JP2011038387A - Method for earthquake-resistant bar arrangement on brick wall surface of brick masonry building - Google Patents

Method for earthquake-resistant bar arrangement on brick wall surface of brick masonry building Download PDF

Info

Publication number
JP2011038387A
JP2011038387A JP2009205259A JP2009205259A JP2011038387A JP 2011038387 A JP2011038387 A JP 2011038387A JP 2009205259 A JP2009205259 A JP 2009205259A JP 2009205259 A JP2009205259 A JP 2009205259A JP 2011038387 A JP2011038387 A JP 2011038387A
Authority
JP
Japan
Prior art keywords
brick
vertical
bars
vertical bars
nut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009205259A
Other languages
Japanese (ja)
Other versions
JP5321972B2 (en
Inventor
Sai Sawai
斉 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sayyas Japan
SAYYAS JAPAN KK
Original Assignee
Sayyas Japan
SAYYAS JAPAN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sayyas Japan, SAYYAS JAPAN KK filed Critical Sayyas Japan
Priority to JP2009205259A priority Critical patent/JP5321972B2/en
Publication of JP2011038387A publication Critical patent/JP2011038387A/en
Application granted granted Critical
Publication of JP5321972B2 publication Critical patent/JP5321972B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an earthquake-resistant structure of a brick masonry building, which enhances construction efficiency and construction safety, and which is satisfactory in earthquake resistance and durability. <P>SOLUTION: A vertical reinforcement as a short fully-threaded bolt anchor, the lower end of which is bent in an L-shape, is erected while being embedded in a corner section of a foundation; and upward elongation can be performed by screwing and connecting the vertical reinforcement as the short fully-threaded bolt by means of a connecting nut. Anchor nuts driven at predetermined spacings are provided on the top surface of a linear section except the corner section of the foundation; the vertical reinforcement as the short fully-threaded bolt is erected by being screwed into the anchor nut; and upward elongation can be performed by screwing and connecting the vertical reinforcement as the short fully-threaded bolt by means of the connecting nut. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、レンガ積み建築物のレンガ壁面の耐震配筋方法に関する。  The present invention relates to a seismic reinforcement method for brick wall surfaces of a brickwork building.

従来、レンガを積んで壁面を構成した建築物は、レンガ自体の持つ重厚で趣のある色彩や質感といった美的外観、そして耐久性、耐火性、断熱性、遮音性などといった優れた建築物としての性能を有する。これらのレンガ積み建築物は、モルタルを用いてレンガを積み重ねる湿式工法によりレンガ壁面を構成している。このようなレンガ壁面は、縦筋を挿通するために縦方向に貫通孔を備えたレンガを用いて、コンクリートの基礎から適宜間隔をおいて立設した複数の縦筋を内部に配筋したり、前記した縦筋と、レンガの所定の積み重ね段数毎に水平に配設された横筋とで格子状にレンガ壁面の内部に配筋したりして、強度と耐震性を向上させている。  Conventionally, a building with walls built from bricks is an excellent building such as the aesthetic appearance of the brick itself with its heavy and quaint colors and textures, as well as durability, fire resistance, heat insulation, sound insulation, etc. Has performance. In these brick building structures, the brick wall surface is configured by a wet construction method in which bricks are stacked using mortar. Such a brick wall surface uses a brick with through holes in the vertical direction to insert the vertical bars, and arranges multiple vertical bars installed at appropriate intervals from the concrete foundation. The above-mentioned vertical bars and the horizontal bars arranged horizontally for each predetermined number of stacks of bricks are arranged in a lattice shape inside the brick wall surface to improve strength and earthquake resistance.

例えば、レンガ壁面の内部に縦筋だけで配筋したものでは、特開昭53−73826号公報(特許文献1)に開示された「特殊レンガ及び組積工法」がある。この発明は、確実に施工が可能で、暴風、地震などの災害に対しても充分な強度をもった建築物を形成可能な特殊レンガ、及びその組積工法に関するもので、レンガ自体に、レンガを積み重ねる方向に貫通する配筋配設用の縦通孔を開設して形成し、その縦通孔同士が重なり合うように各レンガ同士をモルタルなどの固結材で結合するとともに、配筋を通した縦通孔に固結材を流し込むことによりレンガと配筋とを固定し、さらにレンガ同士をワイヤーなどの連結具材を用いて連結することで、従来のレンガ建築が配筋を使用できないか、あるいはできても壁式鉄筋構造の如く思うように配筋できないため結果として充分な構造強度が得られなかった欠点を、極めて効果的に配筋を入れることを可能にしたことにより解決したものであり、さらには配筋による縦方向の補強と、連結具材による横方向の補強などが建築・構造物中においてあたかも格子状に埋設されることとなるから暴風・地震などの災害に対して非常に強い構造を具えた建築・構造物を形成することができたものである。(特許文献1の明細書中、第2頁第2行から4行、第3頁第9行から17行、第9頁第2行から12行を参照)  For example, in the case where the bars are arranged only with vertical bars inside the brick wall surface, there is a “special brick and masonry method” disclosed in JP-A-53-73826 (Patent Document 1). The present invention relates to a special brick that can be reliably constructed and can form a building having sufficient strength against disasters such as storms and earthquakes, and its masonry method. A vertical through-hole for bar arrangement that penetrates in the stacking direction is opened and formed, and the bricks are joined with a mortar or other solidifying material so that the vertical through-holes overlap with each other. Is it possible to fix the bricks and reinforcing bars by pouring the binding material into the vertical through holes, and connecting the bricks together using connecting materials such as wires? Or, even if it was possible, it was not possible to arrange the bars as expected, as a wall-type reinforcing bar structure. As a result, the problem that sufficient structural strength was not obtained was solved by making it possible to insert the bars extremely effectively. And In this case, vertical reinforcement by reinforcing bars and horizontal reinforcement by connecting materials are buried in the form of a lattice in the building / structure, so it is extremely resistant to disasters such as storms and earthquakes. Buildings and structures with structures could be formed. (Refer to page 2, line 2 to line 4, page 3, line 9 to line 17, page 9, line 2 to line 12 in the specification of Patent Document 1)

特許第3432495号公報(特許文献2)に開示された「建物外壁の煉瓦工法」は、建物外壁のレンガ工法で、建物躯体の外側に空間層を設けてレンガ壁面を構築することにより、建物の外装仕上げと同時に断熱性、及び耐久性の向上を図ることができるようにしたレンガ工法に関するもので、建物躯体の外側下部に、外壁から所定の距離を離れた位置に水平面と、外壁と水平面の間に防水処理した外側下がりの傾斜面とを形成し、上記水平面上に、上下方向の貫通孔を有するレンガを並べると共に順次積み重ね、上下に位置するレンガは貫通孔に縦筋を通して充填材で埋め、レンガを所定高さの積み上げごとに縦筋と結合した引き金物で建物躯体の外壁に固定し、上部に積み重ねるレンガには貫通孔に達する切り欠きを設けたレンガを用い、この切り欠きを縦筋に外側から差し込んで積み上げることにより、建物躯体の外側に空気層を設けてレンガ壁面を構築するようにしたものである。(特許文献2の明細書中、段落番号0001、0005を参照)このように構成したことにより、レンガによる外装仕上げと同時に、空間層が建物躯体に対して断熱効果を発揮することになり、冷暖房効率の優れた建物にすることができる。また、レンガの貫通孔に縦筋を通して充填材で埋め、レンガを所定高さの積み上げごとに引き金物で建物躯体の外壁に固定するようにしたので、縦筋と引き金物を介してレンガ壁面を建物躯体に対して固定することで、一定の距離と垂直を精度高く出すことができるとともに、強度的に優れたレンガ壁の構築を可能としたものである。(段落番号0019から0020を参照)  The “Brick method of building outer wall” disclosed in Japanese Patent No. 3432495 (Patent Document 2) is a brick method of building outer wall, and by building a brick wall surface by providing a space layer outside the building frame, It relates to a brick method that can improve heat insulation and durability at the same time as exterior finishing.It is located on the outside lower part of the building frame, with a horizontal plane at a predetermined distance from the outer wall, and an outer wall and a horizontal plane. Formed on the horizontal surface are bricks with through-holes in the vertical direction and stacked one after another, and the bricks located above and below are buried in the through-holes with vertical fillers and filled with filler. Each time the bricks are stacked at a certain height, they are fixed to the outer wall of the building frame with triggers combined with vertical bars, and bricks with notches reaching through holes are used for the bricks stacked on top. By stacking insert from outside the notch in the longitudinal muscle, outside the building structures it is obtained by providing the air layer so as to construct a brick wall. (Refer to paragraph Nos. 0001 and 0005 in the specification of Patent Document 2.) By configuring in this way, the space layer exhibits a heat insulating effect on the building frame simultaneously with the exterior finishing with bricks. It can be a highly efficient building. Also, the brick through-holes are filled with fillers through the vertical bars, and the bricks are fixed to the outer wall of the building frame with a trigger whenever the bricks are stacked at a predetermined height. By fixing to the building frame, a certain distance and vertical can be obtained with high accuracy, and a brick wall with excellent strength can be constructed. (See paragraphs 0019 to 0020)

なお、上下のレンガに通す縦筋は、一本物の通し筋でも、短い縦筋をスリーブを用いて継ぎ足して使用してもよいことが示されている。(段落番号0013、及び図2を参照)また、短い部分筋を使用した場合は、積み上げたレンガの横方向において、隣接する部分筋の一部がラップするような配置として、レンガ壁面の強度を維持することが示されている。(段落番号0016、及び図4を参照)  It has been shown that the vertical bars that pass through the upper and lower bricks may be single ones or short vertical bars that are added using a sleeve. (Refer to paragraph 0013 and FIG. 2) In addition, when short partial streaks are used, in the lateral direction of the stacked bricks, the strength of the brick wall surface is set so that a part of the adjacent partial streaks wraps. It has been shown to maintain. (See paragraph number 0016 and FIG. 4)

特開2007−284973号公報(特許文献3)に開示された「煉瓦積み建築物」は、レンガを用いた木造建築物の外壁部分を改良したレンガ積み建築物で、木造建築物において壁を構成する壁構造材と、該壁構造材の外側に間隔をあけて基礎に立設される複数の縦筋と、最下段のレンガが基礎に固着されるとともに上記縦筋が挿通されるレンガを含め多数のレンガを積み上げてなる面状レンガ体(レンガ壁面)と、上記壁構造材の適宜箇所に固着される複数の控金具と、該控金具に支承される複数の横筋とからなり、上記横筋は上記縦筋の外側に連係して配設したことで、地震時の揺れや振動により水平方向に力が加わると、面状レンガ体は内部の縦筋が横筋により抑えられるので外方向への移動を制限される。該横筋は壁構造材に固着された控金具に挟み込まれており、面状レンガ体と壁構造材とを一体化している。このため横筋の移動が壁構造材に伝達され、面状レンガ体は壁構造材と同一の方向に揺れる。よって地震時の揺れや振動を建物全体で支持するので壁面のレンガの倒壊を防止することができる。また、上記壁構造材と上記面状レンガ体との間に一定の間隙からなる通気層を設け、該通気層を上記基礎と1階床との間に設ける床下空間に連通させ、外気を上記通気層、及び床下空間に流通させるように構成したことで、壁構造材が常時乾燥状態となり、壁構造材の腐朽が防止され、壁構造材に支持される面状レンガ体の倒壊を防止し、耐震性のあるレンガ積み建築物とすることを可能としたものである。(段落番号0014から0016を参照)  The “brickwork building” disclosed in Japanese Patent Application Laid-Open No. 2007-284773 (Patent Document 3) is a brickwork building in which an outer wall portion of a wooden building using bricks is improved, and a wall is formed in the wooden building. Including a wall structure material, a plurality of vertical bars erected on the foundation with an interval on the outside of the wall structure material, and a brick to which the bottom brick is fixed to the foundation and the vertical bars are inserted It consists of a planar brick body (brick wall surface) formed by stacking a large number of bricks, a plurality of bar clamps fixed to appropriate portions of the wall structure material, and a plurality of horizontal bars supported by the bar brackets. Is connected to the outside of the vertical bars, and when a force is applied in the horizontal direction due to shaking or vibration during an earthquake, the vertical bricks in the planar brick body are restrained by the horizontal bars, so that Restricted movement. The horizontal streaks are sandwiched between metal tabs fixed to the wall structure material, and the planar brick body and the wall structure material are integrated. For this reason, the movement of the horizontal stripe is transmitted to the wall structure material, and the planar brick body shakes in the same direction as the wall structure material. Therefore, since the entire building is supported for shaking and vibration during an earthquake, the bricks on the wall can be prevented from collapsing. Further, a ventilation layer having a certain gap is provided between the wall structure material and the planar brick body, the ventilation layer is communicated with an underfloor space provided between the foundation and the first floor, and the outside air is By being configured to circulate through the ventilation layer and the space under the floor, the wall structure material is always in a dry state, the wall structure material is prevented from decaying, and the planar brick body supported by the wall structure material is prevented from collapsing. It is possible to make a brick building with earthquake resistance. (See paragraphs 0014 to 0016)

特開昭53−73826号公報  JP-A-53-73826 特許第3432495号公報  Japanese Patent No. 3432495 特開2007−284973号公報  JP 2007-284773 A

ところで、レンガ積み建築物の耐震構造にあっては、前記した特許文献に述べられているように、レンガ壁面内部に格子状に配筋した縦筋と横筋、及び横筋と建物躯体との金物による接続で耐震性を実現しているが、コンクリートの基礎への縦筋の配設方法による施工効率や耐震性については何ら述べられていない。何れにも、コンクリートの基礎に所定の間隔で単に植設されている程度の一般的な記載がされているだけである。  By the way, in the earthquake-resistant structure of a brick building, as described in the above-mentioned patent document, the vertical and horizontal bars arranged in a lattice shape inside the brick wall surface, and the hardware of the horizontal bars and the building frame are used. Although it has achieved earthquake resistance by connection, there is no mention of construction efficiency and earthquake resistance by the arrangement method of the vertical bars on the concrete foundation. In any case, there is only a general description to the extent that it is simply planted at a predetermined interval on a concrete foundation.

特許文献1(特開昭53−73826号公報)では、コンクリートの基礎に所定の間隔で配筋を植設して(第6ページ11行から14行参照)、その配筋にレンガの縦通孔を挿通して配列する旨が記載されている。  In Patent Document 1 (Japanese Patent Laid-Open No. 53-73826), reinforcing bars are planted at a predetermined interval on a concrete foundation (see line 11 to line 14 on page 6), and bricks are passed through the reinforcing bars. It is described that the holes are inserted and arranged.

特許文献2(特許第3432495号公報)では、建物躯体(基礎部分)と縦筋との配設状態については何ら記載がないが、一般的な技術からすれば、建物躯体(基礎部分)に縦筋が所定の間隔で植設されていると解される。  In Patent Document 2 (Japanese Patent No. 3432495), there is no description about the arrangement state of the building frame (foundation part) and the vertical bars, but according to a general technique, the building frame (foundation part) is vertically arranged. It is understood that the muscles are planted at predetermined intervals.

特許文献3(特開2007−284973号公報)では、当該公報の段落番号0019、及び図4に記載されるように、縦筋はコンクリートからなる基礎に適宜間隔をあけて立設され、縦筋の下端部はL字状に屈曲して基礎からの離脱を防止し、上端よりレンガの孔部に貫通挿入される旨が記載されている。これにより基礎に適宜間隔をあけて立設された縦筋は、すべて基礎に埋め込まれて立設されていることがわかる。  In Patent Document 3 (Japanese Patent Application Laid-Open No. 2007-284773), as described in paragraph number 0019 and FIG. 4 of the publication, the vertical bars are erected on a foundation made of concrete with an appropriate interval. It is described that the lower end portion of B is bent in an L shape to prevent detachment from the foundation, and is inserted through the hole of the brick from the upper end. As a result, it can be seen that all the vertical bars erected on the foundation at appropriate intervals are embedded in the foundation and erected.

以上のように、何れも縦筋はコンクリートの基礎打設と同時に所定の間隔で埋め込まれて配設されており、地震の揺れの影響が最も大きい基礎のコーナー部分は基よりすべての縦筋が基礎に埋め込まれているので耐震性においては望ましいことである。しかしながら、この場合、設計段階でレンガの目地を含めたピッチから、コンクリートの基礎に縦筋を配設する間隔を計算して図面を作成し、これに基づいて施工を行うが、実際の施工においては、設計図面との微妙なズレは往々にして発生するものである。なおかつ、レンガは高温で焼成されるので出来上がり寸法は必ずしも同一にならず、図面通りに施工することは事実上極めて難しいのが、レンガ壁面を施工する上での課題となっており、工期、及びコストへの影響は多大なものとなって反映される。  As described above, all the vertical bars are embedded and arranged at a predetermined interval at the same time as placing the foundation of the concrete. Since it is embedded in the foundation, it is desirable in terms of earthquake resistance. However, in this case, from the pitch including the joints of the bricks at the design stage, the distance between the vertical stripes on the concrete foundation is calculated and a drawing is created. The subtle deviation from the design drawing often occurs. In addition, since bricks are fired at high temperature, the finished dimensions are not necessarily the same, and it is practically extremely difficult to construct according to the drawings, but it is a problem in constructing the brick wall surface, The impact on costs is reflected in a significant way.

また、レンガ間の目地の微妙な間隔の違い、レンガの寸法の個体差などが積み重なることでズレは大きなものとなり、所定の間隔で配設された縦筋と、レンガの貫通孔の位置が合わなくなり、レンガの貫通孔を広げるかレンガを切り欠いてのサイズ調整が余儀なくされ、施工効率が低下する。  In addition, the difference in the joint spacing between bricks and the individual differences in the dimensions of the bricks are piled up, resulting in a large displacement, and the vertical bars arranged at a predetermined interval are aligned with the positions of the brick through holes. The size of the brick through hole is increased or the brick is notched, and the size is forced to be adjusted.

また、従来の配筋方法を用いたレンガ壁面の組み積みは、長尺の縦筋の上端部からレンガを順次挿通させると行った作業を繰り返すため、次に示す課題を有する。  In addition, since the brick wall surface assembly using the conventional bar arrangement method repeats the work performed when the bricks are sequentially inserted from the upper end of the long vertical bars, the following problems are present.

極めて手間と時間がかかり自ずと工期が長くなり建築コストも必然的に上昇するといった課題。レンガを上方からうっかり落下させてしまうといった事故が危惧され施工の安全面においての課題。モルタルでレンガと配筋とを固定するが、一般的な配筋材の表面は若干の凹凸があるものの平滑面であるため、地震の際のモルタルと配筋の固着部へかかる応力により、レンガと配筋とが剥離してレンガ壁面の強度が保てないといった課題。一般的な配筋材の表面は防錆処理が施されていないため、モルタルの水分や経年による腐食で、自然にモルタルと配筋が剥離してしまい、レンガ壁面の強度が保てないといった課題。  The problem is that it takes a lot of time and effort, and the construction period naturally increases and construction costs inevitably increase. There are concerns about accidents such as inadvertently dropping a brick from above, and there are issues in construction safety. Brick and reinforcement are fixed with mortar, but the surface of a general reinforcement material is a smooth surface with some unevenness, so the stress applied to the fixed part of the mortar and reinforcement in the event of an earthquake The problem is that the strength of the brick wall cannot be maintained due to peeling of the bar arrangement. Because the surface of general reinforcement is not rust-proofed, the mortar and reinforcement are naturally peeled off due to mortar moisture and corrosion due to aging, and the strength of the brick wall surface cannot be maintained. .

なお、特許文献2では、短い縦筋を、スリーブを用いて継ぎ足すことが示されているが、圧入、あるいは圧着工具を用いてかしめての固着であるので、あくまでも簡易的な固定方法に過ぎす強度的に劣るといった課題がある。  In Patent Document 2, it is shown that short vertical stripes are added by using a sleeve, but since it is press-fitting or caulking using a crimping tool, it is merely a simple fixing method. There is a problem that the strength is inferior.

そこで本発明は、上記した課題を考慮し、施工効率、施工安全性の向上を実現させるとともに、耐震性、耐久性に優れたレンガ積み建築物のレンガ壁面耐震配筋方法を提供することを目的とする。  In view of the above-described problems, the present invention aims to provide a method for seismic reinforcement of a brick wall surface of a brick masonry building that achieves improvement in construction efficiency and construction safety and is excellent in earthquake resistance and durability. And

コンクリートの基礎に、所定の間隔をおいて複数立設した縦筋を、レンガの上下方向に貫通させた複数の縦孔に挿通するとともに、レンガの適宜な積み重ね段数毎に横筋を配設し、該横筋を建物躯体に取付金物を用いて接続してなるレンガ積み建築物のレンガ壁面配筋方法において、該基礎のコーナー部分には、下端部をL字状に屈曲した短尺の全ネジボルトアンカー縦筋を埋め込んで立設するとともに、連結ナットを用いて短尺の全ネジボルト縦筋を螺合連結することでさらに上方に延設可能に構成し、該基礎のコーナー部分以外の直線部分の上面には、所定の間隔で打設したアンカーナットを備え、該アンカーナットには、短尺の該全ネジボルト縦筋を螺合して立設するとともに、該連結ナットを用いて短尺の該全ネジボルト縦筋を螺合連結することでさらに上方に延設可能に構成したことで解決される。  In the concrete foundation, a plurality of vertical bars erected at a predetermined interval are inserted into a plurality of vertical holes penetrating in the vertical direction of the brick, and the horizontal bars are arranged for each appropriate number of stacking stages of bricks. In the brick wall surface arrangement method for a brick building, in which the horizontal bars are connected to the building frame using attachment hardware, the corner portion of the foundation has a short full-length bolt anchor with a lower end bent in an L shape. It is configured to be able to extend further upward by connecting a short full length screw bolt vertical thread using a connecting nut and embedding the line, and on the upper surface of the straight line part other than the corner part of the foundation An anchor nut placed at a predetermined interval, and the anchor nut is erected by screwing the short length of all screw bolt vertical bars, and the short length of the screw bolt vertical bars using the connecting nut. Screwing Is further solved by the extended configured to be capable of upward by sintering.

また前記、該基礎に、所定の間隔をおいて立設した該全ネジボルト縦筋の連結ナットでの螺合連結した位置を、隣り合う全ネジボルト縦筋と一致しないように交互にずらして配置したことで解決される。  In addition, the screwed and connected positions of the all screw bolt vertical bars standing on the foundation at predetermined intervals are alternately shifted so as not to coincide with the adjacent all screw bolt vertical bars. Is solved.

また、レンガ壁面に開口した窓枠下に組み積みされたレンガの上面に、建物躯体と取付金物で接続した横筋を配設し、さらに、窓枠下に組み積みされたレンガの上面から突出した該全ネジボルト縦筋の先端に、T型ナットの垂直方向に備えられた螺合部を螺合連結するとともに、該T型ナットの水平方向に備えられた貫通孔に横筋を挿通して配設し、該T型ナットと該貫通孔に挿通された横筋に、窓下レンガの底面側凹部を上から被せるとともにモルタルを充填して固着したことで解決される。  In addition, horizontal stripes connected with the building frame and mounting hardware are arranged on the upper surface of the bricks assembled under the window frame opened in the brick wall surface, and further protruded from the upper surface of the bricks assembled under the window frame A threaded portion provided in the vertical direction of the T-type nut is screwed and connected to the tip of the vertical thread of all the screw bolts, and a horizontal line is inserted through a through-hole provided in the horizontal direction of the T-type nut. Then, the horizontal streak inserted through the T-type nut and the through hole is covered with a concave portion on the bottom side of the brick under the window from above and fixed by filling with mortar.

さらにまた、前記、該全ネジボルト縦筋、該全ネジボルトアンカー縦筋、該横筋、該連結ナット、該T型ナット、該アンカーナット、該取付金物の何れか、あるいは組み合わされた複数、あるいはすべてに溶融亜鉛メッキを施したことで解決される。  Furthermore, the all-threaded bolt longitudinal bar, the all-threaded bolt anchor longitudinal bar, the transverse bar, the connecting nut, the T-nut, the anchor nut, the mounting hardware, or a plurality of or all of them combined It is solved by applying hot dip galvanization.

請求項1においては、コンクリートの基礎に、所定の間隔をおいて複数立設した縦筋を、レンガの上下方向に貫通させた複数の縦孔に挿通するとともに、レンガの適宜な積み重ね段数毎に横筋を配設し、該横筋を建物躯体に取付金物を用いて接続してなるレンガ積み建築物のレンガ壁面配筋方法において、該基礎のコーナー部分には、下端部をL字状に屈曲した短尺の全ネジボルトアンカー縦筋を埋め込んで立設するとともに、連結ナットを用いて短尺の全ネジボルト縦筋を螺合連結することでさらに上方に延設可能に構成し、該基礎のコーナー部分以外の直線部分の上面には、所定の間隔で打設したアンカーナットを備え、該アンカーナットには、短尺の該全ネジボルト縦筋を螺合して立設するとともに、該連結ナットを用いて短尺の該全ネジボルト縦筋を螺合連結することでさらに上方に延設可能に構成したので、以下に示す効果を実現した。  In claim 1, a plurality of vertical bars erected on a concrete foundation at predetermined intervals are inserted into a plurality of vertical holes penetrating in the vertical direction of the brick, and for each appropriate number of stacking steps of bricks. In the brick wall surface layout method for a brick building, in which horizontal bars are arranged and the horizontal bars are connected to the building frame using mounting hardware, the lower end portion of the corner portion of the foundation is bent in an L shape. The short vertical screw bolt anchor vertical stripes are embedded and set up, and the short full screw bolt vertical stripes are screwed together using a connecting nut so that they can be extended further upward. On the upper surface of the straight portion, there are provided anchor nuts that are driven at a predetermined interval, and the anchor nuts are vertically installed by screwing the short vertical threaded vertical bars, and using the connecting nuts, The whole Further, since the extended configured to be capable of upward by screwing connecting Jiboruto longitudinal muscle were achieved the following effects.

該基礎のコーナー部分には、下端部をL字状に屈曲した短尺の全ネジボルトアンカー縦筋を埋め込んで立設するとともに、連結ナットを用いて短尺の全ネジボルト縦筋を螺合連結することでさらに上方に延設可能に構成したので、全ネジボルトアンカー縦筋のネジ山とコンクリートとが強固に固着することと相まって、特に地震時の揺れによる影響の大きい基礎のコーナー部分に立設した全ネジボルトアンカー縦筋の引き抜き耐力の向上を実現した。  In the corner portion of the foundation, a short full screw bolt anchor vertical stripe whose lower end is bent in an L-shape is embedded, and the short full screw bolt vertical stripe is screwed and connected using a connection nut. In addition to being able to extend further upward, all screw bolts are erected at the corners of the foundation, which are particularly affected by shaking during earthquakes, coupled with the fact that the thread of the all-screw bolt anchor vertical bar and the concrete are firmly fixed. Improved pull-out strength of anchor vertical bars.

