JP2011041437A - Dew condensation detection system - Google Patents

Dew condensation detection system Download PDF

Info

Publication number
JP2011041437A
JP2011041437A JP2009189177A JP2009189177A JP2011041437A JP 2011041437 A JP2011041437 A JP 2011041437A JP 2009189177 A JP2009189177 A JP 2009189177A JP 2009189177 A JP2009189177 A JP 2009189177A JP 2011041437 A JP2011041437 A JP 2011041437A
Authority
JP
Japan
Prior art keywords
detection
dew condensation
condensation
humidity
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009189177A
Other languages
Japanese (ja)
Inventor
Fumiaki Takeuchi
文章 竹内
Tatsuya Hirose
達也 廣瀬
Toshimasa Hirate
利昌 平手
Takashi Miyabe
崇 宮部
Tokihiro Umemura
時博 梅村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Industrial Products and Systems Corp
Original Assignee
Toshiba Corp
Toshiba Industrial Products Manufacturing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Industrial Products Manufacturing Corp filed Critical Toshiba Corp
Priority to JP2009189177A priority Critical patent/JP2011041437A/en
Publication of JP2011041437A publication Critical patent/JP2011041437A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/40Structural association with built-in electric component, e.g. fuse
    • H01F27/402Association of measuring or protective means

Abstract

<P>PROBLEM TO BE SOLVED: To safely and accurately detect the dew condensation state of the surface of the insulation of electrical equipment. <P>SOLUTION: In a dew condensation state detection system, an infrared temperature sensor 3 contactlessly detecting the temperature of the surface 2a of the insulation of a transformer 2 as the detection object of the dew condensation state is mounted while arranging a simulation dew condensation detector 4 in the same environment as the transformer 2. In the dew condensation state detection system, heat dissipation and heat absorption to the detecting surface 4a of the simulation dew condensation detector 4 for a Peltier element 6 are adjusted so that the temperature of the surface 2a of the insulation of the transformer 2 detected by the infrared temperature sensor 3 and the temperature of the detecting surface 4a of the simulation dew condensation detector 4 detected by a temperature sensor 8 are equalized. The dew condensation state of the surface 2a of the insulation of the transformer 2 is reproduced on the detecting surface 4a of the simulation dew condensation detector 4. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、変圧器や電動機等の電気機器の結露状態を検出するシステムに関する。   The present invention relates to a system for detecting the dew condensation state of electrical equipment such as a transformer and an electric motor.

一般に、変圧器や電動機等の電気機器は多様な環境下に設置されて運転されている。これら電気機器の巻線等の導体の絶縁部では当該電気機器の温度上昇や周囲環境により絶縁抵抗が低下し、漏電や焼損等の事故が発生する危険性がある。特に絶縁部表面(絶縁面)に結露が発生した場合には絶縁事故が発生する虞がある等の危険度が高くなる。そこで、これら電気機器における結露の発生を防ぐために、電気機器の絶縁部表面に結露が発生する状況においては、例えば特許文献1に示すようなシステムが提案されている。   Generally, electric devices such as transformers and electric motors are installed and operated in various environments. In the insulation portions of conductors such as windings of these electric devices, there is a risk that the insulation resistance decreases due to the temperature rise of the electric devices or the surrounding environment, and accidents such as electric leakage and burning occur. In particular, when condensation occurs on the surface of the insulating portion (insulating surface), the degree of risk that an insulation accident may occur increases. Therefore, in order to prevent the occurrence of condensation in these electrical devices, for example, a system as shown in Patent Document 1 has been proposed in a situation where condensation occurs on the surface of the insulating portion of the electrical device.

特許文献1で提案されている技術では、電気機器の周囲温度を温度計により検出すると共に、電気機器の周囲湿度に対応する露点を露点計により検出し、温度計により検出された電気機器の周囲温度と露点計により検出された露点との差が設定値以下になった場合に、電気機器の内部に設けたスペースヒータを作動させるものである。   In the technique proposed in Patent Document 1, the ambient temperature of an electrical device is detected by a thermometer, and the dew point corresponding to the ambient humidity of the electrical device is detected by a dew point meter, and the ambient temperature of the electrical device detected by the thermometer is detected. When the difference between the temperature and the dew point detected by the dew point meter is equal to or less than the set value, the space heater provided in the electric device is activated.

実開平6−2904号公報Japanese Utility Model Publication No. 6-2904

電気機器の絶縁部表面の温度は当該電気機器の運転状況等により周囲温度とは異なることがある。そのため、電気機器の周囲温度を温度計により検出する特許文献1で提案されている技術では、電気機器の絶縁部表面の温度を正確に検出することが困難であり、結露状態を正確に検出することが困難である。電気機器の絶縁部表面の温度を正確に検出するには、検出箇所である電気機器の絶縁部表面に温度計を直接配置することが考えられるが、変圧器や電動機等のような電気機器では絶縁部表面に高い電界が印加されているのが一般的であり、これら温度計を破壊することなく設置することは困難である。   The temperature of the surface of the insulating part of the electric device may differ from the ambient temperature depending on the operating condition of the electric device. Therefore, with the technique proposed in Patent Document 1 that detects the ambient temperature of an electrical device with a thermometer, it is difficult to accurately detect the temperature of the insulating part surface of the electrical device, and the dew condensation state is accurately detected. Is difficult. In order to accurately detect the temperature of the insulation surface of the electrical equipment, it is conceivable to place a thermometer directly on the insulation surface of the electrical equipment that is the detection location, but in electrical equipment such as transformers and motors, etc. Generally, a high electric field is applied to the surface of the insulating portion, and it is difficult to install these thermometers without destroying them.

又、露点計や湿度計により結露状態を検出する方法では、清浄な環境下において結露が発生する動作点を検出することが前提となっている。しかしながら、周囲環境が著しく汚損された状態、特に海塩粒子や塩化物等の潮解性が著しい物質を含んだ汚損物質が絶縁部表面に付着した状態では、通常結露が発生すると言われる相対湿度が100[%]以下であっても結露が発生するとされており、露点以上の温度であっても結露が発生することがある。   Further, in the method of detecting the dew condensation state using a dew point meter or a hygrometer, it is premised that an operating point at which dew condensation occurs in a clean environment is detected. However, when the surrounding environment is significantly fouled, especially when fouling substances containing substances with significant deliquescence such as sea salt particles and chlorides adhere to the surface of the insulation, the relative humidity that normally causes condensation is Condensation is supposed to occur even at 100% or less, and condensation may occur even at temperatures above the dew point.

本発明は、上記した事情に鑑みてなされたものであり、その目的は、電気機器の絶縁部表面の結露状態を安全に且つ正確に検出することができる結露状態検出システムを提供することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a dew condensation state detection system that can safely and accurately detect the dew condensation state on the surface of an insulating part of an electrical device. .

上記した目的を達成するために、請求項1に記載した結露状態検出システムは、
結露状態の検出対象である電気機器の絶縁部表面の温度を非接触で検出して検出結果を出力する非接触温度検出手段と、
前記電気機器と同一の環境下に配置された模擬結露検出部の検出面に対する放熱及び吸熱を選択的に行う放熱吸熱手段と、
前記模擬結露検出部の前記検出面の温度を検出して検出結果を出力する温度検出手段と、
前記非接触温度検出手段から出力された検出結果と前記温度検出手段から出力された検出結果とを入力する温度調節制御手段と、
前記模擬結露検出部の前記検出面の結露状態を検出して検出結果をシステムの外部に出力する結露状態検出手段と、を備え、
前記温度調節制御手段は、前記非接触温度検出手段から入力した検出結果と前記温度検出手段から入力した検出結果とに基づいて、前記非接触温度検出手段により検出された前記電気機器の前記絶縁部表面の温度と前記温度検出手段により検出された前記模擬結露検出部の前記検出面の温度とが同一となるように前記放熱吸熱手段の前記模擬結露検出部の前記検出面に対する放熱及び吸熱を調節する、ところに特徴を有する。
In order to achieve the above-described object, the dew condensation state detection system according to claim 1 comprises:
Non-contact temperature detection means for detecting the temperature of the surface of the insulating part of the electrical equipment that is the detection target of the dew condensation state in a non-contact manner and outputting the detection result;
Heat dissipation and heat absorption means for selectively performing heat dissipation and heat absorption with respect to the detection surface of the simulated dew condensation detection unit disposed in the same environment as the electrical equipment;
Temperature detection means for detecting the temperature of the detection surface of the simulated dew condensation detection unit and outputting a detection result;
Temperature adjustment control means for inputting the detection result output from the non-contact temperature detection means and the detection result output from the temperature detection means;
Condensation state detection means for detecting the condensation state of the detection surface of the simulated condensation detection unit and outputting the detection result to the outside of the system,
The temperature adjustment control means is based on the detection result input from the non-contact temperature detection means and the detection result input from the temperature detection means, and the insulating portion of the electrical device detected by the non-contact temperature detection means. Heat dissipation and heat absorption to the detection surface of the simulated dew condensation detection unit of the heat dissipation heat absorption unit are adjusted so that the surface temperature and the temperature of the detection surface of the simulated dew condensation detection unit detected by the temperature detection unit are the same. However, it has a feature.

