JP2011038015A - Heat-resistant resin composition with high refractive index - Google Patents

Heat-resistant resin composition with high refractive index Download PDF

Info

Publication number
JP2011038015A
JP2011038015A JP2009187691A JP2009187691A JP2011038015A JP 2011038015 A JP2011038015 A JP 2011038015A JP 2009187691 A JP2009187691 A JP 2009187691A JP 2009187691 A JP2009187691 A JP 2009187691A JP 2011038015 A JP2011038015 A JP 2011038015A
Authority
JP
Japan
Prior art keywords
formula
methyl
polymerizable monomer
refractive index
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009187691A
Other languages
Japanese (ja)
Other versions
JP5476542B2 (en
Inventor
Yoshiyuki Oishi
好行 大石
Kenichi Osawa
健一 大澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Nissan Chemical Corp
Original Assignee
Iwate University
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University, Nissan Chemical Corp filed Critical Iwate University
Priority to JP2009187691A priority Critical patent/JP5476542B2/en
Publication of JP2011038015A publication Critical patent/JP2011038015A/en
Application granted granted Critical
Publication of JP5476542B2 publication Critical patent/JP5476542B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymerizable monomer giving a resin with a good refractive index without using inorganic oxide fine particles and heavy atoms, and a heat-resistant resin composition with a high refractive index obtained by using the polymerizable monomer. <P>SOLUTION: The polymerizable monomer having 1,3,5-triazine ring represented by formula (1) is provided. In formula (1), one or two of A<SP>1</SP>to A<SP>3</SP>are each -N(R<SP>1</SP>)CH<SB>2</SB>-CH=CH<SB>2</SB>group or -O-CH<SB>2</SB>-CH=CH<SB>2</SB>group, and the reminder thereof is -N(R<SP>2</SP>)(R<SP>3</SP>) group or a specific nitrogen-containing heterocyclic group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、1,3,5−トリアジン環を有する重合性単量体およびこれを用いて得られる耐熱性に優れた高屈折率樹脂組成物に関する。   The present invention relates to a polymerizable monomer having a 1,3,5-triazine ring and a high refractive index resin composition excellent in heat resistance obtained by using the polymerizable monomer.

ポリメタクリル酸メチル等の(メタ)アクリル系樹脂や、透明エポキシ樹脂、透明シリコーン樹脂などの透明性樹脂は、ガラスに比較して軽量で、かつ、加工性に優れ、航空機等の風防樹脂、透明容器、透明コーティング剤等に広く用いられるようになってきた。
また、近年では、眼鏡等の光学部品の分野でも透明樹脂レンズ等の樹脂製品が多用されつつある。
さらに、電子材料の分野でも、液晶ディスプレイの反射防止コーティング剤、太陽電池用透明コーティング剤、発光ダイオード、CCDやCMOSセンサーの受光部等の光学電子材料の用途に上述の透明性樹脂が多用されつつある。このような光学電子材料の用途では、透明性ばかりでなく、光取り出し効率の向上や集光性の向上のために高い屈折率も要求される場合が多い。
(Meth) acrylic resins such as polymethyl methacrylate and transparent resins such as transparent epoxy resins and transparent silicone resins are lighter in weight and have better processability than windshield resins such as aircraft. Widely used in containers, transparent coating agents and the like.
In recent years, resin products such as transparent resin lenses have been widely used in the field of optical components such as eyeglasses.
Furthermore, in the field of electronic materials, the above-mentioned transparent resins are being used frequently in applications of optical electronic materials such as antireflection coating agents for liquid crystal displays, transparent coating agents for solar cells, light emitting diodes, and light receiving parts of CCDs and CMOS sensors. is there. In the use of such an optical electronic material, not only the transparency but also a high refractive index is often required for improving light extraction efficiency and light collection.

しかし、従来の透明樹脂では、架橋等の手法によって、機械的物性を制御することはある程度可能であるものの、光学特性、特に屈折率に関しては、それを高めるために特殊な技術を必要としていた。
例えば、特許文献1および2では、臭素や硫黄等の重原子を有機樹脂に多量に結合させてその屈折率を向上させる手法が提案されている。
また、特許文献3および4では、高屈折率の無機酸化物微粒子を有機樹脂に分散してその屈折率を向上させる手法が提案されている。
However, with conventional transparent resins, although mechanical properties can be controlled to some extent by a technique such as crosslinking, a special technique is required to enhance optical characteristics, particularly the refractive index.
For example, Patent Documents 1 and 2 propose a technique in which a large amount of heavy atoms such as bromine and sulfur are bonded to an organic resin to improve the refractive index.
Patent Documents 3 and 4 propose a method in which inorganic oxide fine particles having a high refractive index are dispersed in an organic resin to improve the refractive index.

上記特許文献1および2の手法では、一般に、得られた有機樹脂が熱や光に対して不安定であるため、長期使用時に変色等の劣化を起こし易いという問題があるうえに、当該樹脂を電子材料部品用途に使用する場合は、電極の腐食等が懸念される。
一方、特許文献3および4の手法でも、得られた微粒子分散樹脂の長期保存安定性などに問題があり、また、無機酸化物微粒子の樹脂中での分散安定性を改善するために多量の分散安定剤を必要とするため、屈折率と分散安定性のバランスをとるのが困難になるなどの課題があった。
なお、高屈折率ではないが、重合性トリアジン系を用いた樹脂組成物も知られている(特許文献5,6)。
In the methods of Patent Documents 1 and 2 described above, since the obtained organic resin is generally unstable to heat and light, there is a problem in that it tends to cause deterioration such as discoloration during long-term use. When used for electronic material parts, there is a concern about corrosion of the electrodes.
On the other hand, the methods of Patent Documents 3 and 4 also have problems in the long-term storage stability of the obtained fine particle dispersed resin, and a large amount of dispersion is required to improve the dispersion stability of the inorganic oxide fine particles in the resin. Since a stabilizer is required, there is a problem that it is difficult to balance the refractive index and dispersion stability.
In addition, although it is not a high refractive index, the resin composition using polymeric triazine type | system | group is also known (patent document 5, 6).

特開平05−164901号公報JP 05-164901 A 特開2005−350531号公報JP 2005-350531 A 特開2007−270099号公報JP 2007-27099 A 特開2007−308631号公報JP 2007-308631 A 特開平07−157474号公報JP 07-157474 A 特開平07−206832号公報Japanese Patent Laid-Open No. 07-206832

本発明は、このような事情に鑑みてなされたものであり、無機酸化物微粒子や重原子を使用しなくとも屈折率の良好な樹脂を与え得る重合性単量体およびこれを用いて得られる耐熱性の高屈折率樹脂組成物を提供する。   The present invention has been made in view of such circumstances, and is obtained using a polymerizable monomer capable of providing a resin having a good refractive index without using inorganic oxide fine particles and heavy atoms, and the same. A heat-resistant high refractive index resin composition is provided.

本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、所定の1,3,5−トリアジン環を有する重合性単量体が、高耐熱性かつ高屈折率の樹脂を与え得ることを見出し、本発明を完成した。   As a result of intensive studies to achieve the above object, the present inventors have found that a polymerizable monomer having a predetermined 1,3,5-triazine ring gives a resin having high heat resistance and high refractive index. The present invention was completed.

すなわち、本発明は、
1. 式(1)で表されることを特徴とする1,3,5−トリアジン環を有する重合性単量体、

Figure 2011038015
〔式(1)中、A1、A2およびA3のうちの1つまたは2つは、式(2)または式(3)
Figure 2011038015
(式(2)中、R1は、水素原子、炭素数1〜10のアルキル基または炭素数2〜10のアルケニル基を表す。)で表される基であり、A1、A2およびA3のうちの残りは、式(4)または式(5)
Figure 2011038015
(式(4)中、R2およびR3は、それぞれ独立してフェニル基またはナフチル基を表す。)で表される基である。〕
2. 1の重合性単量体70〜100質量部と、これと重合可能な他の単量体0〜30質量部とを重合して得られることを特徴とする高屈折率樹脂組成物、
3. 前記他の単量体が、ビニル系単量体、アクリル系単量体、メタクリル系単量体、アリル系単量体、およびマレイン酸系単量体から選ばれる少なくとも1種である2の高屈折率樹脂組成物
を提供する。 That is, the present invention
1. A polymerizable monomer having a 1,3,5-triazine ring, represented by the formula (1):
Figure 2011038015
[In the formula (1), one or two of A 1 , A 2 and A 3 are represented by the formula (2) or the formula (3)
Figure 2011038015
(In formula (2), R 1 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms), and A 1 , A 2 and A The rest of 3 is the formula (4) or formula (5)
Figure 2011038015
(In Formula (4), R 2 and R 3 each independently represents a phenyl group or a naphthyl group). ]
2. A high refractive index resin composition obtained by polymerizing 70 to 100 parts by mass of one polymerizable monomer and 0 to 30 parts by mass of another polymerizable monomer with this,
3. The other monomer is at least one selected from vinyl monomers, acrylic monomers, methacrylic monomers, allyl monomers, and maleic monomers. A refractive index resin composition is provided.

本発明の重合性単量体を用いることで、炭素、水素、窒素、酸素の有機樹脂の基本4元素にて構成され、測定波長656nmにおける屈折率が1.60以上という高屈折率、および空気中での5%重量減少温度が290℃以上という高耐熱性を同時に発現し、かつ、架橋高分子を生成し易いため良好な耐溶剤性を発揮する樹脂組成物が得られる。
この樹脂組成物は、高い屈折率と良好な耐熱性、耐溶剤性等の優れた特性を備えた状態で、薄膜、フィルムまたはシート化することができ、光学材料および電子材料の分野、特に反射防止膜およびフィルム、太陽電池の集光コーティング剤、レンチキュラーレンズなどの導光材や導波路等のコーティング剤、発熱し易い発光ダイオードの封止剤、CCDやCMOSセンサーあるいはフォトカプラー等の受光素子の光取り出し向上剤および集光剤などとして極めて有用である。
また、これらの光学電子材料分野ばかりでなく、ガラスの高屈折率薄膜形成材料やプラスチックレンズ等の工業材料分野にも有用である。
By using the polymerizable monomer of the present invention, it is composed of four basic elements of carbon, hydrogen, nitrogen and oxygen organic resin, and has a high refractive index of 1.60 or more at a measurement wavelength of 656 nm, and air. A resin composition exhibiting good solvent resistance can be obtained because the 5% weight loss temperature is 290 ° C. or more at the same time and a crosslinked polymer is easily formed.
This resin composition can be formed into a thin film, a film or a sheet with a high refractive index and excellent properties such as good heat resistance and solvent resistance, and is used in the field of optical materials and electronic materials, particularly in reflection. Prevention film and film, light-condensing coating agent for solar cell, light-guide material such as lenticular lens, coating agent for waveguide, etc., sealant for light-emitting diode that easily generates heat, CCD, CMOS sensor or photocoupler etc. It is extremely useful as a light extraction improver and a light collecting agent.
Moreover, it is useful not only in the fields of optical electronic materials but also in the fields of industrial materials such as high refractive index thin film forming materials for glass and plastic lenses.

製造例1〜8および比較製造例1で使用した重合装置を示す概略断面図である。1 is a schematic cross-sectional view showing a polymerization apparatus used in Production Examples 1 to 8 and Comparative Production Example 1. FIG. 製造例9で使用した成形型を示す概略図である。10 is a schematic view showing a mold used in Production Example 9. FIG.

以下、本発明についてさらに詳しく説明する。
本発明に係る1,3,5−トリアジン環を有する重合性単量体は、下記式(1)で表されるものである。
Hereinafter, the present invention will be described in more detail.
The polymerizable monomer having a 1,3,5-triazine ring according to the present invention is represented by the following formula (1).

Figure 2011038015
Figure 2011038015

ここで、A1、A2およびA3のうちの1つまたは2つは、下記式(2)または式(3)で表される基である。 Here, one or two of A 1 , A 2 and A 3 are groups represented by the following formula (2) or formula (3).

Figure 2011038015
Figure 2011038015

上記R1は、水素原子、炭素数1〜10のアルキル基または炭素数2〜10のアルケニル基を表す。これらアルキル基およびアルケニル基は、鎖状、分岐状、環状のいずれでもよい。
炭素数1〜10のアルキル基の具体例としては、メチル、エチル、n−プロピル、i−プロピル、シクロプロピル、n−ブチル、i−ブチル、s−ブチル、t−ブチル、シクロブチル、1−メチル−シクロプロピル、2−メチル−シクロプロピル、n−ペンチル、1−メチル−n−ブチル、2−メチル−n−ブチル、3−メチル−n−ブチル、1,1−ジメチル−n−プロピル、1,2−ジメチル−n−プロピル、2,2−ジメチル−n−プロピル、1−エチル−n−プロピル、シクロペンチル、1−メチル−シクロブチル、2−メチル−シクロブチル、3−メチル−シクロブチル、1,2−ジメチル−シクロプロピル、2,3−ジメチル−シクロプロピル、1−エチル−シクロプロピル、2−エチル−シクロプロピル、n−ヘキシル、1−メチル−n−ペンチル、2−メチル−n−ペンチル、3−メチル−n−ペンチル、4−メチル−n−ペンチル、1,1−ジメチル−n−ブチル、1,2−ジメチル−n−ブチル、1,3−ジメチル−n−ブチル、2,2−ジメチル−n−ブチル、2,3−ジメチル−n−ブチル、3,3−ジメチル−n−ブチル、1−エチル−n−ブチル、2−エチル−n−ブチル、1,1,2−トリメチル−n−プロピル、1,2,2−トリメチル−n−プロピル、1−エチル−1−メチル−n−プロピル、1−エチル−2−メチル−n−プロピル、シクロヘキシル、1−メチル−シクロペンチル、2−メチル−シクロペンチル、3−メチル−シクロペンチル、1−エチル−シクロブチル、2−エチル−シクロブチル、3−エチル−シクロブチル、1,2−ジメチル−シクロブチル、1,3−ジメチル−シクロブチル、2,2−ジメチル−シクロブチル、2,3−ジメチル−シクロブチル、2,4−ジメチル−シクロブチル、3,3−ジメチル−シクロブチル、1−n−プロピル−シクロプロピル、2−n−プロピル−シクロプロピル、1−i−プロピル−シクロプロピル、2−i−プロピル−シクロプロピル、1,2,2−トリメチル−シクロプロピル、1,2,3−トリメチル−シクロプロピル、2,2,3−トリメチル−シクロプロピル、1−エチル−2−メチル−シクロプロピル、2−エチル−1−メチル−シクロプロピル、2−エチル−2−メチル−シクロプロピル、2−エチル−3−メチル−シクロプロピル基等が挙げられる。
R 1 represents a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or an alkenyl group having 2 to 10 carbon atoms. These alkyl groups and alkenyl groups may be any of chain, branched, and cyclic.
Specific examples of the alkyl group having 1 to 10 carbon atoms include methyl, ethyl, n-propyl, i-propyl, cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, and 1-methyl. -Cyclopropyl, 2-methyl-cyclopropyl, n-pentyl, 1-methyl-n-butyl, 2-methyl-n-butyl, 3-methyl-n-butyl, 1,1-dimethyl-n-propyl, 1 , 2-dimethyl-n-propyl, 2,2-dimethyl-n-propyl, 1-ethyl-n-propyl, cyclopentyl, 1-methyl-cyclobutyl, 2-methyl-cyclobutyl, 3-methyl-cyclobutyl, 1,2 -Dimethyl-cyclopropyl, 2,3-dimethyl-cyclopropyl, 1-ethyl-cyclopropyl, 2-ethyl-cyclopropyl, n-hexyl, 1- Til-n-pentyl, 2-methyl-n-pentyl, 3-methyl-n-pentyl, 4-methyl-n-pentyl, 1,1-dimethyl-n-butyl, 1,2-dimethyl-n-butyl, 1,3-dimethyl-n-butyl, 2,2-dimethyl-n-butyl, 2,3-dimethyl-n-butyl, 3,3-dimethyl-n-butyl, 1-ethyl-n-butyl, 2- Ethyl-n-butyl, 1,1,2-trimethyl-n-propyl, 1,2,2-trimethyl-n-propyl, 1-ethyl-1-methyl-n-propyl, 1-ethyl-2-methyl- n-propyl, cyclohexyl, 1-methyl-cyclopentyl, 2-methyl-cyclopentyl, 3-methyl-cyclopentyl, 1-ethyl-cyclobutyl, 2-ethyl-cyclobutyl, 3-ethyl-cyclobutyl, 1,2- Methyl-cyclobutyl, 1,3-dimethyl-cyclobutyl, 2,2-dimethyl-cyclobutyl, 2,3-dimethyl-cyclobutyl, 2,4-dimethyl-cyclobutyl, 3,3-dimethyl-cyclobutyl, 1-n-propyl- Cyclopropyl, 2-n-propyl-cyclopropyl, 1-i-propyl-cyclopropyl, 2-i-propyl-cyclopropyl, 1,2,2-trimethyl-cyclopropyl, 1,2,3-trimethyl-cyclo Propyl, 2,2,3-trimethyl-cyclopropyl, 1-ethyl-2-methyl-cyclopropyl, 2-ethyl-1-methyl-cyclopropyl, 2-ethyl-2-methyl-cyclopropyl, 2-ethyl- Examples include 3-methyl-cyclopropyl group.

炭素数2〜10のアルケニル基の具体例としては、エテニル、1−プロペニル、2−プロペニル、1−メチル−1−エテニル、1−ブテニル、2−ブテニル、3−ブテニル、2−メチル−1−プロペニル、2−メチル−2−プロペニル、1−エチルエテニル、1−メチル−1−プロペニル、1−メチル−2−プロペニル、1−ペンテニル、2−ペンテニル、3−ペンテニル、4−ペンテニル、1−n−プロピルエテニル、1−メチル−1−ブテニル、1−メチル−2−ブテニル、1−メチル−3−ブテニル、2−エチル−2−プロペニル、2−メチル−1−ブテニル、2−メチル−2−ブテニル、2−メチル−3−ブテニル、3−メチル−1−ブテニル、3−メチル−2−ブテニル、3−メチル−3−ブテニル、1,1−ジメチル−2−プロペニル、1−i−プロピルエテニル、1,2−ジメチル−1−プロペニル、1,2−ジメチル−2−プロペニル、1−シクロペンテニル、2−シクロペンテニル、3−シクロペンテニル、1−ヘキセニル、2−ヘキセニル、3−ヘキセニル、4−ヘキセニル、5−ヘキセニル、1−メチル−1−ペンテニル、1−メチル−2−ペンテニル、1−メチル−3−ペンテニル、1−メチル−4−ペンテニル、1−n−ブチルエテニル、2−メチル−1−ペンテニル、2−メチル−2−ペンテニル、2−メチル−3−ペンテニル、2−メチル−4−ペンテニル、2−n−プロピル−2−プロペニル、3−メチル−1−ペンテニル、3−メチル−2−ペンテニル、3−メチル−3−ペンテニル、3−メチル−4−ペンテニル、3−エチル−3−ブテニル、4−メチル−1−ペンテニル、4−メチル−2−ペンテニル、4−メチル−3−ペンテニル、4−メチル−4−ペンテニル、1,1−ジメチル−2−ブテニル、1,1−ジメチル−3−ブテニル、1,2−ジメチル−1−ブテニル、1,2−ジメチル−2−ブテニル、1,2−ジメチル−3−ブテニル、1−メチル−2−エチル−2−プロペニル、1−s−ブチルエテニル、1,3−ジメチル−1−ブテニル、1,3−ジメチル−2−ブテニル、1,3−ジメチル−3−ブテニル、1−i−ブチルエテニル、2,2−ジメチル−3−ブテニル、2,3−ジメチル−1−ブテニル、2,3−ジメチル−2−ブテニル、2,3−ジメチル−3−ブテニル、2−i−プロピル−2−プロペニル、3,3−ジメチル−1−ブテニル、1−エチル−1−ブテニル、1−エチル−2−ブテニル、1−エチル−3−ブテニル、1−n−プロピル−1−プロペニル、1−n−プロピル−2−プロペニル、2−エチル−1−ブテニル、2−エチル−2−ブテニル、2−エチル−3−ブテニル、1,1,2−トリメチル−2−プロペニル、1−t−ブチルエテニル、1−メチル−1−エチル−2−プロペニル、1−エチル−2−メチル−1−プロペニル、1−エチル−2−メチル−2−プロペニル、1−i−プロピル−1−プロペニル、1−i−プロピル−2−プロペニル、1−メチル−2−シクロペンテニル、1−メチル−3−シクロペンテニル、2−メチル−1−シクロペンテニル、2−メチル−2−シクロペンテニル、2−メチル−3−シクロペンテニル、2−メチル−4−シクロペンテニル、2−メチル−5−シクロペンテニル、2−メチレン−シクロペンチル、3−メチル−1−シクロペンテニル、3−メチル−2−シクロペンテニル、3−メチル−3−シクロペンテニル、3−メチル−4−シクロペンテニル、3−メチル−5−シクロペンテニル、3−メチレン−シクロペンチル、1−シクロヘキセニル、2−シクロヘキセニル、3−シクロヘキセニル基等が挙げられる。   Specific examples of the alkenyl group having 2 to 10 carbon atoms include ethenyl, 1-propenyl, 2-propenyl, 1-methyl-1-ethenyl, 1-butenyl, 2-butenyl, 3-butenyl and 2-methyl-1- Propenyl, 2-methyl-2-propenyl, 1-ethylethenyl, 1-methyl-1-propenyl, 1-methyl-2-propenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-n- Propylethenyl, 1-methyl-1-butenyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 2-ethyl-2-propenyl, 2-methyl-1-butenyl, 2-methyl-2- Butenyl, 2-methyl-3-butenyl, 3-methyl-1-butenyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 1,1-dimethyl-2-pro Nyl, 1-i-propylethenyl, 1,2-dimethyl-1-propenyl, 1,2-dimethyl-2-propenyl, 1-cyclopentenyl, 2-cyclopentenyl, 3-cyclopentenyl, 1-hexenyl, 2 -Hexenyl, 3-hexenyl, 4-hexenyl, 5-hexenyl, 1-methyl-1-pentenyl, 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-4-pentenyl, 1-n -Butylethenyl, 2-methyl-1-pentenyl, 2-methyl-2-pentenyl, 2-methyl-3-pentenyl, 2-methyl-4-pentenyl, 2-n-propyl-2-propenyl, 3-methyl-1 -Pentenyl, 3-methyl-2-pentenyl, 3-methyl-3-pentenyl, 3-methyl-4-pentenyl, 3-ethyl-3-butenyl 4-methyl-1-pentenyl, 4-methyl-2-pentenyl, 4-methyl-3-pentenyl, 4-methyl-4-pentenyl, 1,1-dimethyl-2-butenyl, 1,1-dimethyl-3- Butenyl, 1,2-dimethyl-1-butenyl, 1,2-dimethyl-2-butenyl, 1,2-dimethyl-3-butenyl, 1-methyl-2-ethyl-2-propenyl, 1-s-butylethenyl, 1,3-dimethyl-1-butenyl, 1,3-dimethyl-2-butenyl, 1,3-dimethyl-3-butenyl, 1-i-butylethenyl, 2,2-dimethyl-3-butenyl, 2,3- Dimethyl-1-butenyl, 2,3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 2-i-propyl-2-propenyl, 3,3-dimethyl-1-butenyl, 1-ethyl- 1- Butenyl, 1-ethyl-2-butenyl, 1-ethyl-3-butenyl, 1-n-propyl-1-propenyl, 1-n-propyl-2-propenyl, 2-ethyl-1-butenyl, 2-ethyl- 2-butenyl, 2-ethyl-3-butenyl, 1,1,2-trimethyl-2-propenyl, 1-tert-butylethenyl, 1-methyl-1-ethyl-2-propenyl, 1-ethyl-2-methyl- 1-propenyl, 1-ethyl-2-methyl-2-propenyl, 1-i-propyl-1-propenyl, 1-i-propyl-2-propenyl, 1-methyl-2-cyclopentenyl, 1-methyl-3 -Cyclopentenyl, 2-methyl-1-cyclopentenyl, 2-methyl-2-cyclopentenyl, 2-methyl-3-cyclopentenyl, 2-methyl-4-cyclopentenyl, 2 Methyl-5-cyclopentenyl, 2-methylene-cyclopentyl, 3-methyl-1-cyclopentenyl, 3-methyl-2-cyclopentenyl, 3-methyl-3-cyclopentenyl, 3-methyl-4-cyclopentenyl, 3 -Methyl-5-cyclopentenyl, 3-methylene-cyclopentyl, 1-cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl group and the like.

また、A1、A2およびA3のうちの残りは、下記式(4)または式(5)で表される基である。

Figure 2011038015
(式(4)中、R2およびR3は、それぞれ独立してフェニル基またはナフチル基を表す。) The rest of A 1 , A 2 and A 3 is a group represented by the following formula (4) or formula (5).
Figure 2011038015
(In formula (4), R 2 and R 3 each independently represent a phenyl group or a naphthyl group.)

上記式(1)で示される重合性単量体において、式(4)または式(5)で表される置換基ではなく、例えばアルコキシ基で置換した単量体では、重合性は発現するが、得られる樹脂の屈折率は高くならない。
また、アントラセンアミノ基やアントラセンオキシ基のような大きな共役系官能基で置換した重合体では、得られる樹脂自体の光透過性が極端に低下してしまう。
さらに、式(4)において、R2およびR3の少なくとも一方が水素原子であると、その理由は必ずしも明らかではないが、得られた樹脂が酸素や熱などの影響で着色し易くなる傾向がある。
以上の理由から、A1、A2およびA3のうちの残りは、上記の式(4)のジフェニルアミノ基、フェニルナフチルアミノ基、ジナフチルアミノ基、および式(5)のカルバゾリル基が好適である。
In the polymerizable monomer represented by the above formula (1), the polymerizability is manifested in a monomer substituted with, for example, an alkoxy group instead of the substituent represented by the formula (4) or (5). The refractive index of the resin obtained does not increase.
In addition, in a polymer substituted with a large conjugated functional group such as an anthracene amino group or an anthracene oxy group, the light transmittance of the obtained resin itself is extremely lowered.
Further, in formula (4), when at least one of R 2 and R 3 is a hydrogen atom, the reason is not necessarily clear, but the obtained resin tends to be easily colored due to the influence of oxygen, heat, and the like. is there.
For the above reasons, the remainder of A 1 , A 2 and A 3 is preferably a diphenylamino group of the above formula (4), a phenylnaphthylamino group, a dinaphthylamino group, and a carbazolyl group of the formula (5). It is.

なお、式(1)において、A1、A2およびA3の全てを式(2)または式(3)の重合性官能基にしてしまうと屈折率を改善できない。
このような重合性官能基を有するが、芳香環を全く含まない例として、上述した特許文献5,6記載の重合体が挙げられる。これら各文献では、塩化シアヌルと水酸基を有する(メタ)アクリル酸エステルとを反応させ、トリアジンに3個の(メタ)アクリル酸エステルを直結させた単量体を用いているが、この単量体は芳香環含有置換基を全く有していないため、得られる樹脂は本発明の目的とする高い屈折率を示さない。
In addition, in formula (1), if all of A 1 , A 2 and A 3 are converted to the polymerizable functional group of formula (2) or formula (3), the refractive index cannot be improved.
Examples of the polymer having such a polymerizable functional group but containing no aromatic ring include the polymers described in Patent Documents 5 and 6 described above. In each of these documents, a monomer obtained by reacting cyanuric chloride with a (meth) acrylic acid ester having a hydroxyl group and directly connecting three (meth) acrylic acid esters to triazine is used. Does not have any aromatic ring-containing substituents, and thus the resulting resin does not exhibit the high refractive index targeted by the present invention.

上述した本発明の重合性単量体は、公知の有機合成反応を用いて製造することができ、例えば、塩化シアヌル等のハロゲン化シアヌルと、A1〜A3に対応するアミンやアルコールとを適当な有機溶媒の存在下で反応させて得ることができる。
また、反応に用いる原料は、市販品として入手することが可能である。
The polymerizable monomer of the present invention described above can be produced using a known organic synthesis reaction. For example, a cyanuric halide such as cyanuric chloride, and an amine or alcohol corresponding to A 1 to A 3 are used. It can be obtained by reacting in the presence of a suitable organic solvent.
Moreover, the raw material used for reaction can be obtained as a commercial item.

本発明の高屈折率樹脂組成物は、上述した式(1)の重合性単量体の単独重合体でも、これと重合可能な他の重合性単量体との共重合体でもよい。
上記他の重合性単量体としては、式(1)の単量体が有する炭素−炭素二重結合と反応して共重合体を与え得る官能基を有するものであれば特に限定されるものではなく、例えば、ビニル系単量体、アクリル系単量体、メタクリル系単量体、アリル系単量体、マレイン酸系単量体などが挙げられる。
The high refractive index resin composition of the present invention may be a homopolymer of the above-described polymerizable monomer of the formula (1) or a copolymer of this with another polymerizable monomer that can be polymerized.
The other polymerizable monomer is not particularly limited as long as it has a functional group capable of giving a copolymer by reacting with the carbon-carbon double bond of the monomer of formula (1). Instead, for example, vinyl monomers, acrylic monomers, methacrylic monomers, allyl monomers, maleic monomers and the like can be mentioned.

ビニル系単量体の具体例としては、スチレン、ジビニルベンゼン、ビニルナフタレン、ジビニルナフタレン等の芳香族系ビニル化合物;酢酸ビニル、バーサチック酸ビニル、アジピン酸ビニル等のビニルエステル類;ビニルメチルケトン、ビニルエチルケトン等のビニルケトン類;ビニルメチルエーテル、ビニルエチルエーテル等のビニルエーテル類;末端にビニル基を有するポリジメチルシロキサン、末端にビニル基を有するポリジフェニルシロキサン、末端にビニル基を有するポリジメチルシロキサン−ポリジフェニルシロキサン共重合体、側鎖にビニル基を有するポリジメチルシロキサン、側鎖にビニル基を有するポリジフェニルシロキサン、側鎖にビニル基を有するポリジメチルシロキサン−ポリジフェニルシロキサン共重合体等のビニル基含有シリコーン類などが挙げられる。   Specific examples of vinyl monomers include aromatic vinyl compounds such as styrene, divinylbenzene, vinyl naphthalene and divinyl naphthalene; vinyl esters such as vinyl acetate, vinyl versatate and vinyl adipate; vinyl methyl ketone and vinyl Vinyl ketones such as ethyl ketone; vinyl ethers such as vinyl methyl ether and vinyl ethyl ether; polydimethylsiloxane having a vinyl group at a terminal, polydiphenylsiloxane having a vinyl group at a terminal, polydimethylsiloxane having a vinyl group at a terminal Diphenylsiloxane copolymer, polydimethylsiloxane having a vinyl group in the side chain, polydiphenylsiloxane having a vinyl group in the side chain, polydimethylsiloxane-polydiphenylsiloxane copolymer having a vinyl group in the side chain, etc. Such as sulfonyl group-containing silicones are exemplified.

アクリル系単量体の具体例としては、アクリル酸、アクリル酸メチル、アクリル酸オクチル、アクリル酸ステアリル等のアクリル酸およびそのエステル類;ビスフェノール系エポキシ樹脂にアクリル酸を結合させたビスフェノールエポキシアクリレート、フェノールノボラックエポキシ樹脂にアクリル酸を結合させたフェノールノボラックエポキシアクリレート、クレゾールノボラックエポキシ樹脂にアクリル酸を反応させたクレゾールノボラックエポキシアクリレート等のエポキシアクリレート類;ポリエチレンフタレートやポリブチレンフタレート等のポリエステルにアクリル酸を結合させたポリエステルアクリレート類;イソホロンジイソシアネート系ポリウレタンやヘキサメチレンジイソシアネート系ポリウレタンにアクリル酸を結合させたウレタンアクリレート類などが挙げられる。   Specific examples of acrylic monomers include acrylic acid such as acrylic acid, methyl acrylate, octyl acrylate, stearyl acrylate, and esters thereof; bisphenol epoxy acrylate, phenol obtained by bonding acrylic acid to bisphenol epoxy resin Epoxy acrylates such as phenol novolac epoxy acrylate with acrylic acid bonded to novolac epoxy resin, cresol novolak epoxy acrylate with acrylic acid reacted with cresol novolac epoxy resin; acrylic acid bonded to polyester such as polyethylene phthalate and polybutylene phthalate Polyester acrylates; acrylic acid bound to isophorone diisocyanate polyurethane or hexamethylene diisocyanate polyurethane And the like urethane acrylates was.

メタクリル系単量体の具体例としては、メタクリル酸、メタクリル酸メチル、メタクリル酸オクチル、メタクリル酸ステアリル等のメタクリル酸およびそのエステル類;ビスフェノール系エポキシ樹脂にメタクリル酸を結合させたビスフェノールエポキシメタクリレート、フェノールノボラックエポキシ樹脂にメタクリル酸を結合させたフェノールノボラックエポキシメタクリレート、クレゾールノボラックエポキシ樹脂にメタクリル酸を反応させたクレゾールノボラックエポキシメタクリレート等のエポキシメタクリレート類;ポリエチレンフタレートやポリブチレンフタレート等のポリエステルにメタクリル酸を結合させたポリエステルメタクリレート類;イソホロンジイソシアネート系ポリウレタンやヘキサメチレンジイソシアネート系ポリウレタンにメタクリル酸を結合させたウレタンメタクリレート類などが挙げられる。   Specific examples of methacrylic monomers include methacrylic acid and its esters such as methacrylic acid, methyl methacrylate, octyl methacrylate, stearyl methacrylate; bisphenol epoxy methacrylate, phenol obtained by binding methacrylic acid to a bisphenol epoxy resin Epoxy methacrylates such as phenol novolac epoxy methacrylate with methacrylic acid bonded to novolac epoxy resin, cresol novolac epoxy methacrylate with metholeic acid reacted with cresol novolac epoxy resin; methacrylic acid bonded to polyester such as polyethylene phthalate and polybutylene phthalate Polyester methacrylates; isophorone diisocyanate polyurethane and hexamethylene diisocyanate Urethane methacrylates bound with methacrylic acid to polyurethanes.

アリル系単量体の具体例としては、ジアリルフタレート等の芳香族アリルエステル類;トリアリルシアヌレート、トリアリルイソシアヌレート等のヘテロ環含有アリル化合物などが挙げられる。
マレイン酸系単量体の具体例としては、マレイン酸、無水マレイン酸、マレイン酸モノメチル、マレイン酸ジメチル等のマレイン酸およびそのエステル類;無水マレイン酸とエチレングリコールやネオペンチルグリコール等のポリオール類とを反応させて得られる不飽和ポリエステル類;無水マレイン酸とモノアミンとを反応させてできるフェニルマレイミド、シクロへキシルマレイミド等のモノマレイミド類;無水マレイン酸とジアミンとを反応させてできるジフェニルエーテルビスマレイミド等のビスマレイミド類などが挙げられる。
以上で例示した重合性単量体は、それぞれ単独で用いても、2種以上組み合わせて用いてもよく、また、異なる系統の単量体を組み合わせて用いることもできる。
Specific examples of the allylic monomer include aromatic allyl esters such as diallyl phthalate; heterocyclic allyl compounds such as triallyl cyanurate and triallyl isocyanurate.
Specific examples of maleic monomers include maleic acid, maleic anhydride, maleic acid monomethyl, maleic acid such as dimethyl maleate and esters thereof; maleic anhydride and polyols such as ethylene glycol and neopentyl glycol; Unsaturated polyesters obtained by reacting monomaleic acid; monomaleimides such as phenylmaleimide and cyclohexylmaleimide obtained by reacting maleic anhydride and monoamine; diphenyl ether bismaleimide obtained by reacting maleic anhydride and diamine And bismaleimides.
The polymerizable monomers exemplified above may be used singly or in combination of two or more, and different types of monomers may be used in combination.

本発明において、式(1)の重合性単量体と、他の重合性単量体とを共重合させる場合、本発明の目的とする耐熱性と高い屈折率とを同時に発現させることを考慮すると、その共重合割合は、式(1)の重合性単量体70〜100質量部に対して、他の重合性単量体30質量部以下が好ましく、式(1)の重合性単量体80〜100質量部に対して、他の重合性単量体20質量部以下がより好ましい。また、その下限は0質量部を超える量であれば、特に限定されるものではない。   In the present invention, when the polymerizable monomer of the formula (1) is copolymerized with another polymerizable monomer, it is considered to simultaneously develop the heat resistance and high refractive index that are the objects of the present invention. Then, the copolymerization ratio is preferably 30 parts by mass or less of the other polymerizable monomer with respect to 70 to 100 parts by mass of the polymerizable monomer of the formula (1), and the polymerizable monomer of the formula (1). 20 mass parts or less of other polymerizable monomers are more preferable with respect to 80-100 mass parts of bodies. Moreover, the lower limit will not be specifically limited if it is the quantity exceeding 0 mass part.

また、本発明の高屈折率樹脂組成物を製造する際における重合反応の活性種としては、特に限定されるものではないが、ラジカル重合性の重合開始剤が最適である。
このような重合開始剤としては、過酸化ベンゾイル等の有機過酸化物、アゾビスイソブチロニトリル等のアゾ系重合開始剤、クメンハイドロパーオキサイド/ナフテン酸コバルト等のレドックス系開始剤などの、一般的に使用されるラジカル重合開始剤であればいかなるものでもよい。
重合開始剤の使用量は、重合性単量体100質量部に対して0.1〜20質量部程度とすることができるが、0.5〜5質量部が好ましい。
In addition, the active species of the polymerization reaction in producing the high refractive index resin composition of the present invention is not particularly limited, but a radical polymerizable polymerization initiator is optimal.
Examples of such polymerization initiators include organic peroxides such as benzoyl peroxide, azo polymerization initiators such as azobisisobutyronitrile, and redox initiators such as cumene hydroperoxide / cobalt naphthenate. Any radical polymerization initiator generally used may be used.
Although the usage-amount of a polymerization initiator can be about 0.1-20 mass parts with respect to 100 mass parts of polymerizable monomers, 0.5-5 mass parts is preferable.

具体的な重合反応法としては、溶融した重合性単量体と重合開始剤とを混合して、型に流し込んで無溶剤重合する塊状重合法にて、フィルム、シートまたは板状の樹脂組成物を製造する方法や、適切な有機溶剤に溶解して行う溶液重合法にて、溶剤を蒸発させながら重合し、コーティング薄膜、フィルムまたはシート状の樹脂組成物を形成する方法などが挙げられるが、これらに限定されるものではない。
また、本発明の樹脂組成物を製造できるものであれば、有機溶剤の種類は特に制約を受けない。
As a specific polymerization reaction method, a film, sheet or plate-shaped resin composition is prepared by a bulk polymerization method in which a molten polymerizable monomer and a polymerization initiator are mixed, poured into a mold, and solventless polymerization is performed. In a solution polymerization method carried out by dissolving in an appropriate organic solvent, polymerization is conducted while evaporating the solvent, and a method of forming a coating thin film, film or sheet-like resin composition, etc. It is not limited to these.
Moreover, the kind of organic solvent will not be restrict | limited especially if the resin composition of this invention can be manufactured.

以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の例に限定されるものではない。なお、各物性の測定方法および装置は以下のとおりである。
1H−NMR]
NMR装置として、BRUKER社製AC400Pを用いて測定した。測定方法としては、化合物を重水素化クロロホルムに溶解し、テトラメチルシランを内部標準物質として測定を実施した。
[赤外吸収スペクトル]
赤外吸収スペクトル(以下、IRと記す)は日本分光社製フーリエ変換型赤外分光光度計JASCO FT/IR4200を用い、臭化カリウム錠剤法にて測定した。
[熱分析]
セイコー電子工業社製の示差熱熱重量同時測定装置(TG/DTA320型)、およびセイコー電子工業社製の示差走査熱量計(DSC220型)を用いて測定した。
[屈折率の測定]
20mm×7mmに切断した試験片を用い、アタゴ社製の多波長アッベ屈折計(DR−4M)にて、波長589nmおよび656nmにおける屈折率を測定した。
EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated more concretely, this invention is not limited to the following example. In addition, the measuring method and apparatus of each physical property are as follows.
[ 1 H-NMR]
The measurement was performed using an AC400P manufactured by BRUKER as an NMR apparatus. As a measuring method, the compound was dissolved in deuterated chloroform, and measurement was carried out using tetramethylsilane as an internal standard substance.
[Infrared absorption spectrum]
The infrared absorption spectrum (hereinafter referred to as IR) was measured by a potassium bromide tablet method using a JASCO FT / IR4200 Fourier transform infrared spectrophotometer manufactured by JASCO Corporation.
[Thermal analysis]
The measurement was performed using a differential thermothermal weight simultaneous measurement device (TG / DTA320 type) manufactured by Seiko Denshi Kogyo Co., Ltd. and a differential scanning calorimeter (DSC220 type) manufactured by Seiko Denshi Kogyo Co., Ltd.
[Measurement of refractive index]
Using a test piece cut to 20 mm × 7 mm, the refractive index at wavelengths of 589 nm and 656 nm was measured with a multi-wavelength Abbe refractometer (DR-4M) manufactured by Atago Co., Ltd.

〈重合性単量体の合成〉
[実施例1]重合性単量体(M1)の合成
(1)中間体化合物(L1)の合成

Figure 2011038015
<Synthesis of polymerizable monomer>
[Example 1] Synthesis of polymerizable monomer (M1) (1) Synthesis of intermediate compound (L1)
Figure 2011038015

撹拌機付きの三口フラスコに、塩化シアヌル55.36gおよびテトラヒドロフラン250mLを入れ、窒素雰囲気下、氷浴上で内温を0〜5℃に冷却しながら完全に溶解させた。次いでジフェニルアミン50.85gおよびトリエチルアミン30.59gをテトラヒドロフラン100mLに溶解させた溶液を側管付き滴下ロートに充填し、内容物を撹拌しつつ、反応温度を0〜5℃に保ちながらゆっくりと滴下した。滴下終了後、0〜5℃に保ちながら2時間反応し、その後、室温にて17時間反応させた。終了後、内容物をエバポレータで濃縮し、トルエン250mLおよび純水250mLを加えて撹拌した。これを分液ロートに移して、純水500mLを加えて水洗する操作を3回繰り返し、有機層を取り出して、無水硫酸ナトリウムを加えて10分間撹拌し、乾燥した。固形物をろ別し、ろ液をエバポレータで濃縮して淡黄色の粗結晶を得た。この粗結晶をトルエンとヘキサンの混合溶媒で2回再結晶し、吸引ろ過にて回収後、80℃で12時間真空乾燥して白色結晶を得た(収率35.8%)。
この白色固体のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた白色固体が、式(L1)で表される中間体化合物であることが確認された。
1H−NMR(400MHz,CDCl3):δ7.40(t,4H,Ar−H),7.31(t,2H,Ar−H),7.26(d,4H,Ar−H).
IR(KBr,cm-1):ν=3055(aromatic C−H),1600(aromatic C=C),1548(triazine C=N),1496(aromatic C=C).
A three-necked flask equipped with a stirrer was charged with 55.36 g of cyanuric chloride and 250 mL of tetrahydrofuran, and completely dissolved while cooling the internal temperature to 0 to 5 ° C. on an ice bath in a nitrogen atmosphere. Next, a solution prepared by dissolving 50.85 g of diphenylamine and 30.59 g of triethylamine in 100 mL of tetrahydrofuran was charged into a dropping funnel with a side tube, and the contents were stirred and slowly added dropwise while maintaining the reaction temperature at 0 to 5 ° C. After completion of the dropwise addition, the reaction was allowed to proceed for 2 hours while maintaining the temperature at 0 to 5 ° C., followed by a reaction at room temperature for 17 hours. After completion, the contents were concentrated with an evaporator, and 250 mL of toluene and 250 mL of pure water were added and stirred. The operation of transferring this to a separatory funnel and adding 500 mL of pure water and washing with water was repeated three times, the organic layer was taken out, anhydrous sodium sulfate was added, and the mixture was stirred for 10 minutes and dried. The solid was filtered off, and the filtrate was concentrated with an evaporator to obtain pale yellow crude crystals. The crude crystals were recrystallized twice with a mixed solvent of toluene and hexane, collected by suction filtration, and then vacuum dried at 80 ° C. for 12 hours to obtain white crystals (yield 35.8%).
The NMR and IR measurement results of this white solid are shown below. From these results, it was confirmed that the obtained white solid was an intermediate compound represented by the formula (L1).
1 H-NMR (400 MHz, CDCl 3 ): δ 7.40 (t, 4H, Ar—H), 7.31 (t, 2H, Ar—H), 7.26 (d, 4H, Ar—H).
IR (KBr, cm -1 ): ν = 3055 (aromatic C-H), 1600 (aromatic C = C), 1548 (triazine C = N), 1496 (aromatic C = C).

(2)重合性単量体(M1)の合成

Figure 2011038015
(2) Synthesis of polymerizable monomer (M1)
Figure 2011038015

撹拌機付きの二口フラスコに、上記で得られた中間体化合物(L1)15.65g、およびジオキサン300mLを加えて溶解させた。ここに、アリルアミン9.72gとトリエチルアミン17.51gとをジオキサン100mLに溶解した溶液を室温でゆっくり滴下した。滴下終了後、室温で2時間反応させ、さらに80℃で2時間反応させた後、還流温度まで昇温して20時間反応させた。その後、反応生成物をエバポレータで濃縮後、クロロホルム500mLに溶解して、分液ロートに移し、純水500mLで洗浄した。その後、純水100mLで3回洗浄を繰り返し、有機層を採取して無水硫酸マグネシウムで10分間乾燥後、有機層を濃縮して粗生成物を得た。これをトルエンとヘキサンの混合溶媒にて2回再結晶し、12時間減圧乾燥して白色粉末を得た(収率44.2%)。この白色固体のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた白色固体が、式(M1)で表される重合性単量体であることが確認された。
1H−NMR(400MHz,CDCl3):δ7.32−7.13(m,10H、Ar−H),5.77−5.87(m,2H,−CH=),5.14−5.04(m,4H,=CH2),4.93(s,2H,N−H),3.85(d,4H,CH2
IR(KBr,cm-1):ν=3250(N−H),3098(allyl =C−H),2945(alkyl C−H),1604(aromatic C=C),1533(triazine C=N),911(allyl =C−H).
In a two-necked flask equipped with a stirrer, 15.65 g of the intermediate compound (L1) obtained above and 300 mL of dioxane were added and dissolved. A solution prepared by dissolving 9.72 g of allylamine and 17.51 g of triethylamine in 100 mL of dioxane was slowly added dropwise thereto at room temperature. After completion of the dropwise addition, the mixture was reacted at room temperature for 2 hours, further reacted at 80 ° C. for 2 hours, then heated to reflux temperature and reacted for 20 hours. Thereafter, the reaction product was concentrated with an evaporator, dissolved in 500 mL of chloroform, transferred to a separatory funnel, and washed with 500 mL of pure water. Thereafter, washing with 100 mL of pure water was repeated three times, the organic layer was collected, dried over anhydrous magnesium sulfate for 10 minutes, and then concentrated to obtain a crude product. This was recrystallized twice with a mixed solvent of toluene and hexane, and dried under reduced pressure for 12 hours to obtain a white powder (yield 44.2%). The NMR and IR measurement results of this white solid are shown below. From these results, it was confirmed that the obtained white solid was a polymerizable monomer represented by the formula (M1).
1 H-NMR (400 MHz, CDCl 3 ): δ 7.32-7.13 (m, 10H, Ar—H), 5.77-5.87 (m, 2H, —CH═), 5.14-5 .04 (m, 4H, = CH 2), 4.93 (s, 2H, N-H), 3.85 (d, 4H, CH 2)
IR (KBr, cm −1 ): ν = 3250 (N—H), 3098 (allyl = C—H), 2945 (alkyl C—H), 1604 (aromatic C = C), 1533 (triazine C = N) , 911 (allyl = C-H).

[実施例2]重合性単量体(M2)の合成

Figure 2011038015
[Example 2] Synthesis of polymerizable monomer (M2)
Figure 2011038015

撹拌機および窒素導入管を装着した三口フラスコに、水素化ナトリウム(60%)4.27gおよび適量のヘキサンを入れて数分撹拌後、静置した。注射器で上澄み液を除いた後、フラスコ内を減圧し、窒素を充填した。この窒素置換操作を3回繰り返した後、窒素雰囲気下で、実施例1で得られた重合性単量体(M1)7.18gとジメチルアセトアミド20mLとの混合物をゆっくり適下し、室温で1時間撹拌した。ここにヨウ化メチル7.10gをゆっくり適下し、室温で12時間撹拌した。その後、内容物を純水1Lに滴下し、6時間撹拌洗浄した。得られた淡黄色固体の粗生成物をトルエンとヘキサンとの混合溶媒にて2回再結晶し、一晩減圧乾燥して白色粉末を得た(収率20.6%)。この白色固体のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた白色固体が、式(M2)で表される重合性単量体であることが確認された。
1H−NMR(400MHz,CDCl3):δ7.29−7.09(m,10H、Ar−H),5.79−5.69(m,2H,−CH=),5.12−5.02(m,4H,=CH2),4.02(d,4H,CH2),3.01(s,3H,CH3),2.83(s,3H,CH3).
IR(KBr,cm-1):ν=3061(allyl =C−H),2914(alkyl C−H),1584(aromatic C=C),1529(triazine C=N),930(allyl =C−H).
To a three-necked flask equipped with a stirrer and a nitrogen introducing tube, 4.27 g of sodium hydride (60%) and an appropriate amount of hexane were added and stirred for several minutes, and then allowed to stand. After removing the supernatant with a syringe, the flask was depressurized and filled with nitrogen. After repeating this nitrogen substitution operation three times, under a nitrogen atmosphere, slowly drop the mixture of 7.18 g of the polymerizable monomer (M1) obtained in Example 1 and 20 mL of dimethylacetamide at room temperature. Stir for hours. To this, 7.10 g of methyl iodide was slowly applied and stirred at room temperature for 12 hours. Thereafter, the contents were dropped into 1 L of pure water and washed with stirring for 6 hours. The obtained pale yellow solid crude product was recrystallized twice with a mixed solvent of toluene and hexane, and dried under reduced pressure overnight to obtain a white powder (yield 20.6%). The NMR and IR measurement results of this white solid are shown below. From these results, it was confirmed that the obtained white solid was a polymerizable monomer represented by the formula (M2).
1 H-NMR (400 MHz, CDCl 3 ): δ 7.29-7.09 (m, 10H, Ar—H), 5.79-5.69 (m, 2H, —CH═), 5.12-5 .02 (m, 4H, ═CH 2 ), 4.02 (d, 4H, CH 2 ), 3.01 (s, 3H, CH 3 ), 2.83 (s, 3H, CH 3 ).
IR (KBr, cm −1 ): ν = 3061 (allyl = C—H), 2914 (alkyl C—H), 1584 (aromatic C = C), 1529 (triazine C = N), 930 (allyl = C−) H).

[実施例3]重合性単量体(M3)の合成

Figure 2011038015
[Example 3] Synthesis of polymerizable monomer (M3)
Figure 2011038015

撹拌機および窒素導入管を装着した三口フラスコに、実施例1の中間体化合物(L1)22.21gおよびジオキサン100mLを計量し、撹拌して溶解させた。ここにジアリルアミン21.38gとトリエチルアミン22.28gとをジオキサン50mLに溶解させた溶液をゆっくり滴下した後、室温で2時間反応させた。続いて、80℃で2時間反応させ、さらに還流温度まで昇温し、20時間還流させた。その後、反応生成物をエバポレータで濃縮後、トルエン300mLに溶解して、分液ロートに移し、純水300mLで洗浄した。さらに、純水500mLで3回洗浄を繰り返し、有機層を採取して無水硫酸ナトリウムで10分間乾燥後、有機層を濃縮して粗生成物を得た。これをトルエンとヘキサンとの混合溶媒にて2回再結晶し、12時間減圧乾燥して白色粉末を得た(収率41.3%)。この白色固体のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた白色固体が、式(M3)で表される重合性単量体であることが確認された。
1H−NMR(400MHz,CDCl3):δ7.29−7.09(m,10H、Ar−H),5.80−5.68(m,4H,−CH=),5.12−4.90(m,8H,=CH2),3.99(d,8H,CH2).
IR(KBr,cm-1):ν=3078(allyl =C−H),2919(alkyl C−H),1524(triazine C=N),923(allyl =C−H).
In a three-necked flask equipped with a stirrer and a nitrogen introducing tube, 22.21 g of the intermediate compound (L1) of Example 1 and 100 mL of dioxane were weighed, and dissolved by stirring. A solution prepared by dissolving 21.38 g of diallylamine and 22.28 g of triethylamine in 50 mL of dioxane was slowly added dropwise thereto, followed by reaction at room temperature for 2 hours. Then, it was made to react at 80 degreeC for 2 hours, and also it heated up to recirculation | reflux temperature, and was made to recirculate | reflux for 20 hours. Thereafter, the reaction product was concentrated with an evaporator, dissolved in 300 mL of toluene, transferred to a separatory funnel, and washed with 300 mL of pure water. Furthermore, washing with 500 mL of pure water was repeated three times, the organic layer was collected, dried over anhydrous sodium sulfate for 10 minutes, and then concentrated to obtain a crude product. This was recrystallized twice with a mixed solvent of toluene and hexane, and dried under reduced pressure for 12 hours to obtain a white powder (yield 41.3%). The NMR and IR measurement results of this white solid are shown below. From these results, it was confirmed that the obtained white solid was a polymerizable monomer represented by the formula (M3).
1 H-NMR (400 MHz, CDCl 3 ): δ 7.29-7.09 (m, 10H, Ar—H), 5.80-5.68 (m, 4H, —CH═), 5.12-4 .90 (m, 8H, ═CH 2 ), 3.99 (d, 8H, CH 2 ).
IR (KBr, cm −1 ): ν = 3078 (allyl = C—H), 2919 (alkyl C—H), 1524 (triazine C═N), 923 (allyl = C—H).

[実施例4]重合性単量体(M4)の合成

Figure 2011038015
[Example 4] Synthesis of polymerizable monomer (M4)
Figure 2011038015

撹拌機付きの三口フラスコに、実施例1の中間体化合物(L1)1.57gおよびジオキサン15mLを計量し、撹拌して溶解させた。ここにアリルアルコール30mLを滴下し、さらに炭酸カリウム2.08gを滴下した後、室温で2時間反応させた。続いて、80℃で2時間反応させ、さらに還流温度まで昇温し、20時間還流させた。その後、反応生成物をエバポレータで濃縮後、クロロホルム50mLに溶解して、分液ロートに移し、純水80mLで洗浄した。さらに、純水100mLで3回洗浄を繰り返し、有機層を採取して無水硫酸ナトリウムで10分間乾燥後、有機層を濃縮して粗生成物を得た。これをトルエンとヘキサンとの混合溶媒にて2回再結晶し、12時間減圧乾燥して白色粉末を得た(収率32.0%)。この白色固体のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた白色固体が、式(M4)で表される重合性単量体であることが確認された。
1H−NMR(400MHz,CDCl3):δ7.37−7.14(m,10H、Ar−H),5.98−5.88(m,2H,−CH=),5.26−5.17(m,4H,=CH2),4.67(d,4H,CH2).
IR(KBr,cm-1):ν=3063(allyl =C−H),2935(alkyl C−H),1539(triazine C=N),929(allyl =C−H).
In a three-necked flask equipped with a stirrer, 1.57 g of the intermediate compound (L1) of Example 1 and 15 mL of dioxane were weighed and dissolved by stirring. Allyl alcohol 30mL was dripped here, and also potassium carbonate 2.08g was dripped, Then, it was made to react at room temperature for 2 hours. Then, it was made to react at 80 degreeC for 2 hours, and also it heated up to recirculation | reflux temperature, and was made to recirculate | reflux for 20 hours. Thereafter, the reaction product was concentrated with an evaporator, dissolved in 50 mL of chloroform, transferred to a separatory funnel, and washed with 80 mL of pure water. Furthermore, washing with 100 mL of pure water was repeated three times, the organic layer was collected, dried over anhydrous sodium sulfate for 10 minutes, and then concentrated to obtain a crude product. This was recrystallized twice with a mixed solvent of toluene and hexane, and dried under reduced pressure for 12 hours to obtain a white powder (yield 32.0%). The NMR and IR measurement results of this white solid are shown below. From these results, it was confirmed that the obtained white solid was a polymerizable monomer represented by the formula (M4).
1 H-NMR (400 MHz, CDCl 3 ): δ 7.37-7.14 (m, 10H, Ar—H), 5.98-5.88 (m, 2H, —CH═), 5.26-5 .17 (m, 4H, ═CH 2 ), 4.67 (d, 4H, CH 2 ).
IR (KBr, cm −1 ): ν = 3063 (allyl = C—H), 2935 (alkyl C—H), 1539 (triazine C═N), 929 (allyl = C—H).

[実施例5]重合性単量体(M5)の合成
(1)中間体化合物(L2)の合成

Figure 2011038015
[Example 5] Synthesis of polymerizable monomer (M5) (1) Synthesis of intermediate compound (L2)
Figure 2011038015

撹拌機付きの三口フラスコに、塩化シアヌル55.2gおよびテトラヒドロフラン250mLを入れ、窒素雰囲気下、氷浴上で内温を−5℃に冷却しながら完全に溶解した。次いで、ジアリルアミン31.9gおよびトリエチルアミン32.0gをテトラヒドロフラン50mLに溶解させた溶液を側管付き滴下ロートに充填し、内容物を撹拌しつつ、反応温度を−5℃に保ちながらゆっくりと滴下した。滴下終了後、−5℃に保ちながら4時間反応し、さらに、室温にて1時間反応させた。反応終了後、内容物を純水5L中に投入し、撹拌しながら一晩洗浄した。析出した固体をろ別し、トルエン100mLに溶解後、分液ロートに移して、純水100mLにて洗浄し、さらに純水200mLにて3回水洗した。有機層に無水硫酸ナトリウムを加えて10分間撹拌し、乾燥した。固形物をろ別し、ろ液をエバポレータで濃縮して淡黄色の粗結晶を得た。この粗結晶をトルエンとヘキサンとの混合溶媒で2回再結晶し、吸引ろ過にて回収後、12時間真空乾燥して白色結晶を得た(収率50.1%)。この白色固体のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた白色固体が、式(L2)で表される中間体化合物であることが確認された。
1H−NMR(400MHz,CDCl3):δ5.83−5.76(m,2H,=CH−),5.26−5.18(m,4H,=CH2),4.22(d,4H,CH2).
IR(KBr,cm-1):ν=3089(allyl =C−H),2939(alkyl C−H),1552(triazine C=N),938(allyl =C−H).
A three-necked flask equipped with a stirrer was charged with 55.2 g of cyanuric chloride and 250 mL of tetrahydrofuran, and completely dissolved while cooling the internal temperature to −5 ° C. on an ice bath in a nitrogen atmosphere. Next, a solution prepared by dissolving 31.9 g of diallylamine and 32.0 g of triethylamine in 50 mL of tetrahydrofuran was charged into a dropping funnel with a side tube, and the contents were stirred and slowly added dropwise while maintaining the reaction temperature at −5 ° C. After completion of the dropwise addition, the reaction was performed for 4 hours while maintaining at -5 ° C, and the reaction was further performed at room temperature for 1 hour. After completion of the reaction, the contents were put into 5 L of pure water and washed overnight with stirring. The precipitated solid was separated by filtration, dissolved in 100 mL of toluene, transferred to a separatory funnel, washed with 100 mL of pure water, and further washed with 200 mL of pure water three times. Anhydrous sodium sulfate was added to the organic layer, stirred for 10 minutes, and dried. The solid was filtered off, and the filtrate was concentrated with an evaporator to obtain pale yellow crude crystals. The crude crystals were recrystallized twice with a mixed solvent of toluene and hexane, collected by suction filtration, and then vacuum-dried for 12 hours to obtain white crystals (yield 50.1%). The NMR and IR measurement results of this white solid are shown below. From these results, it was confirmed that the obtained white solid was an intermediate compound represented by the formula (L2).
1 H-NMR (400 MHz, CDCl 3 ): δ 5.83-5.76 (m, 2H, ═CH—), 5.26-5.18 (m, 4H, ═CH 2 ), 4.22 (d , 4H, CH 2).
IR (KBr, cm −1 ): ν = 3089 (allyl = C—H), 2939 (alkyl C—H), 1552 (triazine C═N), 938 (allyl = C—H).

(2)重合性単量体(M5)の合成

Figure 2011038015
(2) Synthesis of polymerizable monomer (M5)
Figure 2011038015

撹拌機および窒素導入管を装着した三口フラスコに、水素化ナトリウム(60%)1.26gおよび適量のヘキサンを入れて数分撹拌後、静置した。注射器で上澄み液を除いた後、フラスコ内を減圧し、窒素を充填した。この窒素置換操作を3回繰り返した後、窒素雰囲気下で、ジフェニルアミン1.69gをジメチルアセトアミド5mLに溶解させた溶液をゆっくり適下し、室温で1時間撹拌した。続いて、上記で得られた中間体化合物(L2)1.23gをジメチルアセトアミド5mLに溶解させた溶液をゆっくり適下し、室温で12時間撹拌した。その後、内容物を純水100mLにゆっくり滴下し、析出した淡黄色の固形物をろ別した。これをトルエンとヘキサンとの混合溶媒にて2回再結晶し、12時間減圧乾燥して白色粉末を得た(収率32.0%)。この白色固体のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた白色固体が、式(M5)で表される重合性単量体であることが確認された。
1H−NMR(400MHz,CDCl3):δ7.21−7.05(m,20H,Ar−H),5.65−5.61(m,2H,−CH=),5.01(d,2H,=CH2),4.90(d,2H,=CH2),3.85(d,4H,CH2).
IR(KBr,cm-1):ν=3061(allyl =C−H),2917(alkyl C−H),1587(aromatic C=C),1530(triazine C=N),924(allyl =C−H).
To a three-necked flask equipped with a stirrer and a nitrogen introducing tube, 1.26 g of sodium hydride (60%) and an appropriate amount of hexane were added, stirred for several minutes, and allowed to stand. After removing the supernatant with a syringe, the flask was depressurized and filled with nitrogen. After repeating this nitrogen substitution operation three times, under a nitrogen atmosphere, a solution prepared by dissolving 1.69 g of diphenylamine in 5 mL of dimethylacetamide was appropriately dropped and stirred at room temperature for 1 hour. Subsequently, a solution prepared by dissolving 1.23 g of the intermediate compound (L2) obtained above in 5 mL of dimethylacetamide was appropriately dropped and stirred at room temperature for 12 hours. Thereafter, the content was slowly dropped into 100 mL of pure water, and the precipitated pale yellow solid was filtered off. This was recrystallized twice with a mixed solvent of toluene and hexane, and dried under reduced pressure for 12 hours to obtain a white powder (yield 32.0%). The NMR and IR measurement results of this white solid are shown below. From these results, it was confirmed that the obtained white solid was a polymerizable monomer represented by the formula (M5).
1 H-NMR (400 MHz, CDCl 3 ): δ 7.21-7.05 (m, 20H, Ar—H), 5.65-5.61 (m, 2H, —CH =), 5.01 (d , 2H, ═CH 2 ), 4.90 (d, 2H, ═CH 2 ), 3.85 (d, 4H, CH 2 ).
IR (KBr, cm −1 ): ν = 3061 (allyl = C—H), 2917 (alkyl C—H), 1587 (aromatic C = C), 1530 (triazine C = N), 924 (allyl = C−) H).

[実施例6]重合性単量体(M6)の合成

Figure 2011038015
[Example 6] Synthesis of polymerizable monomer (M6)
Figure 2011038015

撹拌機および窒素導入管を装着した三口フラスコに、水素化ナトリウム(60%)1.45gおよび適量のヘキサンを入れて数分撹拌後、静置した。注射器で上澄み液を除いた後、フラスコ内を減圧し、窒素を充填した。この窒素置換操作を3回繰り返した後、窒素雰囲気下で、カルバゾール1.67gをジメチルアセトアミド10mLに溶解させた溶液をゆっくり適下し、室温で1時間撹拌した。その後、実施例5の中間体化合物(L2)1.23gをジメチルアセトアミド5mLに溶解させた溶液をゆっくり適下し、室温で12時間撹拌した。その後、内容物を純水200mLにゆっくり滴下し、析出した淡黄色の固形物をろ別した。これをトルエンとヘキサンとの混合溶媒にて2回再結晶し、12時間減圧乾燥して白色粉末を得た(収率64.3%)。この白色固体のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた白色固体が、式(M6)で表される重合性単量体であることが確認された。
1H−NMR(400MHz,CDCl3):δ8.89(d,4H、Ar−H),8.05(d,4H、Ar−H),7.43(t,4H、Ar−H),7.35(t,4H、Ar−H),6.11−6.01(m,2H,=CH−),5.36−5.30(m,4H,=CH2),4.47(d,4H,CH2).
IR(KBr,cm-1):ν=3058(allyl =C−H),2929(alkyl C−H),1593(aromatic C=C),1527(triazine C=N),934(allyl =C−H).
To a three-necked flask equipped with a stirrer and a nitrogen introducing tube, 1.45 g of sodium hydride (60%) and an appropriate amount of hexane were added, stirred for several minutes, and allowed to stand. After removing the supernatant with a syringe, the flask was depressurized and filled with nitrogen. After repeating this nitrogen substitution operation three times, a solution in which 1.67 g of carbazole was dissolved in 10 mL of dimethylacetamide was slowly dropped under a nitrogen atmosphere and stirred at room temperature for 1 hour. Thereafter, a solution prepared by dissolving 1.23 g of the intermediate compound (L2) of Example 5 in 5 mL of dimethylacetamide was appropriately dropped and stirred at room temperature for 12 hours. Thereafter, the content was slowly added dropwise to 200 mL of pure water, and the precipitated pale yellow solid was filtered off. This was recrystallized twice with a mixed solvent of toluene and hexane and dried under reduced pressure for 12 hours to obtain a white powder (yield 64.3%). The NMR and IR measurement results of this white solid are shown below. From these results, it was confirmed that the obtained white solid was a polymerizable monomer represented by the formula (M6).
1 H-NMR (400 MHz, CDCl 3 ): δ 8.89 (d, 4H, Ar—H), 8.05 (d, 4H, Ar—H), 7.43 (t, 4H, Ar—H), 7.35 (t, 4H, Ar- H), 6.11-6.01 (m, 2H, = CH -), 5.36-5.30 (m, 4H, = CH 2), 4.47 (d, 4H, CH 2) .
IR (KBr, cm −1 ): ν = 3058 (allyl = C—H), 2929 (alkyl C—H), 1593 (aromatic C = C), 1527 (triazine C = N), 934 (allyl = C— H).

[実施例7]重合性単量体(M7)の合成

Figure 2011038015
[Example 7] Synthesis of polymerizable monomer (M7)
Figure 2011038015

撹拌機および窒素導入管を装着した三口フラスコに、水素化ナトリウム(60%)2.58gおよび適量のヘキサンを入れて数分撹拌後、静置した。注射器で上澄み液を除いた後、フラスコ内を減圧し、窒素を充填した。この窒素置換操作を3回繰り返した後、窒素雰囲気下で、N−フェニル−2−ナフチルアミン4.42gをジメチルアセトアミド10mLに溶解させた溶液をゆっくり適下し、室温で1時間撹拌した。その後、実施例5の中間体化合物(L2)2.47gをジメチルアセトアミド10mLに溶解させた溶液をゆっくり適下し、室温で12時間撹拌した。その後、内容物を純水200mLにゆっくり滴下し、析出した灰色の固形物をろ別した。これをトルエンとヘキサンとの混合溶媒にて3回再結晶し、12時間減圧乾燥して白色粉末を得た(収率50.9%)。この白色固体のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた白色固体が、式(M7)で表される重合性単量体であることが確認された。
1H−NMR(400MHz,CDCl3):δ7.72−7.02(m,24H、Ar−H),5.71−5.62(m,2H,−CH=),5.00(d,2H,=CH),4.88(d,2H,=CH),3.87(d,4H,CH2).
IR(KBr,cm-1):ν=3056(allyl =C−H),2919(alkyl C−H),1596(aromatic C=C),1530(triazine C=N),925(allyl =C−H).
To a three-necked flask equipped with a stirrer and a nitrogen introducing tube, 2.58 g of sodium hydride (60%) and an appropriate amount of hexane were added and stirred for several minutes, and then allowed to stand. After removing the supernatant with a syringe, the flask was depressurized and filled with nitrogen. After repeating this nitrogen substitution operation three times, under a nitrogen atmosphere, a solution prepared by dissolving 4.42 g of N-phenyl-2-naphthylamine in 10 mL of dimethylacetamide was slowly dropped and stirred at room temperature for 1 hour. Thereafter, a solution prepared by dissolving 2.47 g of the intermediate compound (L2) of Example 5 in 10 mL of dimethylacetamide was slowly dropped and stirred at room temperature for 12 hours. Thereafter, the content was slowly dropped into 200 mL of pure water, and the precipitated gray solid was filtered off. This was recrystallized three times with a mixed solvent of toluene and hexane, and dried under reduced pressure for 12 hours to obtain a white powder (yield 50.9%). The NMR and IR measurement results of this white solid are shown below. From these results, it was confirmed that the obtained white solid was a polymerizable monomer represented by the formula (M7).
1 H-NMR (400 MHz, CDCl 3 ): δ 7.72-7.02 (m, 24H, Ar—H), 5.71-5.62 (m, 2H, —CH =), 5.00 (d , 2H, = CH), 4.88 (d, 2H, = CH), 3.87 (d, 4H, CH 2).
IR (KBr, cm −1 ): ν = 3056 (allyl = C—H), 2919 (alkyl C—H), 1596 (aromatic C = C), 1530 (triazine C = N), 925 (allyl = C−) H).

[実施例8]重合性単量体(M8)の合成

Figure 2011038015
[Example 8] Synthesis of polymerizable monomer (M8)
Figure 2011038015

撹拌機および窒素導入管を装着した三口フラスコに、水素化ナトリウム(60%)0.61gおよび適量のヘキサンを入れて数分撹拌後、静置した。注射器で上澄み液を除いた後、フラスコ内を減圧し、窒素を充填した。この窒素置換操作を3回繰り返した後、窒素雰囲気下で、2,2−ジナフチルアミン1.00gをジメチルアセトアミド5mLに溶解させた溶液をゆっくり適下し、室温で1時間撹拌した。その後、実施例5の中間体化合物(L2)0.49gをジメチルアセトアミド10mLに溶解させた溶液をゆっくり適下し、室温で12時間撹拌した。その後、内容物を純水200mLにゆっくり滴下し、析出した灰色の固形物をろ別した。これをトルエンとヘキサンの混合溶媒にて再結晶し、12時間減圧乾燥して白色粉末を得た(収率69.6%)。この白色固体のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた白色固体が、式(M8)で表される重合性単量体であることが確認された。
1H−NMR(400MHz,CDCl3):δ7.67−7.31(m,28H、Ar−H),5.71−5.64(m,2H,−CH=),5.01(d,2H,=CH),4.89(d,2H,=CH),3.89(d,4H,CH2).
IR(KBr,cm-1):ν=3056(allyl =C−H),2919(alkyl C−H),1596(aromatic C=C),1530(triazine C=N),924(allyl =C−H).
To a three-necked flask equipped with a stirrer and a nitrogen introduction tube, 0.61 g of sodium hydride (60%) and an appropriate amount of hexane were added, stirred for several minutes, and allowed to stand. After removing the supernatant with a syringe, the flask was depressurized and filled with nitrogen. After repeating this nitrogen substitution operation three times, under nitrogen atmosphere, a solution prepared by dissolving 1.00 g of 2,2-dinaphthylamine in 5 mL of dimethylacetamide was slowly dropped and stirred at room temperature for 1 hour. Thereafter, a solution obtained by dissolving 0.49 g of the intermediate compound (L2) of Example 5 in 10 mL of dimethylacetamide was slowly dropped and stirred at room temperature for 12 hours. Thereafter, the content was slowly dropped into 200 mL of pure water, and the precipitated gray solid was filtered off. This was recrystallized with a mixed solvent of toluene and hexane, and dried under reduced pressure for 12 hours to obtain a white powder (yield 69.6%). The NMR and IR measurement results of this white solid are shown below. From these results, it was confirmed that the obtained white solid was a polymerizable monomer represented by the formula (M8).
1 H-NMR (400 MHz, CDCl 3 ): δ 7.67-7.31 (m, 28H, Ar—H), 5.71-5.64 (m, 2H, —CH═), 5.01 (d , 2H, = CH), 4.89 (d, 2H, = CH), 3.89 (d, 4H, CH 2).
IR (KBr, cm −1 ): ν = 3056 (allyl = C—H), 2919 (alkyl C—H), 1596 (aromatic C = C), 1530 (triazine C = N), 924 (allyl = C−) H).

[比較例1]重合性単量体(N1)の合成

Figure 2011038015
[Comparative Example 1] Synthesis of polymerizable monomer (N1)
Figure 2011038015

撹拌機付きの三口フラスコに、塩化シアヌル9.15gおよびジオキサン90mLを入れ、撹拌しながら溶解させた。次いでジアリルアミン15.10gとトリエチルアミン15.75gをジオキサン20mLに溶解させた溶液をゆっくり滴下した。滴下終了後、室温で2時間反応させた。続いて、80℃で2時間反応させた後、還流温度まで昇温して20時間反応させた。その後、反応生成物をエバポレータで濃縮し、クロロホルム50mLに溶解して分液ロートに移し、純水50mLで洗浄した。さらに、純水100mLで3回洗浄を繰り返し、有機層を採取して無水硫酸マグネシウムで10分間乾燥し、固形物をろ別後、有機層を濃縮して茶褐色油状の粗生成物を得た。減圧蒸留を行い、無色透明の液状生成物を得た(真空度0.1Torrにて沸点130℃,収率64.2%)。液状生成物のNMRおよびIR測定結果を以下に示す。これらの結果から、得られた無色液体が、式(N1)で表される重合性単量体であることが確認された。
1H−NMR(400MHz,CDCl3):δ5.87−5.80(m,6H,=CH−),5.13−5.08(m,12H,=CH2),4.12(d,12H,CH2).
IR(KBr,cm-1):ν=3076(allyl =C−H),2921(alkyl C−H),1638(allyl C=C),1536(triazine C=N),919(allyl =C−H).
In a three-necked flask equipped with a stirrer, 9.15 g of cyanuric chloride and 90 mL of dioxane were added and dissolved while stirring. Subsequently, a solution prepared by dissolving 15.10 g of diallylamine and 15.75 g of triethylamine in 20 mL of dioxane was slowly added dropwise. After completion of dropping, the reaction was allowed to proceed at room temperature for 2 hours. Then, after making it react at 80 degreeC for 2 hours, it heated up to reflux temperature and made it react for 20 hours. Thereafter, the reaction product was concentrated with an evaporator, dissolved in 50 mL of chloroform, transferred to a separatory funnel, and washed with 50 mL of pure water. Further, washing with 100 mL of pure water was repeated three times, the organic layer was collected and dried over anhydrous magnesium sulfate for 10 minutes, the solid was filtered off, and the organic layer was concentrated to obtain a brown oily crude product. Distillation under reduced pressure was performed to obtain a colorless and transparent liquid product (boiling point: 130 ° C., yield: 64.2% at a vacuum degree of 0.1 Torr). The NMR and IR measurement results of the liquid product are shown below. From these results, it was confirmed that the obtained colorless liquid was a polymerizable monomer represented by the formula (N1).
1 H-NMR (400 MHz, CDCl 3 ): δ 5.87-5.80 (m, 6H, ═CH—), 5.13-5.08 (m, 12H, ═CH 2 ), 4.12 (d , 12H, CH 2).
IR (KBr, cm −1 ): ν = 3076 (allyl = C—H), 2921 (alkyl C—H), 1638 (allyl C = C), 1536 (triazine C = N), 919 (allyl = C— H).

〈樹脂組成物の製造〉
[実施例9]
まず、和光純薬工業社製の過酸化ベンゾイルをクロロホルム/メタノールで再結晶して乾燥したもの1.0gと、東京化成工業社製のα,α′−ジ(t−ブチルペルオキシ)−ジイソプロピルベンゼン1.0gとを混合して重合開始剤混合物を調製した。
次に、重合性単量体(M1)0.105gを120℃で溶融し、ここに上記重合開始剤混合物3.01mgを混合して重合性単量体組成物を調製し、これをただちにポリテトラフルオロエチレン板(300mm×300mm×5mm)上に広げ、もう一枚のポリテトラフルオロエチレン板で挟みこんだ。これを図1に示す装置に装着し、窒素雰囲気下で100℃にて2時間重合した後、140℃にて10時間重合し、その後、200℃まで昇温して1時間重合した。室温まで冷却して、ポリテトラフルオロエチレン板より剥がし、フィルム状の高屈折率樹脂組成物P1を得た。
<Manufacture of resin composition>
[Example 9]
First, 1.0 g of benzoyl peroxide manufactured by Wako Pure Chemical Industries, Ltd., recrystallized with chloroform / methanol and dried, and α, α′-di (t-butylperoxy) -diisopropylbenzene manufactured by Tokyo Chemical Industry Co., Ltd. A polymerization initiator mixture was prepared by mixing 1.0 g.
Next, 0.105 g of a polymerizable monomer (M1) was melted at 120 ° C., and 3.01 mg of the above polymerization initiator mixture was mixed therewith to prepare a polymerizable monomer composition. The sheet was spread on a tetrafluoroethylene plate (300 mm × 300 mm × 5 mm) and sandwiched with another polytetrafluoroethylene plate. This was attached to the apparatus shown in FIG. 1, polymerized at 100 ° C. for 2 hours in a nitrogen atmosphere, polymerized at 140 ° C. for 10 hours, then heated to 200 ° C. and polymerized for 1 hour. It cooled to room temperature and peeled off from the polytetrafluoroethylene board, and the film-form high refractive index resin composition P1 was obtained.

[実施例10〜12、および比較例2]
実施例2〜4および比較例1で得られた各種の重合性単量体を用い、実施例9と同様の方法で、下表1に示す組成にて図1の装置を使用して重合を実施し、高屈折率樹脂組成物P2、P3、P4、および比較樹脂組成物Q1を製造した。
[Examples 10 to 12 and Comparative Example 2]
Using the various polymerizable monomers obtained in Examples 2 to 4 and Comparative Example 1, polymerization was performed in the same manner as in Example 9 using the apparatus of FIG. The high refractive index resin compositions P2, P3, and P4 and the comparative resin composition Q1 were manufactured.

[実施例13]
重合性単量体(M5)0.121gにジメチルアセトアミド0.2gを加えて80℃で溶解させ、ここに実施例9と同一の重合開始剤混合物2.46mgを混合して重合性単量体組成物を調製し、これをただちにテフロン(登録商標)板(300mm×300mm×5mm)上に広げ、もう一枚のテフロン(登録商標)板で挟みこんだ。これを図1に示す装置に装着し、窒素雰囲気下で100℃にて2時間重合した後、140℃にて10時間重合し、その後200℃まで昇温して1時間重合した。室温まで冷却してテフロン(登録商標)板より剥がし、フィルム状の高屈折率樹脂組成物P5を得た。
[Example 13]
0.21 g of dimethylacetamide was added to 0.121 g of the polymerizable monomer (M5) and dissolved at 80 ° C., and 2.46 mg of the same polymerization initiator mixture as in Example 9 was mixed therein to mix the polymerizable monomer. A composition was prepared, and immediately spread on a Teflon (registered trademark) plate (300 mm × 300 mm × 5 mm) and sandwiched between another Teflon (registered trademark) plate. This was attached to the apparatus shown in FIG. 1, polymerized at 100 ° C. for 2 hours in a nitrogen atmosphere, polymerized at 140 ° C. for 10 hours, then heated to 200 ° C. and polymerized for 1 hour. It cooled to room temperature and peeled off from the Teflon (trademark) board, and the film-form high refractive index resin composition P5 was obtained.

[実施例14〜16]
実施例6〜8で得られた各種重合性単量体を用い、実施例13と同様の方法で、下表1に示す組成にて図1の装置を使用して重合を実施し、高屈折率樹脂組成物P6、P7、P8を製造した。
[Examples 14 to 16]
Using the various polymerizable monomers obtained in Examples 6-8, polymerization was carried out in the same manner as in Example 13 using the apparatus shown in FIG. Rate resin compositions P6, P7, and P8 were produced.

[実施例17]
ガラス板(80mm×80mm×3mm)を2枚用意し、それぞれの片面に、東レダウコーニング社製離型剤SR−2410を約1g垂らし、これを直径8mmのガラス丸棒で伸ばして薄く塗布した。1時間空気中で風乾した後、150℃の乾燥機で1時間硬化させ、離型剤の皮膜を形成した。このガラス板2枚を用い、離型処理面を内側にしてコの字型の厚さ3mmのシリコーンゴムスペーサを挟み込み、これを止め具で固定し、図2に示される樹脂の成形型を作製した。
日油社製の有機過酸化物パーヘキサHCとパーブチルCをそれぞれ1.0gずつ計量し、室温で均一混合して重合開始剤混合物を調製した。
続いて、実施例3で得られた重合性単量体(M3)9.0gと他の単量体であるアクリル酸ブチル(以下、BUAと略す)1.0gを80℃にて溶解させ、さらに上記重合開始剤混合物0.1gを混合して重合性単量体組成物を調製した。これを先に作製した成形型に手早く流し込み、ただちに110℃のオーブンに入れて1時間重合した後、120℃にて2時間重合し、その後150℃まで昇温して2時間重合した。一晩かけて室温まで放冷した後、ガラス板より剥がし、厚さ3mmの板状の高屈折率樹脂組成物P9を得た。
[Example 17]
Two glass plates (80 mm × 80 mm × 3 mm) were prepared, and about 1 g of release agent SR-2410 manufactured by Toray Dow Corning Co., Ltd. was dropped on each side, and this was thinly applied by extending it with a glass round bar having a diameter of 8 mm. . After air-drying in air for 1 hour, it was cured for 1 hour in a dryer at 150 ° C. to form a release agent film. Using these two glass plates, a U-shaped silicone rubber spacer having a thickness of 3 mm is sandwiched with the release treatment surface on the inside, and this is fixed with a stopper to produce the resin mold shown in FIG. did.
1.0 g each of organic peroxides Perhexa HC and Perbutyl C manufactured by NOF Corporation were weighed and uniformly mixed at room temperature to prepare a polymerization initiator mixture.
Subsequently, 9.0 g of the polymerizable monomer (M3) obtained in Example 3 and 1.0 g of butyl acrylate (hereinafter abbreviated as BUA) as another monomer were dissolved at 80 ° C., Furthermore, 0.1 g of the above polymerization initiator mixture was mixed to prepare a polymerizable monomer composition. This was quickly poured into the previously prepared mold, immediately placed in an oven at 110 ° C. and polymerized for 1 hour, polymerized at 120 ° C. for 2 hours, then heated to 150 ° C. and polymerized for 2 hours. After allowing to cool to room temperature overnight, it was peeled off from the glass plate to obtain a plate-like high refractive index resin composition P9 having a thickness of 3 mm.

Figure 2011038015
Figure 2011038015

上記実施例9〜17および比較例2で作製した高屈折率樹脂組成物P1〜P9および比較樹脂組成物Q1について、屈折率および5%熱重量減少温度を測定した。結果を表2に示す。   Regarding the high refractive index resin compositions P1 to P9 and the comparative resin composition Q1 prepared in Examples 9 to 17 and Comparative Example 2, the refractive index and the 5% thermogravimetric decrease temperature were measured. The results are shown in Table 2.

Figure 2011038015
Figure 2011038015

表2に示されるように、実施例9〜17で得られた樹脂組成物は、構成元素が炭素、水素、酸素、窒素の4元素以外は一切使用していないにも拘らず、いずれも1.60以上の高い屈折率と、5%重量減少温度290℃以上という高い耐熱性を示すことがわかる。
これに対し、比較例2で得られた樹脂組成物は、屈折率が1.60未満であり、各実施例の樹脂組成物のそれよりも低いことがわかる。
As shown in Table 2, the resin compositions obtained in Examples 9 to 17 were all 1 in spite of the fact that no constituent elements other than the four elements of carbon, hydrogen, oxygen, and nitrogen were used. It can be seen that it has a high refractive index of .60 or higher and a high heat resistance of 5% weight loss temperature of 290 ° C. or higher.
In contrast, the resin composition obtained in Comparative Example 2 has a refractive index of less than 1.60, which is lower than that of the resin composition of each Example.

Claims (3)

式(1)で表されることを特徴とする1,3,5−トリアジン環を有する重合性単量体。
Figure 2011038015
〔式(1)中、A1、A2およびA3のうちの1つまたは2つは、式(2)または式(3)
Figure 2011038015
(式(2)中、R1は、水素原子、炭素数1〜10のアルキル基または炭素数2〜10のアルケニル基を表す。)
で表される基であり、
1、A2およびA3のうちの残りは、式(4)または式(5)
Figure 2011038015
(式(4)中、R2およびR3は、それぞれ独立してフェニル基またはナフチル基を表す。)
で表される基である。〕
A polymerizable monomer having a 1,3,5-triazine ring represented by the formula (1).
Figure 2011038015
[In the formula (1), one or two of A 1 , A 2 and A 3 are represented by the formula (2) or the formula (3)
Figure 2011038015
(In formula (2), R 1 represents a hydrogen atom, an alkyl group or an alkenyl group having 2 to 10 carbon atoms having 1 to 10 carbon atoms.)
A group represented by
The rest of A 1 , A 2, and A 3 is the formula (4) or formula (5)
Figure 2011038015
(In formula (4), R 2 and R 3 each independently represent a phenyl group or a naphthyl group.)
It is group represented by these. ]
請求項1記載の重合性単量体70〜100質量部と、これと重合可能な他の単量体0〜30質量部とを重合して得られることを特徴とする高屈折率樹脂組成物。   A high refractive index resin composition obtained by polymerizing 70 to 100 parts by mass of the polymerizable monomer according to claim 1 and 0 to 30 parts by mass of another monomer that can be polymerized therewith. . 前記他の単量体が、ビニル系単量体、アクリル系単量体、メタクリル系単量体、アリル系単量体、およびマレイン酸系単量体から選ばれる少なくとも1種である請求項2記載の高屈折率樹脂組成物。   3. The other monomer is at least one selected from vinyl monomers, acrylic monomers, methacrylic monomers, allyl monomers, and maleic monomers. The high refractive index resin composition as described.
JP2009187691A 2009-08-13 2009-08-13 Heat resistant high refractive index resin Active JP5476542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187691A JP5476542B2 (en) 2009-08-13 2009-08-13 Heat resistant high refractive index resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009187691A JP5476542B2 (en) 2009-08-13 2009-08-13 Heat resistant high refractive index resin

Publications (2)

Publication Number Publication Date
JP2011038015A true JP2011038015A (en) 2011-02-24
JP5476542B2 JP5476542B2 (en) 2014-04-23

Family

ID=43766105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187691A Active JP5476542B2 (en) 2009-08-13 2009-08-13 Heat resistant high refractive index resin

Country Status (1)

Country Link
JP (1) JP5476542B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007815A (en) * 2011-06-23 2013-01-10 Konica Minolta Holdings Inc Heat ray shielding film, heat ray shielding body using the film, and heat ray shielding film material
JP2018044135A (en) * 2016-09-16 2018-03-22 出光興産株式会社 Self-standing film, electronic device, light emitting device and optical device
US10138353B2 (en) 2014-03-31 2018-11-27 Dow Global Technologies Llc Crosslinkable polymeric compositions with N,N,N′,N′,N″,N″-hexaallyl-1,3,5-triazine-2,4,6-triamine crosslinking coagent, methods for making the same, and articles made therefrom
US11673998B2 (en) 2016-11-22 2023-06-13 Idemitsu Kosan Co., Ltd. Triazine-ring-containing polymer and composition in which same is used

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026451A1 (en) 2010-08-25 2012-03-01 日産化学工業株式会社 Film-forming composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117248A (en) * 1991-08-28 1993-05-14 Kuraray Co Ltd Triazine compound containing (meth)acrylic acid ester residue
WO2002084346A1 (en) * 2001-04-10 2002-10-24 Asahi Glass Company, Limited Optical waveguide
JP2003313288A (en) * 2002-04-25 2003-11-06 Jsr Corp Fluorine-containing copolymer, production process therefor and optical resin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05117248A (en) * 1991-08-28 1993-05-14 Kuraray Co Ltd Triazine compound containing (meth)acrylic acid ester residue
WO2002084346A1 (en) * 2001-04-10 2002-10-24 Asahi Glass Company, Limited Optical waveguide
JP2003313288A (en) * 2002-04-25 2003-11-06 Jsr Corp Fluorine-containing copolymer, production process therefor and optical resin

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013007815A (en) * 2011-06-23 2013-01-10 Konica Minolta Holdings Inc Heat ray shielding film, heat ray shielding body using the film, and heat ray shielding film material
US10138353B2 (en) 2014-03-31 2018-11-27 Dow Global Technologies Llc Crosslinkable polymeric compositions with N,N,N′,N′,N″,N″-hexaallyl-1,3,5-triazine-2,4,6-triamine crosslinking coagent, methods for making the same, and articles made therefrom
JP2018044135A (en) * 2016-09-16 2018-03-22 出光興産株式会社 Self-standing film, electronic device, light emitting device and optical device
US11673998B2 (en) 2016-11-22 2023-06-13 Idemitsu Kosan Co., Ltd. Triazine-ring-containing polymer and composition in which same is used

Also Published As

Publication number Publication date
JP5476542B2 (en) 2014-04-23

Similar Documents

Publication Publication Date Title
JP5476542B2 (en) Heat resistant high refractive index resin
TWI538908B (en) Transparent high refractive index resin composition
US7772358B2 (en) Polytriazoles constructed by 1,3-dipolar cycloaddition
TW201233712A (en) Triazine ring-containing polymer and film-forming composition containing same
TW201120075A (en) Carbazole novolak resin
CN106715619B (en) Coating liquid for coating resist pattern
JP3805853B2 (en) Polymerizable dye and colored ophthalmic lens material using the same
JP5885256B2 (en) Triazine ring-containing polymer
KR102265116B1 (en) An upper layer film-forming composition and a method for manufacturing a phase separation pattern
US10174168B2 (en) Composition for forming passivation film, including resin having carbon-carbon multiple bond
CN107849425B (en) Solvent-free photocurable adhesive composition
TWI305542B (en) Crosslinkable methacrylic resin composition
KR20230024371A (en) Manufacturing method of laminate, release agent composition, and processed semiconductor substrate
CN109937227B (en) Triazine ring-containing polymer and composition using same
KR102642756B1 (en) Diamine compound, method for manufacturing the same, and applications thereof
JP6375303B2 (en) Borazine ring-containing polymer, composition thereof, borazine crosslinked body, and electronic material using them
WO2017077932A1 (en) Photocurable resin composition for microlenses
TW201350470A (en) Resin coating agent
JP2010224500A (en) Optical film and image display device provided with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130123

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140114

R150 Certificate of patent or registration of utility model

Ref document number: 5476542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350