JP2011037992A - Modified dimethylnaphthalene formaldehyde resin - Google Patents

Modified dimethylnaphthalene formaldehyde resin Download PDF

Info

Publication number
JP2011037992A
JP2011037992A JP2009186848A JP2009186848A JP2011037992A JP 2011037992 A JP2011037992 A JP 2011037992A JP 2009186848 A JP2009186848 A JP 2009186848A JP 2009186848 A JP2009186848 A JP 2009186848A JP 2011037992 A JP2011037992 A JP 2011037992A
Authority
JP
Japan
Prior art keywords
dimethylnaphthalene
formula
resin
formaldehyde resin
modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009186848A
Other languages
Japanese (ja)
Inventor
Takatsugu Ideno
隆次 井出野
Seiji Kita
誠二 北
Masashi Ogiwara
雅司 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2009186848A priority Critical patent/JP2011037992A/en
Publication of JP2011037992A publication Critical patent/JP2011037992A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resin with excellent heat resistance and solubility to a solvent, used as a coating agent for a semiconductor or a resin for a resist. <P>SOLUTION: The modified dimethylnaphthalene formaldehyde resin is prepared by modifying a dimethylnaphthalene formaldehyde resin of a specific structure with a modifier including as an essential component a specific compound having an acenaphthene skeleton. At least one compound selected from the group consisting of phenols and naphthols is used as the modifier. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板およびプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤等の広範な用途に用いることができる、半導体用のコーティング剤やレジスト用樹脂として使用できる変性ジメチルナフタレンホルムアルデヒド樹脂に関するものである。   The present invention relates to an electrical insulating material, a resist resin, a semiconductor sealing resin, an adhesive for a printed wiring board, an electrical laminate mounted on an electrical device / electronic device / industrial device, and a matrix resin for a prepreg, build Used as a coating material for semiconductors and as a resin for resists, which can be used for a wide range of applications such as laminated resin materials, resin for fiber reinforced plastic, sealing resin for liquid crystal display panels, paints, various coating agents, adhesives, etc. The present invention relates to a modified dimethylnaphthalene formaldehyde resin.

モノメチルナフタレンおよび/またはジメチルナフタレンを主成分とする多環式芳香族炭化水素とパラホルムアルデヒドとを、芳香族モノスルホン酸の存在下に反応させて得られる芳香族炭化水素樹脂は公知であり、得られる樹脂は、液状エポキシ樹脂との相溶性およびキシレンに対する溶解性が優れている(特許文献1参照)。
また、メトキシメチレンナフタレン化合物と、フェノール、クレゾールまたはナフトール等のフェノール性水酸基を有する化合物とを、ジエチル硫酸の存在下に反応させ、ナフタレンとフェノール性水酸基を有する化合物とがメチレン基を介して結合した構造を持つフェノール樹脂を得る方法が公知である(特許文献2参照)。これら樹脂は半導体用のコーティング剤、レジスト用樹脂として使用されており、その性能の一つに耐熱性(熱による分解割合が少ないこと)が求められているが、改善が求められている。
Aromatic hydrocarbon resins obtained by reacting polycyclic aromatic hydrocarbons mainly composed of monomethylnaphthalene and / or dimethylnaphthalene with paraformaldehyde in the presence of aromatic monosulfonic acid are known and obtained. The obtained resin is excellent in compatibility with the liquid epoxy resin and in xylene (see Patent Document 1).
Also, a methoxymethylene naphthalene compound and a compound having a phenolic hydroxyl group such as phenol, cresol or naphthol are reacted in the presence of diethyl sulfate, and the naphthalene and the compound having a phenolic hydroxyl group are bonded via a methylene group. A method for obtaining a phenol resin having a structure is known (see Patent Document 2). These resins are used as coating agents for semiconductors and resins for resists, and one of their performance is required to have heat resistance (low thermal decomposition rate), but improvement is required.