上記した構成によれば、結露状態の検出対象である電気機器の絶縁部表面の温度が非接触温度検出手段により非接触で検出され、電気機器と同一の環境下に配置された模擬結露検出部の検出面の温度が温度検出手段により検出されると、それら非接触温度検出手段により検出された電気機器の絶縁部表面の温度と温度検出手段により検出された模擬結露検出部の検出面の温度とが同一となるように放熱吸熱手段の模擬結露検出部の検出面に対する放熱及び吸熱が温度調節制御手段により調節されるので、電気機器の絶縁部表面の結露状態を模擬結露検出部の検出面で再現することができる。   According to the configuration described above, the temperature of the surface of the insulating part of the electrical device that is the detection target of the dew condensation state is detected in a non-contact manner by the non-contact temperature detecting means, and is located in the same environment as the electrical device. When the temperature of the detection surface is detected by the temperature detection means, the temperature of the insulating part surface of the electrical equipment detected by the non-contact temperature detection means and the temperature of the detection surface of the simulated dew condensation detection part detected by the temperature detection means Since the temperature adjustment control means adjusts heat dissipation and heat absorption to the detection surface of the simulated dew condensation detection unit of the heat dissipation and heat absorption means, the detection surface of the simulated dew condensation detection unit shows the dew condensation state on the insulating part surface of the electrical equipment. Can be reproduced.

請求項1に記載した結露状態検出システムによれば、結露状態の検出対象である電気機器の絶縁部表面の温度を非接触で検出する非接触温度検出手段が設けられると共に、電気機器と同一の環境下に模擬結露検出部が設けられ、電気機器の絶縁部表面の結露状態を模擬結露検出部の検出面で再現するように構成したので、模擬結露検出部の検出面の結露状態を検出した検出結果をシステムの外部に出力することで、電気機器の絶縁部表面の結露状態を模擬的に検出した検出結果をシステムの外部に出力することができ、その検出結果を解析することで、電気機器の絶縁部表面の結露状態を検出することができる。この場合、結露状態の検出対象である電気機器の絶縁部表面の温度を非接触温度検出手段により非接触で検出するように構成したので、電気機器の絶縁部表面に温度検出手段を直接配置する必要がなく、電気機器の絶縁部表面の結露状態を安全に且つ正確に検出することができる。   According to the dew condensation state detection system described in claim 1, non-contact temperature detection means for detecting the temperature of the insulating part surface of the electrical device that is the detection target of the dew condensation state in a non-contact manner is provided, and is the same as the electrical device. A simulated dew condensation detection unit is provided in the environment, and it is configured to reproduce the dew condensation state on the insulation surface of the electrical equipment on the detection surface of the simulated dew condensation detection unit, so the dew condensation state on the detection surface of the simulated dew condensation detection unit is detected. By outputting the detection result to the outside of the system, it is possible to output the detection result obtained by simulating the dew condensation state on the surface of the insulating part of the electrical equipment to the outside of the system, and by analyzing the detection result, It is possible to detect the dew condensation state on the surface of the insulating part of the device. In this case, since the temperature of the insulating part surface of the electrical equipment that is the detection target of the dew condensation state is detected by the non-contact temperature detecting means in a non-contact manner, the temperature detecting means is directly arranged on the insulating part surface of the electrical equipment. There is no need, and the dew condensation state on the surface of the insulating part of the electrical equipment can be detected safely and accurately.

本発明の第1の実施形態を示す機能ブロック図Functional block diagram showing a first embodiment of the present invention 全体構成を概略的に示す図Diagram showing overall configuration 模擬結露検出部を概略的に示す図Diagram showing simulated dew condensation detector 温度調節制御処理を表すフローチャートFlow chart showing temperature adjustment control process 結露防止制御処理を表すフローチャートFlow chart showing condensation prevention control process 本発明の第2の実施形態を示す機能ブロック図Functional block diagram showing a second embodiment of the present invention 本発明の第3の実施形態を示す機能ブロック図Functional block diagram showing a third embodiment of the present invention 本発明の第4の実施形態を示す機能ブロック図Functional block diagram showing a fourth embodiment of the present invention

(第1の実施形態)
以下、本発明を、結露状態の検出対象である電気機器として変圧器を適用した第1の実施形態について図1乃至図5を参照しながら説明する。図2に示すように、結露状態検出システム1においては、変圧器2(本発明でいう電気機器)の近傍には当該変圧器2の絶縁部表面2a(図1参照)の温度を非接触で検出する赤外線温度センサ3(本発明でいう非接触温度検出手段)及び模擬結露検出部4が設けられていると共に、変圧器2の絶縁部表面2aに対して放熱可能な位置にはスペースヒータ5(本発明でいう結露防止手段)が設けられている。模擬結露検出部4は変圧器2と同一の環境下(汚損状態、特に海塩粒子や塩化物等の潮解性が著しい物質を含んだ汚損物質の付着状態が同程度となる環境下)に配置されている。
(First embodiment)
Hereinafter, the present invention will be described with reference to FIGS. 1 to 5 for a first embodiment in which a transformer is applied as an electrical device that is a detection target of a dew condensation state. As shown in FIG. 2, in the dew condensation state detection system 1, the temperature of the insulating portion surface 2 a (see FIG. 1) of the transformer 2 is not contacted in the vicinity of the transformer 2 (electric equipment in the present invention). An infrared temperature sensor 3 to be detected (non-contact temperature detecting means in the present invention) and a simulated dew condensation detection unit 4 are provided, and a space heater 5 is provided at a position where heat can be radiated to the insulating surface 2a of the transformer 2. (Condensation prevention means in the present invention) is provided. The simulated dew condensation detection unit 4 is placed in the same environment as the transformer 2 (in a polluted state, particularly in an environment in which a pollutant containing sea salt particles, chlorides, and other substances having a remarkable deliquescent level is attached). Has been.

模擬結露検出部4は、図3に示すように、ペルチェ素子6(本発明でいう放熱吸熱手段)、結露センサ7(本発明でいう結露状態検出手段)、温度センサ8(本発明でいう温度検出手段)及び湿度センサ9(本発明でいう湿度検出手段)が組み合わされて構成されている。この場合、温度センサ8及び湿度センサ9は結露センサ7の筐体の一方側(図3(b)では左側)の表面7aに直接実装されていると共に、ペルチェ素子6は結露センサ7の筐体の他方側(図3(b)では右側)の表面7bに直接実装されている。即ち、温度センサ8及び湿度センサ9とペルチェ素子6との間に結露センサ7が挟まれる態様とされている。   As shown in FIG. 3, the simulated dew condensation detection unit 4 includes a Peltier element 6 (heat radiation heat absorption means as referred to in the present invention), a dew condensation sensor 7 (dew condensation state detection means as defined in the present invention), and a temperature sensor 8 (temperature referred to in the present invention). The detecting means) and the humidity sensor 9 (humidity detecting means in the present invention) are combined. In this case, the temperature sensor 8 and the humidity sensor 9 are directly mounted on the surface 7a on one side (left side in FIG. 3B) of the dew condensation sensor 7, and the Peltier element 6 is mounted on the dew condensation sensor 7 housing. It is directly mounted on the surface 7b on the other side (right side in FIG. 3B). That is, the dew condensation sensor 7 is sandwiched between the temperature sensor 8 and the humidity sensor 9 and the Peltier element 6.

