JP2011040198A - Battery deterioration determination device, and battery deterioration determination method - Google Patents

Battery deterioration determination device, and battery deterioration determination method Download PDF

Info

Publication number
JP2011040198A
JP2011040198A JP2009184530A JP2009184530A JP2011040198A JP 2011040198 A JP2011040198 A JP 2011040198A JP 2009184530 A JP2009184530 A JP 2009184530A JP 2009184530 A JP2009184530 A JP 2009184530A JP 2011040198 A JP2011040198 A JP 2011040198A
Authority
JP
Japan
Prior art keywords
battery
assembled battery
deterioration
open
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009184530A
Other languages
Japanese (ja)
Other versions
JP5625282B2 (en
Inventor
Kazuya Sato
一也 佐藤
Manabu Kaseda
学 加世田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009184530A priority Critical patent/JP5625282B2/en
Publication of JP2011040198A publication Critical patent/JP2011040198A/en
Application granted granted Critical
Publication of JP5625282B2 publication Critical patent/JP5625282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery deterioration determination device capable of determining deterioration of a battery due to the change of an ion balance. <P>SOLUTION: The battery deterioration determination device for connecting a battery pack 2 and determining deterioration of the battery pack 2 is provided with a measuring means for measuring an open potential of a positive electrode and an open potential of an negative electrode, and an ion volume contained in the battery pack 2 by flowing each current between the positive electrode and a reference electrode of the battery pack 2 and between the negative electrode and the reference electrode of the battery pack 2 respectively, and a deterioration determination means for determining deterioration according to the characteristics of the open potential of the positive electrode, the open potential of the negative electrode, and the ion volume. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電池劣化判定装置及び電池劣化判定方法に関する。     The present invention relates to a battery deterioration determination device and a battery deterioration determination method.

充電電流パルス又は放電電流パルスを二次電池に流し、当該二次電池の分極電圧の変化を測定することにより、二次電池の劣化程度を判定する劣化判定方法が知られている(特許文献1)。 A degradation determination method is known in which a charge current pulse or a discharge current pulse is supplied to a secondary battery and a change in polarization voltage of the secondary battery is measured to determine the degree of degradation of the secondary battery (Patent Document 1). ).

特開平10−221418号公報JP-A-10-22214

しかしながら、従来の劣化判定方法では、電極や電解液等の電池部材の劣化程度は判定できるが、二次電池の正極、負極におけるイオンバランスの変化による電池の劣化を判定することが困難であった。 However, in the conventional deterioration determination method, although the degree of deterioration of battery members such as electrodes and electrolytes can be determined, it is difficult to determine battery deterioration due to changes in ion balance in the positive and negative electrodes of the secondary battery. .

そこで本発明は、イオンバランスの変化による電池の劣化を判定できる電池劣化判定装置を提供する。   Therefore, the present invention provides a battery deterioration determination device that can determine battery deterioration due to a change in ion balance.

本発明は、電池の正極の開放電位及び負極の開放電位と、当該電池に含まれるイオン量との特性に応じて、電池の劣化を判定することによって上記課題を解決する。 The present invention solves the above problem by determining the deterioration of the battery according to the characteristics of the open potential of the positive electrode and the open potential of the negative electrode of the battery and the amount of ions contained in the battery.

本発明によれば、電池の正極の開放電位及び負極の開放電位と、当該電池に含まれるイオン量との特性に応じて、電池の劣化を判定するため、電池の劣化により生じるイオンバランスの変化を把握することができ、その結果、電池の劣化を精度よく判定することができる。   According to the present invention, since the battery deterioration is determined according to the characteristics of the open-circuit potential of the positive electrode and the open-circuit potential of the negative electrode and the amount of ions contained in the battery, the change in the ion balance caused by the deterioration of the battery As a result, it is possible to accurately determine the deterioration of the battery.