該基礎のコーナー部分以外の直線部分の上面には、所定の間隔で打ち込んだアンカーナットを備え、該アンカーナットには、短尺の全ネジボルト縦筋を螺合して立設するとともに、連結ナットを用いて短尺の該全ネジボルト縦筋を螺合連結することでさらに上方に延設可能に構成したので、基礎の直線部分上面へのレンガの敷設状況に合わせて基礎の上面にアンカーナットを打設して全ネジボルト縦筋を螺合して立設することができ、レンガの出来上がり寸法の個体差や、レンガ間の目地の微妙な間隔の違いによって生じたズレに容易に対応して、施工効率の向上を実現した。  An anchor nut driven at a predetermined interval is provided on the upper surface of the straight portion other than the corner portion of the foundation. The anchor nut is erected by screwing a short length of all screw bolt vertical bars, and a connecting nut is provided. Because it is configured to be able to extend further upward by screwing and connecting all the short bolt vertical bars, anchor nuts are placed on the upper surface of the foundation according to the state of brick laying on the upper surface of the straight portion of the foundation It is possible to stand up by screwing all the vertical threads of the bolts, and it is easy to cope with the difference caused by individual differences in the finished dimensions of the bricks and the difference in the subtle spacing of the joints between the bricks. Realized the improvement.

該全ネジボルト縦筋は短尺であるので、施工時に容易に手が届く全ネジボルト縦筋の上端部にレンガの縦孔を挿通しながら組み積みし、レンガが全ネジボルト縦筋の上端部に到達あるいは近づいた段階で、連結ナットを用いて次の全ネジボルト縦筋の下端部と螺合連結して延設し、レンガをさらに積み重ねるといった施工を繰り返すことにより、極めて安全、かつ高効率でレンガ壁面の組み積みを行うことを実現した。  Since all the threaded bolt vertical bars are short, they are assembled while inserting the vertical holes of the bricks at the upper end of all threaded bolts that can be easily reached at the time of construction. At the approaching stage, it is extremely safe and highly efficient to repeat the construction of the brick wall surface by repeating the construction of connecting and extending the lower end of the next full thread bolt vertical bar with a connecting nut and stacking the bricks further. Realized to build up.

また、短尺の全ネジボルト縦筋は、レンガ壁面内部で、一本の通し縦筋として所望の強度を得るとともに、レンガの縦孔に充填された固着材としてのモルタルが、ネジ山と強固に固着することで両者の剥離が防止され、耐震性に優れた強固なレンガ壁面を構成することを実現した。  In addition, the short full-length bolt vertical bars provide the desired strength as a single vertical bar inside the brick wall, and the mortar as the fixing material filled in the vertical holes of the bricks is firmly fixed to the threads. By doing so, peeling of both was prevented, and it was realized to constitute a strong brick wall surface excellent in earthquake resistance.

また、短尺の全ネジボルト縦筋は、レンガ壁面の高さや、積み重ねる途中に配設される窓枠などの状況に応じて任意寸法に切断したり、連結ナットを螺合結合させて継ぎ足したりすることで、材料に無駄が生じず、かつ施工効率の向上を実現した。  In addition, short full-length bolt bolts should be cut to any size depending on the height of the brick wall surface and the window frame installed in the middle of stacking, or connected by screwing the connecting nuts. As a result, no material was wasted and construction efficiency was improved.

また、短尺の全ネジボルト縦筋は、建築現場への配送も、従来のように長尺物を積載するためのロングボディトラックではなく、ショートボディトラックやワンボックスバンなどの小型の車両で配送することが可能となり、積載時に長尺の鉄筋のように車両の前後方向にはみ出して積載することがなく、道幅の狭い場所でも車両の取り回しが容易であるので、極めて安全な配送が可能となり荷役性の向上をも実現した。  In addition, short full-length bolt bolts are delivered to the construction site not by long body trucks for loading long objects as in the past, but by small vehicles such as short body trucks and one-box vans. It is possible to carry out the vehicle in a narrow road and easy to handle, so that it can be handled very safely. Improvements have also been realized.

請求項2においては、前記、該基礎に、所定の間隔をおいて立設した該全ネジボルト縦筋の連結ナットでの螺合連結した位置を、隣り合う全ネジボルト縦筋と一致しないように交互にずらして配置したので、地震の際の全ネジボルト縦筋の連結ナットでの螺合結合位置にかかる揺れによる負荷を、レンガ壁面の全面に分散して、より安定した強度のあるレンガ積み壁面を提供することを可能とした。  According to a second aspect of the present invention, the positions of the threaded bolt vertical bars that are erected on the foundation at predetermined intervals are alternately connected so that they do not coincide with the adjacent threaded vertical bars. Because the load due to the shaking at the connecting position of the connecting nuts of all the screw bolt vertical bars in the event of an earthquake is distributed over the entire surface of the brick wall, the brick wall surface with more stable strength can be obtained. Made it possible to provide.

請求項3においては、レンガ壁面に開口した窓枠下に組み積みされたレンガの上面に、建物躯体と取付金物で接続した横筋を配設し、さらに、窓枠下に組み積みされたレンガの上面から突出した該全ネジボルト縦筋の先端に、T型ナットの垂直方向に備えられた螺合部を螺合連結するとともに、該T型ナットの水平方向に備えられた貫通孔に横筋を挿通して配設し、該T型ナットと該貫通孔に挿通された横筋に、窓下レンガの底面側凹部を上から被せるとともにモルタルを充填して固着したので、単に窓枠下に連設されたレンガの上面に突出した縦筋を切りっぱなしで施工した場合と違って、建物躯体の窓枠下部分で該横筋を取付金物によって建物躯体と連結したことと、T型ナットに配設された横筋に、窓下レンガをモルタルを充填して固着したことにより、窓枠下部分のレンガ壁面は建物躯体に強固に連結されるとともに、耐震性の向上を実現した。  In Claim 3, the horizontal stripe connected with the building frame and the attachment hardware is arrange | positioned on the upper surface of the brick assembled under the window frame opened to the brick wall surface, and also the brick assembled under the window frame is arranged. A threaded portion provided in the vertical direction of the T-type nut is screwed and connected to the tip of the vertical thread of the entire threaded bolt protruding from the upper surface, and a horizontal line is inserted into the through-hole provided in the horizontal direction of the T-type nut. The horizontal bars inserted through the T-nuts and the through-holes are covered with the bottom-side recesses of the bricks under the window from above and fixed by filling with mortar. Unlike the case where the vertical bars protruding on the upper surface of the bricks are not cut, the horizontal bars are connected to the building frame by the mounting hardware at the lower part of the window frame of the building frame, and the T-nuts are arranged. Fill the horizontal lines with mortar and bricks under the window. By the brick wall of the window frame lower part while being rigidly coupled to the building structures, and realize improvement of vibration resistance.

請求項4においては、前記、該全ネジボルト縦筋、該全ネジボルトアンカー縦筋、該横筋、該連結ナット、該T型ナット、該アンカーナット、該取付金物の何れか、あるいは組み合わされた複数、あるいはすべてに溶融亜鉛メッキを施したので、レンガ内部の配筋に生じる錆や腐食による膨張を原因とするレンガ、及び目地モルタルのクラックの発生を防止し、レンガ積み建築物の高い耐久性に見合った縦筋の耐久性を実現し、総合的に極めて耐震性、耐久性に優れたレンガ壁面とすることを可能とした。In claim 4, the all-thread bolt vertical bar, the all-screw bolt anchor vertical bar, the horizontal bar, the connecting nut, the T-type nut, the anchor nut, the mounting hardware, or a plurality of combinations thereof, Or, all have been hot dip galvanized to prevent cracking of bricks and joint mortars caused by expansion caused by rust and corrosion generated in the bar interior, and meet the high durability of brick masonry buildings The durability of the vertical bars is realized, and it is possible to make the brick wall surface extremely excellent in earthquake resistance and durability comprehensively.

レンガ積み建築物の正面図である。It is a front view of a brick building. レンガ壁面内部の配筋状態を示す図である。It is a figure which shows the bar arrangement state inside a brick wall surface. レンガ壁面の縦方向断面図である。It is longitudinal direction sectional drawing of a brick wall surface. 図3のA部拡大図である。It is the A section enlarged view of FIG. 図3のB−B線拡大断面図である。FIG. 4 is an enlarged sectional view taken along line B-B in FIG. 3. 基礎への配筋状態を示す図である。It is a figure which shows the bar arrangement state to a foundation. 図6の平面図である。FIG. 7 is a plan view of FIG. 6. 取付金物の説明図である。It is explanatory drawing of an attachment hardware. 取付金物の詳細説明図である。It is detail explanatory drawing of an attachment metal fitting. 本発明の第3の実施例を示す図である。It is a figure which shows the 3rd Example of this invention. 窓枠の笠木の下の配筋を示した図である。It is the figure which showed the reinforcement under the headboard of a window frame. 図11のA部拡大図である。It is the A section enlarged view of FIG. 図11のB−B線拡大断面図である。It is a BB line expanded sectional view of Drawing 11.

本発明の第1実施例について、図面を参照して詳細に説明する。図1はレンガ積み建築物の正面図で、図2は図1のレンガ壁面(1)内部の配筋状態を示す図である。本発明においては、木造の在来工法にレンガ壁面耐震配筋方法を適用して説明をする。  A first embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a front view of a brick building, and FIG. 2 is a view showing a bar arrangement state inside the brick wall surface (1) of FIG. In the present invention, the brick wall seismic reinforcement method is applied to a conventional wooden construction method.

図3は、レンガ壁面の縦方向断面図、図4は、図3におけるA部拡大図、図5は、図3におけるB−B線拡大断面図である。  3 is a longitudinal cross-sectional view of the brick wall surface, FIG. 4 is an enlarged view of a portion A in FIG. 3, and FIG. 5 is an enlarged cross-sectional view along the line BB in FIG.

まず、このように構成されているレンガ積み建築物の、レンガ壁面(1)と木造の在来工法からなる建物躯体との構成を、図3乃至図5を用いて説明する。  First, the structure of the brick wall surface (1) and the building frame which consists of a wooden conventional construction method of the brick building constructed in this way is demonstrated using FIG. 3 thru | or FIG.

図3乃至図5に示されるように、レンガ積み建築物のレンガ壁面(1)の内側には、木造の在来工法からなる建物躯体が構造体として構成されている。該建物躯体は、コンクリートの基礎(5)の立ち上がり部に接続された土台(6a)と、その上方に所定の間隔で柱(6b)と間柱(6c)を立設し、該柱(6b)と間柱(6c)の屋内側には、石膏ボードなどからなる内装材(7a)を貼るとともに、屋外側には、壁内の湿気を積極的に屋外に排出し壁内の結露を防ぐための透湿防水シート(7b)を貼って壁体を構成する。そして、該壁体の屋外側には、通気層(8)を介してレンガ壁面(1)を構成し、レンガ積み建築物として構成される。As shown in FIGS. 3 to 5, a building frame made of a conventional wooden construction method is formed as a structure inside the brick wall surface (1) of the brick building. The building frame includes a base (6a) connected to a rising portion of a concrete foundation (5), and a column (6b) and an intermediary column (6c) provided at predetermined intervals above the foundation (6a). In addition, the interior material (7a) made of gypsum board or the like is affixed to the indoor side of the stud (6c), and moisture on the wall is actively discharged outdoors to prevent condensation in the wall. A wall is formed by attaching a moisture-permeable waterproof sheet (7b). And on the outdoor side of this wall body, a brick wall surface (1) is comprised via a ventilation layer (8), and it is comprised as a brick masonry building.

図6は、コンクリートの基礎(5)への配筋状態を示す図であり、図7は、その平面図である。出願人はレンガ積み建築物のコンクリートの基礎(5)の平面視コーナー部分に、地震の揺れによる応力が特に強く影響することに着目した。本実施例では、特に基礎(5)の上面から立設する縦筋の配設方法と、縦筋を全ネジボルト縦筋(2a)として、連結ナット(2b)で螺合連結したを特徴としたものである。すなわち、コンクリートの基礎(5)を平面視した場合のコーナー部分(平面視四角形の基礎であれば4カ所)と、コーナー部分以外の全ネジボルト縦筋(2a)の配設方法を異ならしめるとともに、縦筋を短尺の全ネジボルトとすることによって、レンガ壁面(1)のさらなる耐震性、施工効率、施工安全性の向上を実現させたものである。なお、コーナー部分とは、図面においては出隅部分で示しているが、入隅もコーナー部分の定義に含まれるものである。以下、詳細に説明をする。  FIG. 6 is a view showing a bar arrangement state to a concrete foundation (5), and FIG. 7 is a plan view thereof. The applicant paid attention to the fact that the stress due to the shaking of the earthquake has a particularly strong influence on the corner portion in plan view of the concrete foundation (5) of the brick building. The present embodiment is characterized in that, in particular, a method of arranging vertical bars standing from the upper surface of the foundation (5), and the vertical bars are all screw bolt vertical bars (2a) and screwed and connected by a connecting nut (2b). Is. That is, the concrete portion (5) in a plan view has different corner portions (four locations in the case of a square shape in plan view) and the arrangement method of all screw bolt vertical bars (2a) other than the corner portions, By making the vertical bars short screw bolts, the brick wall surface (1) is further improved in earthquake resistance, construction efficiency and construction safety. In addition, although the corner part is shown in the drawing as the protruding corner part, the corner is also included in the definition of the corner part. This will be described in detail below.

図6、及び図7に示されるように、コンクリートの基礎(5)のコーナー部分の頂点とその両隣の合計3本の縦筋を全ネジボルトアンカー縦筋(2d)として、コンクリートの基礎(5)の打設時に同時に埋め込んで固着させる。該全ネジボルトアンカー縦筋(2d)は、その下端部がL字状に屈曲していることと、表面にネジ山を有することによって、コンクリートの基礎(5)に強固に固定されると同時に地震の揺れによる引き抜き耐力を確実に向上することを実現した。  As shown in FIG. 6 and FIG. 7, the concrete foundation (5) is formed with the total length of the vertical bars (2d) of the corners of the corner portion of the concrete foundation (5) and the adjacent three vertical bars as the total thread bolt anchor longitudinal bars (2d). At the same time, it is embedded and fixed. The vertical thread (2d) of all screw bolt anchors is firmly fixed to the concrete foundation (5) at the same time as its lower end is bent in an L shape and has a thread on the surface. Realized to improve the pull-out strength due to shaking.

また、コンクリートの基礎(5)のコーナー部分以外の直線部分の上面には、所定の間隔をもって、アンカーナット(2c)を打設し、そこに全ネジボルト縦筋(2a)を螺合して立設する。これにより、レンガの敷設状況に合わせて基礎の上面にアンカーナットを打設して全ネジボルト縦筋を螺合立設することができるので、レンガの出来上がり寸法の個体差や、レンガ間の目地の微妙な間隔の違いによって生じたズレに容易に対応して、施工効率の向上を実現した。  In addition, anchor nuts (2c) are placed at predetermined intervals on the upper surface of the straight portions other than the corner portions of the concrete foundation (5), and all the screw bolt vertical bars (2a) are screwed into the vertical portions. Set up. As a result, anchor nuts can be placed on the top surface of the foundation in accordance with the laying status of the bricks, and all the threaded bolt vertical bars can be screwed upright, so individual differences in the finished dimensions of the bricks and the joints between the bricks The construction efficiency was improved by easily dealing with deviations caused by subtle differences in spacing.

さらに、本実施例の特徴の重要な要素である、短尺の全ネジボルト縦筋(2a)は、連結ナット(2b)を用いて螺合連結して構成される。短尺の縦筋を繋いで通し縦筋とする公知例としては、特許文献2に短い縦筋をスリーブを用いて延長することが示されているが、本実施例では縦筋を短尺の全ネジボルト縦筋としたことで耐震性の向上を含めて種々の課題を解決したものである。なお、全ネジボルトとは、その長手方向全域がネジとなっているボルトを示す。また、短尺とは、特にその長さを限定するものではないが、一本物の通し縦筋で施工した場合の課題を解決できる長さであれば良く、それからすれば施工者が上に手を伸ばしたときに容易に手が届く程度の長さ以内(概ね180cm以内)とすれば良い。  Further, the short full thread bolt vertical bar (2a), which is an important element of the features of the present embodiment, is configured by screwing and connecting using a connecting nut (2b). As a known example in which short vertical bars are connected by connecting short vertical bars, Patent Document 2 shows that the short vertical bars are extended using a sleeve, but in this embodiment, the vertical bars are all short screw bolts. By using the vertical bars, various problems including improvement of earthquake resistance were solved. The all screw bolt means a bolt whose entire length in the longitudinal direction is a screw. In addition, the short length is not particularly limited in length, but it may be a length that can solve the problem in the case of construction with a single through-long vertical line, and then the builder works up. The length should be within a length that can be easily reached when stretched (approximately within 180 cm).

該レンガ壁面(1)の内部には全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)、横筋(3)が格子状に配筋されている。該全ネジボルト縦筋(2a)と該全ネジボルトアンカー縦筋(2d)は、基礎(5)の所定の位置から立設され、連結ナット(2b)によって、全ネジボルト縦筋(2a)を螺合連結して上方に延設していくことで、最終的に一本の長尺の通し縦筋として所望の強度をもって構成される。  Inside the brick wall surface (1), all screw bolt vertical bars (2a), all screw bolt anchor vertical bars (2d), and horizontal bars (3) are arranged in a lattice pattern. The all screw bolt vertical bars (2a) and the all screw bolt anchor vertical bars (2d) are erected from a predetermined position of the foundation (5), and are screwed together by the connecting nut (2b). By connecting and extending upward, it is finally configured with a desired strength as a single long through vertical line.

このように、縦筋を短尺の全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)としたことで、レンガ(1a)を全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)の上端部からレンガ(1a)の縦孔(1b)を順次挿通して積み重ね、積み重ねたレンガ(1a)が、全ネジボルト縦筋(2a)あるいは全ネジボルトアンカー縦筋(2d)の上端部に到達あるいは近づいた時点で連結ナット(2b)によって次の全ネジボルト縦筋(2a)の下端部と螺合連結して延設し、レンガ(1a)をさらに積み重ねる作業を繰り返すことにより、全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)はレンガ壁面(1)内部で、一本の通し縦筋として確実に強度を得ることを可能としてレンガ壁面(1)の強度向上を実現した。また、短尺なので、充分に手が届く高さに全ネジボルト縦筋(2a)の上部端があるので、容易かつ安全に短時間でレンガを積み重ねることを可能として施工効率の向上を実現した。  In this way, the vertical bars are the short total screw bolt vertical bars (2a) and the total screw bolt anchor vertical bars (2d), so that the brick (1a) is the total screw bolt vertical bars (2a) and the total screw bolt anchor vertical bars (2d). ) Through the vertical holes (1b) of the bricks (1a) sequentially from the top end of the bricks (1a), and the stacked bricks (1a) are placed on the top ends of the total screw bolt vertical bars (2a) or the total screw bolt anchor vertical bars (2d). When reaching or approaching, the connecting nut (2b) is screwed and connected to the lower end of the next all-threaded bolt vertical bar (2a), and the work of further stacking bricks (1a) is repeated. The strength of the brick wall surface (1) is improved by making sure that the reinforcement (2a) and the full thread bolt anchor vertical reinforcement (2d) can be obtained as a single vertical stripe inside the brick wall surface (1). It was realized. In addition, because it is short, there is an upper end of all the threaded bolt vertical bars (2a) at a height that can be reached sufficiently, so that it is possible to stack bricks easily and safely in a short time, thus improving construction efficiency.

また、短尺の全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)は、レンガ壁面(1)の高さや、積み重ねる途中に配設される窓枠などの状況に応じて任意寸法に切断して、そこから連結ナット(2b)を螺合結合させて継ぎ足すことで、材料に無駄が生じず、コストの低減と施工効率の向上を実現した。  Also, the short full screw bolt vertical stripe (2a) and the full screw bolt anchor vertical stripe (2d) are cut into arbitrary dimensions according to the height of the brick wall surface (1) and the situation of the window frame arranged in the middle of stacking. Then, the connecting nut (2b) is screwed and joined from there, and the material is not wasted, thereby reducing the cost and improving the construction efficiency.

さらに、全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)が挿通されたレンガ(1a)の縦孔(1b)には、固着材としてモルタルが充填されるので、全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)のネジ山とモルタル(9)とが、強固に固着して両者の剥離が防止され、耐震性に優れた強固なレンガ積み壁面を構成することを可能とした。  Further, since the vertical hole (1b) of the brick (1a) through which the total screw bolt vertical bar (2a) and the total screw bolt anchor vertical bar (2d) are inserted is filled with mortar as a fixing material, the total screw bolt vertical bar ( 2a) Threads of all threaded bolt anchor vertical bars (2d) and mortar (9) are firmly fixed to prevent separation of both, and it is possible to constitute a strong brick wall surface with excellent earthquake resistance It was.

また、全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)は短尺としたことにより、建築現場への配送も、従来のように長尺物を積載するためのロングボディトラックではなく、ショートボディトラックやワンボックスバンなどの小型の車両で配送することが可能となり、積載時に長尺の鉄筋のように車両の前後方向にはみ出して積載することがなく、道幅の狭い場所でも車両の取り回しが容易であるので、極めて安全な配送が可能となり荷役性の向上を実現した。  In addition, since all the screw bolt vertical bars (2a) and all screw bolt anchor vertical bars (2d) are short, delivery to the construction site is not a long body truck for loading long objects as in the past, It can be delivered by small vehicles such as short body trucks and one-box vans, and when loaded, it does not stick out in the longitudinal direction of the vehicle like a long reinforcing bar, and it can be handled even in narrow roads. Since it is easy to carry out, extremely safe delivery is possible, and cargo handling is improved.

次に、横筋(3)について説明をする。前記したようにレンガ壁面(1)には、全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)が配筋されるとともに、横筋(3)が適宜段数毎(図2では及び図6おいては5段毎)に配筋され、取付金物(4)によって建物躯体と連結される。このとき、該横筋(3)は、該縦筋(2a)の前方(室外側)に位置するように配筋したので、地震の揺れによってレンガ壁面(1)が外方への倒壊を抑止するように構成される。  Next, the horizontal stripe (3) will be described. As described above, on the brick wall surface (1), all screw bolt vertical bars (2a) and all screw bolt anchor vertical bars (2d) are arranged, and the horizontal bars (3) are appropriately provided for each number of steps (in FIG. 2 and FIG. 6). In this case, the bars are arranged every 5 steps) and connected to the building frame by the mounting hardware (4). At this time, since the horizontal bars (3) are arranged so as to be located in front (outside of the room) of the vertical bars (2a), the brick wall surface (1) suppresses the collapse to the outside due to the shaking of the earthquake. Configured as follows.

図8、及び図9は、前記した取付金物(4)の説明図である。図8(A)は正面図、(B)は左側面図、(C)は平面図で、横筋(3)の保持状態を示している。図9は、取付金物(4)の詳細説明図であり、2枚の取付金物を端部で連結して折り曲げ重ね合わせて構成されていることを示している。取付金物(4)は、建物躯体に取り付けるためのネジ穴(4a)を有する取付部(4b)、建物躯体から離間した位置に横筋を配設するためのステー部(4c)、横筋を保持するための保持部(4d)から構成される。このように構成された取付金物(4)は、レンガ(1a)に配設された横筋(3)に図9のように開いた状態で嵌装し、図8(B)の矢印に示されるように横筋(3)が前後方向に移動可能に保持されて構成される。  8 and 9 are explanatory views of the mounting hardware (4) described above. FIG. 8A is a front view, FIG. 8B is a left side view, and FIG. 8C is a plan view showing a holding state of the horizontal stripe (3). FIG. 9 is a detailed explanatory view of the mounting hardware (4), and shows that two mounting hardwares are connected at the end portions and bent and overlapped. The mounting hardware (4) holds the mounting portion (4b) having a screw hole (4a) for mounting on the building frame, the stay portion (4c) for arranging the horizontal bar at a position separated from the building frame, and the horizontal bar. It is comprised from the holding | maintenance part (4d) for. The mounting hardware (4) configured as described above is fitted in the horizontal line (3) disposed on the brick (1a) in an open state as shown in FIG. 9, and is indicated by an arrow in FIG. 8 (B). As described above, the horizontal stripe (3) is configured to be held movably in the front-rear direction.

このように、取付金物(4)によって建物躯体に固定されたレンガ壁面(1)は、横筋(3)が取付金物(4)の保持部(4d)に前後方向に移動可能に保持されているので、地震の際の建物躯体の揺れが保持部(4d)によって吸収緩和されてレンガ壁面(1)の耐震強度を向上させる。また、横筋(3)は全ネジボルト縦筋(2a)の前方(室外側)位置するように配設しているので、レンガ壁面(1)の外方への倒壊を防止して優れた耐震性を実現した。  As described above, the brick wall surface (1) fixed to the building frame by the mounting hardware (4) is held so that the horizontal bars (3) are movable in the front-rear direction by the holding portion (4d) of the mounting hardware (4). Therefore, the shaking of the building frame during the earthquake is absorbed and relaxed by the holding portion (4d), and the seismic strength of the brick wall surface (1) is improved. Moreover, since the horizontal bar (3) is arranged so as to be located in front (outside of the room) of the vertical thread bar (2a), the brick wall (1) is prevented from collapsing outward and has excellent earthquake resistance. Realized.

なお、横筋(3)は図2、及び図6においては、5段毎の間隔でレンガ(1a)に配設しているが、施工状況や高さ位置、窓などの配置状況に応じて適宜の間隔で配設すれば良い。例えば、地震の際に最も揺れの影響が大きい屋根近傍は2段毎、3段毎というように細かい間隔で横筋(3)を配設し、下方に行くにしたがって間隔を粗くしても良いのである。  In FIGS. 2 and 6, the horizontal stripes (3) are arranged on the brick (1a) at intervals of five stages. It suffices to arrange them at intervals. For example, in the vicinity of the roof where the influence of shaking is greatest in the event of an earthquake, the horizontal stripes (3) may be arranged at fine intervals such as every two steps or every three steps, and the intervals may be made rougher as going downward. is there.

また、通気層(8)は建物躯体の透湿防水シート(7b)から排出された壁内の湿気を、通気層(8)内に生じる対流により上昇させ、図示しないが軒下などに設けた排出口から排出して建物のカビの発生や腐りを防止することで建物の耐久性を向上させる。さらに、レンガ壁面(1)の基礎部分にあるレンガ(1a)の縦目地の一部に、モルタルを充填せずに開孔することで、通気層(8)内への外気導入を促進し、さらなる湿気の防止と、レンガ壁面(1)内部に侵入した雨などの水滴が外部に抜けやすくなるといった効果も合わせて生じる。  The ventilation layer (8) raises the moisture in the wall discharged from the moisture permeable waterproof sheet (7b) of the building frame by convection generated in the ventilation layer (8), and is not shown but is provided under the eaves. The durability of the building is improved by discharging from the exit and preventing the generation and decay of the building. Furthermore, by opening a part of the vertical joint of the brick (1a) in the foundation part of the brick wall surface (1) without filling with mortar, the outside air introduction into the ventilation layer (8) is promoted, The effect of preventing moisture further and making it easier for water droplets such as rain entering the brick wall surface (1) to escape to the outside occur.

第2実施例を、図6を用いて説明する。第2実施例の特徴とするところは、該基礎(5)に、所定の間隔をおいて複数立設した全ネジボルト縦筋(2a)と全ネジボルトアンカー縦筋(2d)の連結ナット(2b)での螺合連結した位置を、横方向に隣り合う全ネジボルト縦筋の水平方向において、一致しないように交互にずらして配置したことにある。  A second embodiment will be described with reference to FIG. A feature of the second embodiment is that a connecting nut (2b) of all threaded bolt vertical bars (2a) and all threaded bolt anchor vertical bars (2d) erected on the foundation (5) at a predetermined interval. The positions of the threaded joints are alternately shifted so as not to coincide with each other in the horizontal direction of all screw bolt vertical bars adjacent in the lateral direction.

例えば、1本の全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)の長さが100cmである場合は、連結ナット(2b)も100cmおきに配置される。この場合、隣り合う全ネジボルト縦筋(2a)の連結ナット(2b)での螺合連結位置を水平方向において上又は下に1/2の長さである50cmずらして互い違いに配置する。これによって、地震の揺れによる連結ナット(2b)の螺合連結部への負担をレンガ壁面(1)の全面に分散することが可能となり、より安定してレンガ壁面(1)の耐震強度を維持することが可能となった。  For example, when the length of one full thread bolt vertical bar (2a) and the total thread bolt anchor vertical bar (2d) is 100 cm, the connecting nut (2b) is also arranged every 100 cm. In this case, the threaded connection positions of the adjacent thread bolt vertical bars (2a) at the connection nut (2b) are shifted in the horizontal direction up or down by 50 cm, which is a half length, and are alternately arranged. As a result, it is possible to disperse the load on the threaded connection portion of the connection nut (2b) due to the shaking of the earthquake over the entire surface of the brick wall surface (1), and more stably maintain the seismic strength of the brick wall surface (1). It became possible to do.

第3実施例を、図10から図13を用いて説明する。図10は、図2における2階の窓枠部分を拡大して示した図、図11は、窓枠の笠木(6d)とその下に位置する配筋関係を詳細に示した図である。また、図12は、図11におけるA部拡大図で、図13は図11におけるB−B線拡大断面図である。  A third embodiment will be described with reference to FIGS. FIG. 10 is an enlarged view of the window frame portion on the second floor in FIG. 2, and FIG. 11 is a diagram showing in detail the headboard (6d) of the window frame and the bar arrangement located below it. 12 is an enlarged view of a portion A in FIG. 11, and FIG. 13 is an enlarged sectional view taken along line BB in FIG.

第3実施例の特徴とするところは、T型ナット(21)を用いることで窓枠や窓上などのレンガ壁面(1)の開口部分の強度を向上させたことにある。一般的に、窓枠下の笠木(6d)の直下に積み重ねられたレンガ(1a)部分の縦筋は、笠木(6d)の直下のレンガからその上端部が若干突出された状態となっており、特に隣り合う縦筋の先端部同士は互いに固定されていない。このため、笠木(6d)の直下に左右方向に連設された個々のレンガ(1a)は、単にモルタル(9)によって固着された状態であり、必ずしも耐震性を満足させるものではない。  The feature of the third embodiment is that the strength of the opening portion of the brick wall surface (1) such as the window frame or the window is improved by using the T-shaped nut (21). Generally, the vertical streaks of the brick (1a) stacked immediately below the headboard (6d) under the window frame are in a state where the upper end portion is slightly protruded from the brick immediately below the headboard (6d). In particular, the ends of the adjacent vertical bars are not fixed to each other. For this reason, the individual bricks (1a) connected in the left-right direction directly below the headboard (6d) are simply fixed by the mortar (9) and do not necessarily satisfy the earthquake resistance.

そこで、図10から図13に示されるように、
窓枠下の笠木(6d)の直下に連設されたレンガ(1a)の上面に、建物躯体と取付金物(4)で接続した横筋(3)を配設し、さらに、窓枠下に組み積みされたレンガ(1a)の上面から突出した該全ネジボルト縦筋(2a)の先端に、T型ナット(21)の垂直方向に備えられた螺合部(21a)を螺合連結するとともに、該T型ナット(21)の水平方向に備えられた貫通孔(21b)に横筋(3)を挿通して配設し、該T型ナット(21)と該貫通孔(21b)に挿通された横筋(3)に、窓下レンガ(11a)の底面側凹部を上から被せるとともにモルタル(9)を充填して固着したので、建物躯体の窓枠下部分で該横筋(3)を取付金物(4)によって建物躯体と連結したことと、T型ナット(21)に配設された横筋(3)に、窓下レンガ(11a)をモルタル(9)を充填して固着したことにより、窓枠下部分のレンガ壁面(1)は建物躯体に強固に連結されるとともに、耐震性の向上を実現した。
Therefore, as shown in FIG. 10 to FIG.
On the upper surface of the brick (1a) connected directly below the coping (6d) under the window frame, a horizontal bar (3) connected to the building frame and the mounting hardware (4) is arranged, and further assembled under the window frame. The threaded portion (21a) provided in the vertical direction of the T-shaped nut (21) is screwed and connected to the front end of the vertical threaded bar (2a) protruding from the upper surface of the stacked brick (1a). A horizontal streak (3) is inserted through a through hole (21b) provided in the horizontal direction of the T-shaped nut (21), and is inserted into the T-shaped nut (21) and the through-hole (21b). Since the horizontal stripe (3) is covered with the bottom side concave portion of the brick under the window (11a) from above and filled with the mortar (9), the horizontal stripe (3) is attached to the fitting ( 4) Connected to the building frame by means of the horizontal bars (3) arranged on the T-shaped nut (21) By a window under the brick (11a) and fixed by filling the mortar (9), brick walls of the window frame lower portion (1) together with the firmly connected to the building structures, and realize improvement of vibration resistance.

なお、図10から図13においては、窓枠下の笠木(6d)直下のレンガ(11a)にT型ナット(21)を適用して説明したが、窓枠の上部に用いても有効に適用することが可能である。  In FIGS. 10 to 13, the T-shaped nut (21) is applied to the brick (11 a) just below the headboard (6 d) below the window frame, but it can be effectively applied to the upper part of the window frame. Is possible.

第4実施例を説明する。本実施例の特徴とするところは、該全ネジボルト縦筋(2a)、該全ネジボルトアンカー縦筋(2d)、横筋(3)、連結ナット(2b)、T型ナット(21)、アンカーナット(2c)、取付金物(4)の何れか、あるいは組み合わされた複数、あるいはすべてに、溶融亜鉛メッキを施したことにある。  A fourth embodiment will be described. The feature of this embodiment is that the entire threaded bolt vertical bar (2a), the total threaded bolt anchor vertical bar (2d), the horizontal bar (3), the connecting nut (2b), the T-shaped nut (21), the anchor nut ( 2c), any of the mounting hardware (4), or a plurality or all of them combined, are hot dip galvanized.

これによって、レンガ壁面(1)内部の配筋に生じ易い錆や腐食による膨張を原因とするレンガ(1a)、及び目地モルタル(9)のクラックの発生を防止し、レンガ積み建築物の高い耐久性に見合った配筋の耐久性を実現し、総合的に極めて耐震性、耐久性に優れたレンガ積み建築物のレンガ壁面耐震配筋方法を提供することを可能とした。  This prevents cracks in the brick (1a) and joint mortar (9) caused by expansion due to rust and corrosion that tends to occur in the bar wall (1), and is highly durable for brick masonry buildings. It is possible to provide a method of seismic reinforcement for brick wall surfaces of brick buildings, which realizes durability of reinforcement according to the characteristics and comprehensively has excellent earthquake resistance and durability.

溶融亜鉛メッキは、塗装や電気メッキなどとは異なり、亜鉛と鉄との間にできた合金層によって、亜鉛と鉄が強く結合しているため、長い年月に亘りメッキが剥離することがない。また、溶融亜鉛メッキは、鋼材を溶かした亜鉛に浸すことで表面に亜鉛の酸化皮膜が設けられ、空気や水を通しにくい安定した性質で錆の発生を防止する。  In hot-dip galvanizing, unlike coating and electroplating, zinc and iron are strongly bonded by an alloy layer formed between zinc and iron, so plating does not peel off over many years. . In hot dip galvanizing, a zinc oxide film is provided on the surface by immersing the steel material in molten zinc, which prevents the generation of rust with a stable property that prevents the passage of air and water.

全ネジボルト縦筋(2a)、全ネジボルトアンカー縦筋(2d)、横筋(3)、連結ナット(2b)、T型ナット(21)、アンカーナット(2c)、取付金物(4)などの運搬時や施工時に、表面に傷が付いて素地の鉄が露出した場合でも、傷の周囲の亜鉛が鉄より先に溶け出し電気化学的に保護することで、錆の発生、及び腐食を効果的に防止する。このように、亜鉛の酸化皮膜による保護皮膜作用と、亜鉛が鉄より先に溶け出し電気化学的に保護する犠牲防食作用により、モルタルの水分やモルタルに混ぜる砂に微量に含まれた塩分、経年による腐食や、何らかの原因でレンガ、及びモルタルにクラックが生じ内部に水分が浸透した場合の錆の発生や腐食を極めて効果的に防止し、レンガ積み建築物としての高い耐久性に見合った配筋類の耐久性を実現し、総合的に極めて耐震性、耐久性に優れたレンガ積み建築物のレンガ壁面耐震配筋方法を提供することを可能とした。  When transporting all screw bolt vertical bars (2a), all screw bolt anchor vertical bars (2d), horizontal bars (3), connecting nuts (2b), T-type nuts (21), anchor nuts (2c), mounting hardware (4), etc. Even when the surface is scratched and the base iron is exposed during construction, the zinc around the scratch dissolves before the iron and is protected electrochemically, effectively preventing rust and corrosion. To prevent. In this way, due to the protective film action by the oxide film of zinc and the sacrificial anticorrosive action that zinc dissolves before iron and protects it electrochemically, salt contained in trace amounts in mortar moisture and sand mixed with mortar, aged Reinforcement that is highly effective in preventing the occurrence of rust and corrosion when bricks and mortar crack for some reason and moisture penetrates into the interior, and is highly durable as a brick masonry building It has made it possible to provide a seismic reinforcement method for brick wall surfaces of brick masonry buildings that are extremely durable and have excellent overall earthquake resistance and durability.

以上説明したように本発明においては、建物躯体が木造の在来工法に適用して説明したが、2×4工法や鉄筋コンクリート構造の建物躯体の外側のレンガ壁面に適用しても良い。  As described above, in the present invention, the building frame is described as being applied to a conventional wooden construction method, but it may be applied to a brick wall surface on the outside of a 2 × 4 method or a reinforced concrete structure building frame.

1 レンガ壁面
1a レンガ
1b 縦孔
11a 窓下レンガ
2a 全ネジボルト縦筋
2b 連結ナット
2d 全ネジボルトアンカー縦筋
21 T型ナット
21a 螺合部
21b 貫通孔
3 横筋
4 取付金物
4a ネジ穴
4b 取付部
4c ステー部
4d 保持部
5 基礎
5a アンカー
6a 土台
6b 柱
6c 間柱
6d 笠木
7a 内装材
7b 透湿防水シート
8 通気層
9 モルタル
DESCRIPTION OF SYMBOLS 1 Brick wall 1a Brick 1b Vertical hole 11a Window bottom brick 2a All screw bolt vertical bar 2b Connection nut 2d All screw bolt anchor vertical bar 21 T type nut 21a Screw part 21b Through hole 3 Horizontal bar 4 Attachment metal 4a Screw hole 4b Attachment part 4c Stay Part 4d Holding part 5 Foundation 5a Anchor 6a Base 6b Pillar 6c Interstitial 6d Coping 7a Interior material 7b Moisture permeable waterproof sheet 8 Ventilation layer 9 Mortar

Claims (4)

コンクリートの基礎に、所定の間隔をおいて複数立設した縦筋を、レンガの上下方向に貫通させた複数の縦孔に挿通するとともに、レンガの適宜な積み重ね段数毎に横筋を配設し、該横筋を建物躯体に取付金物を用いて接続してなるレンガ積み建築物のレンガ壁面配筋方法において、該基礎のコーナー部分には、下端部をL字状に屈曲した短尺の全ネジボルトアンカー縦筋を埋め込んで立設するとともに、連結ナットを用いて短尺の全ネジボルト縦筋を螺合連結することでさらに上方に延設可能に構成し、該基礎のコーナー部分以外の直線部分の上面には、所定の間隔で打設したアンカーナットを備え、該アンカーナットには、短尺の該全ネジボルト縦筋を螺合して立設するとともに、該連結ナットを用いて短尺の該全ネジボルト縦筋を螺合連結することでさらに上方に延設可能に構成したことを特徴とするレンガ積み建築物のレンガ壁面耐震配筋方法。  In the concrete foundation, a plurality of vertical bars erected at a predetermined interval are inserted into a plurality of vertical holes penetrating in the vertical direction of the brick, and the horizontal bars are arranged for each appropriate number of stacking stages of bricks. In the brick wall surface arrangement method for a brick building, in which the horizontal bars are connected to the building frame using attachment hardware, the corner portion of the foundation has a short full-length bolt anchor with a lower end bent in an L shape. It is configured to be able to extend further upward by connecting a short full length screw bolt vertical thread using a connecting nut and embedding the line, and on the upper surface of the straight line part other than the corner part of the foundation An anchor nut placed at a predetermined interval, and the anchor nut is erected by screwing the short length of all screw bolt vertical bars, and the short length of the screw bolt vertical bars using the connecting nut. Screwing Brick wall seismic reinforcement method brickwork buildings, characterized by being configured to be extended further upward by sintering. 前記、該基礎に、所定の間隔をおいて立設した該全ネジボルト縦筋の連結ナットでの螺合連結した位置を、隣り合う全ネジボルト縦筋と一致しないように交互にずらして配置したことを特徴とする請求項1に記載のレンガ積み建築物のレンガ壁面耐震配筋方法。  The screwed and connected positions of the all-threaded bolt vertical bars standing on the foundation with predetermined intervals are alternately shifted so as not to coincide with the adjacent all-screw bolt vertical bars. The brick wall seismic arrangement method for a brick building according to claim 1. レンガ壁面に開口した窓枠下に組み積みされたレンガの上面に、建物躯体と取付金物で接続した横筋を配設し、さらに、窓枠下に組み積みされたレンガの上面から突出した該全ネジボルト縦筋の先端に、T型ナットの垂直方向に備えられた螺合部を螺合連結するとともに、該T型ナットの水平方向に備えられた貫通孔に横筋を挿通して配設し、該T型ナットと該貫通孔に挿通された横筋に、窓下レンガの底面側凹部を上から被せるとともにモルタルを充填して固着したことを特徴とする請求項1、請求項2の何れかに記載のレンガ積み建築物のレンガ壁面耐震配筋方法。  On the upper surface of the bricks built under the window frame opened in the brick wall surface, horizontal lines connected by the building frame and the mounting hardware are arranged, and further, the whole projecting from the upper surface of the bricks built under the window frame is provided. A threaded portion provided in the vertical direction of the T-type nut is screwed and connected to the tip of the vertical thread of the screw bolt, and a horizontal line is inserted through a through-hole provided in the horizontal direction of the T-type nut, The transverse stripe inserted through the T-nut and the through hole is covered with a concave portion on the bottom side of the brick under the window from above and fixed by filling with mortar. Seismic reinforcement method for brick wall surface of the brick building described. 前記、該全ネジボルト縦筋、該全ネジボルトアンカー縦筋、該横筋、該連結ナット、該T型ナット、該アンカーナット、該取付金物の何れか、あるいは組み合わされた複数、あるいはすべてに溶融亜鉛メッキを施したことを特徴とする請求項1乃至請求項3に何れかに記載のレンガ積み建築物のレンガ壁面耐震配筋方法。  Hot-dip galvanized to any or all or a combination of the full thread bolt vertical bars, the full thread bolt anchor vertical bars, the transverse bars, the connecting nuts, the T-nuts, the anchor nuts, the mounting hardware The brick wall seismic reinforcement method for brick buildings according to any one of claims 1 to 3, wherein
JP2009205259A 2009-08-17 2009-08-17 Seismic reinforcement method for brick wall of brickwork building Active JP5321972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009205259A JP5321972B2 (en) 2009-08-17 2009-08-17 Seismic reinforcement method for brick wall of brickwork building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009205259A JP5321972B2 (en) 2009-08-17 2009-08-17 Seismic reinforcement method for brick wall of brickwork building

Publications (2)

Publication Number Publication Date
JP2011038387A true JP2011038387A (en) 2011-02-24
JP5321972B2 JP5321972B2 (en) 2013-10-23

Family

ID=43766413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205259A Active JP5321972B2 (en) 2009-08-17 2009-08-17 Seismic reinforcement method for brick wall of brickwork building

Country Status (1)

Country Link
JP (1) JP5321972B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016155519A1 (en) * 2015-04-02 2016-10-06 蒋卫国 Curtain wall brick external wall
GB2554262A (en) * 2014-05-16 2018-03-28 Jiang Weiguo Curtain wall brick external wall

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081152A (en) * 2000-09-06 2002-03-22 Japan Science & Technology Corp Brick masonry structure, brick masonry method and brick manufacturing method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081152A (en) * 2000-09-06 2002-03-22 Japan Science & Technology Corp Brick masonry structure, brick masonry method and brick manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2554262A (en) * 2014-05-16 2018-03-28 Jiang Weiguo Curtain wall brick external wall
WO2016155519A1 (en) * 2015-04-02 2016-10-06 蒋卫国 Curtain wall brick external wall

Also Published As

Publication number Publication date
JP5321972B2 (en) 2013-10-23

Similar Documents

Publication Publication Date Title
AU2017203291B2 (en) Stronger wall system
CA2627760C (en) A system for unitized, post-tensioned masonry structures
US8561371B2 (en) Barrier wall and method of forming wall panels between vertical wall stiffeners with support members extending partially through the wall panels
US20080098687A1 (en) Super unitized post tension block system for high high strength masonry structures - with SuperStrongBloks
KR20080106925A (en) Unitized post tension block system for masonry structures
KR20090009004U (en) Base bracket for constructing earthquake-proof brick wall
WO2018067067A1 (en) Prefabricated prefinished volumetric construction module
JP2010013915A (en) Method of arranging reinforcements in brick wall surface for brick masonry building
JP5321974B2 (en) Brick wall seismic structure for brick building
JP5321972B2 (en) Seismic reinforcement method for brick wall of brickwork building
JP5321973B2 (en) Reinforcement method for brick wall decoration in brick building
US20120304564A1 (en) System for Anchoring Precast Concrete Wall Columns to Foundations
JP6432098B2 (en) Seismic foundation for assembly house
KR200497673Y1 (en) Brick wall support system with high seismic stability, safety, and constructability
KR200497674Y1 (en) Brick wall support system with high seismic stability, safety, and constructability
KR101241302B1 (en) Construction method of ALC block build during winter
KR101201438B1 (en) Construction method of ALC block build
JP5914911B2 (en) Attachment members used in reinforced concrete block structures
JP5158505B2 (en) Hardware for brick wall construction
JP6211333B2 (en) Cross section defect member, method of using cross section defect member and fixing method of cross section defect member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130618

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130704

R150 Certificate of patent or registration of utility model

Ref document number: 5321972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250