結露センサ7は、温度センサ8及び湿度センサ9が実装されている表面7aに櫛歯状の一対の電極10、11が形成されており、それら電極10、11間の電気抵抗値と閾値とを比較することで表面7aの結露状態(結露が発生した旨及び解消した旨の何れか)を検出する。即ち、温度センサ8及び湿度センサ9が実装されている結露センサ7の表面7aが模擬結露検出部4の検出面4a(図1参照)とされている。   In the dew condensation sensor 7, a pair of comb-like electrodes 10 and 11 are formed on the surface 7a on which the temperature sensor 8 and the humidity sensor 9 are mounted, and an electric resistance value and a threshold value between the electrodes 10 and 11 are determined. By comparing, the dew condensation state of the surface 7a (whether dew condensation has occurred or has been eliminated) is detected. That is, the surface 7a of the dew condensation sensor 7 on which the temperature sensor 8 and the humidity sensor 9 are mounted is the detection surface 4a (see FIG. 1) of the simulated dew condensation detection unit 4.

上記した構成では、模擬結露検出部4の検出面4aの熱伝導特性は結露状態の検出対象である変圧器2の絶縁部表面2aの熱伝導特性と同程度であることが望ましい。即ち、変圧器2ではその内部に搭載されている熱源から発生された熱が絶縁部表面2aまで伝導され、模擬結露検出部4ではペルチェ素子6から発生された熱が表面7bから表面7aまで伝導されるが、それら変圧器2における熱源から絶縁部表面2aまでの熱伝導の態様と模擬結露検出部4における表面7bから表面7aまでの熱伝導の態様とが同一であるほど、変圧器2における熱源から絶縁部表面2aまでの熱伝導の態様を模擬結露検出部4における表面7bから表面7aまでの熱伝導の態様で再現することが可能である。尚、本実施形態では、上記したようにペルチェ素子6が結露センサ7に直接実装されている構成を説明したが、ペルチェ素子6が部材を介して結露センサ7に実装されている構成であっても良く、その場合も、ペルチェ素子6から結露センサ7への部材を介した熱伝導特性は変圧器2の絶縁部表面2aの熱伝導特性と同程度であることが望ましい。   In the above-described configuration, it is desirable that the heat conduction characteristic of the detection surface 4a of the simulated dew condensation detection unit 4 is approximately the same as the heat conduction characteristic of the insulating part surface 2a of the transformer 2 that is a detection target of the dew condensation state. That is, in the transformer 2, the heat generated from the heat source mounted in the transformer 2 is conducted to the insulating surface 2a, and in the simulated dew condensation detector 4, the heat generated from the Peltier element 6 is conducted from the surface 7b to the surface 7a. However, as the heat conduction mode from the heat source to the insulating portion surface 2a in the transformer 2 and the heat conduction mode from the surface 7b to the surface 7a in the simulated dew condensation detection unit 4 are the same, It is possible to reproduce the heat conduction mode from the heat source to the insulating portion surface 2a in the heat conduction mode from the surface 7b to the surface 7a in the simulated dew condensation detection unit 4. In the present embodiment, the configuration in which the Peltier element 6 is directly mounted on the dew condensation sensor 7 as described above has been described. However, the Peltier element 6 is mounted on the dew condensation sensor 7 via a member. In this case as well, it is desirable that the heat conduction characteristic through the member from the Peltier element 6 to the dew condensation sensor 7 is similar to the heat conduction characteristic of the insulating portion surface 2a of the transformer 2.

図1は上記した結露状態検出システム1の電気的な構成を機能ブロック図により示している。上記した赤外線温度センサ3、ペルチェ素子6、結露センサ7、温度センサ8、湿度センサ9及びスペースヒータ5は、マイクロコンピュータを主体としてなる制御装置12(本発明でいう温度調節制御手段、結露防止制御手段)に接続されている。制御装置12は、内部に記憶している制御プログラムを実行することで結露状態検出システム1のシステム全体の動作を制御する。   FIG. 1 is a functional block diagram showing the electrical configuration of the dew condensation state detection system 1 described above. The infrared temperature sensor 3, the Peltier element 6, the dew sensor 7, the temperature sensor 8, the humidity sensor 9 and the space heater 5 are composed of a control device 12 (a temperature adjustment control means, dew prevention control in the present invention) mainly composed of a microcomputer. Means). The control device 12 controls the operation of the entire system of the dew condensation state detection system 1 by executing a control program stored therein.

赤外線温度センサ3は、変圧器2の絶縁部表面2aから放射される赤外線を集光することで、変圧器2の絶縁部表面2aの温度を非接触で検出(計測)し、その検出した温度を表す非接触温度検出信号を制御装置12に出力する。ペルチェ素子6は、制御装置12から放熱指令信号を入力すると、放熱(加熱)を行い、吸熱指令信号を入力すると、吸熱(冷却)を行う。   The infrared temperature sensor 3 collects infrared rays radiated from the insulating portion surface 2a of the transformer 2 to detect (measure) the temperature of the insulating portion surface 2a of the transformer 2 in a non-contact manner, and the detected temperature Is output to the control device 12. The Peltier element 6 performs heat dissipation (heating) when receiving a heat dissipation command signal from the control device 12, and performs heat absorption (cooling) when receiving an endothermic command signal.

結露センサ7は、上記した手順にしたがって模擬結露検出部4の検出面4aの結露状態を検出し、その検出結果を表す結露状態検出信号を制御装置12に出力すると共に結露状態検出システム1の外部に出力する。温度センサ8は、模擬結露検出部4の検出面4aの温度を検出(計測)し、その検出した温度を表す温度検出信号を制御装置12に出力すると共に結露状態検出システム1の外部に出力する。湿度センサ9は、模擬結露検出部4の検出面4aの湿度を検出(計測)し、その検出した湿度を表す湿度検出信号を制御装置12に出力すると共に結露状態検出システム1の外部に出力する。   The dew condensation sensor 7 detects the dew condensation state of the detection surface 4a of the simulated dew condensation detection unit 4 in accordance with the above-described procedure, outputs a dew condensation state detection signal representing the detection result to the control device 12, and externally the dew condensation state detection system 1. Output to. The temperature sensor 8 detects (measures) the temperature of the detection surface 4 a of the simulated dew condensation detection unit 4, and outputs a temperature detection signal representing the detected temperature to the control device 12 and to the outside of the dew condensation state detection system 1. . The humidity sensor 9 detects (measures) the humidity of the detection surface 4 a of the simulated dew condensation detection unit 4, outputs a humidity detection signal representing the detected humidity to the control device 12, and outputs it to the outside of the dew condensation state detection system 1. .

制御装置12は、模擬結露検出部4の検出面4aに対する温度調節を行う機能ブロックである温度調節制御部12aと、変圧器2の絶縁部表面2aに対する結露防止を行う機能ブロックである結露防止制御部12bとを有する。制御装置12は、温度調節制御部12aにおいて、赤外線温度センサ3から非接触温度検出信号を入力すると共に温度センサ8から温度検出信号を入力すると、非接触温度検出信号を解析することで変圧器2の絶縁部表面2aの温度を取得し、温度検出信号を解析することで模擬結露検出部4の検出面4aの温度を取得し、それら変圧器2の絶縁部表面2aの温度と模擬結露検出部4の検出面4aの温度とを比較する。そして、制御装置12は、それら変圧器2の絶縁部表面2aの温度と模擬結露検出部4の検出面4aの温度とが同一となるように放熱指令信号及び吸熱指令信号のうち何れかをペルチェ素子6に選択的に出力する。   The control device 12 includes a temperature adjustment control unit 12a that is a functional block that performs temperature adjustment on the detection surface 4a of the simulated dew condensation detection unit 4, and a dew condensation prevention control that is a functional block that prevents condensation on the insulating surface 2a of the transformer 2. Part 12b. When the temperature adjustment control unit 12a receives the non-contact temperature detection signal from the infrared temperature sensor 3 and the temperature detection signal from the temperature sensor 8, the control device 12 analyzes the non-contact temperature detection signal to thereby convert the transformer 2. The temperature of the insulating part surface 2a of the transformer 2 is obtained by analyzing the temperature detection signal and the temperature of the detection surface 4a of the simulated dew condensation detection part 4 is obtained, and the temperature of the insulating part surface 2a of the transformer 2 and the simulated dew condensation detection part 4 is compared with the temperature of the detection surface 4a. Then, the control device 12 determines whether the temperature of the insulating portion surface 2a of the transformer 2 and the temperature of the detection surface 4a of the simulated dew condensation detection portion 4 are the same as those of the heat dissipation command signal and the heat absorption command signal. Selectively output to the element 6.

