JP2011038977A - Separation analysis method and separation analysis apparatus for redox material - Google Patents

Separation analysis method and separation analysis apparatus for redox material Download PDF

Info

Publication number
JP2011038977A
JP2011038977A JP2009188756A JP2009188756A JP2011038977A JP 2011038977 A JP2011038977 A JP 2011038977A JP 2009188756 A JP2009188756 A JP 2009188756A JP 2009188756 A JP2009188756 A JP 2009188756A JP 2011038977 A JP2011038977 A JP 2011038977A
Authority
JP
Japan
Prior art keywords
column electrode
separation
voltage
redox
sample solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009188756A
Other languages
Japanese (ja)
Other versions
JP5252577B2 (en
Inventor
Takayasu Sugihara
崇康 杉原
Mokichi Nakayama
茂吉 中山
Toshiyuki Osakai
利行 大堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Sumitomo Electric Industries Ltd
Original Assignee
Kobe University NUC
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC, Sumitomo Electric Industries Ltd filed Critical Kobe University NUC
Priority to JP2009188756A priority Critical patent/JP5252577B2/en
Publication of JP2011038977A publication Critical patent/JP2011038977A/en
Application granted granted Critical
Publication of JP5252577B2 publication Critical patent/JP5252577B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a separation analysis method and a separation analysis apparatus which are useful for separating a redox material in a sample solution by utilizing a redox reaction. <P>SOLUTION: The separation analysis apparatus is configured so that an eluent R (mobile phase) is fed to a separation-use flow type electrolytic cell 10 (separation column electrode 100) and a separation-use flow type electrolytic cell 20 (detection column electrode 200) successively through a sample injector 32 (injecting means) by using a pump 31 (liquid feeding means). When separating and analyzing the redox material in the sample solution, the sample solution is injected from the sample injector 32 and introduced into the separation column electrode 100, and then a pulse voltage is repeatedly applied while making the sample solution flow in the separation column electrode 100, thereby separating the redox material contained in the sample solution. Next, a pulse voltage is applied to the detection column electrode 200, and the concentration of the redox material in the sample solution is analyzed on the basis of a value of a current flowing at that time. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、試料溶液中の酸化還元物質を分離して分析するための分離分析方法及び分離分析装置に関する。   The present invention relates to a separation analysis method and a separation analysis apparatus for separating and analyzing a redox substance in a sample solution.

従来、例えば成分分析や環境測定の分野において、液体クロマトグラフィ(LC)と呼ばれる分離分析技術が利用されている。例えば特許文献1〜4には、フロー型カラム電極を用い、カラム電極に電圧を印加することで、試料溶液中の対象成分を分離分析する手法が提案されている。   Conventionally, for example, in the field of component analysis and environmental measurement, a separation analysis technique called liquid chromatography (LC) has been used. For example, Patent Documents 1 to 4 propose a technique for separating and analyzing a target component in a sample solution by using a flow-type column electrode and applying a voltage to the column electrode.

非特許文献1には、フロー型電解セルを用いる電解クロマトグラフィと称する分離分析法が提案されている。この方法は、酸化還元反応を分離に利用したものであり、原理を説明すると次のようになる。クロマト用カラムに充填した銀粒などの作用電極材の電位を、流出口側が負になるように電位勾配を与えて一定に保つ。この電極に金属イオンを含む試料溶液を流し、析出電位が正の金属から順に電極上に析出させる。次いで、カラム電極に溶離液(移動相)を流しながら、電位勾配を徐々に減少させていくと、析出電位が負の金属から順に電極から溶離(ストリッピング)される。このストリッピングにより金属イオンが分離されることになる。そして、その溶離液をポーラログラフ用セルに導き、定電位における拡散電流(電解電流)を追跡することで得られた電流‐時間曲線中の電流ピークの面積、即ち電気量を測定することによって定量を行う。   Non-Patent Document 1 proposes a separation analysis method called electrolytic chromatography using a flow-type electrolytic cell. This method uses an oxidation-reduction reaction for separation, and the principle will be described as follows. The potential of the working electrode material such as silver particles packed in the chromatographic column is kept constant by applying a potential gradient so that the outlet side becomes negative. A sample solution containing metal ions is allowed to flow through this electrode, and the deposition potential is deposited on the electrode in order from the positive metal. Next, when the potential gradient is gradually decreased while flowing the eluent (mobile phase) through the column electrode, the deposition potential is eluted (striped) from the electrode in order from the negative metal. Metal ions are separated by this stripping. The eluent is introduced into a polarographic cell, and the quantity is determined by measuring the area of the current peak in the current-time curve obtained by tracking the diffusion current (electrolysis current) at a constant potential, that is, the quantity of electricity. Do.

また、この電解クロマトグラフィの発想は、その後、多段のカラム電極を直列に連結して用いる多段階カラム電極電解法へと発展した。   The idea of electrolytic chromatography has since been developed into a multistage column electrode electrolysis method in which multistage column electrodes are connected in series.

非特許文献2には、カラム電極に多重掃引法を適用することで、金属イオン相互の分離に際し、2成分の溶出電位差及び析出電位差の両方を利用することが提案されている。具体的な操作は、試料溶液をマイクロシリンジでカラムの試料注入口から導入する。分離カラム電極は、試料導入時には定電位に設定し、試料がカラム電極上に電着(析出)後、多重掃引を開始する。多重掃引による分離後、カラム中に残留した成分は電極電位を±0.0Vに設定してカラムから溶出させる。そして、分離カラムの溶出成分は、-0.90Vに設定した検出カラム電極によって定量する。   Non-Patent Document 2 proposes that the multiple sweep method is applied to the column electrode to use both the elution potential difference and the precipitation potential difference of the two components in the separation of metal ions. Specifically, the sample solution is introduced from the sample inlet of the column with a microsyringe. The separation column electrode is set to a constant potential when the sample is introduced, and the multiple sweep is started after the sample is electrodeposited (deposited) on the column electrode. After separation by multiple sweep, the components remaining in the column are eluted from the column by setting the electrode potential to ± 0.0V. And the elution component of a separation column is quantified with the detection column electrode set to -0.90V.

非特許文献3には、高速液体クロマトグラフィ(HPLC)と電気化学とを融合した電気化学クロマトグラフィ(EMLC)と称する分離分析法が提案されている。この方法は、導電性物質(固定相)を充填したHPLC用カラムに外部から電位を印加することで、固定相の表面電場を変化させる、平たく言えば固定相の吸着性を変化させることによって、対象成分がカラム内で捕捉(保持)される時間を変えるものである。この方法における成分の捕捉は、基本的にはHPLCと同じ(イオン性相互作用やサイズ排除など)であり、固定相を変質させるために電場を利用している。そして、この方法は、対象成分が電気化学的に不活性な物質(酸化還元物質でない)であり、酸化還元反応を利用するものではない。   Non-Patent Document 3 proposes a separation analysis method called electrochemical chromatography (EMLC) in which high performance liquid chromatography (HPLC) and electrochemistry are fused. This method involves changing the surface electric field of the stationary phase by applying an external potential to the HPLC column packed with a conductive substance (stationary phase). In other words, by changing the adsorptivity of the stationary phase, It changes the time during which the target component is captured (held) in the column. Component capture in this method is basically the same as HPLC (ionic interactions, size exclusion, etc.) and uses an electric field to alter the stationary phase. In this method, the target component is an electrochemically inactive substance (not a redox substance) and does not use a redox reaction.

