JP2011040205A - Hydrogen storage alloy electrode and nickel-hydrogen battery - Google Patents

Hydrogen storage alloy electrode and nickel-hydrogen battery Download PDF

Info

Publication number
JP2011040205A
JP2011040205A JP2009184658A JP2009184658A JP2011040205A JP 2011040205 A JP2011040205 A JP 2011040205A JP 2009184658 A JP2009184658 A JP 2009184658A JP 2009184658 A JP2009184658 A JP 2009184658A JP 2011040205 A JP2011040205 A JP 2011040205A
Authority
JP
Japan
Prior art keywords
storage alloy
hydrogen storage
group
nickel
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009184658A
Other languages
Japanese (ja)
Other versions
JP5515503B2 (en
Inventor
Meiten Ko
明天 高
Hideo Sakata
英郎 坂田
Tomoyo Sanagi
知世 佐薙
Hitomi Nakazawa
瞳 中澤
Hiroyuki Arima
博之 有馬
Toshiki Ichizaka
俊樹 一坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2009184658A priority Critical patent/JP5515503B2/en
Publication of JP2011040205A publication Critical patent/JP2011040205A/en
Application granted granted Critical
Publication of JP5515503B2 publication Critical patent/JP5515503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen storage alloy electrode having a hydrogen storage alloy layer excelling in water repellence, capability of suppressing rise in battery internal pressure, and providing a nickel-hydrogen secondary battery that excels in cycle characteristics and load characteristics. <P>SOLUTION: The hydrogen storage alloy electrode has a hydrogen storage alloy layer (I), containing fluoropolyether (a) expressed by formula (1): X<SP>1</SP>-Rf-(CF<SB>2</SB>)<SB>p</SB>-X<SP>2</SP>(in the formula, Rf is 10-150C fluoropolyether chain; X<SP>1</SP>and X<SP>2</SP>are fluoroalkyl groups;<SB>P</SB>is 0-2), (a) binder (b), and hydrogen storage alloy particles (c) on a conductive support (II), and the nickel-hydrogen secondary battery uses the hydrogen storage alloy electrode. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、ニッケル水素電池の水素吸蔵合金電極、およびニッケル水素電池に関する。   The present invention relates to a hydrogen storage alloy electrode of a nickel metal hydride battery and a nickel metal hydride battery.

ニッケル水素電池では、充電時にアルカリ水溶液を電気分解して得られる水素を吸蔵する水素吸蔵合金粒子を含む層を負極集電体上に形成し、放電時には吸蔵した水素を放出し、酸化して水とする反応が生じている。   In a nickel metal hydride battery, a layer containing hydrogen storage alloy particles that store hydrogen obtained by electrolyzing an alkaline aqueous solution at the time of charging is formed on the negative electrode current collector, and the stored hydrogen is released during discharge and is oxidized to water. The following reaction occurs.

かかるニッケル水素電池の課題として、充電時に負極で発生する水素ガスと正極で発生する酸素ガスによって上昇する電池の内圧上昇の抑制が重要であり、また、放電時に発生した水による水素ガスの放出阻害によって、電池容量の低下、サイクル特性の低下、負荷特性の低下などが生じてしまうことを抑制することも重要である。   As a problem of such a nickel metal hydride battery, it is important to suppress an increase in the internal pressure of the battery that is increased by hydrogen gas generated at the negative electrode and oxygen gas generated at the positive electrode, and also inhibits hydrogen gas release by water generated during discharge. Therefore, it is also important to prevent the battery capacity, cycle characteristics, load characteristics, and the like from being reduced.

そこで、水素吸蔵合金粒子の表面を撥水化させて、水素吸蔵合金粒子表面を固体(合金層)−液体(水またはアルカリ水溶液)−気体(水素ガス)の3相界面状態とすることで、前記課題を改善することが提案されている。   Therefore, by making the surface of the hydrogen storage alloy particles water repellent, the surface of the hydrogen storage alloy particles is brought into a three-phase interface state of solid (alloy layer) -liquid (water or aqueous alkali solution) -gas (hydrogen gas), It has been proposed to improve the problem.

特許文献1〜2では、ポリテトラフルオロエチレン(PTFE)やテトラフルオロエチレン(TFE)/ヘキサフルオロプロピレン(HFP)共重合体(FEP)などの有機溶媒に難溶の固体フッ素樹脂粒子のディスパージョンを水素吸蔵合金層に塗布し、撥水性のフッ素樹脂粒子を水素吸蔵合金粒子表面に点在させる方法が提案されている。   In Patent Documents 1 and 2, a dispersion of solid fluororesin particles hardly soluble in an organic solvent such as polytetrafluoroethylene (PTFE) or tetrafluoroethylene (TFE) / hexafluoropropylene (HFP) copolymer (FEP) is used. There has been proposed a method of applying to a hydrogen storage alloy layer and interspersing the surface of the hydrogen storage alloy particles with water-repellent fluororesin particles.

特許文献3では、加水分解性シリル基(ヒドロシリル基)を両末端に有するパーフルオロポリエーテルを撥水剤としてフッ素系溶剤に溶解した溶液を水素吸蔵合金層に塗布し、撥水層で水素吸蔵合金粒子の表面を被覆する方法が提案されている。   In Patent Document 3, a solution in which a perfluoropolyether having hydrolyzable silyl groups (hydrosilyl groups) at both ends is dissolved in a fluorine-based solvent as a water repellent is applied to the hydrogen storage alloy layer, and the water repellent layer stores hydrogen. A method for coating the surface of alloy particles has been proposed.

特許文献4〜5では、フッ素樹脂ポリマー(パーフルオロブテニルビニルエーテル重合体、パーフルオロアリルビニルエーテル重合体またはテトラフルオロエチレン/パーフルオロ−2,2−ジメチル−1,3−ジオキソール共重合体)のフッ素系溶剤の溶液を水素吸蔵合金層に塗布(またはスプレー)し、撥水層を水素吸蔵合金粒子表面に形成(点在)する方法が提案されている。   In Patent Documents 4 to 5, fluorine of a fluororesin polymer (perfluorobutenyl vinyl ether polymer, perfluoroallyl vinyl ether polymer or tetrafluoroethylene / perfluoro-2,2-dimethyl-1,3-dioxole copolymer). There has been proposed a method in which a solution of a system solvent is applied (or sprayed) to a hydrogen storage alloy layer, and a water repellent layer is formed (spotted) on the surface of the hydrogen storage alloy particles.

特許文献6では、炭素含有水素吸蔵合金粒子の表面に存在する炭素の一部または全部をフッ素化することで水素吸蔵合金粒子表面に3相界面状態を形成することが提案されている。   Patent Document 6 proposes forming a three-phase interface state on the surface of the hydrogen storage alloy particles by fluorinating part or all of the carbon present on the surface of the carbon-containing hydrogen storage alloy particles.

特許文献7には、水素吸蔵合金層を形成するためのペーストとして、水素吸蔵合金粒子に対して、特定の不飽和基含有含フッ素アミド化合物とヒドロシリル基を2個以上有するパーフルオロポリエーテルと硬化用の白金触媒とを含む硬化性組成物を5重量%以下配合した水素吸蔵合金層形成材料が記載されている。   In Patent Document 7, as a paste for forming a hydrogen storage alloy layer, a perfluoropolyether having two or more specific unsaturated group-containing fluorine-containing amide compounds and two or more hydrosilyl groups is cured with respect to the hydrogen storage alloy particles. The hydrogen storage alloy layer forming material which mix | blended 5 weight% or less of the curable composition containing the platinum catalyst for this is described.

特開平02−250260号公報Japanese Patent Laid-Open No. 02-250260 特開平02−291665号公報Japanese Patent Laid-Open No. 02-291665 特開平09−097605号公報JP 09-097605 A 特開平10−012228号公報Japanese Patent Laid-Open No. 10-012228 特開平10−060361号公報Japanese Patent Laid-Open No. 10-060361 特開平08−315814号公報JP 08-315814 A 特開平08−162101号公報Japanese Patent Laid-Open No. 08-162101

しかし、撥水性のフッ素樹脂粒子を水素吸蔵合金粒子表面に点在させる方法(特許文献1〜2)では、難溶性のフッ素樹脂粒子層を水素吸蔵合金粒子表面に形成するための工程が必要となり、また、フッ素樹脂粒子を均一に塗布することが難しいといった問題がある。   However, in the method of dispersing water-repellent fluororesin particles on the surface of the hydrogen storage alloy particles (Patent Documents 1 and 2), a process for forming a hardly soluble fluororesin particle layer on the surface of the hydrogen storage alloy particles is required. Moreover, there is a problem that it is difficult to uniformly apply the fluororesin particles.

含フッ素エーテル系ポリマーを撥水剤として用いる特許文献3〜5では、有機溶剤としてフッ素系溶剤を用いる必要があるが、フッ素系溶剤は地球温暖化係数(GWP)が高く、できれば使用しない方が望ましい。   In Patent Documents 3 to 5 using a fluorinated ether polymer as a water repellent, it is necessary to use a fluorinated solvent as the organic solvent. However, the fluorinated solvent has a high global warming potential (GWP), and should not be used if possible. desirable.

また、炭素含有水素吸蔵合金粒子の表面に存在する炭素の一部または全部をフッ素化する特許文献6は、炭素をフッ素化する際に炭素以外の合金も一緒にフッ素化される可能性があるため容量低下などの問題が残る。   Further, in Patent Document 6 in which part or all of carbon existing on the surface of carbon-containing hydrogen storage alloy particles is fluorinated, an alloy other than carbon may be fluorinated together with carbon. Therefore, problems such as capacity reduction remain.

特許文献7は、水素吸蔵合金層を形成した後に撥水層を形成する形態ではなく、水素吸蔵合金層を形成するペースト中に撥水剤として特定のパーフルオロポリエーテルを配合する発明であるが、触媒として白金触媒が必要となるほか、アミド化合物の親水性のアミド基の存在により撥水効果が薄れる傾向にある。   Patent Document 7 is an invention in which a specific perfluoropolyether is blended as a water repellent agent in a paste for forming a hydrogen storage alloy layer, rather than a form of forming a water repellent layer after forming a hydrogen storage alloy layer. In addition to the need for a platinum catalyst as a catalyst, the presence of the hydrophilic amide group of the amide compound tends to reduce the water-repellent effect.

本発明は、撥水性に優れた水素吸蔵合金層を形成するために、容易に適用できかつ環境に優しい材料を検討した結果、完成されたものである。   The present invention has been completed as a result of studying an environment-friendly material that can be easily applied to form a hydrogen storage alloy layer having excellent water repellency.

すなわち本発明は、式(1):
1−Rf−(CF2p−X2 (1)
(式中、Rfは炭素数10〜150のフルオロポリエーテル鎖;X1およびX2は同じかまたは異なり、いずれもフッ素原子、カルボキシル基、カルボン酸エステル基、フルオロアルコキシル基、アルコキシル基、水酸基、−Si(OR1n2 m(n+m=3、nは1〜3の整数、mは0〜2の整数、R1およびR2は同じかまたは異なり、いずれも炭素数1〜3のアルキル基)、または炭素数1〜3のフルオロアルキル基;pは0〜2の整数)で示されるフルオロポリエーテル(a)と結着剤(b)と水素吸蔵合金粒子(c)とを含む水素吸蔵合金層(I)を導電性支持体(II)上に有する水素吸蔵合金電極に関する。
That is, the present invention provides the formula (1):
X 1 -Rf- (CF 2) p -X 2 (1)
(Wherein Rf is a fluoropolyether chain having 10 to 150 carbon atoms; X 1 and X 2 are the same or different, and all are fluorine atom, carboxyl group, carboxylic acid ester group, fluoroalkoxyl group, alkoxyl group, hydroxyl group, —Si (OR 1 ) n R 2 m (n + m = 3, n is an integer of 1 to 3, m is an integer of 0 to 2, R 1 and R 2 are the same or different, and each has 1 to 3 carbon atoms. An alkyl group), or a fluoroalkyl group having 1 to 3 carbon atoms; p is an integer of 0 to 2), a binder (b), and hydrogen storage alloy particles (c). The present invention relates to a hydrogen storage alloy electrode having a hydrogen storage alloy layer (I) on a conductive support (II).

なかでも、エーテル結合が存在するにもかかわらず撥水性が良好な点から、式(1)において、Rfが−(CF2CF2CF2O)−、−(CF2CF2O)−、−(CF2O)−、−(CF(CF3)CF2O)−および−(CH2CF2O)−よりなる群から選ばれる少なくとも1種の構造単位を含むフルオロポリエーテルが好ましく、また、X1がフッ素原子または炭素数1〜3のフルオロアルキル基であり、X2が、フッ素原子、カルボキシル基、カルボン酸エステル基、フルオロアルコキシル基、アルコキシル基、水酸基または−Si(OR1n2 m(n+m=3、nは1〜3の整数、mは0〜2の整数、R1およびR2は同じかまたは異なり、いずれも炭素数1〜3のアルキル基)であるフルオロポリエーテルが好ましい。 Of these, Rf is — (CF 2 CF 2 CF 2 O) —, — (CF 2 CF 2 O) —, in view of good water repellency despite the presence of an ether bond, A fluoropolyether containing at least one structural unit selected from the group consisting of-(CF 2 O)-,-(CF (CF 3 ) CF 2 O)-and-(CH 2 CF 2 O)-is preferred, X 1 is a fluorine atom or a fluoroalkyl group having 1 to 3 carbon atoms, and X 2 is a fluorine atom, a carboxyl group, a carboxylate group, a fluoroalkoxyl group, an alkoxyl group, a hydroxyl group, or —Si (OR 1 ). n R 2 m (n + m = 3, n is an integer of 1 to 3, m is an integer of 0 to 2, R 1 and R 2 are the same or different, and both are alkyl groups having 1 to 3 carbon atoms) Polyethers are preferred.

本発明はまた、本発明の水素吸蔵合金電極を負極とし、正極およびアルカリ電解液を備えるニッケル水素二次電池にも関する。   The present invention also relates to a nickel-metal hydride secondary battery having the hydrogen storage alloy electrode of the present invention as a negative electrode and including a positive electrode and an alkaline electrolyte.

本発明の水素吸蔵合金電極によれば、撥水性に優れた水素吸蔵合金層を有しており、電池内圧の上昇を抑制でき、サイクル特性や負荷特性に優れたニッケル水素二次電池を提供することができる。   According to the hydrogen storage alloy electrode of the present invention, a nickel hydrogen secondary battery having a hydrogen storage alloy layer excellent in water repellency, capable of suppressing an increase in battery internal pressure, and excellent in cycle characteristics and load characteristics is provided. be able to.

本発明の水素吸蔵合金電極は、特定のフルオロポリエーテル(a)と結着剤(b)と水素吸蔵合金粒子(c)とを含む水素吸蔵合金層(I)を導電性支持体(II)上に有する。   The hydrogen storage alloy electrode of the present invention comprises a hydrogen storage alloy layer (I) containing a specific fluoropolyether (a), a binder (b), and hydrogen storage alloy particles (c) as a conductive support (II). Have on.

以下、各要素について説明する。   Hereinafter, each element will be described.

(I)水素吸蔵合金層
本発明において、水素吸蔵合金層(I)は、特定のフルオロポリエーテル(a)と結着剤(b)と水素吸蔵合金粒子(c)とを含む。
(I) Hydrogen Storage Alloy Layer In the present invention, the hydrogen storage alloy layer (I) includes a specific fluoropolyether (a), a binder (b), and hydrogen storage alloy particles (c).

(a)特定のフルオロポリエーテル
本発明で用いる式(1):
1−Rf−(CF2p−X2 (1)
(式中、Rfは炭素数10〜150のフルオロポリエーテル鎖;X1およびX2は同じかまたは異なり、いずれもフッ素原子、カルボキシル基、カルボン酸エステル基、フルオロアルコキシル基、アルコキシル基、水酸基、−Si(OR1n2 m(n+m=3、nは1〜3の整数、mは0〜2の整数、R1およびR2は同じかまたは異なり、いずれも炭素数1〜3のアルキル基)、または炭素数1〜3のフルオロアルキル基;pは0〜2の整数)で示されるフルオロポリエーテル(a)は、優れた撥水性と流動性を有することが重要である。
(A) Specific fluoropolyether Formula (1) used in the present invention:
X 1 -Rf- (CF 2) p -X 2 (1)
(Wherein Rf is a fluoropolyether chain having 10 to 150 carbon atoms; X 1 and X 2 are the same or different, and all are fluorine atom, carboxyl group, carboxylic acid ester group, fluoroalkoxyl group, alkoxyl group, hydroxyl group, —Si (OR 1 ) n R 2 m (n + m = 3, n is an integer of 1 to 3, m is an integer of 0 to 2, R 1 and R 2 are the same or different, and each has 1 to 3 carbon atoms. It is important that the fluoropolyether (a) represented by (alkyl group) or a fluoroalkyl group having 1 to 3 carbon atoms; p is an integer of 0 to 2) has excellent water repellency and fluidity.

そのためには、
(1)撥水性を発現させるため、フルオロポリエーテル鎖Rfがフルオロエーテル単位を有し、かつ炭素数は10〜150であること、
(2)親水性の高い官能基(たとえばアミド基やヒドロシリル基など)の含有量が少ないこと
が重要である。
for that purpose,
(1) In order to develop water repellency, the fluoropolyether chain Rf has a fluoroether unit and has 10 to 150 carbon atoms,
(2) It is important that the content of highly hydrophilic functional groups (such as amide groups and hydrosilyl groups) is low.