又、制御装置12は、結露防止制御部12bにおいて、結露センサ7から結露状態検出信号を入力すると、結露状態検出信号を解析することで模擬結露検出部4の検出面4aの結露状態を取得し、湿度センサ9から湿度検出信号を入力すると、湿度検出信号を解析することで模擬結露検出部4の検出面4aの湿度を取得する。スペースヒータ5は、制御装置12から起動指令信号を入力すると、変圧器2の絶縁部表面2aに対する放熱を開始し、制御装置12から停止指令信号を入力すると、変圧器2の絶縁部表面2aに対する放熱を終了する。   Further, when the dew condensation prevention control unit 12b receives the dew condensation state detection signal from the dew condensation sensor 7, the control device 12 analyzes the dew condensation state detection signal to obtain the dew condensation state of the detection surface 4a of the simulated dew condensation detection unit 4. When a humidity detection signal is input from the humidity sensor 9, the humidity of the detection surface 4a of the simulated dew condensation detection unit 4 is acquired by analyzing the humidity detection signal. When the start command signal is input from the control device 12, the space heater 5 starts heat radiation to the insulating portion surface 2 a of the transformer 2, and when the stop command signal is input from the control device 12, the space heater 5 applies to the insulating portion surface 2 a of the transformer 2. End heat dissipation.

次に、上記した構成の作用について、図4及び図5を参照して説明する。制御装置12は、本発明に関連する制御として、模擬結露検出部4の検出面4aに対する温度調節を行うための温度調節制御処理と、変圧器2の絶縁部表面2aに対する結露防止を行うための結露防止制御処理とを行う。本実施形態では制御装置12がマルチタスク機能を有することで温度調節制御処理と結露防止制御処理とを同時に並行して実行することを前提として説明する。尚、制御装置12がマルチタスク機能を有しなければ、これら温度調節制御処理と結露防止制御処理とを所定周期(例えば数マイクロ秒周期)で交互に実行するようにしても良い。   Next, the operation of the above configuration will be described with reference to FIGS. As a control related to the present invention, the control device 12 performs a temperature adjustment control process for adjusting the temperature of the detection surface 4a of the simulated dew condensation detection unit 4 and prevents condensation on the insulating surface 2a of the transformer 2. Condensation prevention control processing is performed. In the present embodiment, the description will be made on the assumption that the control device 12 has a multitask function so that the temperature adjustment control process and the dew condensation prevention control process are simultaneously executed in parallel. If the control device 12 does not have a multitask function, the temperature adjustment control process and the dew condensation prevention control process may be alternately executed at a predetermined cycle (for example, a cycle of several microseconds).

(1)温度調節制御処理
制御装置12は、温度調節制御処理では、赤外線温度センサ3から入力した非接触温度検出信号を解析し、赤外線温度センサ3により検出された変圧器2の絶縁部表面2aの温度を取得し(ステップS1)、温度センサ8から入力した温度検出信号を解析し、温度センサ8により検出された模擬結露検出部4の検出面4aの温度を取得し(ステップS2)、それら取得した変圧器2の絶縁部表面2aの温度と模擬結露検出部4の検出面4aの温度とを比較する(ステップS3、S4)。
(1) Temperature adjustment control process In the temperature adjustment control process, the control device 12 analyzes the non-contact temperature detection signal input from the infrared temperature sensor 3 and detects the insulating part surface 2a of the transformer 2 detected by the infrared temperature sensor 3. (Step S1), the temperature detection signal input from the temperature sensor 8 is analyzed, and the temperature of the detection surface 4a of the simulated dew condensation detection unit 4 detected by the temperature sensor 8 is acquired (step S2). The acquired temperature of the insulating part surface 2a of the transformer 2 is compared with the temperature of the detection surface 4a of the simulated dew condensation detection part 4 (steps S3 and S4).

そして、制御装置12は、変圧器2の絶縁部表面2aの温度が模擬結露検出部4の検出面4aの温度よりも低いと判定すると(ステップS3にて「YES」)、放熱指令信号をペルチェ素子6に出力し、ペルチェ素子6に放熱を行わせ、模擬結露検出部4の検出面4aの温度を上昇させ(ステップS5)、上記したステップS1に戻る。又、制御装置12は、変圧器2の絶縁部表面2aの温度が模擬結露検出部4の検出面4aの温度よりも高いと判定すると(ステップS4にて「YES」)、吸熱指令信号をペルチェ素子6に出力し、ペルチェ素子6に吸熱を行わせ、模擬結露検出部4の検出面4aの温度を下降させ(ステップS6)、上記したステップS1に戻る。   When control device 12 determines that the temperature of insulating portion surface 2a of transformer 2 is lower than the temperature of detection surface 4a of simulated dew condensation detection portion 4 (“YES” in step S3), the heat dissipation command signal is transmitted to Peltier. The temperature is output to the element 6, the Peltier element 6 performs heat dissipation, the temperature of the detection surface 4 a of the simulated dew condensation detection unit 4 is increased (step S 5), and the process returns to the above-described step S 1. Further, when the control device 12 determines that the temperature of the insulating portion surface 2a of the transformer 2 is higher than the temperature of the detection surface 4a of the simulated dew condensation detection portion 4 (“YES” in step S4), the heat absorption command signal is transmitted to the Peltier device. It outputs to the element 6, makes the Peltier element 6 absorb heat, lowers the temperature of the detection surface 4a of the simulated dew condensation detection unit 4 (step S6), and returns to the above-described step S1.

一方、制御装置12は、変圧器2の絶縁部表面2aの温度が模擬結露検出部4の検出面4aの温度よりも低くもなく高くもない(同じである)と判定すると(ステップS3にて「NO」、S4にて「NO」)、放熱指令信号及び吸熱指令信号の何れをもペルチェ素子6に出力することなく、模擬結露検出部4の検出面4aの温度を維持し(ステップS7)、上記したステップS1に戻る。   On the other hand, when control device 12 determines that the temperature of insulating portion surface 2a of transformer 2 is neither lower nor higher than the temperature of detection surface 4a of simulated dew condensation detection portion 4 (the same), in step S3 “NO”, “NO” in S4), the temperature of the detection surface 4a of the simulated dew condensation detection unit 4 is maintained without outputting either the heat release command signal or the heat absorption command signal to the Peltier element 6 (step S7). The process returns to step S1 described above.

即ち、制御装置12は、上記した一連の処理を行うことで、変圧器2の絶縁部表面2aの温度と模擬結露検出部4の検出面4aの温度とが同一となるように模擬結露検出部4の検出面4aを調節する。   That is, the control device 12 performs the above-described series of processing, so that the temperature of the insulating portion surface 2a of the transformer 2 and the temperature of the detection surface 4a of the simulated condensation detection portion 4 are the same. 4 detection surface 4a is adjusted.

(2)結露防止制御処理
制御装置12は、結露防止制御処理では、後述するようにスペースヒータ5の動作制御の判定基準となる結露発生湿度を例えば100[%]に設定することで初期化する(ステップS11)。次いで、制御装置12は、湿度センサ9から入力した湿度検出信号を解析し、温度センサ9により検出された模擬結露検出部4の検出面4aの湿度を取得し(ステップS12)、結露センサ7から入力した結露状態検出信号を解析し、模擬結露検出部4の検出面4aの結露状態(結露が発生した旨及び解消した旨の何れか)を取得し(ステップS13)、模擬結露検出部4の結露状態を判定する(ステップS14)。
(2) Condensation prevention control process In the condensation prevention control process, the control device 12 is initialized by setting, for example, 100 [%] as a condensation generation humidity that is a criterion for operation control of the space heater 5 as described later. (Step S11). Next, the control device 12 analyzes the humidity detection signal input from the humidity sensor 9, acquires the humidity of the detection surface 4 a of the simulated dew condensation detection unit 4 detected by the temperature sensor 9 (step S 12), and from the dew condensation sensor 7. The input dew condensation state detection signal is analyzed, and the dew condensation state (either dew condensation has occurred or has been eliminated) on the detection surface 4a of the simulated dew condensation detection unit 4 is acquired (step S13). A dew condensation state is determined (step S14).