発明の実施形態に係る電池劣化判定装置に含まれるコントローラと組電池のブロック図である。It is a block diagram of the controller and assembled battery which are included in the battery deterioration determination apparatus which concerns on embodiment of invention. 図1に示す組電池の正極側における、充放電時間に対する開放電位の特性を示すグラフである。It is a graph which shows the characteristic of the open circuit electric potential with respect to charging / discharging time in the positive electrode side of the assembled battery shown in FIG. 図1に示す劣化前の組電池における、イオン量又はSOC(State of Charge)に対する正・負極別の開放電位の特性を示すグラフである。2 is a graph showing characteristics of open-circuit potentials for positive and negative electrodes with respect to ion amount or SOC (State of Charge) in the assembled battery before deterioration shown in FIG. 1. 図1に示す劣化前の組電池における、イオン量又はSOCに対する正・負極別の開放電位の特性を示すグラフである。It is a graph which shows the characteristic of the open circuit electric potential according to positive / negative electrode with respect to ion amount or SOC in the assembled battery before deterioration shown in FIG. 図1に示す劣化後の組電池における、イオン量又はSOCに対する正・負極別の開放電位の特性を示すグラフである。It is a graph which shows the characteristic of the open circuit electric potential according to positive / negative electrode with respect to ion amount or SOC in the assembled battery after deterioration shown in FIG. 図1に示すコントローラの制御手順を示すフローチャートである。It is a flowchart which shows the control procedure of the controller shown in FIG. 図1に示す組電池において、電極の厚みが異なる場合、時間に対する開放電位の特性を示すグラフである。In the assembled battery shown in FIG. 1, when the thickness of an electrode differs, it is a graph which shows the characteristic of the open potential with respect to time.

以下、発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the invention will be described with reference to the drawings.

《第1実施形態》
本発明の電池劣化判定装置を、例えば車両に搭載される場合を例として説明する。図1は、電池劣化判定装置を含むコントローラと組電池のブロック図を示す。
<< First Embodiment >>
The battery deterioration determination device of the present invention will be described as an example when mounted on a vehicle, for example. FIG. 1 is a block diagram of a controller and a battery pack including a battery deterioration determination device.

図1に示す組電池2は、例えばリチウムイオン電池である、複数の単電池20を直列に接続する。コントローラ1は、組電池2に電流を流し、組電池2の開放電位(Open Circuit Voltage)を測定する測定部11と、組電池2の劣化程度を判定する判定部12を有する。   The assembled battery 2 shown in FIG. 1 connects a plurality of unit cells 20 that are, for example, lithium ion batteries in series. The controller 1 includes a measuring unit 11 that causes a current to flow through the assembled battery 2 and measures an open circuit voltage (Open Circuit Voltage) of the assembled battery 2 and a determination unit 12 that determines the degree of deterioration of the assembled battery 2.

組電池2は、負荷(例えばモータ等)、充電器等に接続され、当該充電器からの充電電力により充電される。また、組電池2を電力源として、当該負荷に対して電力を供給する。また組電池2の正極端子には、正極用検出線13が接続され、コントローラ1の測定部11に含まれる、例えばポテンショガルバノスタットの入力端子に接続される。同様に、組電池2の負極端子には、負極用検出線14が接続され、コントローラ1に含まれる、例えばポテンショガルバノスタットの入力端子に接続される。また、測定部11に含まれるポテンショガルバノスタットの参照極13を、組電池2に含まれる単電池20の任意の端子に接続する。   The assembled battery 2 is connected to a load (for example, a motor), a charger, and the like, and is charged with charging power from the charger. Further, power is supplied to the load using the assembled battery 2 as a power source. Further, a positive electrode detection line 13 is connected to the positive electrode terminal of the assembled battery 2, and is connected to an input terminal of, for example, a potentiogalvanostat included in the measurement unit 11 of the controller 1. Similarly, the negative electrode detection line 14 is connected to the negative electrode terminal of the assembled battery 2, and is connected to the input terminal of, for example, a potentiogalvanostat included in the controller 1. The reference electrode 13 of the potentiogalvanostat included in the measurement unit 11 is connected to an arbitrary terminal of the unit cell 20 included in the assembled battery 2.

測定部11は、組電池2が充電または放電している時に、ポテンショガルバノスタットの電流制御によって、組電池2の正極端子と参照極15との間、及び、組電池2の負極端子と参照極15との間に、電流を流す。そして、測定部11は、電流の導通、電流の遮断を繰り返し、正負極別の開放電位を測定する。また、測定部11は、当該電流を流し初めてから開放電位を測定する時点までのクーロン量から、リチウムイオン量を測定する。   When the assembled battery 2 is being charged or discharged, the measuring unit 11 controls between the positive electrode terminal of the assembled battery 2 and the reference electrode 15 and the negative electrode terminal and the reference electrode of the assembled battery 2 by current control of the potentiogalvanostat. A current is passed between 15 and 15. And the measurement part 11 repeats conduction | electrical_connection of an electric current, and interruption | blocking of an electric current, and measures the open circuit electric potential according to positive / negative. Moreover, the measurement part 11 measures the amount of lithium ions from the coulomb amount from the first time when the current is supplied until the time when the open-circuit potential is measured.