この耐熱性は樹脂中の炭素濃度を増加させることで向上することが一般的にわかっている。そのような中、下記式で示される構造を有する重合体(アセナフテン樹脂)が公知である(特許文献3)。ただし、下記式で示される構造を有する重合体は、特に半導体用のコーティング剤やレジスト用樹脂として適応させるための溶剤には難溶であり、実際の使用は困難である。

Figure 2011037992

[ここで、R1は一価の原子又は基であり、nは0〜4の整数であり、ただし、nが2〜4のときには複数のR1は同一でも異なっていてもよい。R2〜R5は独立にヒドロキシ基あるいは一価の原子もしくは基である。] It is generally known that this heat resistance is improved by increasing the carbon concentration in the resin. Under such circumstances, a polymer (acenaphthene resin) having a structure represented by the following formula is known (Patent Document 3). However, a polymer having a structure represented by the following formula is hardly soluble particularly in a solvent for adapting as a coating agent for a semiconductor or a resin for a resist, and it is difficult to actually use the polymer.
Figure 2011037992

[Wherein R 1 is a monovalent atom or group, and n is an integer of 0 to 4, provided that when n is 2 to 4, a plurality of R 1 may be the same or different. R 2 to R 5 are independently a hydroxy group or a monovalent atom or group. ]

特開昭54−86593号公報JP 54-86593 A 特開2004−91550号公報JP 2004-91550 A 特開2000−143937号公報JP 2000-143937 A

本発明の目的は、耐熱性に優れ、また溶剤への溶解性に優れた、半導体用のコーティング剤やレジスト用樹脂として使用できる樹脂を提供することにある。   An object of the present invention is to provide a resin that can be used as a coating agent for a semiconductor or a resist resin, which has excellent heat resistance and solubility in a solvent.

本発明者らは鋭意検討を行った結果、式[1]で示されるジメチルナフタレンホルムアルデヒド樹脂を、少なくとも式[2]で示される化合物で変性させることを必須とし、必要に応じて式[3]で示されるフェノール類および/または式[4]で示されるナフトール類で示される化合物からなる群から選択される少なくとも1種でさらに変性して変性ジメチルナフタレンホルムアルデヒド樹脂を得ることにより、上記目的を達成することを見出し、本発明に到達した。

Figure 2011037992

Figure 2011037992

Figure 2011037992

Figure 2011037992
As a result of intensive studies, the present inventors have made it essential to modify the dimethylnaphthalene formaldehyde resin represented by the formula [1] with at least the compound represented by the formula [2], and optionally formula [3]. The above object is achieved by obtaining a modified dimethylnaphthalene formaldehyde resin by further modification with at least one selected from the group consisting of phenols represented by the formula (1) and / or a compound represented by the naphthols represented by the formula [4]. The present invention has been found.
Figure 2011037992

Figure 2011037992

Figure 2011037992

Figure 2011037992

すなわち、本発明は、以下の(1)〜(6)の発明に関する。
(1)式[1]で示される構成単位を有するジメチルナフタレンホルムアルデヒド樹脂を原料とし、式[2]で示される化合物を必須成分とする変性剤で変性した変性ジメチルナフタレンホルムアルデヒド樹脂。
(2)前記変性剤として、さらに式[3]で示されるフェノール類および式[4]で示されるナフトール類からなる群から選択される少なくとも1種の化合物を使用する(1)に記載の変性ジメチルナフタレンホルムアルデヒド樹脂。
(3)前記ジメチルナフタレンホルムアルデヒド樹脂が、1,5−ジメチルナフタレン、1,6−ジメチルナフタレン、2,6−ジメチルナフタレン、1,7−ジメチルナフタレン、1,8−ジメチルナフタレンおよび2,7−ジメチルナフタレンからなる群から選択される少なくとも1種のジメチルナフタレンとホルムアルデヒドの縮合反応で得られたものである、(1)に記載の変性ジメチルナフタレンホルムアルデヒド樹脂。
(4)式[2]で示される化合物がアセナフテンである(1)〜(3)のいずれかに記載の変性ジメチルナフタレンホルムアルデヒド樹脂。
(5)式[3]で示されるフェノール類が、フェノール、クレゾール、4−t−ブチルフェノールおよびキシレノールからなる群から選択される少なくとも1種である、(2)〜(4)のいずれかに記載の変性ジメチルナフタレンホルムアルデヒド樹脂。
(6)式[4]で示されるナフトール類が、1−ナフトールおよび2−ナフトールからなる群から選択される少なくとも1種である、(2)〜(5)のいずれかに記載の変性ジメチルナフタレンホルムアルデヒド樹脂。
That is, the present invention relates to the following inventions (1) to (6).
(1) A modified dimethylnaphthalene formaldehyde resin obtained by modifying a dimethylnaphthalene formaldehyde resin having a structural unit represented by the formula [1] as a raw material and using a compound represented by the formula [2] as an essential component.
(2) The modification according to (1), wherein at least one compound selected from the group consisting of phenols represented by formula [3] and naphthols represented by formula [4] is further used as the modifying agent. Dimethylnaphthalene formaldehyde resin.
(3) The dimethylnaphthalene formaldehyde resin is 1,5-dimethylnaphthalene, 1,6-dimethylnaphthalene, 2,6-dimethylnaphthalene, 1,7-dimethylnaphthalene, 1,8-dimethylnaphthalene and 2,7-dimethyl. The modified dimethylnaphthalene formaldehyde resin according to (1), which is obtained by a condensation reaction of at least one dimethylnaphthalene selected from the group consisting of naphthalene and formaldehyde.
(4) The modified dimethylnaphthalene formaldehyde resin according to any one of (1) to (3), wherein the compound represented by the formula [2] is acenaphthene.
(5) The phenol represented by the formula [3] is at least one selected from the group consisting of phenol, cresol, 4-t-butylphenol and xylenol, according to any one of (2) to (4) Modified dimethylnaphthalene formaldehyde resin.
(6) The modified dimethylnaphthalene according to any one of (2) to (5), wherein the naphthol represented by the formula [4] is at least one selected from the group consisting of 1-naphthol and 2-naphthol. Formaldehyde resin.