前記(1)の観点から、フルオロポリエーテル鎖Rfがフッ素含有率の高い構造単位を多く有することが好ましい。フッ素含有率の高い構造単位としては、−(CF2CF2CF2O)−、−(CF2CF2O)−、−(CF2O)−、−(CF(CF3)CF2O)−および−(CH2CF2O)−、−(CF2CFRf1O)−、−(CFRf1CFRf1O)−、−(CF2CF2CF2CF2O)−、−(CF2CF2CF2CFRf1O)−、−(CFRf1CF2CF2CFRf1O)−(Rf1はペンタフルオロエチル基またはヘプタフルオロプロピル基)よりなる群から選ばれる少なくとも1種の構造単位が好ましく、特に−(CF2CF2CF2O)−が好ましい。 From the viewpoint of (1), it is preferable that the fluoropolyether chain Rf has many structural units having a high fluorine content. As structural units having a high fluorine content,-(CF 2 CF 2 CF 2 O)-,-(CF 2 CF 2 O)-,-(CF 2 O)-,-(CF (CF 3 ) CF 2 O )-And-(CH 2 CF 2 O)-,-(CF 2 CFRf 1 O)-,-(CFRf 1 CFRf 1 O)-,-(CF 2 CF 2 CF 2 CF 2 O)-,-(CF 2 CF 2 CF 2 CFRf 1 O) —, — (CFRf 1 CF 2 CF 2 CFRf 1 O) — (Rf 1 is a pentafluoroethyl group or a heptafluoropropyl group). Is preferred, and — (CF 2 CF 2 CF 2 O) — is particularly preferred.

撥水性の向上の点から炭素数も10以上、さらには30以上、特に40以上が好ましい。炭素数は流動性を維持する点から150以下、さらには145以下、特に140以下が好ましい。この範囲にあると電極の作製時の作業性が良好である。   From the viewpoint of improving water repellency, the number of carbon atoms is preferably 10 or more, more preferably 30 or more, and particularly preferably 40 or more. The number of carbon atoms is preferably 150 or less, more preferably 145 or less, and particularly preferably 140 or less from the viewpoint of maintaining fluidity. If it is within this range, the workability during the production of the electrode is good.

前記(2)の観点からは、末端基X1およびX2が比較的親水性の低い基であることが好ましい。特に、X1とX2のいずれか一方、さらには両方がフッ素原子あるいは炭素数1〜3のフルオロアルキル基であることが好ましい。 From the viewpoint of (2), it is preferable that the end groups X 1 and X 2 are groups having relatively low hydrophilicity. In particular, it is preferable that one or both of X 1 and X 2 are fluorine atoms or fluoroalkyl groups having 1 to 3 carbon atoms.

また、フルオロポリエーテル鎖Rfに結合しているCF2単位の数は長すぎるとフルオロポリエーテル鎖の特性が弱まるため0〜2が好ましい。 Further, when the number of CF 2 units bonded to the fluoropolyether chain Rf is too long, the characteristics of the fluoropolyether chain are weakened, and therefore 0 to 2 is preferable.

炭素数1〜3のフルオロアルキル基以外の末端基としては、比較的親水性の低い基であるカルボキシル基、カルボン酸エステル基、フルオロアルコキシル基、アルコキシル基、水酸基または−Si(OR1n2 m(n+m=3、nは1〜3の整数、mは0〜2の整数、R1およびR2は同じかまたは異なり、いずれも炭素数1〜3のアルキル基)が好ましい。 Examples of the terminal group other than the fluoroalkyl group having 1 to 3 carbon atoms include a carboxyl group, a carboxylic acid ester group, a fluoroalkoxyl group, an alkoxyl group, a hydroxyl group, or —Si (OR 1 ) n R, which are relatively hydrophilic groups. 2 m (n + m = 3, n is an integer of 1 to 3, m is an integer of 0 to 2, R 1 and R 2 are the same or different and both are alkyl groups having 1 to 3 carbon atoms) is preferable.

好ましい具体的なフルオロポリエーテル(a)としては、たとえばつぎのものが例示できるが、これらのみに限定されるものではない。   Preferred specific fluoropolyethers (a) include, for example, the following, but are not limited to these.

F(CF2CF2CF2O)n−CF2CF3(nは10〜50)、
F(CF2CF2CF2O)n−CF2CF2COOH(nは10〜40)、
F(CF2CF2CF2O)n−CF2CF2COOCH2CH2OC65(nは10〜40)
F(CF2CF2CF2O)n−CF2CF2OH(nは10〜40)、
F(CF(CF3)CF2O)nCF2CF3(nは7〜40)
Rf2O−(CF2CF2O)k−(CF2CFRf1O)m−(CFRf1CFRf1O)n−Rf2
Rf2O−(CF2CF2CF2CF2O)k−(CF2CF2CF2CFRf1O)m−(CFRf1CF2CF2CFRf1O)n−Rf2
(Rf1はペンタフルオロエチル基またはヘプタフルオロプロピル基、Rf2は炭素数1〜3のパーフルオロアルキル基であり、kおよびmは0または正の整数、nは正の整数。ただし、k+m+nはフルオロエーテル単位の合計炭素数を10〜150とする整数)、
(CH3O)3Si−(CF2CF2CF2O)n−C37(nは10〜40の整数)、
CF3O−(CF2CF2O)m−(CF2O)n−CF3(m、nは正の整数で、n+mはフルオロエーテル単位の合計炭素数を10〜150とする整数)
F (CF 2 CF 2 CF 2 O) n -CF 2 CF 3 (n is 10 to 50),
F (CF 2 CF 2 CF 2 O) n -CF 2 CF 2 COOH (n is 10 to 40),
F (CF 2 CF 2 CF 2 O) n -CF 2 CF 2 COOCH 2 CH 2 OC 6 H 5 (n is 10 to 40)
F (CF 2 CF 2 CF 2 O) n -CF 2 CF 2 OH (n is 10 to 40),
F (CF (CF 3 ) CF 2 O) n CF 2 CF 3 (n is 7 to 40)
Rf 2 O- (CF 2 CF 2 O) k - (CF 2 CFRf 1 O) m - (CFRf 1 CFRf 1 O) n -Rf 2,
Rf 2 O- (CF 2 CF 2 CF 2 CF 2 O) k - (CF 2 CF 2 CF 2 CFRf 1 O) m - (CFRf 1 CF 2 CF 2 CFRf 1 O) n -Rf 2
(Rf 1 is a pentafluoroethyl group or heptafluoropropyl group, Rf 2 is a perfluoroalkyl group having 1 to 3 carbon atoms, k and m are 0 or a positive integer, n is a positive integer, provided that k + m + n is An integer in which the total carbon number of the fluoroether unit is 10 to 150)
(CH 3 O) 3 Si- ( CF 2 CF 2 CF 2 O) n -C 3 F 7 (n is 10-40 integer),
CF 3 O- (CF 2 CF 2 O) m - (CF 2 O) n -CF 3 (m, n are positive integers, n + m is an integer and 10 to 150 total carbon number of fluoroether units)

本発明に用いるフルオロポリエーテル(a)は、数平均分子量が2000〜10000の範囲にあることが好ましい。数平均分子量が10000を超えて大きくなると25℃では流動性がほとんどなくなり、水素吸蔵合金層への均一な分散が困難になることがある。一方、2000よりも小さいと流動性が高くなりすぎ粒子上に均一に固定化できなくなることがある。特に、流動性と均一分散がしやすい点から数平均分子量は9000以下であることが好ましい。   The fluoropolyether (a) used in the present invention preferably has a number average molecular weight in the range of 2000 to 10,000. When the number average molecular weight is larger than 10,000, fluidity is almost lost at 25 ° C., and uniform dispersion to the hydrogen storage alloy layer may be difficult. On the other hand, if it is less than 2000, the fluidity becomes too high, and it may not be possible to fix it uniformly on the particles. In particular, the number average molecular weight is preferably 9000 or less from the viewpoint of fluidity and easy uniform dispersion.

流動性に着目すると、たとえば動粘度(25℃)が1000mm2/s以下、さらには500mm2/s以下であることが、混合または塗布の作業性が良好な点から好ましい。下限は、粒子上に均一に固定化できる点から40mm2/s以上、さらには50mm2/s以上が好ましい。 Focusing on the fluidity, for example, the kinematic viscosity (25 ° C.) is preferably 1000 mm 2 / s or less, more preferably 500 mm 2 / s or less, from the viewpoint of good workability of mixing or coating. The lower limit is preferably 40 mm 2 / s or more, more preferably 50 mm 2 / s or more, from the viewpoint that it can be uniformly fixed on the particles.

市販品としては、たとえばダイキン工業(株)製のデムナムS−20、S−65、S−200など;ダイキン工業(株)製のデムナムSP、デムナムSHなどがあげられる。   Examples of commercially available products include demnum S-20, S-65, and S-200 manufactured by Daikin Industries, Ltd .; demnam SP and demnam SH manufactured by Daikin Industries, Ltd.

また、デュポン社製のクライトックス(Krytox)143AA、143AT、143など;ソルベイソレクシス社製のフォンブリンZなどもあげられる。本発明で用いる特定のフルオロポリエーテル(a)は、ニッケル水素二次電池の水素吸蔵合金の成分であるニッケルとの親和性が良好であり、水素吸蔵合金粒子に撥水性を長時間付与することができる。   Further, Krytox 143AA, 143AT, 143, etc. manufactured by DuPont, and Fomblin Z, manufactured by Solvay Solexis, are also included. The specific fluoropolyether (a) used in the present invention has good affinity with nickel, which is a component of the hydrogen storage alloy of the nickel hydrogen secondary battery, and imparts water repellency to the hydrogen storage alloy particles for a long time. Can do.

(b)結着剤
本発明において用いる結着剤(b)としては、従来からニッケル水素二次電池の水素吸蔵合金層の形成に用いられている公知の材料、たとえば特開2002−15731号公報などに記載されている結着剤が採用できる。
(B) Binder As the binder (b) used in the present invention, a known material conventionally used for forming a hydrogen storage alloy layer of a nickel metal hydride secondary battery, for example, JP-A-2002-15731 The binder described in the above can be employed.

具体的には、たとえばメチルセルロース、カルボキシメチルセルロースなどのセルロース系結着剤;ポリビニルアルコール、ポリエチレンオキサイドなどの親水性合成樹脂系結着剤;ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂系結着剤;ポリプロピレン、ポリエチレン、ポリスチロールなどのハイドロカーボン系結着剤;スチレン−ブタジエンゴム(SBR)などのゴム系結着剤が例示できる。   Specifically, for example, cellulose-based binders such as methylcellulose and carboxymethylcellulose; hydrophilic synthetic resin-based binders such as polyvinyl alcohol and polyethylene oxide; polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), and the like Examples include fluororesin binders; hydrocarbon binders such as polypropylene, polyethylene, and polystyrene; rubber binders such as styrene-butadiene rubber (SBR).

これらのうち、非フッ素系結着剤を用いる場合は、フルオロポリエーテル(a)がもつ撥水効果が顕著に発現する。また、フッ素樹脂系結着剤を用いる場合については、フッ素樹脂自身が撥水性をもっているが、フルオロポリエーテル(a)を添加することにより、より一層電極表面上に撥水性を発現させやすくなる。   Among these, when a non-fluorinated binder is used, the water repellent effect of the fluoropolyether (a) is remarkably exhibited. In the case of using a fluororesin-based binder, the fluororesin itself has water repellency, but the addition of fluoropolyether (a) makes it easier to express water repellency on the electrode surface.

(c)水素吸蔵合金粒子
本発明において用いる水素吸蔵合金としては、従来からニッケル水素二次電池の水素吸蔵合金層の形成に用いられている公知の材料、たとえば特開平02−291665号公報、特開2008−210554号公報などに記載されている合金が採用できる。
(C) Hydrogen storage alloy particles As the hydrogen storage alloy used in the present invention, known materials conventionally used for forming a hydrogen storage alloy layer of a nickel hydrogen secondary battery, for example, Japanese Patent Application Laid-Open No. 02-291665, Alloys described in Japanese Unexamined Patent Publication No. 2008-210554 can be employed.

具体的には、たとえばAB5型と呼ばれているミッシュメタル(Mm)を主原料とする合金やAB2型と呼ばれているTi−Zr−Mn−V、Ti−Zr−Cr−FeTi−Cr−VやBCC型と呼ばれるTi−Cr−Vなどが例示できる。これらのうち、サイクル特性等の電池特性が良好な点から、ミッシュメタル系の水素吸蔵合金が好ましい。 Specifically, for example, AB 5 type and the called and is misch metal (Mm) is called the alloy and AB 2 type whose main raw material Ti-Zr-Mn-V, Ti-Zr-Cr-FeTi- Examples thereof include Ti—Cr—V called Cr—V or BCC type. Among these, a misch metal-based hydrogen storage alloy is preferable from the viewpoint of good battery characteristics such as cycle characteristics.

ミッシュメタル系水素吸蔵合金(AB5型)は、CaCu5構造を有するLaNi5系合金のLaの一部をCe、Pr、Ndなどの希土類金属元素で置換した混合物であり、代表
例として、Ce/La/Nd/他の希土類金属元素(=45/30/5/20重量%)があげられる。また、Mm、Ni、Co、AlおよびMnをモル比でMm/Ni/Co/Al/Mnが1.0/3.3/0.9/0.2/0.6で合金化した物や1.0/4.1/0.3/0.35/0.3で合金化した物、1.0/3.4/0.8/0.2/0.6で合金化した物も知られている。
The Misch metal-based hydrogen storage alloy (AB 5 type) is a mixture in which a part of La of a LaNi 5 -based alloy having a CaCu 5 structure is replaced with a rare earth metal element such as Ce, Pr, Nd. As a representative example, Ce / La / Nd / other rare earth metal elements (= 45/30/5/20% by weight). Further, Mm, Ni, Co, Al, and Mn alloyed at a molar ratio of Mm / Ni / Co / Al / Mn of 1.0 / 3.3 / 0.9 / 0.2 / 0.6 Those alloyed with 1.0 / 4.1 / 0.3 / 0.35 / 0.3 and those alloyed with 1.0 / 3.4 / 0.8 / 0.2 / 0.6 Are known.

水素吸蔵合金は粒子(粉末)の形態で使用される。粒子径は通常、40〜300μm程度である。   The hydrogen storage alloy is used in the form of particles (powder). The particle size is usually about 40 to 300 μm.

本発明に用いる水素吸蔵合金層(I)における、フルオロポリエーテル(a)と結着剤(b)と水素吸蔵合金粒子(c)の含有量は、水素吸蔵合金層(I)中(以下同様)において、フルオロポリエーテル(a)0.1〜5.0質量%、結着剤(b)0.5〜5.0質量%および水素吸蔵合金粒子(c)90〜97質量%であることが好ましい。また、フルオロポリエーテル(a)と結着剤(b)の合計量は5質量%以下、さらには0.6〜4.0質量%であることが電池特性の向上の点から好ましい。   The contents of the fluoropolyether (a), the binder (b), and the hydrogen storage alloy particles (c) in the hydrogen storage alloy layer (I) used in the present invention are the same in the hydrogen storage alloy layer (I) (hereinafter the same). ), 0.1 to 5.0% by mass of fluoropolyether (a), 0.5 to 5.0% by mass of binder (b) and 90 to 97% by mass of hydrogen storage alloy particles (c). Is preferred. The total amount of the fluoropolyether (a) and the binder (b) is preferably 5% by mass or less, and more preferably 0.6 to 4.0% by mass from the viewpoint of improving battery characteristics.

フルオロポリエーテル(a)は、サイクル特性、負荷特性が良好な点から5.0質量%以下、さらには1.0質量%以下であることが好ましく、また、電極の表面を均一に覆うことができる点から0.1質量%以上、さらには0.5質量%以上であることが好ましい。   The fluoropolyether (a) is preferably 5.0% by mass or less, more preferably 1.0% by mass or less from the viewpoint of good cycle characteristics and load characteristics, and can uniformly cover the surface of the electrode. From the point which can be performed, it is preferable that it is 0.1 mass% or more, and also 0.5 mass% or more.

結着剤(b)は、その種類や分子量などによって異なるが、一般に、電池特性が良好な点から5.0質量%以下、さらには3.0質量%以下であることが好ましく、また、接着性が良好な点から0.5質量%以上、さらには1.0質量%以上であることが好ましい。   The binder (b) varies depending on the type and molecular weight thereof, but generally it is preferably 5.0% by mass or less, more preferably 3.0% by mass or less from the viewpoint of good battery characteristics, and adhesion. From the viewpoint of good properties, it is preferably 0.5% by mass or more, and more preferably 1.0% by mass or more.

(II)導電性支持体
本発明において用いる導電性支持体(集電体)としては、従来からニッケル水素二次電池の水素吸蔵合金電極(負極)に用いられている公知の材料の支持体、たとえば特開2002−260646号公報などに記載されている支持体が採用できる。
(II) Conductive support As the conductive support (current collector) used in the present invention, a support of a known material conventionally used for a hydrogen storage alloy electrode (negative electrode) of a nickel hydrogen secondary battery, For example, the support body described in Unexamined-Japanese-Patent No. 2002-260646 etc. can be employ | adopted.

具体的には、たとえば繊維状ニッケル、発泡ニッケルなどの三次元導電性支持体;パンチングメタル、エクスパンドメタル、金属ネットなどの二次元導電性支持体などが例示できる。   Specific examples include three-dimensional conductive supports such as fibrous nickel and foamed nickel; two-dimensional conductive supports such as punching metal, expanded metal, and metal net.

本発明の水素吸蔵合金電極は、種々の方法で導電性支持体(II)上に水素吸蔵合金層(I)を形成することにより製造できる。   The hydrogen storage alloy electrode of the present invention can be produced by forming the hydrogen storage alloy layer (I) on the conductive support (II) by various methods.

たとえば、(1)フルオロポリエーテル(a)と結着剤(b)と水素吸蔵合金粒子(c)を溶媒の不存在下に所定量混合してペーストを調製し、導電性支持体に塗布するか圧着する方法;
(2)結着剤(b)と水素吸蔵合金粒子(c)とを溶媒を用いて混合してペーストを調製し、導電性支持体に塗布するか圧着して水素吸蔵合金層を形成し、ついで、この水素吸蔵合金層にフルオロポリエーテル(a)を塗布する方法;
(3)結着剤(b)と水素吸蔵合金粒子(c)とを溶媒を用いて混合してペーストを調製し、キャスト法や圧縮成形法で水素吸蔵合金シートを形成し、ついで、この水素吸蔵合金シートにフルオロポリエーテル(a)を塗布または含浸した後、導電性支持体に貼付する方法;
などが採用できる。
For example, (1) a predetermined amount of fluoropolyether (a), binder (b), and hydrogen storage alloy particles (c) are mixed in the absence of a solvent to prepare a paste, which is applied to a conductive support. Or crimping method;
(2) A binder (b) and hydrogen storage alloy particles (c) are mixed using a solvent to prepare a paste, which is applied to a conductive support or pressed to form a hydrogen storage alloy layer, Next, a method of applying fluoropolyether (a) to the hydrogen storage alloy layer;
(3) The binder (b) and the hydrogen storage alloy particles (c) are mixed using a solvent to prepare a paste, and a hydrogen storage alloy sheet is formed by a casting method or a compression molding method. A method of applying or impregnating fluoropolyether (a) to an occlusion alloy sheet and then sticking it to a conductive support;
Etc. can be adopted.

これらの方法の中でも、方法(1)が、均一にフルオロポリエーテル(a)を水素吸蔵合金粒子(c)上に塗布することができる点から好ましい。   Among these methods, the method (1) is preferable because the fluoropolyether (a) can be uniformly coated on the hydrogen storage alloy particles (c).

本発明はまた、本発明の水素吸蔵合金電極を負極とし、正極とアルカリ電解液を備えたニッケル水素二次電池にも関する。本発明のニッケル水素二次電池は、負極として本発明の水素吸蔵合金電極を用いるほかは、従来のニッケル水素二次電池と同様であり、正極、アルカリ電解液のほか、セパレータ、負極缶などの構成、材料なども従来公知のものが採用できる。   The present invention also relates to a nickel-metal hydride secondary battery using the hydrogen storage alloy electrode of the present invention as a negative electrode and including a positive electrode and an alkaline electrolyte. The nickel metal hydride secondary battery of the present invention is the same as the conventional nickel metal hydride secondary battery, except that the hydrogen storage alloy electrode of the present invention is used as the negative electrode. In addition to the positive electrode and the alkaline electrolyte, the separator, the negative electrode can, etc. Conventionally known structures and materials can be used.

正極としては、具体的には、たとえば水酸化ニッケルを充填したニッケル極が一般的である。このニッケル極は、表面にオキシ水酸化コバルト層が形成された水酸化ニッケル粉末を主成分とするペーストを発泡状ニッケルに充填することで作製できる。   Specifically, for example, a nickel electrode filled with nickel hydroxide is generally used. This nickel electrode can be produced by filling foam nickel with a paste mainly composed of nickel hydroxide powder having a cobalt oxyhydroxide layer formed on the surface thereof.

アルカリ電解液としては、たとえば水酸化カリウム水溶液、水酸化ナトリウム、水酸化リチウムあるいはそれらの混合溶液などがあげられる。   Examples of the alkaline electrolyte include an aqueous potassium hydroxide solution, sodium hydroxide, lithium hydroxide, or a mixed solution thereof.

本発明のニッケル水素二次電池は、水素吸蔵合金層に撥水性に優れかつニッケルへの親和性が良好なフルオロポリエーテルを含有させているため、良好な固体−液体−気体−3相界面状態が形成され、水素ガスの吸蔵・放出をスムーズに行うことができるので電池内圧の上昇を抑制でき、その結果、サイクル特性や負荷特性などの電池特性も向上する。   The nickel metal hydride secondary battery of the present invention contains a fluoropolyether having excellent water repellency and good affinity for nickel in the hydrogen storage alloy layer, so that it has a good solid-liquid-gas-3 phase interface state. Is formed, and hydrogen gas can be smoothly occluded / released, so that an increase in battery internal pressure can be suppressed. As a result, battery characteristics such as cycle characteristics and load characteristics are improved.

つぎに実施例をあげて本発明を説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Next, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

本発明において採用した測定方法は以下のとおりである。   The measurement method employed in the present invention is as follows.

(数平均分子量)
GPC(ゲルパーミエーションクロマトグラフィー:(株)東ソー製HLC−8320GPC)を用い測定を行う。
(Number average molecular weight)
Measurement is performed using GPC (gel permeation chromatography: HLC-8320GPC manufactured by Tosoh Corporation).

(動粘度)
JIS K 6893に準拠して測定を行う。実際には東京計器製のB型粘度計(型番:BLBH)でNo.2ローターを使用し60rpm、25℃、2分間の条件で測定する。
(Kinematic viscosity)
Measurement is performed in accordance with JIS K 6893. Actually, a B-type viscometer (model number: BLBH) manufactured by Tokyo Keiki Co., Ltd. Measurement is performed under the conditions of 60 rpm, 25 ° C., and 2 minutes using 2 rotors.

(対水接触角)
自動接触角測定装置DSA100S(協和界面科学(株)製)を使用し純水0.5μLを電極に落とし8秒後の接触角を測定する。
(Water contact angle)
Using an automatic contact angle measuring device DSA100S (manufactured by Kyowa Interface Science Co., Ltd.), 0.5 μL of pure water is dropped on the electrode, and the contact angle after 8 seconds is measured.

実施例1
(1)水素吸蔵合金粉末の作製
MmNi3.4Co0.8Al0.2Mn0.6(モル比。Mmはミッシュメタルである)となるように市販の各金属元素Mm、Ni、Co、AlおよびMnを秤量して所定の比率で混合した。この混合物を高周波溶解炉に投入して溶解させた後、鋳型に流し込み、冷却してMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金の塊(インゴット)を作製した。この水素吸蔵合金の塊を粗粉砕した後、不活性ガス雰囲気中で平均粒径が50μm程度になるまで機械的に粉砕して、水素吸蔵合金粉末を作製した。なお、得られた水素吸蔵合金粉末の平均粒径はレーザ回折法により測定した値である。
Example 1
(1) Preparation of hydrogen storage alloy powder Weigh each of the commercially available metal elements Mm, Ni, Co, Al and Mn so as to be MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 (molar ratio. Mm is Misch metal). Mix in the given ratio. This mixture was put into a high-frequency melting furnace and dissolved, and then poured into a mold and cooled to prepare a hydrogen storage alloy lump (ingot) made of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 . This lump of hydrogen storage alloy was coarsely pulverized and then mechanically pulverized in an inert gas atmosphere until the average particle size reached about 50 μm to prepare a hydrogen storage alloy powder. In addition, the average particle diameter of the obtained hydrogen storage alloy powder is a value measured by a laser diffraction method.

(2)水素吸蔵合金電極の作製
作製した水素吸蔵合金粉末98質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)、パーフルオロポリエーテル(ダイキン工業(株)製デムナムS−20;F(CF2CF2CF2O)nCF2CF3;n=16;炭素数50(Rfの合計炭素数は48);数平均分子量2700;動粘度(20℃)53mm2/s)を0.5質量部加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
(2) Preparation of hydrogen storage alloy electrode To 98 parts by mass of the prepared hydrogen storage alloy powder, 1.5 parts by mass (solid content) of PTFE dispersion (D-210C manufactured by Daikin Industries, Ltd.) as a binder, Perfluoropolyether (Daikin Industries Co., Ltd. demnum S-20; F (CF 2 CF 2 CF 2 O) n CF 2 CF 3 ; n = 16; carbon number 50 (total carbon number of Rf is 48); number 0.5 parts by mass of average molecular weight 2700; kinematic viscosity (20 ° C.) 53 mm 2 / s) was added, and pure water was further added and kneaded to prepare a hydrogen storage alloy layer forming slurry (active material slurry). This slurry for forming a hydrogen storage alloy layer was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until moisture was lost, thereby preparing a hydrogen storage alloy electrode (negative electrode).

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、112.5度であった。   When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 112.5 degrees.

実施例2
フルオロポリエーテルとして、ダイキン工業(株)製のデムナムS−65(F(CF2CF2CF2O)nCF2CF3;n=26;炭素数80(Rfの合計炭素数は78);数平均分子量約4500;動粘度(20℃)150mm2/s)を用いたほかは実施例1と同様に混合物を混練して水素吸蔵合金層形成用ペーストを調製し、これをニッケルメッキしたパンチングメタルに塗布し、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 2
As fluoropolyether, Daikin Industries Ltd. of Demnum S-65 (F (CF 2 CF 2 CF 2 O) n CF 2 CF 3; n = 26; the total number of carbon atoms in the number of 80 (Rf carbon 78); The mixture was kneaded in the same manner as in Example 1 except that the number average molecular weight was about 4500; kinematic viscosity (20 ° C.) 150 mm 2 / s), and a hydrogen-absorbing alloy layer forming paste was prepared. It apply | coated to the metal and it dried until there was no water | moisture content in the 90 degreeC thermostat, and produced the hydrogen storage alloy electrode (negative electrode).

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、114.9度であった。   When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 114.9 degrees.

実施例3
フルオロポリエーテルとして、ダイキン工業(株)製のデムナムS−200(F(CF2CF2CF2O)nCF2CF3;n=50;炭素数152(Rfの合計炭素数は150);数平均分子量約8400;動粘度(20℃)500mm2/s)を用いたほかは実施例1と同様に混合物を混練して水素吸蔵合金層形成用ペーストを調製し、これをニッケルメッキしたパンチングメタルに塗布し、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 3
As fluoropolyether, Daikin Industries Ltd. of Demnum S-200 (F (CF 2 CF 2 CF 2 O) n CF 2 CF 3; n = 50; the total number of carbon atoms is 150 carbon atoms 152 (Rf); The mixture was kneaded in the same manner as in Example 1 except that the number average molecular weight was about 8400; kinematic viscosity (20 ° C.) 500 mm 2 / s), and a hydrogen storage alloy layer forming paste was prepared and punched by nickel plating. It apply | coated to the metal and it dried until there was no water | moisture content in the 90 degreeC thermostat, and produced the hydrogen storage alloy electrode (negative electrode).

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、113.9度であった。   It was 113.9 degree | times when the hydrogen contact angle of the hydrogen storage alloy layer surface of the obtained hydrogen storage alloy electrode was investigated.

実施例4
フルオロポリエーテルとして、ソルベイソレクシス社製のフォンブリンZ(CF3−(CF(CF3)−CF2O)n−CF2CF3;n=17;炭素数54(Rfの合計炭素数は51);数平均分子量3000;動粘度(20℃)270mm2/s)を用いたほかは実施例1と同様に混合物を混練して水素吸蔵合金層形成用ペーストを調製し、これをニッケルメッキしたパンチングメタルに塗布し、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 4
As fluoropolyether, made by Solvay Solexis Fomblin Z (CF 3 - (CF ( CF 3) -CF 2 O) n -CF 2 CF 3; n = 17; the total number of carbon atoms of the carbon atoms 54 (Rf is 51); number average molecular weight 3000; kinematic viscosity (20 ° C.) 270 mm 2 / s), and the mixture was kneaded in the same manner as in Example 1 to prepare a hydrogen storage alloy layer forming paste, which was then nickel plated This was applied to the punched metal and dried in a constant temperature bath at 90 ° C. until the water disappeared to produce a hydrogen storage alloy electrode (negative electrode).

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、113.1度であった。   When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 113.1 degrees.

実施例5
フルオロポリエーテルとして、デュポン社製のクライトックス143AB(F−(CF(CF3)CF2O)nCF2CF3;n=22;炭素数68(Rfの合計炭素数は63);数平均分子量3800;動粘度(20℃)240mm2/s)を用いたほかは実施例1と同様に混合物を混練して水素吸蔵合金層形成用ペーストを調製し、これをニッケルメッキしたパンチングメタルに塗布し、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 5
As a fluoropolyether, DuPont Krytox 143AB (F- (CF (CF 3 ) CF 2 O) n CF 2 CF 3 ; n = 22; carbon number 68 (total carbon number of Rf is 63); number average The mixture was kneaded in the same manner as in Example 1 except that molecular weight 3800; kinematic viscosity (20 ° C.) 240 mm 2 / s) was used to prepare a hydrogen storage alloy layer forming paste, which was applied to nickel-plated punching metal Then, drying was performed in a constant temperature bath at 90 ° C. until the water disappeared, and a hydrogen storage alloy electrode (negative electrode) was produced.

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、113.9度であった。   It was 113.9 degree | times when the hydrogen contact angle of the hydrogen storage alloy layer surface of the obtained hydrogen storage alloy electrode was investigated.

実施例6
フルオロポリエーテルとして、ダイキン工業(株)製のデムナムSH(F(CF2CF2CF2O)n−CF2CF2COOH;n=21;炭素数66(Rfの合計炭素数は65);数平均分子量約3650)を用いたほかは実施例1と同様に混合物を混練して水素吸蔵合金層形成用ペーストを調製し、これをニッケルメッキしたパンチングメタルに塗布し、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 6
As fluoropolyether, Daikin Industries Ltd. of Demnum SH (F (CF 2 CF 2 CF 2 O) n -CF 2 CF 2 COOH; n = 21; the total number of carbon atoms is 65 carbon atoms 66 (Rf); The mixture was kneaded in the same manner as in Example 1 except that the number average molecular weight was about 3650) to prepare a hydrogen storage alloy layer forming paste, which was applied to a nickel-plated punching metal, and kept in a constant temperature bath at 90 ° C. Drying was performed until the water disappeared, and a hydrogen storage alloy electrode (negative electrode) was produced.

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、110.9度であった。   When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 110.9 degrees.

実施例7
実施例1の工程(1)で調製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末98.5質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行った。
Example 7
A dispersion of PTFE as a binder (D-210C manufactured by Daikin Industries, Ltd.) was added to 98.5 parts by mass of the hydrogen storage alloy powder composed of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 prepared in step (1) of Example 1. 1.5 parts by mass (solid content) was added, and pure water was further added and kneaded to prepare a hydrogen storage alloy layer forming slurry (active material slurry). This slurry for forming a hydrogen storage alloy layer was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until there was no water.

ついで、得られた水素吸蔵合金電極にパーフルオロポリエーテル(ダイキン工業(株)製デムナムS−20)を厚さ15μm程度になるように均一に塗布した後、再度、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。   Next, perfluoropolyether (Demkin S-20 manufactured by Daikin Industries, Ltd.) was uniformly applied to the obtained hydrogen storage alloy electrode so as to have a thickness of about 15 μm. Drying was carried out until there was no hydrogen, and a hydrogen storage alloy electrode (negative electrode) was produced.

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、113.5度であった。   When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 113.5 degrees.

実施例8
実施例1の工程(1)で調製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末97.9質量部に、結着剤としてSBR水性エマルション(JSR(株)製TRD2001(固形分48.0%))を1.5質量部(固形分)、パーフルオロポリエーテル(ダイキン工業(株)製デムナムS−20)を0.5質量部、増粘剤としてカルボキシメチルセルロース(CMC)を0.1質量部加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 8
To 97.9 parts by mass of the hydrogen storage alloy powder composed of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 prepared in step (1) of Example 1, SBR aqueous emulsion (TRD2001 manufactured by JSR Co., Ltd. (solid content 48) was used as a binder. 0.0%)) 1.5 parts by mass (solid content), 0.5 parts by mass of perfluoropolyether (Daikin Kogyo Co., Ltd. demnum S-20), and 0 carboxymethylcellulose (CMC) as a thickener. .1 part by mass was added, and pure water was further added and kneaded to prepare a slurry for forming a hydrogen storage alloy layer (active material slurry). This slurry for forming a hydrogen storage alloy layer was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until moisture was lost, thereby preparing a hydrogen storage alloy electrode (negative electrode).

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、113.0度であった。   When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 113.0 degrees.

実施例9
実施例1の工程(1)で作製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末98.4質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)、パーフルオロポリエーテル(ダイキン工業(株)製デムナムS−20)を0.1質量部加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 9
A dispersion of PTFE as a binder (D-210C manufactured by Daikin Industries, Ltd.) was added to 98.4 parts by mass of the hydrogen storage alloy powder made of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 produced in the step (1) of Example 1. ) 1.5 parts by mass (solid content), 0.1 part by mass of perfluoropolyether (Daikin Kogyo Co., Ltd. demnum S-20), and further kneaded with pure water to form a hydrogen storage alloy layer Slurry (active material slurry) was prepared. This slurry for forming a hydrogen storage alloy layer was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until moisture was lost, thereby preparing a hydrogen storage alloy electrode (negative electrode).

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、111.5度であった。   It was 111.5 degree | times when the hydrogen contact angle of the hydrogen storage alloy layer surface of the obtained hydrogen storage alloy electrode was investigated.

実施例10
実施例1の工程(1)で作製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末93.5質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)、パーフルオロポリエーテル(ダイキン工業(株)製デムナムS−20)を5.0質量部加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Example 10
A dispersion of PTFE (D-210C manufactured by Daikin Industries, Ltd.) as a binder was added to 93.5 parts by mass of the hydrogen storage alloy powder made of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 produced in the step (1) of Example 1. ) 1.5 parts by mass (solid content), 5.0 parts by mass of perfluoropolyether (Daikin Kogyo Co., Ltd. demnum S-20), pure water is added and kneaded to form a hydrogen storage alloy layer Slurry (active material slurry) was prepared. This slurry for forming a hydrogen storage alloy layer was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until moisture was lost, thereby preparing a hydrogen storage alloy electrode (negative electrode).

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、116.0度であった。   When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 116.0 degrees.

比較例1
実施例1の工程(1)で作製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末98.5質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。
Comparative Example 1
A dispersion of PTFE as a binder (D-210C manufactured by Daikin Industries, Ltd.) was added to 98.5 parts by mass of the hydrogen storage alloy powder made of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 prepared in the step (1) of Example 1. 1.5 parts by mass (solid content) was added, and pure water was further added and kneaded to prepare a hydrogen storage alloy layer forming slurry (active material slurry). This slurry for forming a hydrogen storage alloy layer was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until moisture was lost, thereby preparing a hydrogen storage alloy electrode (negative electrode).

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、63.5度であった。   When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 63.5 degrees.

比較例2
実施例1の工程(1)で調製したMmNi3.4Co0.8Al0.2Mn0.6からなる水素吸蔵合金粉末98.5質量部に、結着剤としてPTFEのディスパージョン(ダイキン工業(株)製D−210C)を1.5質量部(固形分)加え、さらに純水を加えて混練して水素吸蔵合金層形成用スラリー(活物質スラリー)を調製した。この水素吸蔵合金層形成用スラリーをニッケルメッキしたパンチングメタルに塗布し90℃の恒温槽で水分がなくなるまで乾燥を行った。
Comparative Example 2
A dispersion of PTFE as a binder (D-210C manufactured by Daikin Industries, Ltd.) was added to 98.5 parts by mass of the hydrogen storage alloy powder composed of MmNi 3.4 Co 0.8 Al 0.2 Mn 0.6 prepared in step (1) of Example 1. 1.5 parts by mass (solid content) was added, and pure water was further added and kneaded to prepare a hydrogen storage alloy layer forming slurry (active material slurry). This slurry for forming a hydrogen storage alloy layer was applied to a nickel-plated punching metal and dried in a constant temperature bath at 90 ° C. until there was no water.

ついで、得られた水素吸蔵合金電極にPTFEディスパージョン(ダイキン工業(株)製D−210C)を厚さ15μm程度になるように均一に塗布した後、再度、90℃の恒温槽で水分がなくなるまで乾燥を行い、水素吸蔵合金電極(負極)を作製した。   Next, PTFE dispersion (D-210C manufactured by Daikin Industries, Ltd.) was uniformly applied to the obtained hydrogen storage alloy electrode so as to have a thickness of about 15 μm, and then the water disappeared again in a constant temperature bath at 90 ° C. Was dried to prepare a hydrogen storage alloy electrode (negative electrode).

得られた水素吸蔵合金電極の水素吸蔵合金層表面の対水接触角を調べたところ、105.0度であった。   When the contact angle with water on the surface of the hydrogen storage alloy layer of the obtained hydrogen storage alloy electrode was examined, it was 105.0 degrees.

実施例11
実施例1で製造した本発明の水素吸蔵合金電極を330mm×30mmの大きさに裁断して負極とし、焼成ニッケル板(270mm×30mm)を正極とし、正極と負極の間にセパレータとして厚さ130μmの親水化処理を施したポリプロピレン不織布を挟んで渦巻状に巻回した後、SUBC(直径22.5mm、全長43mm)の大きさの電池缶に収容した。ついで、6N−水酸化カリウム水溶液を電池缶内に充填した後密封して、本発明のニッケル水素二次電池を作製した。
Example 11
The hydrogen storage alloy electrode of the present invention produced in Example 1 was cut into a size of 330 mm × 30 mm to form a negative electrode, a fired nickel plate (270 mm × 30 mm) as a positive electrode, and a thickness of 130 μm as a separator between the positive electrode and the negative electrode Was wound in a spiral shape with a polypropylene non-woven fabric subjected to hydrophilization treatment in between, and then accommodated in a battery can having a size of SUBC (diameter 22.5 mm, total length 43 mm). Next, a 6N-potassium hydroxide aqueous solution was filled in the battery can and then sealed to prepare a nickel metal hydride secondary battery of the present invention.

このニッケル水素二次電池について、サイクル特性および負荷特性をつぎの要領で調べた。結果を表1に示す。   The cycle characteristics and load characteristics of this nickel metal hydride secondary battery were examined as follows. The results are shown in Table 1.

(負荷特性)
1Cの電流値で1.5時間充電した後、3.0Cの電流値で終止電圧1.0Vまで放電させたときの放電容量を測定する。評価は、比較例3の放電容量を100とした指数で行う。
(Load characteristics)
After charging at a current value of 1 C for 1.5 hours, the discharge capacity when discharged to a final voltage of 1.0 V at a current value of 3.0 C is measured. The evaluation is performed using an index with the discharge capacity of Comparative Example 3 as 100.

(サイクル特性)
1Cの電流値で1.5時間充電した後、放電容量を測定しながら1Cの電流値で終止電圧1.0Vまで放電させる充放電サイクルを1サイクルとする。放電容量が初期の放電容量の80%以下になるまでのサイクル数を計数し、比較例3のサイクル数を100とした指数で評価する。
(Cycle characteristics)
A charge / discharge cycle in which the battery is charged at a current value of 1 C for 1.5 hours and then discharged to a final voltage of 1.0 V at a current value of 1 C while measuring the discharge capacity is defined as one cycle. The number of cycles until the discharge capacity becomes 80% or less of the initial discharge capacity is counted, and the evaluation is performed using an index with the number of cycles of Comparative Example 3 as 100.

実施例12〜20および比較例3〜4
実施例2〜10および比較例1〜2でそれぞれ製造した水素吸蔵合金電極を用いたほかは実施例11と同様にしてニッケル水素二次電池を作製し、そのサイクル特性および負荷特性を調べた。結果を表1に示す。
Examples 12-20 and Comparative Examples 3-4
A nickel-metal hydride secondary battery was produced in the same manner as in Example 11 except that the hydrogen storage alloy electrodes manufactured in Examples 2 to 10 and Comparative Examples 1 and 2 were used, and the cycle characteristics and load characteristics were examined. The results are shown in Table 1.

Figure 2011040205
Figure 2011040205

表1の結果から、すべての実施例が、比較例3および4に比べて明らかに負荷特性およびサイクル特性のいずれにおいても向上していることが分かる。また、PTFEのディスパージョンを電極に後から塗布している比較例4については、水素吸蔵合金の粒子の一部が均一に覆われていないため、全体として撥水性がわるくなり、フルオロポリエーテルを電極に後から塗布した電極(実施例7)を用いた実施例17に比べて負荷特性とサイクル特性が向上しなかったものと考えられる。   From the results of Table 1, it can be seen that all the examples are clearly improved in both load characteristics and cycle characteristics as compared with Comparative Examples 3 and 4. Further, in Comparative Example 4 in which the PTFE dispersion was later applied to the electrode, since some of the hydrogen storage alloy particles were not uniformly covered, the water repellency as a whole became poor, and the fluoropolyether It is considered that the load characteristics and the cycle characteristics were not improved as compared with Example 17 using the electrode (Example 7) applied later on the electrode.

Claims (4)

式(1):
1−Rf−(CF2p−X2 (1)
(式中、Rfは炭素数10〜150のフルオロポリエーテル鎖;X1およびX2は同じかまたは異なり、いずれもフッ素原子、カルボキシル基、カルボン酸エステル基、フルオロアルコキシル基、アルコキシル基、水酸基、−Si(OR1n2 m(n+m=3、nは1〜3の整数、mは0〜2の整数、R1およびR2は同じかまたは異なり、いずれも炭素数1〜3のアルキル基)、または炭素数1〜3のフルオロアルキル基;pは0〜2の整数)で示されるフルオロポリエーテル(a)と結着剤(b)と水素吸蔵合金粒子(c)とを含む水素吸蔵合金層(I)を導電性支持体(II)上に有する水素吸蔵合金電極。
Formula (1):
X 1 -Rf- (CF 2) p -X 2 (1)
(Wherein Rf is a fluoropolyether chain having 10 to 150 carbon atoms; X 1 and X 2 are the same or different, and all are fluorine atom, carboxyl group, carboxylic acid ester group, fluoroalkoxyl group, alkoxyl group, hydroxyl group, —Si (OR 1 ) n R 2 m (n + m = 3, n is an integer of 1 to 3, m is an integer of 0 to 2, R 1 and R 2 are the same or different, and each has 1 to 3 carbon atoms. An alkyl group), or a fluoroalkyl group having 1 to 3 carbon atoms; p is an integer of 0 to 2), a binder (b), and hydrogen storage alloy particles (c). A hydrogen storage alloy electrode having a hydrogen storage alloy layer (I) on a conductive support (II).
式(1)のフルオロポリエーテルにおいて、Rfが−(CF2CF2CF2O)−、−(CF2CF2O)−、−(CF2O)−、−(CF(CF3)CF2O)−および−(CH2CF2O)−よりなる群から選ばれる少なくとも1種の構造単位を含む請求項1記載の水素吸蔵合金電極。 In the fluoropolyether of the formula (1), Rf is — (CF 2 CF 2 CF 2 O) —, — (CF 2 CF 2 O) —, — (CF 2 O) —, — (CF (CF 3 ) CF 2. The hydrogen storage alloy electrode according to claim 1, comprising at least one structural unit selected from the group consisting of 2 O) — and — (CH 2 CF 2 O) —. 式(1)のフルオロポリエーテルにおいて、X1がフッ素原子または炭素数1〜3のフルオロアルキル基であり、X2が炭素数1〜3のフルオロアルキル基、カルボキシル基、カルボン酸エステル基、フルオロアルコキシル基、アルコキシル基、水酸基または−Si(OR1n2 m(n+m=3、nは1〜3の整数、mは0〜2の整数、R1およびR2は同じかまたは異なり、いずれも炭素数1〜3のアルキル基)である請求項1または2記載の水素吸蔵合金電極。 In the fluoropolyether of the formula (1), X 1 is a fluorine atom or a C 1-3 fluoroalkyl group, and X 2 is a C 1-3 fluoroalkyl group, carboxyl group, carboxylate group, fluoro An alkoxyl group, an alkoxyl group, a hydroxyl group, or —Si (OR 1 ) n R 2 m (n + m = 3, n is an integer of 1 to 3, m is an integer of 0 to 2, R 1 and R 2 are the same or different, The hydrogen storage alloy electrode according to claim 1 or 2, wherein all are alkyl groups having 1 to 3 carbon atoms. 請求項1〜3のいずれかに記載の水素吸蔵合金電極を負極とし、正極およびアルカリ電解液を備えるニッケル水素二次電池。 A nickel metal hydride secondary battery comprising the hydrogen storage alloy electrode according to any one of claims 1 to 3 as a negative electrode, and a positive electrode and an alkaline electrolyte.
JP2009184658A 2009-08-07 2009-08-07 Hydrogen storage alloy electrode and nickel metal hydride battery Active JP5515503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009184658A JP5515503B2 (en) 2009-08-07 2009-08-07 Hydrogen storage alloy electrode and nickel metal hydride battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009184658A JP5515503B2 (en) 2009-08-07 2009-08-07 Hydrogen storage alloy electrode and nickel metal hydride battery

Publications (2)

Publication Number Publication Date
JP2011040205A true JP2011040205A (en) 2011-02-24
JP5515503B2 JP5515503B2 (en) 2014-06-11

Family

ID=43767781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009184658A Active JP5515503B2 (en) 2009-08-07 2009-08-07 Hydrogen storage alloy electrode and nickel metal hydride battery

Country Status (1)

Country Link
JP (1) JP5515503B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095574A1 (en) * 2019-11-13 2021-05-20 ダイキン工業株式会社 Electrode and electrochemical device

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292351A (en) * 1994-04-29 1995-11-07 Lion Corp Water repellent composition
JPH08299783A (en) * 1995-04-28 1996-11-19 Shiseido Co Ltd Emulsified composition
JPH08339809A (en) * 1995-04-10 1996-12-24 Daikin Ind Ltd Water repellency grant agent for battery and battery
JPH0922691A (en) * 1995-07-03 1997-01-21 Shin Etsu Chem Co Ltd Hydrogen storage alloy electrode and manufacture thereof
JPH09111286A (en) * 1995-10-13 1997-04-28 Nikko Chemical Co Ltd Emulsion composition, detergent composition and cleaning method
JPH1074536A (en) * 1996-08-30 1998-03-17 Yuasa Corp Sealed nickel-hydrogen storage battery
JPH10106549A (en) * 1996-09-26 1998-04-24 Yuasa Corp Hydrogen storage electrode
JPH1197000A (en) * 1997-09-19 1999-04-09 Shin Etsu Chem Co Ltd Hydrogen storage alloy electrode and its manufacture
JP2002110184A (en) * 2000-09-27 2002-04-12 Sony Corp Button type alkali cell and method for making the same
JP2004263185A (en) * 2003-03-03 2004-09-24 Solvay Solexis Spa Perfluoropolyether, method for producing the same and use of the same
JP2005251439A (en) * 2004-03-02 2005-09-15 Yuasa Corp Nickel hydrogen battery
JP2009051865A (en) * 2008-11-25 2009-03-12 Kao Corp O/f emulsified composition
JP2009146871A (en) * 2007-11-20 2009-07-02 Asahi Glass Co Ltd Water-based paste for forming power storage element electrode having small environmental load
JP2009176708A (en) * 2007-08-28 2009-08-06 Sanyo Electric Co Ltd Alkaline storage battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292351A (en) * 1994-04-29 1995-11-07 Lion Corp Water repellent composition
JPH08339809A (en) * 1995-04-10 1996-12-24 Daikin Ind Ltd Water repellency grant agent for battery and battery
JPH08299783A (en) * 1995-04-28 1996-11-19 Shiseido Co Ltd Emulsified composition
JPH0922691A (en) * 1995-07-03 1997-01-21 Shin Etsu Chem Co Ltd Hydrogen storage alloy electrode and manufacture thereof
JPH09111286A (en) * 1995-10-13 1997-04-28 Nikko Chemical Co Ltd Emulsion composition, detergent composition and cleaning method
JPH1074536A (en) * 1996-08-30 1998-03-17 Yuasa Corp Sealed nickel-hydrogen storage battery
JPH10106549A (en) * 1996-09-26 1998-04-24 Yuasa Corp Hydrogen storage electrode
JPH1197000A (en) * 1997-09-19 1999-04-09 Shin Etsu Chem Co Ltd Hydrogen storage alloy electrode and its manufacture
JP2002110184A (en) * 2000-09-27 2002-04-12 Sony Corp Button type alkali cell and method for making the same
JP2004263185A (en) * 2003-03-03 2004-09-24 Solvay Solexis Spa Perfluoropolyether, method for producing the same and use of the same
JP2005251439A (en) * 2004-03-02 2005-09-15 Yuasa Corp Nickel hydrogen battery
JP2009176708A (en) * 2007-08-28 2009-08-06 Sanyo Electric Co Ltd Alkaline storage battery
JP2009146871A (en) * 2007-11-20 2009-07-02 Asahi Glass Co Ltd Water-based paste for forming power storage element electrode having small environmental load
JP2009051865A (en) * 2008-11-25 2009-03-12 Kao Corp O/f emulsified composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021095574A1 (en) * 2019-11-13 2021-05-20 ダイキン工業株式会社 Electrode and electrochemical device
TWI826743B (en) * 2019-11-13 2023-12-21 日商大金工業股份有限公司 Electrodes and electrochemical device

Also Published As

Publication number Publication date
JP5515503B2 (en) 2014-06-11

Similar Documents

Publication Publication Date Title
JP5912814B2 (en) Aqueous electrode binder for secondary battery
JP2018005972A (en) Binder composition for power storage device, electrode mixture for power storage device, electrode for power storage device, and secondary battery
JPWO2013176093A1 (en) Electrode mixture
JP5413460B2 (en) Hydrogen storage alloy electrode and nickel metal hydride battery
JP2021523535A (en) Electrode forming composition
JPH0997605A (en) Hydrogen storage alloy electrode and manufacture thereof
JP2010080221A (en) Negative electrode material, and negative electrode for battery
JP5515503B2 (en) Hydrogen storage alloy electrode and nickel metal hydride battery
JP5560824B2 (en) Hydrogen storage alloy electrode and nickel metal hydride battery
JPH11273672A (en) Nickel positive electrode for alkaline storage battery
JP4581170B2 (en) Non-aqueous electrolyte battery binder, battery electrode mixture using the same, and non-aqueous electrolyte battery
KR20170097699A (en) Electrode-forming composition
JP2011198510A (en) Hydrogen storage alloy electrode and nickel hydrogen battery
JP2016143552A (en) Composition for power storage device, slurry for power storage device electrode, and storage device electrode and power storage device
JP7467213B2 (en) Anode for zinc battery and zinc battery
JPH1197000A (en) Hydrogen storage alloy electrode and its manufacture
EP0825660B1 (en) Hydrogen absorbing alloy electrode
JPH10223228A (en) Alkaline battery
JPH08287906A (en) Hydrogen storage alloy electrode
JP2016015251A (en) Nickel-hydrogen battery
JPH11135112A (en) Positive electrode for alkaline storage battery
JP7525809B2 (en) Positive electrode binder, electrode mixture, electrode and secondary battery
WO1997020356A1 (en) Electrode for cell
KR20240095017A (en) Active material secondary particles, negative electrode mixture, method for producing same, and secondary battery
JPH11176432A (en) Non-sintered nickel electrode for alkaline storage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140116

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140317

R151 Written notification of patent or utility model registration

Ref document number: 5515503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151