ここで、測定部11により測定される開放電位とイオン量について説明する。本例の電池劣化判定装置は、より正確な開放電位を測定することが好ましい。その一方で、電流を遮断した後、開放電位は回復するために時間を要するため、開放電位は遮断時から時間共に変化し、長時間経過して安定する。開放電位が安定した後に、電圧を検知すると時間を要するため、本例は、電流を遮断後、時間に対する開放電位の変化電圧が、dV/dt=1mV/s以下となる時に、開放電位を測定する。また測定部11は、開放電位を測定した後、電流を流し、再び電流を遮断して、上記と同様の要領で開放電位を測定する。そして、測定部11は、繰り返して流される電流の電流値(クーロン量)からイオン量を測定する。これにより、測定部11は開放電位とリチウムイオン量との関係を測定する。   Here, the open circuit potential and ion amount measured by the measurement unit 11 will be described. It is preferable that the battery deterioration determination apparatus of this example measures a more accurate open-circuit potential. On the other hand, after the current is cut off, it takes time for the open-circuit potential to recover. Therefore, the open-circuit potential changes with time from the time of cut-off, and stabilizes after a long time. Since it takes time to detect the voltage after the open-circuit potential has stabilized, this example measures the open-circuit potential when the change voltage of the open-circuit potential with respect to time becomes dV / dt = 1 mV / s or less after the current is cut off. To do. In addition, after measuring the open potential, the measurement unit 11 passes the current, interrupts the current again, and measures the open potential in the same manner as described above. And the measurement part 11 measures the amount of ion from the electric current value (coulomb amount) of the electric current sent repeatedly. Thereby, the measurement part 11 measures the relationship between an open circuit potential and the amount of lithium ions.

判定部12は、測定部11により測定される開放電位とリチウムイオン量から、組電池2の劣化を判定する。判定部12は、初期の組電池2(劣化する前の状態の電池)における、開放電位に対するリチウムイオン量の特性を格納し、当該特性と、現在の組電池2における特性とを比較することで、組電池2の劣化を判定する。開放電位に対するリチウムイオン量の初期特性は、例えば組電池2が本システムに搭載されて、最初の充放電の際、測定部11により、特性を抽出すればよい。また、コントローラ1は、設計時に、搭載される組電池2の初期特性を、格納してもよい。   The determination unit 12 determines the deterioration of the assembled battery 2 from the open-circuit potential measured by the measurement unit 11 and the lithium ion amount. The determination unit 12 stores the characteristics of the lithium ion amount with respect to the open-circuit potential in the initial assembled battery 2 (battery before deterioration), and compares the characteristics with the current characteristics of the assembled battery 2. The deterioration of the assembled battery 2 is determined. The initial characteristic of the lithium ion amount with respect to the open-circuit potential may be extracted by, for example, the measurement unit 11 when the assembled battery 2 is mounted on the system and is charged and discharged for the first time. Moreover, the controller 1 may store the initial characteristics of the assembled battery 2 mounted at the time of design.

ここで、これまでの研究により、開放電位は活物質中のリチウムイオン量に依存することが分かった。本例では、この依存性を利用することで、リチウムイオン電池の劣化の原因となっている、リチウムイオンバランスの変化を測定し、組電池2の劣化を判定する。   Here, previous studies have revealed that the open-circuit potential depends on the amount of lithium ions in the active material. In this example, by utilizing this dependency, a change in the lithium ion balance that causes the deterioration of the lithium ion battery is measured, and the deterioration of the assembled battery 2 is determined.

初期の組電池2の満充電の状態から組電池2を放電しつつ、コントローラ1から組電池2へ流れる電流の通電、遮断を繰り返し、放電時間に対する正極側の開放電位の特性をとると、図2に示すような特性となる。そして、満充電の時点から開放電位を測定する時点までの、クーロン量を、電流の通電、遮断の繰り返しのタイミングで測定し、リチウムイオン量に対する開放電位の特性をとると、図3に示すような特性となる。図2は、正極側における、充放電時間に対する開放電位の特性を示し、図3は、正・負極別の開放電位における、イオン量又はSOC(State of Charge)に対する開放電位の特性を示す。図3及び後述する図4において、Xは、イオン量を表す。   When the assembled battery 2 is discharged from the fully charged state of the initial assembled battery 2, the current flowing from the controller 1 to the assembled battery 2 is repeatedly turned on and off, and the characteristics of the open-circuit potential on the positive electrode side with respect to the discharge time are taken. The characteristics shown in FIG. Then, the amount of coulomb from the time of full charge to the time of measuring the open potential is measured at the timing of repeated energization and interruption of the current, and the characteristics of the open potential with respect to the lithium ion amount are as shown in FIG. Characteristics. FIG. 2 shows the characteristics of the open-circuit potential with respect to the charge / discharge time on the positive electrode side, and FIG. In FIG. 3 and FIG. 4 described later, X represents the amount of ions.

図4aに示すように、初期の組電池2は、正極側の特性と負極側の特性とのバランスが取れている。そのため、当該初期の組電池2が放電すると、負極に含まれる、多くのイオン量が正極に移動し、組電池2は、劣化前の放電容量を出力することができる。一方、組電池2の劣化が進むと、図4bに示すように、正極側の特性と負極側の特性とのバランスがずれてしまうため、組電池2の放電により、負極側から引き出されるイオン量が減り、電気容量が減少する。   As shown in FIG. 4a, the assembled battery 2 in the initial stage is balanced between the characteristics on the positive electrode side and the characteristics on the negative electrode side. Therefore, when the initial assembled battery 2 is discharged, a large amount of ions contained in the negative electrode moves to the positive electrode, and the assembled battery 2 can output the discharge capacity before deterioration. On the other hand, as the deterioration of the assembled battery 2 progresses, as shown in FIG. 4B, the balance between the characteristics on the positive electrode side and the characteristics on the negative electrode side shifts, so that the amount of ions extracted from the negative electrode side by the discharge of the assembled battery 2 Decreases and the electric capacity decreases.

これにより、本例は、組電池2のイオン量に対する開放電位特性を測定し、初期特性と比較することにより、電池の劣化を判定する。以下、図5を参照し、本例の電池劣化判定装置の制御手順を説明する。図5は、本例の電池劣化判定装置の制御手順を示すフローチャートである。   Thus, in this example, the open-circuit potential characteristic with respect to the ion amount of the assembled battery 2 is measured, and the deterioration of the battery is determined by comparing with the initial characteristic. Hereinafter, with reference to FIG. 5, the control procedure of the battery deterioration determination apparatus of this example will be described. FIG. 5 is a flowchart showing a control procedure of the battery deterioration determination device of this example.

イグニッションキーのオン動作により、組電池2の放電が開始し、またコントローラ1による充電制御により、組電池2への充電が開始する(ステップS1)。ステップ2にて、コントローラ1は、組電池2からモータ等の負荷へ放電電流を流す、または充電器から組電池2へ充電電流を流す。ステップS3にて、コントローラ1の測定部11は、組電池2の正極と参照極15の間と、組電池2の負極と参照極15との間に、それぞれ電流を流し、正極の開放電位と負極の開放電位をそれぞれ測定する。当該電流は、通電、遮断を繰り返して流れ、組電池2への充電中又は放電中に、充電電流又は放電電流とは別の電流として流れる。ステップS4にて、測定部11は、組電池2に流れたクーロン量から、リチウムイオン量を測定する。   When the ignition key is turned on, discharging of the assembled battery 2 is started, and charging of the assembled battery 2 is started by charge control by the controller 1 (step S1). In step 2, the controller 1 causes a discharge current to flow from the assembled battery 2 to a load such as a motor or a charging current flows from the charger to the assembled battery 2. In step S3, the measurement unit 11 of the controller 1 causes currents to flow between the positive electrode of the assembled battery 2 and the reference electrode 15, and between the negative electrode of the assembled battery 2 and the reference electrode 15, respectively. The open circuit potential of the negative electrode is measured. The current flows repeatedly by energization and interruption, and flows as a current different from the charging current or discharging current during charging or discharging of the assembled battery 2. In step S <b> 4, the measurement unit 11 measures the lithium ion amount from the coulomb amount that has flowed into the assembled battery 2.

次に、コントローラ1の判定部12は、組電池2が劣化する前である、初期状態のイオン量に対する開放電位の初期特性と、ステップS3及びS4にて測定されるイオン量に対する開放電位の特性とを比較し、組電池2の劣化状態を判定する(ステップS5)。   Next, the determination unit 12 of the controller 1 determines the initial characteristics of the open potential with respect to the ion amount in the initial state and the characteristics of the open potential with respect to the ion amount measured in steps S3 and S4 before the assembled battery 2 deteriorates. And the deterioration state of the assembled battery 2 is determined (step S5).

組電池2の劣化は、初期特性におけるイオン量に対して、10%以上イオン量が変化した場合、組電池2が劣化したと判定する。図4aを参照し、組電池2が初期状態から満充電の状態において、イオン量の正極と負極との割合は正極0に対して、負極1.0となる。一方、組電池2が劣化する場合、図4bに示すようにイオンバランスがずれるため、劣化後の組電池2が満充電の状態において、イオン量の正極と負極との割合は正極0に対して、負極1.0以下となる。そのため、劣化後の組電池2が満充電の状態において、正極に対する負極側のイオン量が、0.9以下になった場合、判定部12は、組電池2が劣化したと判定する。なお、判定部12は、負極に対する正極のイオン量により、組電池2の劣化を判定してもよい。   The deterioration of the assembled battery 2 is determined that the assembled battery 2 has deteriorated when the ion amount changes by 10% or more with respect to the ion amount in the initial characteristics. Referring to FIG. 4a, when the assembled battery 2 is in a fully charged state from the initial state, the ratio of the positive electrode to the negative electrode with respect to the positive electrode is 1.0 with respect to the positive electrode 0. On the other hand, when the assembled battery 2 deteriorates, the ion balance shifts as shown in FIG. 4B. Therefore, when the assembled battery 2 after deterioration is fully charged, the ratio of the positive electrode to the negative electrode with respect to the positive electrode 0 The negative electrode is 1.0 or less. Therefore, in the state where the assembled battery 2 after deterioration is fully charged, when the ion amount on the negative electrode side with respect to the positive electrode becomes 0.9 or less, the determination unit 12 determines that the assembled battery 2 has deteriorated. The determination unit 12 may determine the deterioration of the assembled battery 2 based on the amount of positive electrode ions with respect to the negative electrode.

また判定部12は、SOCが100パーセントから0パーセントになるまでのイオン量により劣化を判定してもよい。図4a及び図4bに示すように、SOCが100パーセントに対する正極と負極との開放電位差(4.2V)は、劣化前後で、ほぼ同電位差であり、またSOCが0パーセントに対する正極と負極との開放電位差(2.5V)も、ほぼ同電位差である。そのため、コントローラ1は、正極と負極との開放電位差より、SOCの状態を把握し、SOCが100パーセントから0パーセントになるまでのイオン量の変化により、組電池2の劣化状態を判定する。図4aに示すように、劣化前の組電池2において、SOCが0〜100パーセントの間で、正極及び負極のイオン量は、0.0〜1.0の割合をとる。一方、図4bに示すように、劣化後の組電池2において、SOCが0〜100パーセントの間で、正極及び負極のイオン量は、0.7〜1.0の割合をとる。このように、組電池2が劣化することにより、SOCに対するイオン量が変化するため、判定部は、当該イオン量の変化に基づいて、組電池2の劣化を判定しても良い。   The determination unit 12 may determine the deterioration based on the amount of ions until the SOC becomes 100% to 0%. As shown in FIGS. 4a and 4b, the open-circuit potential difference (4.2 V) between the positive electrode and the negative electrode with respect to 100% SOC is almost the same before and after the deterioration, and between the positive electrode and the negative electrode with respect to 0% SOC. The open-circuit potential difference (2.5 V) is almost the same potential difference. Therefore, the controller 1 grasps the SOC state from the open-circuit potential difference between the positive electrode and the negative electrode, and determines the deterioration state of the assembled battery 2 based on the change in the amount of ions until the SOC becomes 100% to 0%. As shown in FIG. 4a, in the assembled battery 2 before deterioration, the SOC is 0 to 100%, and the ion amount of the positive electrode and the negative electrode is 0.0 to 1.0. On the other hand, as shown in FIG. 4b, in the assembled battery 2 after deterioration, the SOC is 0 to 100%, and the ion amount of the positive electrode and the negative electrode is 0.7 to 1.0. As described above, since the amount of ions with respect to the SOC changes as the assembled battery 2 deteriorates, the determination unit may determine the deterioration of the assembled battery 2 based on the change in the amount of ions.

判定部12により、組電池2が劣化した、と判断されると、ステップS6にて、コントローラ1は、例えば警告ランプを点灯させて、操作者に対して、組電池2が劣化したことを報知する。   When the determination unit 12 determines that the assembled battery 2 has deteriorated, in step S6, the controller 1 turns on, for example, a warning lamp to notify the operator that the assembled battery 2 has deteriorated. To do.

そして、コントローラ1は、組電池2の劣化判定を終了する。   Then, the controller 1 ends the deterioration determination of the assembled battery 2.

上記のように、本例の電池劣化判定装置は、組電池2の正極の開放電位と負極の開放電位、及び、組電池2に含まれる活性物質中のイオン量に応じて、組電池2の劣化を判定する。これにより、組電池2の劣化により生じるイオンバランスの変化を把握することができ、組電池2の劣化を精度よく判定することができる。   As described above, the battery deterioration determination device according to the present embodiment is configured so that the assembled battery 2 has a positive electrode open potential and a negative electrode open potential, and the amount of ions in the active substance included in the assembled battery 2. Determine deterioration. Thereby, the change of the ion balance which arises by deterioration of the assembled battery 2 can be grasped | ascertained, and deterioration of the assembled battery 2 can be determined accurately.

また本発明は、劣化前の初期の組電池2において、充電又は放電により移動する初期のイオン量に対して、測定部12により測定されるイオン量が90パーセント以下の状態になった場合、組電池2は劣化したと判定する。組電池2の電極表面の劣化を考慮して、当該90パーセントを閾値に設定し、劣化を判断することにより、精度のよく劣化を判定することができる。   Further, in the present invention, when the initial amount of ions measured by the measurement unit 12 is 90% or less of the initial amount of ions moving by charging or discharging in the assembled battery 2 before deterioration, It is determined that the battery 2 has deteriorated. Considering the deterioration of the electrode surface of the battery pack 2, the deterioration can be determined with high accuracy by setting the 90 percent as a threshold and determining the deterioration.

また本例は、電流を遮断した後、時間に対する開放電位の変化電圧が、dV/dt=1mV/s以下となる時に、開放電位を測定する。これにより、組電池1の電極の厚み等のサンプル形状によらず、安定して開放電位を測定することができ、イオン量を測定することができる。ここで、図6は、電極の厚みが異なる場合、時間に対する開放電位の特性を示すグラフである。図6に示すように、組電池2に含まれる電極の厚みの違いによって、開放電位が安定するまでの時間が異なるが、本例は時間に対する開放電位の変化電圧により、開放電位の測定ポイントを設定するため、電極厚みの違いによらず、安定した開放電位を測定することができる。   Further, in this example, after the current is cut off, the open potential is measured when the change voltage of the open potential with respect to time becomes dV / dt = 1 mV / s or less. Thereby, irrespective of sample shape, such as the thickness of the electrode of the assembled battery 1, an open potential can be measured stably and the amount of ions can be measured. Here, FIG. 6 is a graph showing the characteristics of the open-circuit potential with respect to time when the thicknesses of the electrodes are different. As shown in FIG. 6, the time until the open-circuit potential is stabilized varies depending on the thickness of the electrodes included in the assembled battery 2. In this example, the measurement point of the open-circuit potential is determined by the change voltage of the open-circuit potential with respect to time. Therefore, a stable open-circuit potential can be measured regardless of the difference in electrode thickness.

なお、本例の測定部11は、本発明の「測定手段」に相当し、判定部12は「劣化判定手段」に相当する。   The measurement unit 11 of this example corresponds to the “measurement unit” of the present invention, and the determination unit 12 corresponds to the “degradation determination unit”.

1…コントローラ
11…測定部
12…判定部
13…正極用検出線
14…負極用検出線
15…参照極
2…組電池
20…単電池
DESCRIPTION OF SYMBOLS 1 ... Controller 11 ... Measurement part 12 ... Determination part 13 ... Positive electrode detection line 14 ... Negative electrode detection line 15 ... Reference electrode 2 ... Battery assembly 20 ... Single cell

Claims (6)

組電池を接続し、前記組電池の劣化を判定する電池劣化判定装置において、
前記組電池の正極と参照極との間、及び、前記組電池の負極と前記参照極との間に、それぞれ電流を流し、前記正極の開放電位及び前記負極の開放電位と、前記組電池に含まれるイオン量とを測定する測定手段と、
前記正極の開放電位及び前記負極の開放電位と前記イオン量との特性に応じて、前記劣化を判定する劣化判定手段とを有する
ことを特徴とする
電池劣化判定装置。
In a battery deterioration determination device for connecting a battery pack and determining the deterioration of the battery pack,
Current flows between the positive electrode of the assembled battery and the reference electrode, and between the negative electrode of the assembled battery and the reference electrode, respectively, and the open potential of the positive electrode and the open potential of the negative electrode are applied to the assembled battery. Measuring means for measuring the amount of ions contained;
A battery deterioration determination device, comprising: a deterioration determination unit that determines the deterioration according to characteristics of an open potential of the positive electrode, an open potential of the negative electrode, and the amount of ions.
前記劣化判定手段は、
初期の組電池における、前記開放電位と前記イオン量との関係を示す初期特性を測定し、
前記初期特性と前記特性とを比較することにより、前記劣化を判定することを特徴とする
請求項1記載の電池劣化判定装置。
The deterioration determining means includes
Measure initial characteristics indicating the relationship between the open-circuit potential and the amount of ions in the initial assembled battery,
The battery deterioration determination device according to claim 1, wherein the deterioration is determined by comparing the initial characteristic and the characteristic.
前記測定手段は、前記組電池の正極と参照極との間、及び、前記組電池の負極と前記参照極との間で、それぞれ前記電流の導通及び遮断を繰り返すことにより、前記正極の開放電位及び前記負極の開放電位と、前記イオン量を測定することを特徴とする
請求項1または2記載の電池劣化判定装置。
The measuring means repeats conduction and interruption of the current between the positive electrode of the assembled battery and the reference electrode, and between the negative electrode of the assembled battery and the reference electrode, respectively, so that the open potential of the positive electrode The battery deterioration determination device according to claim 1, wherein an open-circuit potential of the negative electrode and the amount of ions are measured.
前記測定手段は、前記組電池の充電中又は放電中に、前記正極の開放電位及び前記負極の開放電位と、前記組電池に含まれるイオン量とを測定することを特徴とする
請求項1〜3のいずれか1項に記載の電池劣化判定装置。
The measuring means measures the open potential of the positive electrode, the open potential of the negative electrode, and the amount of ions contained in the assembled battery during charging or discharging of the assembled battery. 4. The battery deterioration determination device according to any one of 3 above.
前記測定手段は、
初期の組電池が充電又は放電することにより移動するイオンの量を初期イオン量として測定し、
前記劣化判定手段は、
前記イオン量が前記初期イオン量の90%に達した時点で、前記組電池が劣化したと判定することを特徴とする
請求項1〜4のいずれか一項に記載する電池劣化判定装置。
The measuring means includes
Measure the amount of ions that move when the initial battery pack is charged or discharged as the initial ion amount,
The deterioration determining means includes
5. The battery deterioration determination device according to claim 1, wherein when the ion amount reaches 90% of the initial ion amount, it is determined that the assembled battery has deteriorated.
組電池の正極と参照極との間、及び、前記組電池の負極と前記参照極との間に、それぞれ電流を流し、前記正極の開放電位及び前記負極の開放電位と、前記組電池に含まれるイオン量とを測定するステップと、
前記正極の開放電位及び前記負極の開放電位と前記イオン量との特性に応じて、前記組電池の劣化を判定するステップとを有する
電池劣化判定方法。
Current flows between the positive electrode of the assembled battery and the reference electrode, and between the negative electrode of the assembled battery and the reference electrode, respectively. The open potential of the positive electrode and the open potential of the negative electrode are included in the assembled battery. Measuring the amount of ions produced;
A battery deterioration determination method including a step of determining deterioration of the assembled battery in accordance with characteristics of the open potential of the positive electrode and the open potential of the negative electrode and the amount of ions.
JP2009184530A 2009-08-07 2009-08-07 Battery deterioration determination device and battery deterioration determination method Expired - Fee Related JP5625282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009184530A JP5625282B2 (en) 2009-08-07 2009-08-07 Battery deterioration determination device and battery deterioration determination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009184530A JP5625282B2 (en) 2009-08-07 2009-08-07 Battery deterioration determination device and battery deterioration determination method

Publications (2)

Publication Number Publication Date
JP2011040198A true JP2011040198A (en) 2011-02-24
JP5625282B2 JP5625282B2 (en) 2014-11-19

Family

ID=43767773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009184530A Expired - Fee Related JP5625282B2 (en) 2009-08-07 2009-08-07 Battery deterioration determination device and battery deterioration determination method

Country Status (1)

Country Link
JP (1) JP5625282B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019852A (en) * 2011-07-13 2013-01-31 Toyota Motor Corp Device and method for estimating deterioration rate
CN103675697A (en) * 2012-09-21 2014-03-26 株式会社杰士汤浅国际 Condition estimation device and method of generating open circuit voltage characteristics
JP2017227494A (en) * 2016-06-21 2017-12-28 マツダ株式会社 Diagnostic device and control device of lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009070778A (en) * 2007-09-18 2009-04-02 Toyota Motor Corp State detection device of secondary battery
JP2010539657A (en) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. Lithium rechargeable cell with reference electrode for health monitoring

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010539657A (en) * 2007-09-14 2010-12-16 エイ 123 システムズ,インク. Lithium rechargeable cell with reference electrode for health monitoring
JP2009070778A (en) * 2007-09-18 2009-04-02 Toyota Motor Corp State detection device of secondary battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013019852A (en) * 2011-07-13 2013-01-31 Toyota Motor Corp Device and method for estimating deterioration rate
CN103675697A (en) * 2012-09-21 2014-03-26 株式会社杰士汤浅国际 Condition estimation device and method of generating open circuit voltage characteristics
JP2017227494A (en) * 2016-06-21 2017-12-28 マツダ株式会社 Diagnostic device and control device of lithium ion battery

Also Published As

Publication number Publication date
JP5625282B2 (en) 2014-11-19

Similar Documents

Publication Publication Date Title
JP5282789B2 (en) Battery capacity detection device for lithium ion secondary battery
US8581547B2 (en) Method for detecting cell state-of-charge and state-of-discharge divergence of a series string of batteries or capacitors
EP2700966B1 (en) Apparatus and method for estimating battery state
JP4759795B2 (en) Rechargeable battery remaining capacity detection method
JP4597501B2 (en) Method and apparatus for estimating remaining capacity of secondary battery
JP5104416B2 (en) Abnormality detection device for battery pack
JP2008039515A (en) Apparatus for detecting remaining capacity of battery
JP5040733B2 (en) Method for estimating chargeable / dischargeable power of battery
JP6749080B2 (en) Power storage system, secondary battery control system, and secondary battery control method
JP2016171716A (en) Battery residual amount prediction device and battery pack
JP2015109237A (en) Battery control system and battery control method
JP5131533B2 (en) Battery charge / discharge control method and charge / discharge control apparatus
JP2013250078A (en) Abnormality determination device
JP5625282B2 (en) Battery deterioration determination device and battery deterioration determination method
JP2015230169A (en) Battery state detecting device
KR20160043369A (en) System and method for judging battery&#39;s replacement time
JP6115484B2 (en) Battery charge rate estimation device
US11251472B2 (en) System and method for operating batteries based on electrode crystal structure change
JP5413029B2 (en) Battery deterioration determination device and battery deterioration determination method
JP2020079764A (en) Secondary-battery state determination method
KR102196270B1 (en) Method and apparatus for detecting short of a battery cell
JP2004014462A (en) Remaining capacity measurement device of secondary battery
CN113270656A (en) Method for determining the aging state of at least one electrical energy storage unit
JP2005077128A (en) Detector and method for detecting battery condition
JP2005322592A (en) Charging method of secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130820

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

LAPS Cancellation because of no payment of annual fees