非特許文献4には、上記非特許文献3と同じくHPLCの発展形であり、EMLCを利用した分離分析法が提案されている。この方法では、HPLC用カラムに外部から電位を印加することで、対象成分の酸化還元反応を固定相で引き起こし、対象成分のカラム内での捕捉時間を変えるものである。ただし、印加電位は定電位である。   Non-Patent Document 4 proposes a separation analysis method using EMLC, which is an advanced form of HPLC as in Non-Patent Document 3. In this method, an external potential is applied to the HPLC column to cause an oxidation-reduction reaction of the target component in the stationary phase, thereby changing the capture time of the target component in the column. However, the applied potential is a constant potential.

藤永太一郎、外3名、「電解を用いる新しいクロマトグラフ法」、日本化学雑誌、1963年、第84巻、第11号、p.941‐942Taichiro Fujinaga, 3 others, “A new chromatographic method using electrolysis”, Nihon Kagaku Kabushiki, 1963, Vol. 84, No. 11, p.941-942 富田豊、外2名、「多重掃引法を用いるフロークーロメトリックカラム電極による鉛,スズの分離」、分析化学(Bunseki Kagaku)、1977年、Vol.26、p.209‐213Yutaka Tomita and two others, “Separation of lead and tin by flow coulometric column electrode using multiple sweep method”, Analytical Chemistry (Bunseki Kagaku), 1977, Vol. 26, p.209-213 T.Nagaoka、外4名、「Dynamic elution control in electrochemical ion chromatography using pulse perturbation of stationary phase potential」、Journal of Electroanalytical Chemistry、1994、371、p.283‐286T. Nagaoka, 4 others, “Dynamic elution control in electrochemical ion chromatography using pulse perturbation of stationary phase potential”, Journal of Electroanalytical Chemistry, 1994, 371, p.283-286 Kazunori Saitoh、外5名、「On-column electrochemical redox derivatization for enhancement of separation selectivity of liquid chromatography Use of redox reaction as secondary chemical equilibrium」、Journal of Chromatography A、2008、1180、p.66‐72Kazunori Saitoh, 5 others, “On-column electrochemical redox derivatization for enhancement of separation selectivity of liquid chromatography Use of redox reaction as secondary chemical equilibrium”, Journal of Chromatography A, 2008, 1180, p.66-72

上記非特許文献のうち、非特許文献1、2及び4の分離分析法は、分離対象成分が酸化還元物質(金属イオンなど)であり、酸化還元反応を分離に利用するものであるが、本発明者らが鋭意検討したところ、次の問題点があることが分かった。   Among the non-patent documents, the separation analysis methods of Non-Patent Documents 1, 2, and 4 are those in which the component to be separated is a redox substance (metal ion or the like) and uses a redox reaction for separation. As a result of extensive studies by the inventors, it has been found that there are the following problems.

非特許文献1において、銀粒などの金属粒子を充填した単一のカラム電極に電位勾配を与えることは困難であり、この方法では、試料溶液中の対象成分の分離が不十分になる。そのため、多段階カラム電極電解法へと発展した。   In Non-Patent Document 1, it is difficult to apply a potential gradient to a single column electrode filled with metal particles such as silver particles, and this method results in insufficient separation of target components in a sample solution. Therefore, it developed into a multistage column electrode electrolysis method.

多段階カラム電極電解法により、2成分以上の多成分の分離が十分に行えるようになったが、一つのカラムに1成分を捕捉することから、分離したい成分と少なくとも同じ数だけカラム電極を直列に連結する必要がある。そのため、多段階化は装置の複雑化を招く。また、移動相の送液圧力を上げる必要があるので、カラムの内圧上昇によるカラムや装置の破損など不具合が多発する。   Multi-stage column electrode electrolysis has made it possible to sufficiently separate multiple components of two or more components. However, since one component is captured in one column, at least the same number of column electrodes as the components to be separated are connected in series. It is necessary to connect to. For this reason, the multi-step process leads to complication of the apparatus. In addition, since it is necessary to increase the liquid feeding pressure of the mobile phase, problems such as damage to the column and the apparatus due to the increase in the internal pressure of the column frequently occur.

非特許文献2では、単一のカラム電極に多成分を析出させ、一つのカラムに多成分を捕捉することを提案しているが、定電位に設定した電極表面の同じ位置に異種の成分(金属イオン)が析出した場合、その状態である程度の時間続くと、これら成分が化学反応(合金化)することから、その後溶出できなくなる不具合が発生する。また、非特許文献4でも、印加電位は定電位であり、合金化の問題が残る。   Non-Patent Document 2 proposes that a multi-component is deposited on a single column electrode and that the multi-component is captured on a single column. When metal ions) are deposited, if these components continue for a certain period of time, these components undergo a chemical reaction (alloying), which causes a problem that they cannot be eluted thereafter. In Non-Patent Document 4, the applied potential is a constant potential, and the problem of alloying remains.

本発明は、上記事情に鑑みてなされたものであり、その目的の一つは、酸化還元反応を利用し、試料溶液中の酸化還元物質を分離するのに有用な分離分析方法及び分離分析装置を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is a separation analysis method and separation analysis apparatus useful for separating a redox substance in a sample solution using a redox reaction. Is to provide.

本発明の分離分析方法は、試料溶液中の酸化還元物質を分離分析する方法であり、次の工程を備えることを特徴とする。
(1)分離カラム電極に移動相を送液する送液工程
(2)移動相に試料溶液を注入し、分離カラム電極に試料溶液を流す注入工程
(3)分離カラム電極に試料溶液を流しながらパルス電圧を繰り返し印加する電圧印加工程
なお、パルス電圧は、酸化還元物質のうち特定の酸化還元物質を析出させる析出電圧と、析出した特定の酸化還元物質を再溶出させる溶出電圧とを含むパルス状の波形を有する電圧である。そして、電圧印加工程において、特定の酸化還元物質を分離カラム電極に析出・再溶出を繰り返し起こさせることで電極表面に断続的に捕捉(保持)させ、当該物質が分離カラム電極を通過する時間を電極表面に捕捉されない他の物質に比べて遅延させることにより、試料溶液中に含まれる酸化還元物質を分離することを特徴とする。
The separation analysis method of the present invention is a method for separating and analyzing a redox substance in a sample solution, and is characterized by comprising the following steps.
(1) Liquid feeding step for feeding the mobile phase to the separation column electrode (2) Injection step for injecting the sample solution to the mobile phase and flowing the sample solution to the separation column electrode (3) While flowing the sample solution to the separation column electrode Voltage application step of repeatedly applying a pulse voltage Note that the pulse voltage includes a pulse voltage including a deposition voltage for precipitating a specific redox material among redox materials and an elution voltage for re-eluting the deposited specific redox material. It is a voltage which has the following waveform. In the voltage application step, the specific oxidation-reduction substance is repeatedly trapped (held) on the electrode surface by repeatedly causing precipitation / re-elution on the separation column electrode, and the time for the substance to pass through the separation column electrode is determined. It is characterized in that the redox substance contained in the sample solution is separated by being delayed as compared with other substances not captured on the electrode surface.

また、本発明の分離分析装置は、試料溶液中の酸化還元物質を分離分析する装置であり、分離カラム電極と、分離カラム電極に移動相を送液する送液手段と、移動相に試料溶液を注入する注入手段と、分離カラム電極にパルス電圧を繰り返し印加する電圧印加手段とを備える。なお、パルス電圧は、酸化還元物質のうち特定の酸化還元物質を析出させる析出電圧と、析出した特定の酸化還元物質を再溶出させる溶出電圧とを含むパルス状の波形を有する電圧である。   The separation analysis apparatus of the present invention is an apparatus for separating and analyzing a redox substance in a sample solution, a separation column electrode, a liquid feeding means for feeding a mobile phase to the separation column electrode, and a sample solution in the mobile phase. And a voltage applying means for repeatedly applying a pulse voltage to the separation column electrode. The pulse voltage is a voltage having a pulse-like waveform including a deposition voltage for depositing a specific redox substance among the redox substances and an elution voltage for re-eluting the deposited specific redox substance.

本発明における試料溶液中の酸化還元物質としては、代表的には金属イオンが挙げられるが、金属イオンに限定されるものではなく、酸化還元反応を起こすことで電極への吸着能が変化する物質であれば利用できる。   The oxidation-reduction substance in the sample solution in the present invention typically includes metal ions, but is not limited to metal ions, and a substance whose adsorption ability to the electrode changes by causing an oxidation-reduction reaction. If available.

本発明の分離分析方法及び分離分析装置によれば、単一の分離カラム電極を用いても、多成分(多物質)の分離が可能である。そのため、多段階化による装置の複雑化、内圧上昇に起因する装置の破損や液漏れなどの不具合を回避できる。   According to the separation / analysis method and the separation / analysis apparatus of the present invention, it is possible to separate multiple components (multi-substances) using a single separation column electrode. For this reason, it is possible to avoid problems such as device complexity and liquid leakage due to increase in internal pressure due to multi-stage processing.

例えば3物質の分離に適用する場合は、析出電圧として、第一の物質が析出する第一析出電圧と、第一と第二の物質が析出する第二析出電圧とを設定することが挙げられる。つまり、多物質の分離を行う場合には、それぞれの酸化還元反応を起こす電位に応じて析出電圧を制御すればよい。パルス電圧の波形は、矩形波、正弦波、三角波、鋸歯状波などを選択することができ、その他、階段状やスロープ状といった波形の集合であってもよい。このようなパルス波形は、例えば任意波形発生器(ファンクションジェネレータ)によって発生させることができる。   For example, when applied to the separation of three substances, the deposition voltage may be set to a first deposition voltage at which the first substance is deposited and a second deposition voltage at which the first and second substances are deposited. . That is, when separating multiple substances, the deposition voltage may be controlled in accordance with the potential for causing each oxidation-reduction reaction. As the waveform of the pulse voltage, a rectangular wave, a sine wave, a triangular wave, a sawtooth wave, or the like can be selected. In addition, a set of waveforms such as a staircase or a slope may be used. Such a pulse waveform can be generated by, for example, an arbitrary waveform generator (function generator).

また、本発明では、パルス電圧の印加により、酸化還元物質が析出と再溶出とを繰り返すことになる。そのため、電極表面の同じ位置に異種の物質が析出した場合であっても、これら物質(例、金属イオン)が化学反応(合金化)する前に溶出させることができ、再溶出ができないという不具合が生じ難い。さらに、副反応である溶媒(例えば水)の電気分解なども生じ難く、精度の向上が期待できる。   In the present invention, the application of the pulse voltage causes the redox material to repeat deposition and re-elution. Therefore, even when different substances are deposited at the same position on the electrode surface, these substances (eg, metal ions) can be eluted before chemical reaction (alloying) and cannot be re-eluted. Is unlikely to occur. Furthermore, it is difficult to cause electrolysis of a solvent (for example, water) as a side reaction, and an improvement in accuracy can be expected.

1パルスにおける析出電圧の印加時間(パルス幅)は、短時間であることが望ましいが、電極表面の同じ位置に異種の物質が析出したときに、これら物質が化学反応する不具合を起こさない範囲であればよい。析出電圧のパルス幅は、例えば0.1秒〜10秒の範囲で設定することが挙げられる。ただし、上記した不具合を起こさないパルス幅は、分離カラム電極の電解効率にも影響されるため、例えば分離に用いる電解セルの構造や電極材料に応じて設定することが望ましい。また、このような範囲内で析出電圧のパルス幅を設定することで、析出した物質と電極材料とが化学反応することも抑制でき、電極の劣化や目詰まりなどの不具合を回避し易い。なお、パルス電圧が析出電圧と溶出電圧とから構成されているとき、析出電圧のパルス幅は、換言すれば、溶出電圧が印加されてから次の溶出電圧が印加されるまでの時間のことである。   The application time (pulse width) of the deposition voltage in one pulse is desirably a short time, but within a range that does not cause a problem that these materials chemically react when different materials are deposited at the same position on the electrode surface. I just need it. For example, the pulse width of the deposition voltage is set in the range of 0.1 to 10 seconds. However, since the pulse width that does not cause the above-described problem is also affected by the electrolysis efficiency of the separation column electrode, it is desirable to set it according to, for example, the structure of the electrolytic cell used for the separation and the electrode material. In addition, by setting the pulse width of the deposition voltage within such a range, it is possible to suppress the chemical reaction between the deposited substance and the electrode material, and it is easy to avoid problems such as electrode deterioration and clogging. In addition, when the pulse voltage is composed of a deposition voltage and an elution voltage, the pulse width of the deposition voltage is, in other words, the time from when the elution voltage is applied until the next elution voltage is applied. is there.

本発明の分離分析方法において、より好ましい形態は、次の工程を備える。
(4)分離カラム電極を通過した移動相を、分離カラム電極に直列に接続した検出カラム電極に供給する工程
(5)検出カラム電極にパルス電圧を印加して、印加した際に流れる電流値から試料溶液中の酸化還元物質の濃度を分析する工程
In the separation and analysis method of the present invention, a more preferred form includes the following steps.
(4) Step of supplying the mobile phase that has passed through the separation column electrode to the detection column electrode connected in series to the separation column electrode (5) Applying a pulse voltage to the detection column electrode, and from the current value that flows when it is applied Analyzing the concentration of redox substances in the sample solution

また、本発明の分離分析装置において、より好ましい形態は、分離カラム電極を通過した移動相が供給される検出カラム電極と、試料溶液中の酸化還元物質の濃度を分析する分析手段とを備える。検出カラムは、分離カラム電極に直列に接続されている。分析手段は、検出カラム電極にパルス電圧を印加して、印加した際に流れる電流値から酸化還元物質の濃度を分析する。   In the separation / analysis apparatus of the present invention, a more preferable form includes a detection column electrode to which a mobile phase that has passed through the separation column electrode is supplied, and an analysis means for analyzing the concentration of the redox substance in the sample solution. The detection column is connected in series to the separation column electrode. The analysis means applies a pulse voltage to the detection column electrode, and analyzes the concentration of the redox substance from the value of the current flowing when the pulse voltage is applied.

これら好ましい方法及び好ましい装置によれば、分離と分析とを同一流路内で行うことができる。具体的には、分離プロセスでは、分離カラム電極に所定のパルス電圧を印加し、試料溶液中の特定の酸化還元物質を断続的に捕捉することで、酸化還元物質毎の移動時間、即ち分離カラム電極を通過する時間を変え、酸化還元物質の分離を行う。そして、分析プロセスでは、分離カラム電極を通過した移動相(この時点で酸化還元物質毎に分離されている)を連続的に検出カラム電極に供給し、検出カラム電極では分離したそれぞれの酸化還元物質の定性と定量とを行う。定性及び定量は、検出カラム電極に電圧を印加して電解を行い、その際に流れる電解電流と時間との関係を記録して得られる電流−時間曲線を測定することで行う。例えば、取得した電流−時間曲線のピークから、分離したそれぞれの酸化還元物質の通過時間を求め、これを予め同じ条件で取得しておいた特定の酸化還元物質(標準試料)の通過時間と比較して同定することができる。また、例えば、電解中に流れた電気の量を求めたり、取得した電流−時間曲線のピーク面積と標準試料のピーク面積とを比較したりすることで、酸化還元物質の濃度を求めることができる。   According to these preferable methods and preferable apparatuses, separation and analysis can be performed in the same flow path. Specifically, in the separation process, a predetermined pulse voltage is applied to the separation column electrode, and a specific oxidation-reduction substance in the sample solution is intermittently captured, so that the movement time for each oxidation-reduction substance, that is, the separation column is determined. The time for passing through the electrode is changed to separate the redox material. In the analysis process, the mobile phase that has passed through the separation column electrode (separated for each oxidation-reduction substance at this time) is continuously supplied to the detection column electrode, and each of the oxidation-reduction substances separated in the detection column electrode. Qualitative and quantitative. Qualitative and quantitative determination is performed by applying a voltage to the detection column electrode to perform electrolysis, and measuring a current-time curve obtained by recording the relationship between the electrolytic current flowing at that time and time. For example, the passage time of each separated redox substance is obtained from the peak of the acquired current-time curve, and this is compared with the passage time of a specific redox substance (standard sample) obtained in advance under the same conditions. Can be identified. Further, for example, the concentration of the redox substance can be determined by determining the amount of electricity that has flowed during electrolysis, or by comparing the peak area of the acquired current-time curve with the peak area of the standard sample. .

本発明における分離カラム電極には、炭素を主成分とする材料が充填されていることが好ましい。   The separation column electrode in the present invention is preferably filled with a material mainly composed of carbon.

分離カラム電極の構造は、多孔質ガラス管に電極材料を充填した構造が一例として挙げられる。ここで、電極材料としては、グラッシーカーボン(GC)、多孔質グラファイトカーボン(PGC)などの炭素系材料、白金、銅、銀、金などの金属系材料を用いることができるが、炭素系材料は、金属系材料と比べて析出した物質と化学反応が生じ難い点で好ましい。また、電極材料の形状としては、粒状、繊維状とすることが挙げられるが、電解効率の観点から粒状とすることが好ましい。また、ガラス管には、例えば多孔質バイコールガラス管を用いることができる。検出カラム電極も、分離カラム電極と同様に、炭素を主成分とする材料が充填されていることが好ましい。   An example of the structure of the separation column electrode is a structure in which a porous glass tube is filled with an electrode material. Here, as the electrode material, a carbon-based material such as glassy carbon (GC) or porous graphite carbon (PGC), or a metal-based material such as platinum, copper, silver, or gold can be used. It is preferable in that a chemical reaction with a deposited substance is difficult to occur as compared with a metal-based material. In addition, examples of the shape of the electrode material include a granular shape and a fibrous shape, but a granular shape is preferable from the viewpoint of electrolytic efficiency. For the glass tube, for example, a porous Vycor glass tube can be used. Similarly to the separation column electrode, the detection column electrode is preferably filled with a material mainly composed of carbon.

本発明の分離分析方法及び分離分析装置は、単一の分離カラム電極を用いて試料溶液中に含まれる酸化還元物質を分離でき、また、電圧印加時における試料溶液の化学反応による変質を抑制できるので、非常に有用である。   The separation analysis method and separation analysis apparatus of the present invention can separate redox substances contained in a sample solution by using a single separation column electrode, and can suppress alteration due to a chemical reaction of the sample solution during voltage application. So it is very useful.

さらに、本発明は、酸化還元物質の酸化還元電位の違いにより物質毎の分離を行うため、従来技術では困難であった例えば同一金属イオンの価数別分離(例、Cr(III)イオンとCr(VI)イオン)などが可能であると考えられる。   Furthermore, since the present invention performs separation for each substance depending on the oxidation-reduction potential of the oxidation-reduction substance, for example, separation by the valence of the same metal ion (eg, Cr (III) ion and Cr (VI) ions) are considered possible.

本発明に係る分離分析装置の構成の一例を説明する図である。It is a figure explaining an example of the composition of the separation analyzer concerning the present invention. フロー型電解セルの構造を説明する模式図である。It is a schematic diagram explaining the structure of a flow type electrolytic cell. (A)は分離カラム電極における分離プロセスを説明する図であり、(B)は分離分析装置により得られる電流‐時間曲線の例である。(A) is a figure explaining the separation process in a separation column electrode, (B) is an example of the current-time curve obtained by a separation analyzer. 分離カラム電極に印加するパルス電圧を説明する図である。It is a figure explaining the pulse voltage applied to a separation column electrode. 実験例1で得られた電流‐時間曲線を示す図である。(A)はCd(II)イオンが溶解した溶液及びCu(II)イオンが溶解した溶液のそれぞれの電流‐時間曲線を示し、(B)はCd(II)イオンとCu(II)イオンが溶解した溶液の電流‐時間曲線を示す。4 is a diagram showing a current-time curve obtained in Experimental Example 1. FIG. (A) shows the current-time curves of the solution in which Cd (II) ions are dissolved and the solution in which Cu (II) ions are dissolved. (B) is the solution in which Cd (II) ions and Cu (II) ions are dissolved. Shows the current-time curve of the solution.

本発明の実施の形態を図を用いて説明する。なお、図中において同一部材には同一符号を付している。   Embodiments of the present invention will be described with reference to the drawings. In addition, in the figure, the same code | symbol is attached | subjected to the same member.

(分離分析装置)
図1に例示する分離分析装置は、分離用のフロー型電解セル10と分析用のフロー型電解セル20とを備え、これら電解セルの分離カラム電極100と検出カラム電極200とが直列に接続されている。この分離分析装置は、溶離液R(移動相)がポンプ31(送液手段)によりサンプルインジェクタ32(注入手段)を介して、分離用のフロー型電解セル10(分離カラム電極100)、分析用のフロー型電解セル20(検出カラム電極200)の順に送液され、排液されるように構成されている。また、それぞれの電解セル10、20には、電気化学測定装置41,42(電圧印加手段)が接続されており、一方の電気化学測定装置41にはファンクションジェネレータ45が接続され、他方の電気化学測定装置42にはデータ記録用のPC50が接続されている。このPC50は、装置全体を制御する。
(Separation analyzer)
The separation analyzer illustrated in FIG. 1 includes a separation flow type electrolytic cell 10 and an analysis flow type electrolytic cell 20, and the separation column electrode 100 and the detection column electrode 200 of these electrolytic cells are connected in series. ing. In this separation and analysis apparatus, an eluent R (mobile phase) is separated by a pump 31 (liquid feeding means) through a sample injector 32 (injection means), a flow type electrolytic cell 10 (separation column electrode 100) for separation, and an analysis The flow type electrolysis cell 20 (detection column electrode 200) is fed in order and drained. In addition, electrochemical measuring devices 41 and 42 (voltage applying means) are connected to the electrolysis cells 10 and 20, respectively, and a function generator 45 is connected to one electrochemical measuring device 41 and the other electrochemical cell is connected. A PC 50 for data recording is connected to the measuring device 42. This PC 50 controls the entire apparatus.

試料溶液中の酸化還元物質を分離分析するときは、溶離液Rを送液した状態で、注射器を用い、サンプルインジェクタ32から試料溶液を注入し、分離カラム電極100に導入する。また、試料溶液を注入すると同時にデータ記録を開始する。分離カラム電極100に試料溶液を流しながら電気化学測定装置41からパルス電圧を繰り返し印加して、電極表面に特定の酸化還元物質を断続的に捕捉し、試料溶液中に含まれる酸化還元物質を分離する。次に、分離カラム電極100を通過した溶離液Rを検出カラム電極200に連続的に供給する。検出カラム電極200に電気化学測定装置42からパルス電圧を印加して、その際に流れる電流値から試料溶液中の酸化還元物質の濃度を分析する。具体的には、検出カラム電極200に電圧を印加して電解を行い、その際に流れる電流の時間変化をPC50に記録して得られる電流−時間曲線を測定することで行う。   When the redox substance in the sample solution is separated and analyzed, the sample solution is injected from the sample injector 32 using the syringe while the eluent R is fed and introduced into the separation column electrode 100. Also, data recording is started simultaneously with the injection of the sample solution. While flowing the sample solution to the separation column electrode 100, a pulse voltage is repeatedly applied from the electrochemical measuring device 41 to intermittently capture a specific redox substance on the electrode surface and separate the redox substance contained in the sample solution. To do. Next, the eluent R that has passed through the separation column electrode 100 is continuously supplied to the detection column electrode 200. A pulse voltage is applied to the detection column electrode 200 from the electrochemical measuring device 42, and the concentration of the redox substance in the sample solution is analyzed from the current value flowing at that time. Specifically, the electrolysis is performed by applying a voltage to the detection column electrode 200, and the current-time curve obtained by recording the time change of the current flowing at that time in the PC 50 is measured.

(フロー型電解セル)
分離用のフロー型電解セル10の構造を図2を参照して説明する。電解セル10は、分離カラム電極100が収納され、カラム電極100の外側に電解液が満たされている。カラム電極100は、多孔質バイコールガラス管102に電極材料となるグラッシーカーボン(GC)粒101を充填して構成され、GC粒101と多孔質ガラス管102がそれぞれ作用電極と電解隔膜として機能する。GC粒を充填したカラム電極100には、リードとなるGC棒103が挿通されている。また、多孔質ガラス管102内のGC粒101が充填された空間の一端側から他端側に向かって溶離液Rが移動するように、液流入口106と液流出口107とが設けられている。
(Flow-type electrolytic cell)
The structure of the flow type electrolysis cell 10 for separation will be described with reference to FIG. In the electrolytic cell 10, a separation column electrode 100 is accommodated, and the outer side of the column electrode 100 is filled with an electrolytic solution. The column electrode 100 is configured by filling a porous Vycor glass tube 102 with glassy carbon (GC) particles 101 as an electrode material, and the GC particles 101 and the porous glass tube 102 function as a working electrode and an electrolytic diaphragm, respectively. A GC rod 103 serving as a lead is inserted into the column electrode 100 filled with GC grains. In addition, a liquid inlet 106 and a liquid outlet 107 are provided so that the eluent R moves from one end side to the other end side of the space filled with the GC particles 101 in the porous glass tube 102. Yes.

カラム電極100外側の電解液には、コイル状にした白金線104とAg/AgCl電極105とが配置され、白金線104とAg/AgCl電極105がそれぞれ対極と参照電極として機能する。GC棒103(作用電極)、白金線104(対極)及びAg/AgCl電極105(参照電極)のそれぞれの一方の端部は外部に引き出されている。   In the electrolyte solution outside the column electrode 100, a coiled platinum wire 104 and an Ag / AgCl electrode 105 are disposed, and the platinum wire 104 and the Ag / AgCl electrode 105 function as a counter electrode and a reference electrode, respectively. One end of each of the GC rod 103 (working electrode), the platinum wire 104 (counter electrode) and the Ag / AgCl electrode 105 (reference electrode) is drawn out.

分析用のフロー型電解セル20の構造も、分離用のフロー型電解セル10の構造と同じである。なお、このような3電極系のフロー型電解セルは、市販品を使用することができる。   The structure of the flow type electrolytic cell 20 for analysis is the same as the structure of the flow type electrolytic cell 10 for separation. In addition, a commercial item can be used for such a three-electrode flow type electrolysis cell.

図1に示す分離分析装置では、分離カラム電極100の液流出口と検出カラム電極200の液流入口とを直列に接続し、分離カラム電極100を通過した溶離液Rがそのまま検出カラム電極200に供給されるように構成されている。これにより、分離と分析とを同一流路内で行うことができる。また、電解セル10,20の外部に引き出された作用電極、対極及び参照電極の端部が電気化学測定装置41,42に接続され、電気化学測定装置41,42から所定の電圧がカラム電極100,200に印加されるように構成されている。例えば、電気化学測定装置41においては、ファンクションジェネレータ45によって分離カラム電極100に印加される電圧を任意のパルス波形の電圧に変えることができる。カラム電極100,200に電圧を印加するときは、作用電極と対極との両電極間に電圧を印加し、また両電極間の電位を参照電極で規制して行う。   In the separation analyzer shown in FIG. 1, the liquid outlet of the separation column electrode 100 and the liquid inlet of the detection column electrode 200 are connected in series, and the eluent R that has passed through the separation column electrode 100 is directly applied to the detection column electrode 200. It is configured to be supplied. Thereby, separation and analysis can be performed in the same flow path. Further, the working electrode, the counter electrode, and the end of the reference electrode drawn out of the electrolysis cells 10 and 20 are connected to the electrochemical measuring devices 41 and 42, and a predetermined voltage is supplied from the electrochemical measuring devices 41 and 42 to the column electrodes 100 and 200. It is comprised so that it may be applied to. For example, in the electrochemical measurement device 41, the voltage applied to the separation column electrode 100 by the function generator 45 can be changed to a voltage having an arbitrary pulse waveform. When a voltage is applied to the column electrodes 100 and 200, a voltage is applied between both the working electrode and the counter electrode, and the potential between the two electrodes is regulated by the reference electrode.

(分離プロセス)
分離カラム電極100における分離プロセスを図3(A)を参照して詳しく説明する。ここでは、試料溶液中の3種類の酸化還元物質A〜Cを分離する場合を例に説明する。なお、図中左側には分離カラム電極100に印加するパルス電圧の波形を、図中右側には分離カラム電極100にパルス電圧が印加された際の3種類の酸化還元物質の挙動をそれぞれ模式的に示す。図中パルス電圧Eは、酸化還元物質のうち特定の酸化還元物質を析出させる析出電圧Edと、析出した特定の酸化還元物質を再溶出させる溶出電圧Eeとから構成されている。また、図中において、酸化還元物質Aを○、酸化還元物質Bを□、酸化還元物質Cを△で表し、溶離液Rの流れ方向は紙面左から右である。
(Separation process)
A separation process in the separation column electrode 100 will be described in detail with reference to FIG. Here, a case where three kinds of redox substances A to C in the sample solution are separated will be described as an example. The waveform of the pulse voltage applied to the separation column electrode 100 is shown on the left side of the figure, and the behavior of the three types of redox substances when the pulse voltage is applied to the separation column electrode 100 is shown on the right side of the figure. Shown in In the figure, the pulse voltage E is composed of a deposition voltage Ed for depositing a specific redox substance among the redox substances and an elution voltage Ee for re-eluting the deposited specific redox substance. In the figure, redox substance A is indicated by ◯, redox substance B is indicated by □, redox substance C is indicated by Δ, and the flow direction of eluent R is from the left to the right of the page.

酸化還元物質A〜Cの酸化還元電位の関係は、A>B>Cになっている。図3(A)ではパルス電圧Eの波形を簡略的に示しているが、実際には、析出電圧Edは、物質Aが析出する第一析出電圧EdAと物質Aと物質Bが析出する第二析出電圧EdBとの2つのパルス電圧からなる。また、溶出電圧Eeは、物質Aと物質Bが再溶出する電圧である。 The relationship between the redox potentials of the redox substances A to C is A>B> C. In FIG. 3 (A), the waveform of the pulse voltage E is shown in a simplified manner. Actually, the deposition voltage Ed is the first deposition voltage Ed A at which the substance A is deposited, the first deposition voltage Ed A at which the substance A and the substance B are deposited. It consists of two pulse voltages with a double deposition voltage Ed B. The elution voltage Ee is a voltage at which the substance A and the substance B are eluted again.

まず、分離カラム電極100に導入された試料溶液中の酸化還元物質A〜Cは、溶離液Rの流れ方向に移動する。また、分離カラム電極100に溶出電圧Eeを印加している間は、物質A〜Cは溶離液Rと一緒に移動し続ける(図3(A)の(a)を参照)。   First, the redox substances A to C in the sample solution introduced into the separation column electrode 100 move in the flow direction of the eluent R. Further, while the elution voltage Ee is applied to the separation column electrode 100, the substances A to C continue to move together with the eluent R (see (a) of FIG. 3A).

分離カラム電極100に析出電圧Edのうち第一析出電圧EdAを印加すると、電極表面に物質Aが析出し、物質Aが分離カラム電極100に捕捉されることになる。この間、物質Bと物質Cは捕捉されず、移動し続ける。その後、分離カラム電極100に溶出電圧Eeを印加することで、物質Aが再溶出し、物質Bと物質Cに遅れて物質Aが再度移動し始める。次に、分離カラム電極100に析出電圧Edのうち第二析出電圧EdBを印加すると、電極表面に物質Aと物質Bが析出し、物質Aと物質Bが分離カラム電極100に捕捉されることになる。この間も、物質Cは捕捉されず、移動し続ける。その後、分離カラム電極100に再び溶出電圧Eeを印加することで、物質Aと物質Bが再溶出し、物質Aと物質Bが物質Cに遅れて再度移動し始める(図3(A)の(b)を参照)。 When the first deposition voltage Ed A of the deposition voltage Ed is applied to the separation column electrode 100, the substance A is deposited on the electrode surface, and the substance A is captured by the separation column electrode 100. During this time, substance B and substance C are not captured and continue to move. Thereafter, by applying an elution voltage Ee to the separation column electrode 100, the substance A is eluted again, and the substance A starts to move again after being delayed by the substances B and C. Next, when the second deposition voltage Ed B of the deposition voltage Ed is applied to the separation column electrode 100, the substance A and the substance B are deposited on the electrode surface, and the substance A and the substance B are captured by the separation column electrode 100. become. During this time, substance C is not captured and continues to move. After that, by applying the elution voltage Ee to the separation column electrode 100 again, the substance A and the substance B are eluted again, and the substance A and the substance B begin to move again after the substance C (((A) in FIG. 3A) see b)).

このように、物質A〜Cが分離カラム電極100を移動している間、分離カラム電極100にパルス電圧Eを繰り返し印加することで、物質Aと物質Bとが析出・再溶出を繰り返すことになり、物質Aと物質Bとが電極表面に断続的に捕捉されることになる。その結果、物質A、物質B及び物質Cのそれぞれの移動速度が変わるので、徐々に物質A〜Cが分離されることになる(図3(A)の(c)〜(f)を参照)。   As described above, while the substances A to C are moving on the separation column electrode 100, the pulse voltage E is repeatedly applied to the separation column electrode 100, so that the substances A and B are repeatedly precipitated and re-eluted. Thus, substance A and substance B are intermittently trapped on the electrode surface. As a result, the moving speeds of the substances A, B and C change, so that the substances A to C are gradually separated (see (c) to (f) in FIG. 3A). .

ここで、物質Aと物質Bの移動速度は、それぞれの分離カラム電極100に捕捉される時間、即ち第一析出電圧EdA及び第二析出電圧EdBの印加時間(パルス幅)に依存する。そこで、それぞれのパルス幅は、十分に分離が行われるように設定されている。また、パルス幅は、電極表面の同じ位置に物質Aと物質Bが析出したときに、これら物質が化学反応する不具合を起こさない範囲で設定されている。 Here, the moving speed of the substance A and the substance B depends on the time captured by the respective separation column electrodes 100, that is, the application time (pulse width) of the first deposition voltage Ed A and the second deposition voltage Ed B. Therefore, each pulse width is set so that the separation is sufficiently performed. Further, the pulse width is set within a range in which when the substances A and B are deposited at the same position on the electrode surface, these substances do not cause a chemical reaction.

図3(B)は、試料溶液中の酸化還元物質A〜Cを分離カラム電極に通過させることによって物質A〜Cを分離させた溶離液Rを、検出カラム電極に供給し、検出カラム電極での電解電流の時間変化を記録して得られた電流−時間曲線の例である。図中のピークA、ピークB及びピークCがそれぞれ、物質A、物質B及び物質Cに対応する。   FIG. 3 (B) shows that the eluent R obtained by separating the substances A to C by passing the redox substances A to C in the sample solution through the separation column electrode is supplied to the detection column electrode. It is an example of the current-time curve obtained by recording the time change of the electrolysis current. Peak A, peak B, and peak C in the figure correspond to substance A, substance B, and substance C, respectively.

[実験例1]
以上説明したような図1の分離分析装置を用いて、試料溶液中に含まれる酸化還元物質の分離分析を行った。試料溶液及び分離分析条件は次のとおりとした。
[Experimental Example 1]
The separation / analysis apparatus of FIG. 1 as described above was used to separate and analyze the redox material contained in the sample solution. The sample solution and separation analysis conditions were as follows.

<試料溶液>
試料溶液として、以下の溶液1〜3を用意した。
溶液1:0.1mol/dm3の硝酸溶液にCd(II)イオンが100ppm溶解
溶液2:0.1mol/dm3の硝酸溶液にCu(II)イオンが10ppm溶解
溶液3:0.1mol/dm3の硝酸溶液にCd(II)イオン50ppmとCu(II)イオン5ppmが溶解
<Sample solution>
The following solutions 1 to 3 were prepared as sample solutions.
Solution 1: 0.1 mol / dm 3 nitric acid solution to the Cd (II) ions is 100ppm lysis solution 2: 0.1 mol / dm 3 nitric acid solution to the Cu (II) ions 10ppm lysis solution 3: a 0.1 mol / dm 3 nitric acid 50ppm Cd (II) ion and 5ppm Cu (II) ion dissolved in the solution

<溶離液>
溶離液は、0.1mol/dm3の硝酸溶液を用い、送液量を150μL/minに設定した。送液量はポンプで制御した。
<Eluent>
As the eluent, a 0.1 mol / dm 3 nitric acid solution was used, and the liquid feeding amount was set to 150 μL / min. The amount of liquid fed was controlled by a pump.

<電解セル>
カラム電極は、粒径が80〜200μmのGC粒を充填したものを使用し、電解液には、溶離液と同じ0.1mol/dm3の硝酸溶液を用いた。
<Electrolysis cell>
The column electrode used was filled with GC particles having a particle diameter of 80 to 200 μm, and the same 0.1 mol / dm 3 nitric acid solution as the eluent was used as the electrolyte.

<分離カラム電極に印加するパルス電圧>
分離カラム電極に印加するパルス電圧は、図4に示す波形とし、析出電圧Ed:-200mV(パルス幅td:5.0sec)、溶出電圧Ee:+800mv(パルス幅te:0.8sec)に設定した。なお、-200mVでは、分離カラム電極にCu(II)イオンは析出するが、Cd(II)イオンは析出しない電圧である。他方、+800mVでは、分離カラム電極に析出したCu(II)イオンが再溶出する電圧である。
<Pulse voltage applied to the separation column electrode>
The pulse voltage applied to the separation column electrode had the waveform shown in FIG. 4, and was set to the deposition voltage Ed: −200 mV (pulse width td: 5.0 sec) and the elution voltage Ee: +800 mV (pulse width te: 0.8 sec). At -200 mV, Cu (II) ions are deposited on the separation column electrode, but Cd (II) ions are not deposited. On the other hand, +800 mV is a voltage at which Cu (II) ions deposited on the separation column electrode are re-eluted.

<検出カラム電極に印加するパルス電圧>
検出カラム電極に印加するパルス電圧も、分離カラム電極に印加するパルス電圧と同じ図4に示す波形とし、析出電圧Ed:-800mV(パルス幅td:0.25sec)、溶出電圧Ee:+800mV(パルス幅te:0.75sec)に設定した。
<Pulse voltage applied to detection column electrode>
The pulse voltage applied to the detection column electrode is the same as the pulse voltage applied to the separation column electrode as shown in FIG. 4, and the deposition voltage Ed: -800 mV (pulse width td: 0.25 sec), elution voltage Ee: +800 mV (pulse Width te: 0.75 sec).

以上の条件で、サンプルインジェクタから溶液1〜3をそれぞれ20μL注入し、それぞれの場合における電流‐時間曲線を測定した。その結果を、図5に示す。図5(A)では、Cd(II)イオンが溶解した溶液1の電流‐時間曲線(太線)と、Cu(II)イオンが溶解した溶液2の電流‐時間曲線(細線)とを一図にまとめて示した。また、図5(B)では、さらに、Cd(II)イオンとCu(II)イオンが溶解した溶液3の電流‐時間曲線(極太線)を一図にまとめて示した。   Under the above conditions, 20 μL of each of Solutions 1 to 3 was injected from the sample injector, and current-time curves in each case were measured. The result is shown in FIG. In FIG. 5 (A), the current-time curve (thick line) of solution 1 in which Cd (II) ions are dissolved and the current-time curve (thin line) of solution 2 in which Cu (II) ions are dissolved are shown in one figure. Shown together. FIG. 5B further shows a current-time curve (extremely thick line) of the solution 3 in which Cd (II) ions and Cu (II) ions are dissolved.

図5(A)に示すように、溶液1のピークに比べて溶液2のピークが遅延して現れているのが分かる。このことから、Cd(II)イオンの場合は、分離カラム電極に捕捉されず、分離カラム電極を通過する時間が短いのに対し、Cu(II)イオンの場合は、分離カラム電極に断続的に捕捉され、分離カラム電極を通過する時間を制御できていることが分かる。したがって、本発明によれば、試料溶液中の複数の酸化還元物質を十分に分離することができると考えられる。   As shown in FIG. 5A, it can be seen that the peak of the solution 2 appears with a delay compared to the peak of the solution 1. Therefore, in the case of Cd (II) ions, it is not captured by the separation column electrode and the time for passing through the separation column electrode is short, whereas in the case of Cu (II) ions, the separation column electrode is intermittently formed. It can be seen that the time taken and passed through the separation column electrode can be controlled. Therefore, according to the present invention, it is considered that a plurality of redox substances in the sample solution can be sufficiently separated.

実際に、図5(B)に示すように、溶液3の2つのピークは、溶液1のピーク及び溶液2のピークとほぼ一致しており、Cd(II)イオンとCu(II)イオンとが十分に分離され、同定することが十分に可能である。また、溶液3の2つのピークはそれぞれ、溶液1のピーク及び溶液2のピークのほぼ半分であることから、試料溶液中の酸化還元物質毎の濃度を分析することも可能である。   In fact, as shown in FIG. 5 (B), the two peaks of solution 3 are almost coincident with the peak of solution 1 and the peak of solution 2, and Cd (II) ions and Cu (II) ions are It is well separated and well possible to identify. Further, since the two peaks of the solution 3 are almost half of the peak of the solution 1 and the peak of the solution 2, respectively, it is possible to analyze the concentration of each redox substance in the sample solution.

[変形例1]
図1に例示した分離分析装置では、試料溶液中の酸化還元物質を分離用電解セル10(分離カラム電極100)によって分離した後、分析用電解セル20(検出カラム電極200)を用いて分析しているが、分析には、公知の各種検出器を用いてもよい。例えば、UV検出器、質量分析検出器、ICP発光分析装置、ICP質量分析装置などを用いることができる。また、このような検出器を用いる場合は、必要に応じて、脱気装置やミキシングポンプなどを設けてもよい。
[Modification 1]
In the separation / analysis apparatus illustrated in FIG. 1, the redox material in the sample solution is separated by the separation electrolytic cell 10 (separation column electrode 100) and then analyzed using the analysis electrolytic cell 20 (detection column electrode 200). However, various known detectors may be used for the analysis. For example, a UV detector, a mass spectrometer, an ICP emission spectrometer, an ICP mass spectrometer, or the like can be used. Moreover, when using such a detector, you may provide a deaeration apparatus, a mixing pump, etc. as needed.

なお、本発明は、上述の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。例えば、分離対象の酸化還元物質に応じてパルス電圧を変更する他、電解セルの構造や電極材料をそれぞれ適宜変更してもよい。   In addition, this invention is not limited to the above-mentioned Example, It can change suitably in the range which does not deviate from the summary of this invention. For example, in addition to changing the pulse voltage according to the redox material to be separated, the structure of the electrolytic cell and the electrode material may be changed as appropriate.

本発明の分離分析方法及び分離分析装置は、試料溶液中の酸化還元物質を分離するのに有用である。例えば、成分分析や環境測定など、より具体的な例としては、めっき液中の金属イオン濃度の測定などに好適に利用することができる。   The separation analysis method and separation analysis apparatus of the present invention are useful for separating redox substances in a sample solution. For example, as a more specific example such as component analysis or environmental measurement, it can be suitably used for measurement of metal ion concentration in the plating solution.

10 分離用フロー型電解セル 20 分析用フロー型電解セル
31 ポンプ(送液手段) 32 サンプルインジェクタ(注入手段)
41,42 電気化学測定装置(電圧印加手段)
45 ファンクションジェネレータ
50 PC(電子計算機)
R 溶離液(移動相)
100 分離カラム電極 200 検出カラム電極
101 GC粒(作用電極)
102 多孔質バイコールガラス管(電解隔膜)
103 GC棒
104 白金線(対極)
105 Ag/AgCl電極(参照電極)
106 液流入口 107 液流出口
10 Flow electrolysis cell for separation 20 Flow electrolysis cell for analysis
31 Pump (liquid feeding means) 32 Sample injector (injecting means)
41,42 Electrochemical measurement device (voltage application means)
45 Function generator
50 PC (electronic computer)
R Eluent (mobile phase)
100 Separation column electrode 200 Detection column electrode
101 GC grains (working electrode)
102 Porous Vycor glass tube (electrolytic diaphragm)
103 GC bar
104 Platinum wire (counter electrode)
105 Ag / AgCl electrode (reference electrode)
106 Liquid inlet 107 Liquid outlet

Claims (5)

試料溶液中の酸化還元物質を分離分析する方法であって、
分離カラム電極に移動相を送液する送液工程と、
前記移動相に試料溶液を注入し、前記分離カラム電極に試料溶液を流す注入工程と、
前記分離カラム電極に試料溶液を流しながらパルス電圧を繰り返し印加する電圧印加工程とを備え、
前記パルス電圧は、前記酸化還元物質のうち特定の酸化還元物質を析出させる析出電圧と、析出した特定の酸化還元物質を再溶出させる溶出電圧とを含むパルス状の波形を有する電圧であり、
前記電圧印加工程において、前記特定の酸化還元物質を前記分離カラム電極に析出・再溶出を繰り返し起こさせることで電極表面に断続的に捕捉させ、当該物質が前記分離カラム電極を通過する時間を電極表面に捕捉されない他の物質に比べて遅延させることにより、試料溶液中に含まれる酸化還元物質を分離することを特徴とする酸化還元物質の分離分析方法。
A method for separating and analyzing a redox substance in a sample solution,
A liquid feeding step of feeding a mobile phase to the separation column electrode;
Injecting a sample solution into the mobile phase and flowing the sample solution through the separation column electrode;
A voltage application step of repeatedly applying a pulse voltage while flowing the sample solution to the separation column electrode,
The pulse voltage is a voltage having a pulse-like waveform including a deposition voltage for precipitating a specific redox substance among the redox substances and an elution voltage for re-eluting the deposited specific redox substance,
In the voltage application step, the specific oxidation-reduction substance is intermittently trapped on the electrode surface by repeatedly causing precipitation / re-elution on the separation column electrode, and the time during which the substance passes through the separation column electrode A method for separating and analyzing a redox substance, characterized in that a redox substance contained in a sample solution is separated by being delayed as compared with other substances not captured on the surface.
前記分離カラム電極を通過した移動相を、前記分離カラム電極に直列に接続した検出カラム電極に供給する工程と、
前記検出カラム電極にパルス電圧を印加して、印加した際に流れる電流値から試料溶液中の酸化還元物質の濃度を分析する工程とを備えることを特徴とする請求項1に記載の酸化還元物質の分離分析方法。
Supplying the mobile phase that has passed through the separation column electrode to a detection column electrode connected in series to the separation column electrode;
The method of claim 1, further comprising: applying a pulse voltage to the detection column electrode, and analyzing a concentration of the redox material in the sample solution from a current value flowing when the pulse voltage is applied. Separation analysis method.
前記分離カラム電極には、炭素を主成分とする材料が充填されていることを特徴とする請求項1又は請求項2に記載の酸化還元物質の分離分析方法。   The method for separating and analyzing a redox substance according to claim 1 or 2, wherein the separation column electrode is filled with a material mainly composed of carbon. 前記酸化還元物質が、金属イオンであることを特徴とする請求項1〜3のいずれか一項に記載の酸化還元物質の分離分析方法。   The method for separating and analyzing a redox substance according to any one of claims 1 to 3, wherein the redox substance is a metal ion. 試料溶液中の酸化還元物質を分離分析する装置であって、
分離カラム電極と、
前記分離カラム電極に移動相を送液する送液手段と、
前記移動相に試料溶液を注入する注入手段と、
前記分離カラム電極にパルス電圧を繰り返し印加する電圧印加手段とを備え、
前記パルス電圧は、前記酸化還元物質のうち特定の酸化還元物質を析出させる析出電圧と、析出した特定の酸化還元物質を再溶出させる溶出電圧とを含むパルス状の波形を有する電圧であることを特徴とする酸化還元物質の分離分析装置。
An apparatus for separating and analyzing a redox substance in a sample solution,
A separation column electrode;
A liquid feeding means for feeding a mobile phase to the separation column electrode;
Injection means for injecting a sample solution into the mobile phase;
Voltage application means for repeatedly applying a pulse voltage to the separation column electrode,
The pulse voltage is a voltage having a pulse-like waveform including a deposition voltage for depositing a specific redox substance among the redox substances and an elution voltage for re-eluting the deposited specific redox substance. A device for separating and analyzing redox substances.
JP2009188756A 2009-08-17 2009-08-17 Separation / analysis method and apparatus for redox substances Expired - Fee Related JP5252577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009188756A JP5252577B2 (en) 2009-08-17 2009-08-17 Separation / analysis method and apparatus for redox substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009188756A JP5252577B2 (en) 2009-08-17 2009-08-17 Separation / analysis method and apparatus for redox substances

Publications (2)

Publication Number Publication Date
JP2011038977A true JP2011038977A (en) 2011-02-24
JP5252577B2 JP5252577B2 (en) 2013-07-31

Family

ID=43766895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009188756A Expired - Fee Related JP5252577B2 (en) 2009-08-17 2009-08-17 Separation / analysis method and apparatus for redox substances

Country Status (1)

Country Link
JP (1) JP5252577B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736798A (en) * 2019-09-29 2020-01-31 方达医药技术(苏州)有限公司 Separation method of chiral isomers by electrochemically modified liquid chromatography

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132994A (en) * 1974-03-20 1975-10-21
JPH09264869A (en) * 1996-03-29 1997-10-07 Kiyoko Takamura Column type flow electrolytic cell
JPH09292359A (en) * 1996-04-30 1997-11-11 Hokuto Denko Kk Column type flow electrolytic cell
JP2006087988A (en) * 2004-09-21 2006-04-06 National Institute Of Advanced Industrial & Technology Photoreaction device containing photoreaction tube and water quality monitoring device using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132994A (en) * 1974-03-20 1975-10-21
JPH09264869A (en) * 1996-03-29 1997-10-07 Kiyoko Takamura Column type flow electrolytic cell
JPH09292359A (en) * 1996-04-30 1997-11-11 Hokuto Denko Kk Column type flow electrolytic cell
JP2006087988A (en) * 2004-09-21 2006-04-06 National Institute Of Advanced Industrial & Technology Photoreaction device containing photoreaction tube and water quality monitoring device using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736798A (en) * 2019-09-29 2020-01-31 方达医药技术(苏州)有限公司 Separation method of chiral isomers by electrochemically modified liquid chromatography

Also Published As

Publication number Publication date
JP5252577B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
Kefala et al. Polymer-coated bismuth film electrodes for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry
Yosypchuk et al. Analytical applications of solid and paste amalgam electrodes
EP4385600A2 (en) Multi-component eluent generating systems and method
Gajdar et al. Antimony film electrodes for voltammetric determination of pesticide trifluralin
Nagy et al. Copper electrode based amperometric detector cell for sugar and organic acid measurements
US3582475A (en) Method and apparatus for the introduction of samples into chromatographic separating systems
Lund et al. Evaluation of amperometric detectors for high-performance liquid chromatography: analysis of benzodiazepines
US3649498A (en) Detection in chromatography
Lopes et al. Automated two‐dimensional separation flow system with electrochemical preconcentration, stripping, capillary electrophoresis and contactless conductivity detection for trace metal ion analysis
EP3509726A1 (en) Electrodialytic capillary suppressor for suppressed conductometric ion chromatography
Wonsawat et al. Highly sensitive determination of cadmium and lead using a low-cost electrochemical flow-through cell based on a carbon paste electrode
Liljegren et al. Electrochemically controlled solid-phase microextraction and preconcentration using polypyrrole coated microarray electrodes in a flow system
Weber et al. Electrochemical detectors in liquid chromatography. A short review of detector design
JP5252577B2 (en) Separation / analysis method and apparatus for redox substances
Noyhouzer et al. A new electrochemical flow cell for the remote sensing of heavy metals
Jagner et al. A novel batch electrode design for use in stripping potentiometry facilitating medium exchange
Wang et al. Effects of heterogeneous electron‐transfer rate on the resolution of electrophoretic separations based on microfluidics with end‐column electrochemical detection
Turner et al. Automated electrochemical stripping of copper, lead, and cadmium in seawater
Zakaria et al. Pulsed potentiometric detection in capillary electrophoresis using platinum electrodes
Beinrohr Electrolytic sample pretreatment in atomic spectrometry: a review
Macka et al. Capillary electrophoresis with end‐capillary potentiometric detection using a copper electrode
FR3030305A1 (en) MULTIFUNCTIONAL ISOTOPIC MEASUREMENT BY DIRECT COUPLING OF A MULTI-CYCLE ISOTACHOPHORESIS TECHNIQUE AND A MASS SPECTROMETRY TECHNIQUE.
Jin et al. A new capillary electrophoresis end‐column amperometric detection system without the need for capillary/electrode alignment
Kissinger LCEC: The combination of liquid chromatography and electrochemistry
Beinrohr et al. Absolute analysis of trace metals through galvanostatic stripping chronopotentiometry with signal accumulation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120618

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees