことがわかる。 From Table 3, the electrolyte (a1) was used in the batteries (Comparative Examples 7 to 10) using either the lithium transition metal oxide having an α-NaFeO 2 type crystal structure or LiFePO 4 alone for the positive electrode. In this case, it can be seen that the capacity retention is lower than that in the case of using the electrolyte (a8). On the other hand, in batteries (Examples 5, 6, Comparative Examples 5 and 6) using a positive electrode material in which a lithium transition metal oxide having an α-NaFeO 2 type crystal structure and LiFePO 4 are mixed, the electrolyte ( It can be seen that the capacity retention is higher when a1) is used than when the electrolyte (a8) is used.

初期(サイクル試験前)に対する500サイクル目の評価結果を表4に示す。   Table 4 shows the evaluation results of the 500th cycle with respect to the initial stage (before the cycle test).

Figure 2011044245
Figure 2011044245

表4から,α−NaFeO2型結晶構造を有するリチウム遷移金属酸化物とLiFePO4とを混合した正極材料をもちいた電池においては、α−NaFeO2型結晶構造を有するリチウム遷移金属酸化物、またはLiFePO4のいずれかを単独で正極に用いた電池と比較して、非水電解質にフッ素化リン酸エステル化合物を添加することによる、電気抵抗(直流および1kHz交流抵抗)の増加抑制効果が大きいことがわかる。 From Table 4, in a battery using a positive electrode material in which a lithium transition metal oxide having an α-NaFeO 2 type crystal structure and LiFePO 4 are mixed, a lithium transition metal oxide having an α-NaFeO 2 type crystal structure, or Compared with a battery using any one of LiFePO 4 alone as a positive electrode, the effect of suppressing an increase in electrical resistance (direct current and 1 kHz alternating current resistance) by adding a fluorinated phosphate compound to the non-aqueous electrolyte is greater. I understand.

Claims (4)

Li含有ポリアニオン型リン酸化合物とα−NaFeO2型結晶構造を有するリチウム遷移金属酸化物とを含有する正極と、非水電解質とを備えた非水電解質二次電池であって、
前記非水電解質がフッ素化リン酸エステル化合物を含むことを特徴とする非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode containing a Li-containing polyanionic phosphate compound and a lithium transition metal oxide having an α-NaFeO 2 type crystal structure, and a non-aqueous electrolyte,
The non-aqueous electrolyte secondary battery, wherein the non-aqueous electrolyte contains a fluorinated phosphate compound.
前記フッ素化リン酸エステル化合物がトリフルオロアルキルリン酸エステル化合物であることを特徴とする請求項1記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the fluorinated phosphate ester compound is a trifluoroalkyl phosphate ester compound. 前記Li含有ポリアニオン型リン酸化合物がリン酸鉄リチウム化合物であることを特徴とする請求項1又は2記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the Li-containing polyanionic phosphate compound is a lithium iron phosphate compound. 前記フッ素化リン酸エステル化合物を前記非水電解質に5〜50体積%含むことを特徴とする請求項1〜3のいずれかに記載の非水電解質二次電池。   The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains the fluorinated phosphate ester compound in an amount of 5 to 50% by volume.
JP2009189889A 2009-08-19 2009-08-19 Nonaqueous electrolyte secondary battery Expired - Fee Related JP5263683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009189889A JP5263683B2 (en) 2009-08-19 2009-08-19 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009189889A JP5263683B2 (en) 2009-08-19 2009-08-19 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2011044245A true JP2011044245A (en) 2011-03-03
JP5263683B2 JP5263683B2 (en) 2013-08-14

Family

ID=43831546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009189889A Expired - Fee Related JP5263683B2 (en) 2009-08-19 2009-08-19 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5263683B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113889A (en) * 2009-11-27 2011-06-09 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2012238524A (en) * 2011-05-13 2012-12-06 Tosoh F-Tech Inc METHOD FOR STABILIZING LiPF6, AND NONAQUEOUS ELECTROLYTIC SOLUTION FOR NONAQUEOUS SECONDARY BATTERY
JP2013118069A (en) * 2011-12-02 2013-06-13 Hitachi Maxell Ltd Lithium secondary battery
WO2013090027A1 (en) 2011-12-14 2013-06-20 Dow Global Technologies Llc Lithium battery electrodes containing lithium oxalate
US20130221283A1 (en) * 2011-04-04 2013-08-29 Lg Chem. Ltd. Lithium secondary battery positive electrode material for improving output characteristics and lithium secondary battery including the same
WO2014013858A1 (en) * 2012-07-17 2014-01-23 日本電気株式会社 Lithium secondary battery
JPWO2012077712A1 (en) * 2010-12-07 2014-05-22 日本電気株式会社 Lithium secondary battery
JP2015518250A (en) * 2012-04-26 2015-06-25 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH 1.5-3V lithium battery with overcharge protection
JP2015165503A (en) * 2013-03-26 2015-09-17 株式会社東芝 Nonaqueous electrolyte battery and battery pack
JP6443575B1 (en) * 2018-03-29 2018-12-26 住友大阪セメント株式会社 Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
US10700350B2 (en) 2013-03-26 2020-06-30 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
WO2022209815A1 (en) * 2021-04-01 2022-10-06 株式会社Gsユアサ Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221972A (en) * 2005-02-10 2006-08-24 Sony Corp Electrolyte and battery
JP2006252895A (en) * 2005-03-09 2006-09-21 Sony Corp Battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006221972A (en) * 2005-02-10 2006-08-24 Sony Corp Electrolyte and battery
JP2006252895A (en) * 2005-03-09 2006-09-21 Sony Corp Battery

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011113889A (en) * 2009-11-27 2011-06-09 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JPWO2012077712A1 (en) * 2010-12-07 2014-05-22 日本電気株式会社 Lithium secondary battery
US9287564B2 (en) 2011-04-04 2016-03-15 Lg Chem, Ltd. Lithium secondary battery positive electrode material for improving output characteristics and lithium secondary battery including the same
US20130221283A1 (en) * 2011-04-04 2013-08-29 Lg Chem. Ltd. Lithium secondary battery positive electrode material for improving output characteristics and lithium secondary battery including the same
EP2696402A2 (en) * 2011-04-04 2014-02-12 LG Chem, Ltd. Positive electrode material for a lithium secondary battery for improving output, and lithium secondary battery comprising same
JP2014510997A (en) * 2011-04-04 2014-05-01 エルジー・ケム・リミテッド Positive electrode material for lithium secondary battery for improving output and lithium secondary battery including the same
EP2696402A4 (en) * 2011-04-04 2014-10-08 Lg Chemical Ltd Positive electrode material for a lithium secondary battery for improving output, and lithium secondary battery comprising same
JP2012238524A (en) * 2011-05-13 2012-12-06 Tosoh F-Tech Inc METHOD FOR STABILIZING LiPF6, AND NONAQUEOUS ELECTROLYTIC SOLUTION FOR NONAQUEOUS SECONDARY BATTERY
JP2013118069A (en) * 2011-12-02 2013-06-13 Hitachi Maxell Ltd Lithium secondary battery
WO2013090027A1 (en) 2011-12-14 2013-06-20 Dow Global Technologies Llc Lithium battery electrodes containing lithium oxalate
JP2015518250A (en) * 2012-04-26 2015-06-25 ロックウッド リチウム ゲゼルシャフト ミット ベシュレンクテル ハフツングRockwood Lithium GmbH 1.5-3V lithium battery with overcharge protection
US11145910B2 (en) 2012-04-26 2021-10-12 Albemarle Germany Gmbh 1.5-3 V lithium batteries with overcharge protection
WO2014013858A1 (en) * 2012-07-17 2014-01-23 日本電気株式会社 Lithium secondary battery
JPWO2014013858A1 (en) * 2012-07-17 2016-06-30 日本電気株式会社 Lithium secondary battery
US9935337B2 (en) 2012-07-17 2018-04-03 Nec Corporation Lithium secondary battery
US10700350B2 (en) 2013-03-26 2020-06-30 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
US10700351B2 (en) 2013-03-26 2020-06-30 Kabushiki Kaisha Toshiba Nonaqueous electrolyte battery and battery pack
JP2015165503A (en) * 2013-03-26 2015-09-17 株式会社東芝 Nonaqueous electrolyte battery and battery pack
JP6443575B1 (en) * 2018-03-29 2018-12-26 住友大阪セメント株式会社 Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, lithium ion secondary battery
JP2019175765A (en) * 2018-03-29 2019-10-10 住友大阪セメント株式会社 Electrode material for lithium ion secondary battery, electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2022209815A1 (en) * 2021-04-01 2022-10-06 株式会社Gsユアサ Positive electrode active material for nonaqueous electrolyte power storage elements, positive electrode for nonaqueous electrolyte power storage elements, nonaqueous electrolyte power storage element, power storage unit, and power storage device

Also Published As

Publication number Publication date
JP5263683B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5263683B2 (en) Nonaqueous electrolyte secondary battery
KR102140969B1 (en) Positive electrode active material for nonaqueous electrolyte secondary battery, manufacturing method of same, and nonaqueous electrolyte secondary battery using same
JP5582587B2 (en) Lithium ion secondary battery
JP6264291B2 (en) Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
KR101772754B1 (en) Method for producing positive electrode active material layer for lithium ion battery, and positive electrode active material layer for lithium ion battery
WO2013099263A1 (en) Nonaqueous electrolyte secondary cell
KR20160069458A (en) Negative electrode for rechargeable lithium battery and rechargeable lithium battery
JP5370102B2 (en) Nonaqueous electrolyte secondary battery
JP2007317534A (en) Non-aqueous electrolyte secondary battery
JP5250948B2 (en) Nonaqueous electrolyte secondary battery
JP2013122901A (en) Electrolyte solution for nonaqueous secondary battery, and secondary battery
JP6191602B2 (en) Lithium ion secondary battery
US10749167B2 (en) Lithium ion secondary battery and method of manufacturing the same
JP7432608B2 (en) Positive electrode piece, electrochemical device and electronic device including the positive electrode piece
CN109119629A (en) Nonaqueous electrolytic solution secondary battery
JP6656623B2 (en) Non-aqueous electrolyte for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery
JP2014067490A (en) Nonaqueous electrolyte secondary battery
JP4114918B2 (en) Lithium cobaltate, method for producing the same, and nonaqueous electrolyte secondary battery
JP7432607B2 (en) Positive electrode piece, electrochemical device and electronic device including the positive electrode piece
JP6763144B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries and non-aqueous electrolyte secondary batteries
JP2004284845A (en) Lithium-nickel-copper oxide, production method therefor, and nonaqueous electrolytic secondary battery
JP6839380B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR101651142B1 (en) Lithium secondary battery having improved cycle life
JP2019145322A (en) Lithium ion secondary battery
JP6699268B2 (en) Non-aqueous electrolyte Non-aqueous electrolyte for secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130418

R150 Certificate of patent or registration of utility model

Ref document number: 5263683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees