JP2011038531A - Dual axis gas turbine, control device and control method therefor - Google Patents

Dual axis gas turbine, control device and control method therefor Download PDF

Info

Publication number
JP2011038531A
JP2011038531A JP2010260288A JP2010260288A JP2011038531A JP 2011038531 A JP2011038531 A JP 2011038531A JP 2010260288 A JP2010260288 A JP 2010260288A JP 2010260288 A JP2010260288 A JP 2010260288A JP 2011038531 A JP2011038531 A JP 2011038531A
Authority
JP
Japan
Prior art keywords
gas generator
shaft
gas
inlet guide
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010260288A
Other languages
Japanese (ja)
Other versions
JP5039827B2 (en
Inventor
Kenji Nanataki
健治 七瀧
Mare Saito
希 齊藤
Eitaro Murata
英太郎 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2010260288A priority Critical patent/JP5039827B2/en
Publication of JP2011038531A publication Critical patent/JP2011038531A/en
Application granted granted Critical
Publication of JP5039827B2 publication Critical patent/JP5039827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Air Blowers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively solve the resonance problem caused by frequency change of a gas generator shaft in a dual axis gas turbine. <P>SOLUTION: The dual axis gas turbine comprises a gas generator including a compressor 7 provided with an inlet guide vane 11 on the air intake side, a combustor 8 for producing a combustion gas by mixing and burning a fuel with compressed air from the compressor, and a high pressure turbine 9 driven and rotated with the combustion gas from the combustor for generating a driving force of the compressor. A controlling means for the inlet guide vane has a first control mode for adjusting the opening degree of the inlet guide vane based on a modified rotational frequency of the gas generator shaft according to the atmospheric temperature at low speed rotation of a gas generator shaft, and a second control mode for adjusting the opening degree of the inlet guide vane for constantly maintaining the actual rotational frequency of the gas generator shaft at high speed rotation of the gas generator shaft. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、2軸式ガスタービン並びにその制御装置及び制御方法に係り、特に2軸式ガスタービンにおけるガスジェネレータの制御に関する。   The present invention relates to a two-shaft gas turbine and a control device and control method thereof, and more particularly to control of a gas generator in a two-shaft gas turbine.

一般に2軸式ガスタービンは、圧縮機、燃焼器、及び高圧タービンで構成されるガスジェネレータを備えるとともに、負荷に接続される低圧タービン(パワータービン)を備え、ガスジェネレータにおける回転軸(ガスジェネレータ軸)が低圧タービンの回転軸に対して分離されている。そしてそのガスジェネレータでは、圧縮機が圧縮空気を生成し、燃焼器において燃料を圧縮機からの圧縮空気と混合燃焼させて燃焼ガスを生成し、その燃焼器で生成された燃焼ガスは、高圧タービンを回転駆動して圧縮機の駆動力を発生させた後、低圧タービンに送られてそれを回転駆動する。   Generally, a two-shaft gas turbine includes a gas generator including a compressor, a combustor, and a high-pressure turbine, and a low-pressure turbine (power turbine) connected to a load. ) Are separated from the rotational axis of the low-pressure turbine. In the gas generator, the compressor generates compressed air, and in the combustor, fuel is mixed and burned with the compressed air from the compressor to generate combustion gas. The combustion gas generated in the combustor is a high-pressure turbine. Is driven to generate the driving force of the compressor, and then sent to the low-pressure turbine to drive it.

このような2軸式ガスタービンでは、ガスジェネレータ軸の修正回転数に基づいて圧縮機におけるIGV(Inlet Guide Vane:入口案内翼)開度を調整する制御、つまり修正回転数対応IGV開度制御をガスジェネレータの運転状態に関係なく一律に適用するのが従来における一般的なガスジェネレータ制御であった。   In such a two-shaft gas turbine, control for adjusting the IGV (Inlet Guide Vane) opening in the compressor based on the corrected rotational speed of the gas generator shaft, that is, the IGV opening control corresponding to the corrected rotational speed is performed. The conventional general gas generator control is applied uniformly regardless of the operation state of the gas generator.

なお、2軸式ガスタービンについては、例えば特許文献1〜特許文献3などに開示の例が知られている。   As for the two-shaft gas turbine, examples disclosed in, for example, Patent Literature 1 to Patent Literature 3 are known.

特開2007−40171号公報JP 2007-40171 A 特開平8−82228号公報JP-A-8-82228 特開昭63−212725号公報JP 63-212725 A

上述のように従来の2軸式ガスタービンでは修正回転数対応IGV開度制御がガスジェネレータでなされるが、この場合、図7の(a)に示すように、IGV開度は大気温度に相関する修正回転数に応じて変化し、そのため、図7の(b)に示すように運転線が変化することから、ガスジェネレータ軸の回転数が大気温度によって変化する。また、運転線上の位置が変化することから、負荷やタービンの劣化によってもガスジェネレータ軸の回転数が変化する。   As described above, in the conventional two-shaft gas turbine, the IGV opening corresponding to the corrected rotational speed is controlled by the gas generator. In this case, the IGV opening is correlated with the atmospheric temperature as shown in FIG. Therefore, since the operating line changes as shown in FIG. 7B, the rotational speed of the gas generator shaft changes depending on the atmospheric temperature. Further, since the position on the operation line changes, the rotational speed of the gas generator shaft also changes due to the load and the deterioration of the turbine.

こうしたガスジェネレータ軸の回転数変化は共振問題を招く。すなわちガスジェネレータ軸の回転数変化は、ガスジェネレータ軸の回転数が共振回転数に近づく可能性を増大させる。そして共振回転数に近づくと共振を発生して軸振動が大きくなる。このような共振問題は高負荷運転下の高速回転にある状態で特に大きく、高速回転状態での共振はタービンや圧縮機の動翼を損傷する可能性を高まらせる。こうしたことから修正回転数対応IGV開度制御を一律に適用する制御方式では、想定される回転数において共振を回避できる構造を与えるか、あるいは共振に耐えられる構造を動翼に与える必要があり、これによりコスト上昇を招くことになっていた。   Such a change in the rotation speed of the gas generator shaft causes a resonance problem. That is, the change in the rotation speed of the gas generator shaft increases the possibility that the rotation speed of the gas generator shaft approaches the resonance rotation speed. As the rotational speed approaches the resonance, resonance is generated and the shaft vibration increases. Such a resonance problem is particularly serious in the state of high-speed rotation under high load operation, and the resonance in the high-speed rotation state increases the possibility of damaging the rotor blades of the turbine and the compressor. For this reason, in the control system that uniformly applies the IGV opening control corresponding to the corrected rotation speed, it is necessary to give a structure that can avoid resonance at the assumed rotation speed, or to give the rotor blade a structure that can withstand resonance, This would cause an increase in cost.

本発明は以上のような事情を背景になされたものであり、その課題は、2軸式ガスタービンについて、ガスジェネレータ軸の回転数変化に伴う共振問題、特にガスジェネレータ軸が高速回転にある状態での共振問題を効果的に解消できるようにすることにある。   The present invention has been made in the background as described above, and the problem thereof is that a resonance problem associated with a change in the number of revolutions of the gas generator shaft, particularly the state where the gas generator shaft is rotating at a high speed, for a two-shaft gas turbine. It is to be able to effectively solve the resonance problem.

修正回転数対応IGV開度制御は圧縮機のサージング回避に有効である。ただ、圧縮機は、その軸回転数、つまりガスジェネレータ軸の回転数が一定以上の領域では安定性が高まり、サージングがそれほど大きな問題となることはない。したがってガスジェネレータ軸が低速回転にある状態では修正回転数対応IGV開度制御を必要とするものの、ガスジェネレータ軸が圧縮機安定領域のような高速回転にある状態では必ずしも修正回転数対応IGV開度制御を必要としない。一方、共振問題は、ガスジェネレータ軸が圧縮機安定領域のような高速回転にある状態で大きくなってくる。   The corrected engine speed corresponding IGV opening control is effective in avoiding the surging of the compressor. However, the compressor is more stable in the region where the shaft rotation speed, that is, the rotation speed of the gas generator shaft is more than a certain value, and surging does not become a big problem. Therefore, although the IGV opening corresponding to the corrected rotational speed is required when the gas generator shaft is in the low speed rotation, the IGV opening corresponding to the corrected rotational speed is not necessarily required in the state where the gas generator shaft is in the high speed rotation such as the compressor stable region. Does not require control. On the other hand, the resonance problem becomes large when the gas generator shaft is in a high speed rotation such as a compressor stable region.

そこで、ガスジェネレータ軸が低速回転となる運転状態(これは起動運転時、停止運転時、及び負荷が一定以下である低負荷運転時に発生する)では修正回転数対応IGV開度制御とし、ガスジェネレータ軸が高速回転となる運転状態(高負荷運転状態)ではガスジェネレータ軸の回転数を一定に保つようにIGV開度を調整する制御、つまり軸回転数一定IGV開度制御とする。   Therefore, in an operation state where the gas generator shaft rotates at a low speed (this occurs during start-up operation, stop operation, and low-load operation where the load is below a certain level), the IGV opening control corresponding to the corrected rotation speed is used. In an operation state (high load operation state) in which the shaft rotates at a high speed, control is performed to adjust the IGV opening so as to keep the rotation speed of the gas generator shaft constant, that is, constant shaft rotation speed IGV opening control.

このように異なる制御モードを運転状態に応じて用いることにより、共振問題を効果的に解消でき、しかも圧縮機のサージングにも効果的に対応することができる。すなわち共振問題が特に大きくなるガスジェネレータ軸の高速回転時には軸回転数一定IGV開度制御によりガスジェネレータ軸の回転数を一定に保つことになるので、ガスジェネレータ軸の回転数が共振回転数に近づくような事態を効果的に避けることができ、したがって共振問題を効果的に解消できる。一方、圧縮機のサージングが問題になるガスジェネレータ軸の低速回転時には、修正回転数対応IGV開度制御により圧縮機のサージングを避けることができる。   By using different control modes in accordance with the operating state in this way, the resonance problem can be effectively solved, and the surging of the compressor can be effectively dealt with. That is, when the gas generator shaft rotates at a high speed, where the resonance problem becomes particularly large, the rotational speed of the gas generator shaft is kept constant by controlling the IGV opening with a constant shaft rotational speed. The approaching situation can be effectively avoided, and therefore the resonance problem can be effectively solved. On the other hand, when the gas generator shaft rotates at a low speed, where the surging of the compressor becomes a problem, the surging of the compressor can be avoided by the IGV opening control corresponding to the corrected rotation speed.

本発明は以上のような考え方により上記課題を解決する。具体的には、空気取込み側に入口案内翼を設けた圧縮機、燃料を前記圧縮機からの圧縮空気と混合燃焼させて燃焼ガスを生成する燃焼器、及び前記燃焼器からの燃焼ガスで回転駆動されて前記圧縮機の駆動力を発生する高圧タービンを含んでなるガスジェネレータを備えた2軸式ガスタービンにおいて、前記入口案内翼の制御手段は、ガスジェネレータ軸の低速回転時に大気温度に応じたガスジェネレータ軸の修正回転数に基づいて前記入口案内翼の開度を調整する第1の制御モードと、前記ガスジェネレータ軸の高速回転時に前記ガスジェネレータ軸の実回転数を一定に保つように前記入口案内翼の開度を調整する第2の制御モードとを備えたことを特徴とする。   The present invention solves the above problems based on the above-described concept. Specifically, a compressor provided with inlet guide vanes on the air intake side, a combustor that generates combustion gas by mixing and burning fuel with compressed air from the compressor, and rotation by the combustion gas from the combustor In a two-shaft gas turbine having a gas generator including a high-pressure turbine that is driven to generate the driving force of the compressor, the control means for the inlet guide vane is responsive to the atmospheric temperature during low-speed rotation of the gas generator shaft. A first control mode for adjusting the opening degree of the inlet guide vane based on the corrected rotation speed of the gas generator shaft, and the actual rotation speed of the gas generator shaft is kept constant during high-speed rotation of the gas generator shaft. And a second control mode for adjusting the opening degree of the inlet guide vane.

言い換えれば、前記入口案内翼の制御手段は、ガスジェネレータ軸の低速回転時に前記圧縮機のサージングを回避するように前記入口案内翼の開度を調整する第1の制御モードと、前記ガスジェネレータ軸の高速回転時に前記圧縮機の共振を回避するように前記入口案内翼の開度を調整する第2の制御モードとを備えたことを特徴とする。   In other words, the control means for the inlet guide vane includes a first control mode for adjusting an opening degree of the inlet guide vane so as to avoid surging of the compressor when the gas generator shaft rotates at a low speed, and the gas generator shaft. And a second control mode for adjusting the opening degree of the inlet guide vanes so as to avoid resonance of the compressor during high-speed rotation.

ガスジェネレータ軸の回転数が大きくIGV開度が小さい状態では、圧縮機の翼で空気流れの剥離が発生して性能を低下させ易く、またアイシングも発生し易い。したがってそのような状態となるのを避けることができるようにするのが好ましい。こうしたことから本発明では上記のような2軸式ガスタービンについて、前記第1の制御モードと前記第2の制御モードの間でのモード移行に際し第3の制御モードを介在させることができるようにされ、前記第3の制御モードでは、前記ガスジェネレータ軸の回転数によらずにIGV開度を一定に保つようにされていることを好ましい形態としている。   In a state where the rotational speed of the gas generator shaft is large and the IGV opening is small, separation of the air flow is likely to occur at the blades of the compressor, and the performance is likely to deteriorate, and icing is likely to occur. Therefore, it is preferable to avoid such a state. Therefore, in the present invention, in the above-described two-shaft gas turbine, the third control mode can be interposed during the mode transition between the first control mode and the second control mode. In the third control mode, the IGV opening is kept constant regardless of the rotation speed of the gas generator shaft.

以上のような本発明によれば、2軸式ガスタービンについて、ガスジェネレータ軸が高速回転にある状態での共振問題を効果的に解消でき、しかも圧縮機のサージングにも効果的に対応することができる。   According to the present invention as described above, the resonance problem in the state where the gas generator shaft is rotating at high speed can be effectively solved in the two-shaft gas turbine, and the surging of the compressor can be effectively dealt with. Can do.

第1の実施形態による2軸式ガスタービンの構成を示す図である。1 is a diagram illustrating a configuration of a two-shaft gas turbine according to a first embodiment. FIG. 第1の実施形態におけるIGV開度制御部の構成を示す図である。It is a figure which shows the structure of the IGV opening degree control part in 1st Embodiment. 第1の実施形態におけるIGV開度と修正回転数、実回転数それぞれの関係を示す図である。It is a figure which shows the relationship between the IGV opening degree in 1st Embodiment, a correction rotation speed, and each actual rotation speed. 第2の実施形態による2軸式ガスタービンの構成を示す図である。It is a figure which shows the structure of the 2-shaft type gas turbine by 2nd Embodiment. 第2の実施形態におけるIGV開度制御部の構成を示す図である。It is a figure which shows the structure of the IGV opening degree control part in 2nd Embodiment. 第2の実施形態におけるIGV開度と修正回転数、実回転数それぞれの関係を示す図である。It is a figure which shows the relationship between the IGV opening degree in 2nd Embodiment, a correction rotation speed, and each real rotation speed. 従来におけるガスジェネレータ制御の場合のIGV開度と修正回転数、実回転数それぞれの関係を示す図である。It is a figure which shows the relationship between the IGV opening degree in the case of the conventional gas generator control, a correction rotation speed, and an actual rotation speed.

以下、本発明を実施するための形態について説明する。図1に、第1の実施形態による2軸式ガスタービン1の構成を模式化して示す。2軸式ガスタービン1は、ガスジェネレータ2と出力タービン3で構成される。   Hereinafter, modes for carrying out the present invention will be described. FIG. 1 schematically shows the configuration of a two-shaft gas turbine 1 according to the first embodiment. The two-shaft gas turbine 1 includes a gas generator 2 and an output turbine 3.

出力タービン3は、低圧タービン4と負荷5を主な要素として構成され、低圧タービン4にそのロータでもある出力タービン軸6を介して負荷5が接続されている。   The output turbine 3 includes a low-pressure turbine 4 and a load 5 as main elements, and the load 5 is connected to the low-pressure turbine 4 via an output turbine shaft 6 that is also a rotor thereof.

一方、ガスジェネレータ2は、圧縮機7、燃焼器8、高圧タービン9、及びガスジェネレータ制御装置10を主な要素として構成されている。   On the other hand, the gas generator 2 includes a compressor 7, a combustor 8, a high-pressure turbine 9, and a gas generator control device 10 as main elements.

圧縮機7は、大気中から取り込む空気を圧縮して圧縮空気を生成する。また圧縮機7は、空気取込み側にIGV(入口案内翼)11が設けられている。そしてIGV11は、IGV駆動装置12により開度を変えることができるようにされ、それにより圧縮機7の空気取込み量を変化させる。   The compressor 7 compresses air taken in from the atmosphere to generate compressed air. The compressor 7 is provided with an IGV (inlet guide vane) 11 on the air intake side. The opening degree of the IGV 11 can be changed by the IGV driving device 12, thereby changing the air intake amount of the compressor 7.

燃焼器8は、燃料供給源13から燃料制御弁14を介して供給される燃料15を圧縮機7からの圧縮空気16と混合燃焼させて燃焼ガス17を生成する。   The combustor 8 mixes and burns the fuel 15 supplied from the fuel supply source 13 via the fuel control valve 14 with the compressed air 16 from the compressor 7 to generate combustion gas 17.

高圧タービン9は、そのロータでもあるガスジェネレータ軸18を介して圧縮機7に駆動力を伝達できるようにされ、燃焼器8からの燃焼ガス17で回転駆動されて圧縮機7の駆動力を発生する。高圧タービン9の回転駆動に働いて圧力を低下させた燃焼ガス17は、高圧タービン9から低圧タービン4に送られてそれを回転駆動する。   The high-pressure turbine 9 can transmit a driving force to the compressor 7 via a gas generator shaft 18 that is also a rotor, and is driven to rotate by the combustion gas 17 from the combustor 8 to generate the driving force of the compressor 7. To do. The combustion gas 17 whose pressure has been reduced by rotating the high-pressure turbine 9 is sent from the high-pressure turbine 9 to the low-pressure turbine 4 to rotate it.

ガスジェネレータ制御装置10は、燃料制御部19とIGV開度制御部20を備えている。   The gas generator control device 10 includes a fuel control unit 19 and an IGV opening control unit 20.

燃料制御部19は、出力タービン軸6の回転数を検出する回転数検出器21からのデータと負荷5について得られる負荷状態データに基づいて燃料制御弁14を制御することで、燃料供給源13からの燃料15の燃焼器8への供給を制御する。   The fuel control unit 19 controls the fuel control valve 14 based on the data from the rotational speed detector 21 that detects the rotational speed of the output turbine shaft 6 and the load state data obtained for the load 5, so that the fuel supply source 13 The supply of fuel 15 to the combustor 8 is controlled.

IGV開度制御部20は、IGV駆動装置12の制御を通じてIGV11の開度を制御する。図2に、IGV開度制御部20の構成例を示す。この例のIGV開度制御部20は、第1の制御部21、第2の制御部22、運転状態判定部23、及びモード選択部24を備えている。   The IGV opening control unit 20 controls the opening of the IGV 11 through the control of the IGV driving device 12. In FIG. 2, the structural example of the IGV opening degree control part 20 is shown. The IGV opening control unit 20 in this example includes a first control unit 21, a second control unit 22, an operating state determination unit 23, and a mode selection unit 24.

第1の制御部21は、第1の制御モードでの制御を実行する。第1の制御モードでは、修正回転数対応IGV開度制御を行い、ガスジェネレータ軸18の修正回転数に基づいてIGV開度を調整する。ここで、ガスジェネレータ軸18の修正回転数は、ガスジェネレータ軸18の実回転数(これはガスジェネレータ軸18の回転数を検出する回転数検出器25により与えられる)を大気温度(これは大気温度を計測する温度計26により与えられる)で標準化することで得られる。具体的には、修正回転数をNt、実回転数をN、大気温度をTとして、下記の式で得られる。
Nt=N・〔288.15/(273.15+T)〕1/2
The first control unit 21 performs control in the first control mode. In the first control mode, IGV opening control corresponding to the corrected rotational speed is performed, and the IGV opening is adjusted based on the corrected rotational speed of the gas generator shaft 18. Here, the corrected rotational speed of the gas generator shaft 18 is the actual rotational speed of the gas generator shaft 18 (which is given by the rotational speed detector 25 that detects the rotational speed of the gas generator shaft 18). It is obtained by standardization with a thermometer 26 for measuring temperature). Specifically, the correction rotational speed is Nt, the actual rotational speed is N, and the atmospheric temperature is T.
Nt = N · [288.15 / (273.15 + T)] 1/2

第2の制御部22は、第2の制御モードでの制御を実行する。第2の制御モードでは、軸回転数一定IGV開度制御を行い、ガスジェネレータ軸の回転数を一定に保つようにIGV開度を調整する。ここで、軸回転数一定IGV開度制御で一定に保つ回転数は、例えば定格回転数である。   The second control unit 22 executes control in the second control mode. In the second control mode, the shaft rotational speed constant IGV opening degree control is performed, and the IGV opening degree is adjusted so as to keep the rotational speed of the gas generator shaft constant. Here, the rotation speed kept constant by the constant shaft rotation speed IGV opening control is, for example, the rated rotation speed.

運転状態判定部23は、負荷データなどに基づいて運転状態を判定する。具体的には、第1の運転状態(起動運転状態、停止運転状態、低負荷運転状態のいずれか)と第2の運転状態(第1の運転状態以外の運転状態、つまり高負荷運転状態)のいずれにあるかを判定する。ここで、低負荷運転状態と高負荷運転状態は、圧縮空気16の安定運転領域に関するIGV開度を目安として区別するものとする。つまり圧縮空気16の特性に応じた安定運転領域についての目標IGV開度を設定し、その目標IGV開度に基づいて低負荷運転状態か高負荷運転状態かを判定する。   The driving state determination unit 23 determines the driving state based on load data and the like. Specifically, the first operation state (any one of the start operation state, the stop operation state, and the low load operation state) and the second operation state (an operation state other than the first operation state, that is, a high load operation state). It is judged whether it exists in. Here, the low load operation state and the high load operation state are distinguished using the IGV opening degree regarding the stable operation region of the compressed air 16 as a guide. That is, a target IGV opening degree for a stable operation region corresponding to the characteristics of the compressed air 16 is set, and it is determined whether the engine is in a low load operation state or a high load operation state based on the target IGV opening degree.

モード選択部24は、運転状態判定部23での判定結果に応じた制御モードの選択を行う。具体的には、第1の運転状態と判定された場合は第1の制御部21を起動させ、第2の運転状態と判定された場合は第2の制御部22を起動させる。つまり、第1の運転状態では修正回転数対応IGV開度制御モード(第1の制御モード)を用い、第2の運転状態では軸回転数一定IGV開度制御モード(第2の制御モード)を用いるようにモード選択を行う。   The mode selection unit 24 selects a control mode according to the determination result in the operation state determination unit 23. Specifically, the first control unit 21 is activated when it is determined as the first operation state, and the second control unit 22 is activated when it is determined as the second operation state. That is, in the first operating state, the corrected rotational speed corresponding IGV opening control mode (first control mode) is used, and in the second operating state, the shaft rotational speed constant IGV opening control mode (second control mode) is used. Mode selection is performed so that

以上のようにIGV開度制御部20では、修正回転数対応IGV開度制御モードと軸回転数一定IGV開度制御モードを運転状態に応じて選択的に用いる。図3に、このようなIGV開度制御部20による制御の場合のガスジェネレータ軸18の修正回転数とIGV開度の関係(図3の(a))、それにガスジェネレータ軸18の実回転数とIGV開度の関係(図3の(b))を示す。これに見られるように、低負荷時には大気温度によらず運転線は同一であるが、高負荷時には修正回転数は大気温度により変化する。一方、低負荷時には大気温度により運転線は変化するが、高負荷時にはガスジェネレータ軸18の回転数は一定となる。   As described above, the IGV opening control unit 20 selectively uses the corrected rotation speed corresponding IGV opening control mode and the constant shaft rotation speed IGV opening control mode according to the operating state. FIG. 3 shows the relationship between the corrected rotational speed of the gas generator shaft 18 and the IGV opening (FIG. 3A) in the case of such control by the IGV opening control section 20, and the actual rotational speed of the gas generator shaft 18. And the IGV opening degree relationship ((b) of FIG. 3). As can be seen, the operating line is the same regardless of the atmospheric temperature at low loads, but the corrected rotational speed varies with the atmospheric temperature at high loads. On the other hand, the operating line changes depending on the atmospheric temperature when the load is low, but the rotational speed of the gas generator shaft 18 is constant when the load is high.

こうした制御によれば、共振問題、つまりガスジェネレータ軸18の高速回転時に回転数が共振回転数に近づくことで発生する共振によりタービンや圧縮機の動翼を損傷する可能性が高まるといった共振問題を効果的に解消でき、しかも低速回転時における圧縮機のサージングにも効果的に対応することができる。この結果、共振問題に関する設計上の負担を軽減でき、低コスト化を図ることが可能となる。   According to such control, the resonance problem, that is, the resonance problem that the possibility of damaging the rotor blades of the turbine or the compressor due to the resonance generated when the rotation speed approaches the resonance rotation speed during the high speed rotation of the gas generator shaft 18 is increased. It can be effectively eliminated, and it can effectively cope with the surging of the compressor at the time of low speed rotation. As a result, the design burden related to the resonance problem can be reduced, and the cost can be reduced.

以下では第2の実施形態について説明する。図4に、第2の実施形態による2軸式ガスタービン31の構成を模式化して示す。本実施形態の2軸式ガスタービン31は、そのガスジェネレータ制御装置10が図1におけるIGV開度制御部20に代えてIGV開度制御部32を備えていることを除いて図1の2軸式ガスタービン1と同様である。したがって以下では2軸式ガスタービン31に特徴的な構成について主に説明し、2軸式ガスタービン1と共通する構成については上での説明を援用するものとする。   Hereinafter, a second embodiment will be described. FIG. 4 schematically shows the configuration of the two-shaft gas turbine 31 according to the second embodiment. The two-shaft gas turbine 31 of the present embodiment has the two-shaft of FIG. 1 except that the gas generator control device 10 includes an IGV opening controller 32 instead of the IGV opening controller 20 in FIG. This is the same as the type gas turbine 1. Therefore, the characteristic configuration of the two-shaft gas turbine 31 will be mainly described below, and the description above is used for the configuration common to the two-shaft gas turbine 1.

IGV開度制御部32は、図5にその構成を示すように、図2におけるのと同様な第1の制御部21、第2の制御部22、運転状態判定部23、モード選択部24を備えるのに加えて、第3の制御部33を備えている。   As shown in FIG. 5, the IGV opening degree control unit 32 includes a first control unit 21, a second control unit 22, an operating state determination unit 23, and a mode selection unit 24 similar to those in FIG. 2. In addition to providing, a third control unit 33 is provided.

第3の制御部33は、第3の制御モードでの制御を実行する。第3の制御モードでは、IGV開度一定保持制御を行い、ガスジェネレータ軸18の回転数によらずにIGV開度を一定に保つ。こうした第3の制御部33による第3の制御モード(IGV開度一定保持制御モード)は、第1の制御モードと第2の制御モードの間でのモード移行に際し用いられる。すなわち第3の制御部33は、第1の運転状態又は第2の運転状態について運転状態の移行を生じたと運転状態判定部23が判定した場合に起動され、これによりIGV開度一定保持制御モードでの制御が実行される。   The third control unit 33 executes control in the third control mode. In the third control mode, the IGV opening constant holding control is performed to keep the IGV opening constant regardless of the rotation speed of the gas generator shaft 18. The third control mode (IGV opening constant holding control mode) by the third control unit 33 is used for mode transition between the first control mode and the second control mode. That is, the third control unit 33 is activated when the operation state determination unit 23 determines that the operation state transition has occurred with respect to the first operation state or the second operation state, and thereby the IGV opening constant holding control mode. The control at is executed.

図6に、IGV開度制御部32による制御の場合のガスジェネレータ軸18の修正回転数とIGV開度の関係(図6の(a))、それにガスジェネレータ軸18の実回転数とIGV開度の関係(図6の(b))を示す。これに見られるように、IGV開度一定保持制御モードでの制御も行えるようにしたことにより、ガスジェネレータ軸の回転数が大きい状態でIGV開度が小さくなるのを避けることができる。すなわちガスジェネレータ軸18の回転数が大きくIGV開度が小さい状態では、圧縮機7の翼で空気流れの剥離が発生して性能を低下させ易く、またアイシングも発生し易くなるが、第1の制御モードと第2の制御モードの間でのモード移行に際し第3の制御モードを介在させことにより、そうした事態を効果的に避けることができ、信頼性を向上させることができる。   FIG. 6 shows the relationship between the corrected rotational speed of the gas generator shaft 18 and the IGV opening (FIG. 6A) in the case of control by the IGV opening control section 32, and the actual rotational speed of the gas generator shaft 18 and the IGV opening. The degree relationship ((b) of FIG. 6) is shown. As can be seen from this, the control in the IGV opening constant holding control mode can also be performed, so that the IGV opening can be prevented from being reduced when the rotation speed of the gas generator shaft is large. That is, in the state where the rotation speed of the gas generator shaft 18 is large and the IGV opening is small, air flow separation occurs in the blades of the compressor 7 and the performance is easily deteriorated, and icing is also likely to occur. By interposing the third control mode during the mode transition between the control mode and the second control mode, such a situation can be effectively avoided and the reliability can be improved.

以上、本発明を実施するための形態について説明したが、これらは代表的な例に過ぎず、本発明はその趣旨を逸脱することのない範囲で様々な形態で実施することができる。   As mentioned above, although the form for implementing this invention was demonstrated, these are only representative examples, This invention can be implemented with various forms in the range which does not deviate from the meaning.

1、31 2軸式ガスタービン
2 ガスジェネレータ
7 圧縮機
8 燃焼器
9 高圧タービン
11 IGV
12 IGV駆動装置
15 燃料
16 圧縮空気
17 燃焼ガス
20、32 IGV開度制御部
21 第1の制御部
22 第2の制御部
23 運転状態判定部
24 モード選択部
33 第3の制御部
DESCRIPTION OF SYMBOLS 1, 31 Two-shaft gas turbine 2 Gas generator 7 Compressor 8 Combustor 9 High-pressure turbine 11 IGV
DESCRIPTION OF SYMBOLS 12 IGV drive device 15 Fuel 16 Compressed air 17 Combustion gas 20, 32 IGV opening degree control part 21 1st control part 22 2nd control part 23 Operation state determination part 24 Mode selection part 33 3rd control part

Claims (5)

空気取込み側に入口案内翼を設けた圧縮機、燃料を前記圧縮機からの圧縮空気と混合燃焼させて燃焼ガスを生成する燃焼器、及び前記燃焼器からの燃焼ガスで回転駆動されて前記圧縮機の駆動力を発生する高圧タービンを含んでなるガスジェネレータを備えた2軸式ガスタービンにおいて、
前記入口案内翼の制御手段は、ガスジェネレータ軸の低速回転時に大気温度に応じたガスジェネレータ軸の修正回転数に基づいて前記入口案内翼の開度を調整する第1の制御モードと、前記ガスジェネレータ軸の高速回転時に前記ガスジェネレータ軸の実回転数を一定に保つように前記入口案内翼の開度を調整する第2の制御モードとを備えたことを特徴とする2軸式ガスタービン。
Compressor provided with inlet guide vanes on the air intake side, a combustor for generating combustion gas by mixing fuel with compressed air from the compressor, and the compression driven by the combustion gas from the combustor In a two-shaft gas turbine comprising a gas generator comprising a high-pressure turbine that generates a driving force of the machine,
The control means for the inlet guide vanes includes a first control mode for adjusting an opening degree of the inlet guide vanes based on a corrected rotation speed of the gas generator shaft according to an atmospheric temperature when the gas generator shaft rotates at a low speed, and the gas A two-shaft gas turbine, comprising: a second control mode for adjusting an opening degree of the inlet guide blade so as to keep the actual rotational speed of the gas generator shaft constant during high-speed rotation of the generator shaft.
空気取込み側に入口案内翼を設けた圧縮機、燃料を前記圧縮機からの圧縮空気と混合燃焼させて燃焼ガスを生成する燃焼器、及び前記燃焼器からの燃焼ガスで回転駆動されて前記圧縮機の駆動力を発生する高圧タービンを含んでなるガスジェネレータを備えた2軸式ガスタービンにおいて、
前記入口案内翼の制御手段は、ガスジェネレータ軸の低速回転時に前記圧縮機のサージングを回避するように前記入口案内翼の開度を調整する第1の制御モードと、前記ガスジェネレータ軸の高速回転時に前記圧縮機の共振を回避するように前記入口案内翼の開度を調整する第2の制御モードとを備えたことを特徴とする2軸式ガスタービン。
Compressor provided with inlet guide vanes on the air intake side, a combustor for generating combustion gas by mixing fuel with compressed air from the compressor, and the compression driven by the combustion gas from the combustor In a two-shaft gas turbine comprising a gas generator comprising a high-pressure turbine that generates a driving force of the machine,
The inlet guide vane control means includes a first control mode for adjusting an opening degree of the inlet guide vane so as to avoid surging of the compressor during low speed rotation of the gas generator shaft, and high speed rotation of the gas generator shaft. A two-shaft gas turbine comprising a second control mode for adjusting an opening degree of the inlet guide vanes so as to avoid resonance of the compressor sometimes.
前記入口案内翼の制御手段は、前記第1の制御モードと第2の制御モードの間でのモード移行に際し、前記ガスジェネレータ軸の回転数によらずに前記入口案内翼の開度を一定に保つように調整する第3の制御モードを備えたことを特徴とする請求項1または2に記載の2軸式ガスタービン。   The inlet guide vane control means makes the opening degree of the inlet guide vane constant regardless of the number of rotations of the gas generator shaft during mode transition between the first control mode and the second control mode. 3. The two-shaft gas turbine according to claim 1, further comprising a third control mode that is adjusted so as to be maintained. 4. 空気取込み側に入口案内翼を設けた圧縮機、燃料を前記圧縮機からの圧縮空気と混合燃焼させて燃焼ガスを生成する燃焼器、及び前記燃焼器からの燃焼ガスで回転駆動されて前記圧縮機の駆動力を発生する高圧タービンを含んでなるガスジェネレータを備えた2軸式ガスタービンの制御装置において、
ガスジェネレータ軸の低速回転時に大気温度に応じたガスジェネレータ軸の修正回転数に基づいて前記入口案内翼の開度を調整する第1の制御モードと、前記ガスジェネレータ軸の高速回転時に前記ガスジェネレータ軸の実回転数を一定に保つように前記入口案内翼の開度を調整する第2の制御モードを備えたことを特徴とする2軸式ガスタービンの制御装置。
Compressor provided with inlet guide vanes on the air intake side, a combustor for generating combustion gas by mixing fuel with compressed air from the compressor, and the compression driven by the combustion gas from the combustor In a control device for a two-shaft gas turbine comprising a gas generator comprising a high-pressure turbine for generating a driving force of the machine,
A first control mode for adjusting an opening degree of the inlet guide vane based on a corrected rotational speed of the gas generator shaft according to an atmospheric temperature during low-speed rotation of the gas generator shaft; and the gas generator during high-speed rotation of the gas generator shaft A control apparatus for a two-shaft gas turbine, comprising a second control mode for adjusting an opening degree of the inlet guide vanes so as to keep the actual rotational speed of the shaft constant.
空気取込み側に入口案内翼を設けた圧縮機、燃料を前記圧縮機からの圧縮空気と混合燃焼させて燃焼ガスを生成する燃焼器、及び前記燃焼器からの燃焼ガスで回転駆動されて前記圧縮機の駆動力を発生する高圧タービンを含んでなるガスジェネレータを備えた2軸式ガスタービンの制御方法において、
ガスジェネレータ軸が低速回転時に、大気温度に応じたガスジェネレータ軸の修正回転数に基づいて前記入口案内翼の開度を調整し、
前記ガスジェネレータ軸が高速回転時に、前記ガスジェネレータ軸の実回転数を一定に保つように前記入口案内翼の開度を調整することを特徴とする2軸式ガスタービンの制御方法。
Compressor provided with inlet guide vanes on the air intake side, a combustor for generating combustion gas by mixing fuel with compressed air from the compressor, and the compression driven by the combustion gas from the combustor In a control method for a two-shaft gas turbine provided with a gas generator including a high-pressure turbine for generating a driving force of the machine,
When the gas generator shaft rotates at a low speed, the opening degree of the inlet guide blade is adjusted based on the corrected rotation speed of the gas generator shaft according to the atmospheric temperature,
A control method for a two-shaft gas turbine, wherein the opening degree of the inlet guide vanes is adjusted so that the actual rotational speed of the gas generator shaft is kept constant when the gas generator shaft rotates at a high speed.
JP2010260288A 2010-11-22 2010-11-22 Two-shaft gas turbine and control device and control method thereof Active JP5039827B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010260288A JP5039827B2 (en) 2010-11-22 2010-11-22 Two-shaft gas turbine and control device and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010260288A JP5039827B2 (en) 2010-11-22 2010-11-22 Two-shaft gas turbine and control device and control method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008180432A Division JP4726930B2 (en) 2008-07-10 2008-07-10 2-shaft gas turbine

Publications (2)

Publication Number Publication Date
JP2011038531A true JP2011038531A (en) 2011-02-24
JP5039827B2 JP5039827B2 (en) 2012-10-03

Family

ID=43766516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010260288A Active JP5039827B2 (en) 2010-11-22 2010-11-22 Two-shaft gas turbine and control device and control method thereof

Country Status (1)

Country Link
JP (1) JP5039827B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846021A1 (en) 2013-09-06 2015-03-11 Mitsubishi Hitachi Power Systems, Ltd. Two-shaft gas turbine
EP3059424A1 (en) 2015-02-23 2016-08-24 Mitsubishi Hitachi Power Systems, Ltd. Two-shaft gas turbine, and control system and control method of the gas turbine
EP3225812A1 (en) 2016-03-29 2017-10-04 Mitsubishi Hitachi Power Systems, Ltd. A two-shaft gas turbine, and the control method of opening degree of inlet guide vane of the gas turbine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212725A (en) * 1987-02-20 1988-09-05 ヌオボピニョーネ・インヅストリエ・メッカニーケ・エ・フォンデリア・エセ・ピ・ア Biaxial gas turbine control system
JPH03172540A (en) * 1989-12-01 1991-07-25 Mitsubishi Heavy Ind Ltd Thrust type gas turbine
JPH0882228A (en) * 1994-07-14 1996-03-26 Toshiba Corp Variable guide vane control device for gas turbine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63212725A (en) * 1987-02-20 1988-09-05 ヌオボピニョーネ・インヅストリエ・メッカニーケ・エ・フォンデリア・エセ・ピ・ア Biaxial gas turbine control system
JPH03172540A (en) * 1989-12-01 1991-07-25 Mitsubishi Heavy Ind Ltd Thrust type gas turbine
JPH0882228A (en) * 1994-07-14 1996-03-26 Toshiba Corp Variable guide vane control device for gas turbine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2846021A1 (en) 2013-09-06 2015-03-11 Mitsubishi Hitachi Power Systems, Ltd. Two-shaft gas turbine
US9670847B2 (en) 2013-09-06 2017-06-06 Mitsubishi Hitachi Power Systems, Ltd. Two-shaft gas turbine
EP3059424A1 (en) 2015-02-23 2016-08-24 Mitsubishi Hitachi Power Systems, Ltd. Two-shaft gas turbine, and control system and control method of the gas turbine
US10323570B2 (en) 2015-02-23 2019-06-18 Mitsubishi Hitachi Power Systems, Ltd. Two-shaft gas turbine, and control system and control method of the gas turbine
EP3225812A1 (en) 2016-03-29 2017-10-04 Mitsubishi Hitachi Power Systems, Ltd. A two-shaft gas turbine, and the control method of opening degree of inlet guide vane of the gas turbine
US10247109B2 (en) 2016-03-29 2019-04-02 Mitsubishi Hitachi Power Systems, Ltd. 2-shaft gas turbine, and the control method of opening degree of inlet guide vane of the gas turbine

Also Published As

Publication number Publication date
JP5039827B2 (en) 2012-10-03

Similar Documents

Publication Publication Date Title
JP4726930B2 (en) 2-shaft gas turbine
KR101907295B1 (en) Two-shaft gas turbine and method of controlling opening degree of inlet guide vane of the same
JP5639568B2 (en) 2-shaft gas turbine
US7367193B1 (en) Auxiliary power unit control method and system
JP6335720B2 (en) Control device, system, and control method
US10323570B2 (en) Two-shaft gas turbine, and control system and control method of the gas turbine
JP5629055B2 (en) Variation control method of gas turbine load
KR20010007259A (en) Method of operation of industrial gas turbine for optimal performance
JP2011132952A (en) Method for starting turbomachine
US20070245708A1 (en) High cycle fatigue management for gas turbine engines
CN113906204A (en) Method for regulating the acceleration of a turbomachine
JP5452420B2 (en) Multi-shaft gas turbine engine controller
JP5039827B2 (en) Two-shaft gas turbine and control device and control method thereof
JP2005188411A (en) Operation control method for two-axial gas turbine, two-axial gas turbine, and operation control device for two-axial gas turbine
JP6267084B2 (en) Control device, system, and control method
JP2010275973A (en) Rotary machine
EP3396135B1 (en) Control apparatus and method of gas turbine system
JP2022030038A (en) Gas turbine start method
CN111749795A (en) Operation control device, operation control method, and recording medium for single-shaft gas turbine
WO2023032498A1 (en) Control device for gas turbine, gas turbine facility, method for controlling gas turbine, and control program for gas turbine
JP2008064117A (en) Operation control method for two-shaft type gas turbine, two-shaft type gas turbine and operation control device for two-shaft type gas turbine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5039827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250