ここで、制御装置12は、模擬結露検出部4の検出面4aに結露が発生したと判定すると(ステップS14にて「YES」)、その直前に取得した模擬結露検出部4の検出面4aの湿度と結露発生湿度とを比較する(ステップS15)。そして、制御装置12は、その直前に取得した模擬結露検出部4の検出面4aの湿度が結露発生湿度未満であると判定すると(ステップS15にて「YES」)、その直前に取得した模擬結露検出部4の検出面4aの湿度を最新の結露発生湿度として更新(新たに設定)して記憶し(ステップS16)、起動指令信号をスペースヒータ5に出力し、スペースヒータ5を起動させ、変圧器2の絶縁部表面2aに対する放熱を行わせ(ステップS17)、上記したステップS12に戻る。   Here, when the control device 12 determines that condensation has occurred on the detection surface 4a of the simulated dew condensation detection unit 4 ("YES" in step S14), the control device 12 detects the detection surface 4a of the simulated dew condensation detection unit 4 acquired immediately before that. The humidity is compared with the humidity at which condensation occurs (step S15). If the control device 12 determines that the humidity of the detection surface 4a of the simulated dew condensation detection unit 4 acquired immediately before is less than the dew condensation generation humidity ("YES" in step S15), the simulated dew condensation acquired immediately before that. The humidity of the detection surface 4a of the detection unit 4 is updated (newly set) as the latest dew condensation generation humidity and stored (step S16), an activation command signal is output to the space heater 5, the space heater 5 is activated, Heat is radiated to the insulating portion surface 2a of the vessel 2 (step S17), and the process returns to step S12.

一方、制御装置12は、その直前に取得した模擬結露検出部4の検出面4aの湿度が結露発生湿度未満でないと判定すると(ステップS15にて「NO」)、その直前に取得した模擬結露検出部4の検出面4aの湿度を最新の結露発生湿度として更新することなく、起動指令信号をスペースヒータ5に出力し、スペースヒータ5を起動させ、変圧器2の絶縁部表面2aに対する放熱を行わせ(ステップS17)、上記したステップS12に戻る。   On the other hand, when the control device 12 determines that the humidity of the detection surface 4a of the simulated dew condensation detection unit 4 acquired immediately before is not less than the dew condensation generation humidity ("NO" in step S15), the simulated dew condensation detection acquired immediately before that. The start command signal is output to the space heater 5 without updating the humidity of the detection surface 4a of the section 4 as the latest dew condensation generation humidity, the space heater 5 is started, and heat is radiated to the insulating portion surface 2a of the transformer 2 (Step S17), the process returns to Step S12 described above.

又、制御装置12は、模擬結露検出部4の検出面4aに結露が発生していない(発生した結露が解消した)と判定すると(ステップS14にて「NO」)、この場合も、その直前に取得した模擬結露検出部4の検出面4aの湿度と結露発生湿度とを比較する(ステップS18)。そして、制御装置12は、その直前に取得した模擬結露検出部4の検出面4aの湿度が結露発生湿度以上であると判定すると(ステップS18にて「YES」)、起動指令信号をスペースヒータ5に出力し、スペースヒータ5を起動させ、変圧器2の絶縁部表面2aに対する放熱を行わせ(ステップS17)、上記したステップS12に戻る。一方、制御装置12は、その直前に取得した模擬結露検出部4の検出面4aの湿度が結露発生湿度以上でないと判定すると(ステップS18にて「NO」)、停止指令信号をスペースヒータ5に出力し、スペースヒータ5を停止させ、変圧器2の絶縁部表面2aに対する放熱を行わせることなく(ステップS19)、上記したステップS12に戻る。   Further, if the control device 12 determines that no condensation has occurred on the detection surface 4a of the simulated condensation detection unit 4 (the generated condensation has been eliminated) ("NO" in step S14), also in this case, immediately before that The humidity of the detection surface 4a of the simulated dew condensation detection unit 4 acquired in step S18 is compared with the dew generation humidity (step S18). If the control device 12 determines that the humidity of the detection surface 4a of the simulated dew condensation detection unit 4 acquired immediately before is equal to or higher than the dew condensation generation humidity ("YES" in step S18), the start command signal is sent to the space heater 5 , The space heater 5 is activated, heat is radiated to the insulating portion surface 2a of the transformer 2 (step S17), and the process returns to the above-described step S12. On the other hand, if the control device 12 determines that the humidity of the detection surface 4a of the simulated dew condensation detection unit 4 acquired immediately before is not equal to or higher than the dew condensation generation humidity ("NO" in step S18), a stop command signal is sent to the space heater 5. The output is stopped, the space heater 5 is stopped, and the process returns to the above-described step S12 without causing heat radiation to the insulating portion surface 2a of the transformer 2 (step S19).

以上に説明したように第1の実施形態によれば、結露状態検出システム1において、結露状態の検出対象である変圧器2の絶縁部表面2aの温度を非接触で検出する赤外線温度センサ3が設けられると共に、変圧器2と同一の環境下に模擬結露検出部4が配置され、赤外線温度センサ3により検出された変圧器2の絶縁部表面2aの温度と温度センサ8により検出された模擬結露検出部4の検出面4aの温度とが同一となるようにペルチェ素子6の模擬結露検出部4の検出面4aに対する放熱及び吸熱が調節されるように構成したので、変圧器2の絶縁部表面2aの結露状態を模擬結露検出部4の検出面4aで再現することができる。そして、模擬結露検出部4の検出面4aの結露状態を検出した検出結果をシステムの外部に出力することで、変圧器2の絶縁部表面2aの結露状態を模擬的に検出した検出結果をシステムの外部に出力することができ、その検出結果を解析することで、変圧器2の絶縁部表面2aの結露状態を安全に且つ正確に検出することができる。   As described above, according to the first embodiment, in the dew condensation state detection system 1, the infrared temperature sensor 3 that detects the temperature of the insulating portion surface 2a of the transformer 2 that is the detection target of the dew condensation state in a non-contact manner. A simulated dew condensation detection unit 4 is provided in the same environment as the transformer 2, and the temperature of the insulation surface 2 a of the transformer 2 detected by the infrared temperature sensor 3 and the simulated dew condensation detected by the temperature sensor 8. Since the heat radiation and the heat absorption to the detection surface 4a of the simulated dew condensation detection unit 4 of the Peltier element 6 are adjusted so that the temperature of the detection surface 4a of the detection unit 4 is the same, the surface of the insulating part of the transformer 2 The dew condensation state 2a can be reproduced on the detection surface 4a of the simulated dew condensation detection unit 4. And the detection result which detected the dew condensation state of the detection surface 4a of the simulation dew condensation detection part 4 is output to the exterior of a system, and the detection result which detected the dew condensation state of the insulation part surface 2a of the transformer 2 is system-ized. By analyzing the detection result, the dew condensation state of the insulating portion surface 2a of the transformer 2 can be detected safely and accurately.

又、この場合は、温度センサ8により検出した検出結果や湿度センサ9により検出した検出結果をもシステムの外部に出力することで、変圧器2の絶縁部表面2aの結露状態と温度や湿度とを関連付けて解析することができる。   In this case, the detection result detected by the temperature sensor 8 and the detection result detected by the humidity sensor 9 are also output to the outside of the system, so that the dew condensation state, temperature and humidity on the insulating portion surface 2a of the transformer 2 Can be correlated and analyzed.

又、この場合は、結露発生湿度を逐一更新して記憶し、模擬結露検出部4の検出面4aに結露が発生していないと判定した場合には、湿度センサ9により検出された湿度が結露発生湿度以上であれば、変圧器2の絶縁部表面2aに対する放熱を行わせ、湿度センサ9により検出された湿度が結露発生湿度以上でなければ、変圧器2の絶縁部表面2aに対する放熱を行わせないように構成したので、結露が一旦発生した後には次に結露が発生することを未然に防止することができる。   Also, in this case, the condensation generation humidity is updated and stored one by one, and if it is determined that no condensation has occurred on the detection surface 4a of the simulated condensation detection unit 4, the humidity detected by the humidity sensor 9 is condensed. If the humidity is higher than the generated humidity, heat is radiated to the insulating part surface 2a of the transformer 2, and if the humidity detected by the humidity sensor 9 is not higher than the dew condensation generated humidity, the heat is radiated to the insulating part surface 2a of the transformer 2. Since the configuration is such that the condensation does not occur, once the condensation has occurred, it is possible to prevent the condensation from occurring next.

即ち、結露状態の検出対象である変圧器2の絶縁部表面2a及び当該変圧器2と同一の環境下に配置された模擬結露検出部4の検出面4aにおいては、周囲環境が著しく汚損された状態、特に海塩粒子や塩化物等の潮解性が著しい物質を含んだ汚損物質が絶縁部表面に付着した状態では、通常結露が発生すると言われる相対湿度が100[%]以下であっても結露が発生する場合があるが、第1の実施形態のように、結露発生湿度を記憶し、その記憶した結露発生湿度を判定基準としてスペースヒータ5の動作を制御することで、結露が発生することを未然に防止することができる。又、結露発生湿度を逐一更新し、その逐一更新した結露発生湿度を判定基準としてスペースヒータ5の動作を制御することで、例えば汚損状態が厳しくなって結露発生湿度が低下した場合においても、結露が発生することを未然に防止することができる。   That is, the surrounding environment is significantly contaminated on the insulating surface 2a of the transformer 2 that is the object of detection of the dew condensation state and the detection surface 4a of the simulated dew condensation detection unit 4 disposed in the same environment as the transformer 2. In the state, especially in the state where a fouling substance containing a substance having remarkable deliquescence such as sea salt particles and chloride adheres to the surface of the insulating portion, even if the relative humidity that is usually considered to cause dew condensation is 100% or less Condensation may occur, but as in the first embodiment, the condensation generation humidity is stored, and the operation of the space heater 5 is controlled by using the stored condensation generation humidity as a determination criterion. This can be prevented beforehand. In addition, when the condensation generation humidity is updated one by one and the operation of the space heater 5 is controlled using the updated condensation generation humidity as a criterion, for example, even when the fouling state becomes severe and the condensation generation humidity is reduced, Can be prevented in advance.

(第2の実施形態)
次に、本発明の第2の実施形態について、図6を参照して説明する。第2の実施形態の結露状態検出システム21は、上記した第1の実施形態で説明した結露状態検出システム1からスペースヒータ5、湿度センサ9及び結露防止制御部12bが省略された構成である。第2の実施形態によれば、上記した第1の実施形態と同様の作用効果を得ることができる。即ち、赤外線温度センサ3により検出された変圧器2の絶縁部表面2aの温度と温度センサ8により検出された模擬結露検出部4の検出面4aの温度とが同一となるようにペルチェ素子6の模擬結露検出部4の検出面4aに対する放熱及び吸熱が調節されるように構成したので、変圧器2の絶縁部表面2aの結露状態を模擬結露検出部4の検出面4aで再現することができ、変圧器2の絶縁部表面2aの結露状態を安全に且つ正確に検出することができる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. The dew condensation state detection system 21 of the second embodiment has a configuration in which the space heater 5, the humidity sensor 9, and the dew condensation prevention control unit 12b are omitted from the dew condensation state detection system 1 described in the first embodiment. According to the second embodiment, the same operational effects as those of the first embodiment described above can be obtained. That is, the temperature of the Peltier element 6 is set so that the temperature of the insulating part surface 2a of the transformer 2 detected by the infrared temperature sensor 3 and the temperature of the detection surface 4a of the simulated dew condensation detection part 4 detected by the temperature sensor 8 are the same. Since heat dissipation and heat absorption with respect to the detection surface 4a of the simulated dew condensation detection unit 4 are adjusted, the dew condensation state of the insulating unit surface 2a of the transformer 2 can be reproduced on the detection surface 4a of the simulated dew condensation detection unit 4. The dew condensation state of the insulating part surface 2a of the transformer 2 can be detected safely and accurately.

(第3の実施形態)
次に、本発明の第3の実施形態について、図7を参照して説明する。第3の実施形態の結露状態検出システム31は、上記した第1の実施形態で説明した結露状態検出システム1からスペースヒータ5及び結露防止制御部12bが省略された構成である。第3の実施形態によれば、上記した第1の実施形態と同様の作用効果を得ることができる。即ち、赤外線温度センサ3により検出された変圧器2の絶縁部表面2aの温度と温度センサ8により検出された模擬結露検出部4の検出面4aの温度とが同一となるようにペルチェ素子6の模擬結露検出部4の検出面4aに対する放熱及び吸熱が調節されるように構成したので、変圧器2の絶縁部表面2aの結露状態を模擬結露検出部4の検出面4aで再現することができ、変圧器2の絶縁部表面2aの結露状態を安全に且つ正確に検出することができる。又、この場合も、変圧器2の絶縁部表面2aの結露状態と温度や湿度とを関連付けて解析することができる。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. The dew condensation state detection system 31 of the third embodiment has a configuration in which the space heater 5 and the dew condensation prevention control unit 12b are omitted from the dew condensation state detection system 1 described in the first embodiment. According to the third embodiment, the same operational effects as those of the first embodiment described above can be obtained. That is, the temperature of the Peltier element 6 is set so that the temperature of the insulating part surface 2a of the transformer 2 detected by the infrared temperature sensor 3 and the temperature of the detection surface 4a of the simulated dew condensation detection part 4 detected by the temperature sensor 8 are the same. Since heat dissipation and heat absorption with respect to the detection surface 4a of the simulated dew condensation detection unit 4 are adjusted, the dew condensation state of the insulating unit surface 2a of the transformer 2 can be reproduced on the detection surface 4a of the simulated dew condensation detection unit 4. The dew condensation state of the insulating part surface 2a of the transformer 2 can be detected safely and accurately. Also in this case, the condensation state of the insulating portion surface 2a of the transformer 2 can be analyzed in association with the temperature and humidity.

(第4の実施形態)
次に、本発明の第4の実施形態について、図8を参照して説明する。第3の実施形態の結露状態検出システム41は、上記した第1の実施形態で説明した結露状態検出システム1から湿度センサ9が省略されると共に結露防止制御部12bに代えて結露解消制御部が設けられた構成である。即ち、制御装置42(本発明でいう温度調節制御手段、結露解消制御手段)は、模擬結露検出部4の検出面4aに対する温度調節を行う機能ブロックである温度調節制御部42aと、変圧器2の絶縁部表面2aに発生した結露の解消を行う機能ブロックである結露解消制御部42bとを有する。この場合、制御装置42は、結露センサ7から結露状態検出信号を入力し、模擬結露検出部4の検出面4aに結露が発生したと判定すると、起動指令信号をスペースヒータ43(本発明でいう結露解消手段)に出力し、スペースヒータ43を起動させ、変圧器2の絶縁部表面2aに対する放熱を開始させ、模擬結露検出部4の検出面4aに発生した結露が解消したと判定すると、停止指令信号をスペースヒータ43に出力し、スペースヒータ43を停止させ、変圧器2の絶縁部表面2aに対する放熱を終了させる。
(Fourth embodiment)
Next, a fourth embodiment of the present invention will be described with reference to FIG. In the dew condensation state detection system 41 of the third embodiment, the humidity sensor 9 is omitted from the dew condensation state detection system 1 described in the first embodiment, and a dew condensation prevention control unit is used instead of the dew condensation prevention control unit 12b. It is the structure provided. That is, the control device 42 (temperature adjustment control means, dew condensation elimination control means in the present invention) includes a temperature adjustment control unit 42a that is a functional block for performing temperature adjustment on the detection surface 4a of the simulated dew condensation detection unit 4, and the transformer 2. A dew condensation eliminating control unit 42b which is a functional block for eliminating dew condensation occurring on the insulating portion surface 2a. In this case, when the control device 42 receives the dew condensation state detection signal from the dew condensation sensor 7 and determines that dew condensation has occurred on the detection surface 4a of the simulated dew condensation detection unit 4, the control device 42 sends a start command signal to the space heater 43 (in the present invention). Output to the dew condensation eliminating means), start the space heater 43, start heat radiation to the insulating part surface 2a of the transformer 2, and stop if the dew condensation generated on the detection surface 4a of the simulated dew condensation detection part 4 has been eliminated. A command signal is output to the space heater 43, the space heater 43 is stopped, and the heat dissipation with respect to the insulation part surface 2a of the transformer 2 is complete | finished.

第4の実施形態によれば、上記した第1の実施形態と同様の作用効果を得ることができる。即ち、赤外線温度センサ3により検出された変圧器2の絶縁部表面2aの温度と温度センサ8により検出された模擬結露検出部4の検出面4aの温度とが同一となるようにペルチェ素子6の模擬結露検出部4の検出面4aに対する放熱及び吸熱が調節されるように構成したので、変圧器2の絶縁部表面2aの結露状態を模擬結露検出部4の検出面4aで再現することができ、変圧器2の絶縁部表面2aの結露状態を安全に且つ正確に検出することができる。又、この場合は、模擬結露検出部4の検出面4aに結露が発生したか否かに基づいてスペースヒータ43の動作を制御することで、変圧器2の絶縁部表面2aに発生した結露を解消することができる。   According to the fourth embodiment, the same operational effects as those of the first embodiment described above can be obtained. That is, the temperature of the Peltier element 6 is set so that the temperature of the insulating part surface 2a of the transformer 2 detected by the infrared temperature sensor 3 and the temperature of the detection surface 4a of the simulated dew condensation detection part 4 detected by the temperature sensor 8 are the same. Since heat dissipation and heat absorption with respect to the detection surface 4a of the simulated dew condensation detection unit 4 are adjusted, the dew condensation state of the insulating unit surface 2a of the transformer 2 can be reproduced on the detection surface 4a of the simulated dew condensation detection unit 4. The dew condensation state of the insulating part surface 2a of the transformer 2 can be detected safely and accurately. Further, in this case, by controlling the operation of the space heater 43 based on whether or not condensation has occurred on the detection surface 4a of the simulated dew condensation detection unit 4, dew condensation generated on the insulating unit surface 2a of the transformer 2 can be reduced. Can be resolved.

(その他の実施形態)
本発明は、上記した実施形態にのみ限定されるものではなく、以下のように変形又は拡張することができる。
結露状態の検出対象である電気機器は変圧器に限らず電動機等の他の機器であっても良い。
第1の実施形態において、結露が発生した時点での湿度を結露発生湿度として逐一更新して記憶することに加え、発生した結露が解消した時点での湿度を結露解消湿度として逐一更新して記憶し、その逐一更新した結露解消湿度をも判定基準としてスペースヒータ5の動作を制御するようにしても良い。又、湿度センサ9により検出された湿度に加え、温度センサ8により検出された温度をも判定基準とし、結露発生温度や結露解消温度を逐一更新して記憶し、スペースヒータ5の動作を制御するようにしても良い。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be modified or expanded as follows.
The electrical device that is the detection target of the dew condensation state is not limited to the transformer, and may be another device such as an electric motor.
In the first embodiment, in addition to updating and storing the humidity at the time when condensation occurs as the condensation generation humidity, the humidity at the time when the generated condensation disappears is updated and stored as the condensation elimination humidity. However, the operation of the space heater 5 may be controlled using the dew condensation-removed humidity updated one by one as a criterion. Further, in addition to the humidity detected by the humidity sensor 9, the temperature detected by the temperature sensor 8 is also used as a criterion, and the condensation generation temperature and the condensation elimination temperature are updated and stored one by one, and the operation of the space heater 5 is controlled. You may do it.

図面中、1は結露状態検出システム、2は変圧器(電気機器)、3は赤外線温度センサ(非接触温度検出手段)、4は模擬結露検出部、4aは検出面、5はスペースヒータ(結露防止手段)、6はペルチェ素子(放熱吸熱手段)、7は結露センサ(結露状態検出手段)、8は温度センサ(温度検出手段)、9は湿度センサ(湿度検出手段)、12は制御装置(温度調節制御手段、結露防止制御手段)、21は結露状態検出システム、31は結露状態検出システム、41は結露状態検出システム、42は制御装置(温度調節制御手段、結露解消制御手段)、43はスペースヒータ(結露解消手段)である。   In the drawings, 1 is a dew condensation state detection system, 2 is a transformer (electrical device), 3 is an infrared temperature sensor (non-contact temperature detecting means), 4 is a simulated dew condensation detection unit, 4a is a detection surface, and 5 is a space heater (condensation). Prevention means), 6 is a Peltier element (heat dissipation heat absorption means), 7 is a condensation sensor (condensation state detection means), 8 is a temperature sensor (temperature detection means), 9 is a humidity sensor (humidity detection means), and 12 is a control device ( (Temperature adjustment control means, condensation prevention control means), 21 is a condensation state detection system, 31 is a condensation state detection system, 41 is a condensation state detection system, 42 is a control device (temperature adjustment control means and condensation elimination control means), 43 is Space heater (condensation eliminating means).

Claims (5)

結露状態の検出対象である電気機器の絶縁部表面の温度を非接触で検出して検出結果を出力する非接触温度検出手段と、
前記電気機器と同一の環境下に配置された模擬結露検出部の検出面に対する放熱及び吸熱を選択的に行う放熱吸熱手段と、
前記模擬結露検出部の前記検出面の温度を検出して検出結果を出力する温度検出手段と、
前記非接触温度検出手段から出力された検出結果と前記温度検出手段から出力された検出結果とを入力する温度調節制御手段と、
前記模擬結露検出部の前記検出面の結露状態を検出して検出結果をシステムの外部に出力する結露状態検出手段と、を備え、
前記温度調節制御手段は、前記非接触温度検出手段から入力した検出結果と前記温度検出手段から入力した検出結果とに基づいて、前記非接触温度検出手段により検出された前記電気機器の前記絶縁部表面の温度と前記温度検出手段により検出された前記模擬結露検出部の前記検出面の温度とが同一となるように前記放熱吸熱手段の前記模擬結露検出部の前記検出面に対する放熱及び吸熱を調節することを特徴とする結露状態検出システム。
Non-contact temperature detection means for detecting the temperature of the surface of the insulating part of the electrical equipment that is the detection target of the dew condensation state in a non-contact manner and outputting the detection result;
Heat dissipation and heat absorption means for selectively performing heat dissipation and heat absorption with respect to the detection surface of the simulated dew condensation detection unit disposed in the same environment as the electrical equipment;
Temperature detection means for detecting the temperature of the detection surface of the simulated dew condensation detection unit and outputting a detection result;
Temperature adjustment control means for inputting the detection result output from the non-contact temperature detection means and the detection result output from the temperature detection means;
Condensation state detection means for detecting the condensation state of the detection surface of the simulated condensation detection unit and outputting the detection result to the outside of the system,
The temperature adjustment control means is based on the detection result input from the non-contact temperature detection means and the detection result input from the temperature detection means, and the insulating portion of the electrical device detected by the non-contact temperature detection means. Heat dissipation and heat absorption to the detection surface of the simulated dew condensation detection unit of the heat dissipation heat absorption unit are adjusted so that the surface temperature and the temperature of the detection surface of the simulated dew condensation detection unit detected by the temperature detection unit are the same. A dew condensation state detection system.
前記模擬結露検出部の前記検出面の湿度を検出して検出結果をシステムの外部に出力する湿度検出手段、を備えたことを特徴とする請求項1に記載の結露状態検出システム。   The dew condensation state detection system according to claim 1, further comprising humidity detection means for detecting the humidity of the detection surface of the simulated dew condensation detection unit and outputting a detection result to the outside of the system. 前記温度検出手段は、前記模擬結露検出部の前記検出面の温度を検出した検出結果をシステムの外部にも出力することを特徴とする請求項1又は2に記載の結露状態検出システム。   3. The dew condensation state detection system according to claim 1, wherein the temperature detection unit outputs a detection result obtained by detecting the temperature of the detection surface of the simulated dew condensation detection unit to the outside of the system. 前記電気機器の前記絶縁部表面に対する放熱を行うことで当該絶縁部表面に発生した結露を解消させる結露解消手段と、
前記結露状態検出手段から出力された検出結果を入力し、その入力した検出結果に基づいて前記結露解消手段の動作を制御する結露解消制御手段と、を備え、
前記結露解消制御手段は、前記結露状態検出手段から入力した検出結果に基づいて、前記模擬結露検出部の検出面に結露が発生したと判定した場合には、前記結露解消手段を起動させ、前記結露解消手段を起動させたことで前記模擬結露検出部に発生した結露が解消したと判定した場合には、前記結露解消手段を停止させることを特徴とする請求項1に記載の結露状態検出システム。
Condensation eliminating means for eliminating condensation generated on the surface of the insulating part by performing heat dissipation on the surface of the insulating part of the electrical equipment;
Condensation elimination control means for inputting the detection result output from the dew condensation state detection means and controlling the operation of the condensation elimination means based on the inputted detection result,
The dew condensation eliminating control unit activates the dew condensation eliminating unit when it is determined that dew condensation has occurred on the detection surface of the simulated dew condensation detection unit based on the detection result input from the dew condensation state detecting unit, 2. The dew condensation state detection system according to claim 1, wherein the dew condensation eliminating unit is stopped when it is determined that the dew condensation generated in the simulated dew condensation detection unit is eliminated by activating the dew condensation eliminating unit. .
前記模擬結露検出部の前記検出面の湿度を検出して検出結果を出力する湿度検出手段と、
前記電気機器の前記絶縁部表面に対する放熱を行うことで当該絶縁部表面での結露の発生を防止する結露防止手段と、
前記結露状態検出手段から出力された検出結果と前記湿度検出手段から出力された検出結果とを入力し、それら入力した検出結果に基づいて前記結露防止手段の動作を制御する結露防止制御手段と、を備え、
前記結露防止制御手段は、前記結露状態検出手段から入力した検出結果と前記湿度検出手段から入力した検出結果とに基づいて、前記模擬結露検出部の検出面に結露が発生したと判定した場合には、その時点で前記湿度検出手段により検出された湿度が結露発生湿度未満であれば、その時点で前記湿度検出手段により検出された湿度を新たな結露発生湿度として更新すると共に前記結露防止手段を起動させ、その時点で前記湿度検出手段により検出された湿度が結露発生湿度未満でなければ、結露発生湿度を更新することなく前記結露防止手段を起動させ、前記模擬結露検出部の検出面に結露が発生していないと判定した場合には、その時点で前記湿度検出手段により検出された湿度が結露発生湿度以上であれば、前記結露防止手段を起動させ、その時点で前記湿度検出手段により検出された湿度が結露発生湿度未満であれば、前記結露防止手段を停止させることを特徴とする請求項1に記載の結露状態検出システム。
Humidity detection means for detecting the humidity of the detection surface of the simulated dew condensation detection unit and outputting a detection result;
Condensation prevention means for preventing the occurrence of dew condensation on the surface of the insulating part by performing heat dissipation on the surface of the insulating part of the electrical equipment;
Condensation prevention control means for inputting the detection result output from the dew condensation state detection means and the detection result output from the humidity detection means, and controlling the operation of the dew condensation prevention means based on the input detection results; With
When the dew condensation prevention control unit determines that dew condensation has occurred on the detection surface of the simulated dew condensation detection unit based on the detection result input from the dew condensation state detection unit and the detection result input from the humidity detection unit. If the humidity detected by the humidity detection means at that time is less than the condensation generation humidity, the humidity detected by the humidity detection means at that time is updated as new condensation generation humidity and the condensation prevention means is updated. If the humidity detected by the humidity detection means at that time is not less than the condensation generation humidity, the condensation prevention means is started without updating the condensation generation humidity, and condensation is formed on the detection surface of the simulated condensation detection unit. If the humidity detected by the humidity detection means at that time is equal to or higher than the condensation generation humidity, the condensation prevention means is activated. If humidity is less than condensation occurrence humidity detected by said humidity detecting means at that point, dew condensation state detection system according to claim 1, characterized in that stopping the condensation preventing means.
JP2009189177A 2009-08-18 2009-08-18 Dew condensation detection system Pending JP2011041437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009189177A JP2011041437A (en) 2009-08-18 2009-08-18 Dew condensation detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009189177A JP2011041437A (en) 2009-08-18 2009-08-18 Dew condensation detection system

Publications (1)

Publication Number Publication Date
JP2011041437A true JP2011041437A (en) 2011-02-24

Family

ID=43768597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009189177A Pending JP2011041437A (en) 2009-08-18 2009-08-18 Dew condensation detection system

Country Status (1)

Country Link
JP (1) JP2011041437A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511919A1 (en) * 2011-04-11 2012-10-17 ABB Technology AG Dry transformer heating
KR20190058056A (en) * 2017-11-21 2019-05-29 주식회사 나래트랜드 Control apparatus having function of preventing dew condensation and controlling mothod for the same
US20200053837A1 (en) * 2017-02-14 2020-02-13 National Institute For Materials Science Method and system for preventing dew condensation and light scattering due to dew condensation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2511919A1 (en) * 2011-04-11 2012-10-17 ABB Technology AG Dry transformer heating
WO2012139688A1 (en) * 2011-04-11 2012-10-18 Abb Technology Ag Dry transformer heater
CN103460310A (en) * 2011-04-11 2013-12-18 Abb技术有限公司 Dry transformer heater
US9171662B2 (en) 2011-04-11 2015-10-27 Abb Technology Ag Dry transformer heater
US20200053837A1 (en) * 2017-02-14 2020-02-13 National Institute For Materials Science Method and system for preventing dew condensation and light scattering due to dew condensation
US11856664B2 (en) * 2017-02-14 2023-12-26 National Institute For Materials Science Method and system for preventing dew condensation and light scattering due to dew condensation
KR20190058056A (en) * 2017-11-21 2019-05-29 주식회사 나래트랜드 Control apparatus having function of preventing dew condensation and controlling mothod for the same
KR102008018B1 (en) 2017-11-21 2019-08-06 주식회사 나래트랜드 Control apparatus having function of preventing dew condensation and controlling mothod for the same

Similar Documents

Publication Publication Date Title
ES2803448T3 (en) Procedure for detecting an electrical malfunction, device for the implementation of such procedure and electrical enclosure equipped with such device
SI2902710T1 (en) Method and device for monitoring the safe use of a cooker
WO2002006914A8 (en) Seat with temperature control and ventilation and safety system for a vehicle
KR20210124466A (en) Battery module gas sensor for battery cell monitoring
JP2007298507A (en) Processing method of measurement values separated in time, filter for sensor, gas sensor device, and operation method of gas sensor device
JP2011041437A (en) Dew condensation detection system
CN109313838B (en) Only with warning
JP2010175404A (en) X-ray analyzer
CN104613690B (en) Control method and control system for condenser temperature protection
CN105518470B (en) Vibration sensor and sensitivity adjustment method thereof
JP2015064223A (en) Environment test device
JP2009303413A (en) Storage box for storing electrical device
JP3975443B2 (en) Sensor device
JP2009146346A (en) State monitoring device
JP2010262422A (en) Infrared abnormality detection device
JP2008304291A (en) Gas sensor
US11913662B2 (en) Temperature controller for a temperature control mechanism preventing condensation
US9070274B2 (en) Method for early detection of cooling-loss events
JP2015017853A (en) Dew condensation detecting apparatus and equipment
KR20120091851A (en) Energy control system
JPH0722766A (en) Preventing method for dew condensation of electric circuit board
JP2010185932A (en) Information presentation device, information presentation method and program
US20230014691A1 (en) System for Monitoring a Device
KR960024044A (en) Abnormal motion detection device and method for microwave
KR101814579B1 (en) Scrubber apparatus capable for detecting fire and corrosion of pipe