本発明の変性ジメチルナフタレンホルムアルデヒド樹脂は、耐熱性に優れ、溶剤への溶解性に優れた、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板およびプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤電気、電子部品の積層板、成形品、皮膜材、封止材などに使用する熱硬化性樹脂として有用である。   The modified dimethylnaphthalene formaldehyde resin of the present invention has excellent heat resistance and excellent solubility in solvents. Electrical insulating materials, resist resins, semiconductor sealing resins, printed wiring board adhesives, electrical equipment / electronics Electrical laminates and prepreg matrix resins, build-up laminate materials, fiber reinforced plastic resins, liquid crystal display panel sealing resins, paints, various coating agents, adhesive electricity, It is useful as a thermosetting resin used for laminated sheets, molded articles, coating materials, sealing materials, etc. for electronic parts.

本発明は、前記の通り、式[1]で示される構成単位を有するジメチルナフタレンホルムアルデヒド樹脂を、式[2]で示される化合物で変性させることを必須とし、必要に応じてさらに式[3]で示されるフェノール類および式[4]で示されるナフトール類からなる群から選択される少なくとも1種の化合物で変性することにより得られる、変性ナフタレンホルムアルデヒド樹脂(以下、変性樹脂と略称することがある。)である。   In the present invention, as described above, it is essential to modify the dimethylnaphthalene formaldehyde resin having the structural unit represented by the formula [1] with the compound represented by the formula [2], and if necessary, the formula [3] Modified naphthalene formaldehyde resin (hereinafter sometimes abbreviated as a modified resin) obtained by modification with at least one compound selected from the group consisting of phenols represented by formula (4) and naphthols represented by formula [4] .)

<ジメチルナフタレンホルムアルデヒド樹脂>
ジメチルナフタレンホルムアルデヒド樹脂は、ナフタレン環中の2つのベンゼン環双方にメチル基を各1個有するジメチルナフタレンとホルムアルデヒドとを縮合反応させることにより得られる。
<Dimethylnaphthalene formaldehyde resin>
The dimethylnaphthalene formaldehyde resin can be obtained by condensation reaction of dimethylnaphthalene and formaldehyde each having one methyl group on both of the two benzene rings in the naphthalene ring.

ジメチルナフタレンホルムアルデヒド樹脂の原料のジメチルナフタレンは、オルソキシレンと1,3−ブタジエン、またはパラキシレンと1,3−ブタジエンを出発原料として化学合成して得られる。本発明で用いるジメチルナフタレンとしては、具体的には1,5−ジメチルナフタレン、1,6−ジメチルナフタレン、2,6−ジメチルナフタレン、1,7−ジメチルナフタレン、1,8−ジメチルナフタレンおよび2,7−ジメチルナフタレンからなる群から選ばれる少なくとも1種である。   Dimethylnaphthalene, a raw material for dimethylnaphthalene formaldehyde resin, is obtained by chemical synthesis using orthoxylene and 1,3-butadiene, or paraxylene and 1,3-butadiene as starting materials. Specific examples of dimethylnaphthalene used in the present invention include 1,5-dimethylnaphthalene, 1,6-dimethylnaphthalene, 2,6-dimethylnaphthalene, 1,7-dimethylnaphthalene, 1,8-dimethylnaphthalene, and 2,6-dimethylnaphthalene. It is at least one selected from the group consisting of 7-dimethylnaphthalene.

1,5−ジメチルナフタレン、1,6−ジメチルナフタレンおよび2,6−ジメチルナフタレンは、オルソキシレンと1,3−ブタジエンを強アルカリ触媒の存在下で反応させてオルトトルイル−1−ペンテンを生成させ(工程A)、次いで環化させてテトラリン化合物を得(工程B)、該テトラリン化合物を脱水素してナフタレン化合物(主として1,5−ジメチルナフタレン)を得(工程C)、必要に応じて異性化させて構造異性体を得(工程D)、適宜、蒸留や晶析等により分離・精製することにより得ることができる。
また、1,7−ジメチルナフタレン、1,8−ジメチルナフタレンおよび2,7−ジメチルナフタレンは、パラキシレンと1,3−ブタジエンを出発原料として、前記工程A〜Cおよび必要に応じて工程Dに準じて反応を行い、適宜、蒸留や晶析等により分離・精製することにより得ることができる。
かかる工程A〜Dは、公知の方法、例えば特開2006−70000号公報に開示された方法を利用することができる。
1,5-dimethylnaphthalene, 1,6-dimethylnaphthalene and 2,6-dimethylnaphthalene are formed by reacting orthoxylene with 1,3-butadiene in the presence of a strong alkali catalyst to produce orthotoluyl-1-pentene ( Step A), followed by cyclization to obtain a tetralin compound (Step B), dehydrogenation of the tetralin compound to obtain a naphthalene compound (mainly 1,5-dimethylnaphthalene) (Step C), and isomerization as necessary To obtain a structural isomer (step D), which can be obtained by separation and purification as appropriate by distillation or crystallization.
In addition, 1,7-dimethylnaphthalene, 1,8-dimethylnaphthalene and 2,7-dimethylnaphthalene are prepared from the above-mentioned steps A to C and, if necessary, to step D using paraxylene and 1,3-butadiene as starting materials. It can be obtained by carrying out the reaction according to the above, and separating and purifying by distillation, crystallization or the like as appropriate.
For these steps A to D, a known method, for example, a method disclosed in JP-A-2006-70000 can be used.

ホルムアルデヒドとしては、工業的に入手容易なホルマリン、パラホルムアルデヒドおよびトリオキサン等のホルムアルデヒドを発生する化合物等が利用できる。縮合反応させる際のジメチルナフタレンとホルムアルデヒドのモル比は1:1〜1:6、好ましくは1:1.5〜1:6、より好ましくは1:2〜1:6、さらに好ましくは1:2.5〜1:6、特に好ましくは1:2.5〜1:5である。ジメチルナフタレンとホルムアルデヒドのモル比を前記範囲とすることで、得られるジメチルナフタレンホルムアルデヒド樹脂の樹脂収率を比較的高く維持でき、且つ未反応で残るホルムアルデヒドの量を少なくすることができる。   As the formaldehyde, industrially easily available compounds such as formalin, paraformaldehyde, and trioxane that generate formaldehyde can be used. The molar ratio of dimethylnaphthalene to formaldehyde in the condensation reaction is 1: 1 to 1: 6, preferably 1: 1.5 to 1: 6, more preferably 1: 2 to 1: 6, and even more preferably 1: 2. .5 to 1: 6, particularly preferably 1: 2.5 to 1: 5. By setting the molar ratio of dimethylnaphthalene to formaldehyde within the above range, the resin yield of the resulting dimethylnaphthalene formaldehyde resin can be maintained relatively high, and the amount of unreacted formaldehyde can be reduced.

ジメチルナフタレンホルムアルデヒド樹脂は、以下の様に、種々の変性剤により変性させることが可能である。
なお、式[1]において、Aは−(OCH−で表され、tは0〜2である。また、xは0〜4の整数であり、0〜2が好ましく、0または1がより好ましい。
Dimethylnaphthalene formaldehyde resin can be modified with various modifiers as follows.
In the expression [1], A is - (OCH 2) t - is represented by, t is 0-2. Moreover, x is an integer of 0-4, 0-2 are preferable and 0 or 1 is more preferable.

<変性ジメチルナフタレンホルムアルデヒド樹脂>
本発明の変性ジメチルナフタレンホルムアルデヒド樹脂は、式[1]で示される構成単位を有するジメチルナフタレンホルムアルデヒド樹脂と、式[2]で示される化合物からなる変性剤を酸性触媒の存在下で加熱し、縮合反応させることにより得られる。
また、溶剤への溶解性向上やレジスト材としての特性(たとえばエッチング性)向上を必要とする場合には、式[1]で示される構成単位を有するジメチルナフタレンホルムアルデヒド樹脂、式[2]で示される化合物からなる変性剤、さらに変性剤として式[3]で示されるフェノール類および式[4]で示されるナフトール類からなる群から選択される少なくとも1種の化合物を加え、酸性触媒の存在下で加熱し、縮合反応させることが好ましい。
<Modified dimethylnaphthalene formaldehyde resin>
The modified dimethylnaphthalene formaldehyde resin of the present invention is obtained by heating a dimethylnaphthalene formaldehyde resin having a structural unit represented by the formula [1] and a modifier comprising a compound represented by the formula [2] in the presence of an acidic catalyst for condensation. It is obtained by reacting.
Further, when it is necessary to improve the solubility in a solvent or the characteristics as a resist material (for example, etching property), a dimethylnaphthalene formaldehyde resin having a structural unit represented by the formula [1], represented by the formula [2] In addition, at least one compound selected from the group consisting of phenols represented by the formula [3] and naphthols represented by the formula [4] is added as a modifying agent, and in the presence of an acidic catalyst. It is preferable to carry out a condensation reaction by heating at

式[2]において、R〜Rは水素原子または炭素数1〜4のアルキル基である。 In Formula [2], R < 1 > -R < 4 > is a hydrogen atom or a C1-C4 alkyl group.

式「2」で表される化合物としては、アセナフテンが特に好ましい。   As the compound represented by the formula “2”, acenaphthene is particularly preferable.

式[3]において、Rは炭素数1〜4のアルキル基を表す。該アルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基およびt−ブチル基が挙げられる。
yは0〜2の整数であり、0または1が好ましい。
In the formula [3], R 5 represents an alkyl group having 1 to 4 carbon atoms. Examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group and t-butyl group.
y is an integer of 0 to 2, and 0 or 1 is preferable.

式[3]で示されるフェノール類としては、フェノール、クレゾール、4−t−ブチルフェノール、キシレノールおよびプロピオニルフェノールからなる群から選ばれる少なくとも1種を使用することが特に好ましい。   As the phenol represented by the formula [3], it is particularly preferable to use at least one selected from the group consisting of phenol, cresol, 4-t-butylphenol, xylenol and propionylphenol.

式[4]において、RおよびRは、それぞれ独立して水素原子または炭素数1〜3のアルキル基を表す。該アルキル基としては、メチル基、エチル基、n−プロピル基およびイソプロピル基が挙げられる。RおよびRとしては、いずれも水素原子が好ましい。 In the formula [4], R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, and an isopropyl group. R 6 and R 7 are preferably hydrogen atoms.

式[4]で示されるナフトール類としては、1−ナフトールおよび2−ナフトールが特に好ましい。   As the naphthols represented by the formula [4], 1-naphthol and 2-naphthol are particularly preferable.

式[1]で示される構成単位を有するジメチルナフタレンホルムアルデヒド樹脂を、式[2]で示される化合物で変性した変性ジメチルナフタレンホルムアルデヒド樹脂は、式[5]および[6]で示される構成単位を有する。さらに、式[3]で示されるフェノール類または式[4]で示されるナフトール類を使用した場合には、式[7]または式[8]で示される構成単位を有する。

Figure 2011037992

Figure 2011037992

Figure 2011037992

Figure 2011037992
A modified dimethylnaphthalene formaldehyde resin obtained by modifying a dimethylnaphthalene formaldehyde resin having a structural unit represented by the formula [1] with a compound represented by the formula [2] has a structural unit represented by the formulas [5] and [6]. . Further, when the phenol represented by the formula [3] or the naphthol represented by the formula [4] is used, it has a structural unit represented by the formula [7] or the formula [8].
Figure 2011037992

Figure 2011037992

Figure 2011037992

Figure 2011037992

ジメチルナフタレンホルムアルデヒド樹脂を変性する際、式[2]で示される化合物の使用が必須である。該化合物の使用量は、式[1]で示されるジメチルナフタレンホルムアルデヒド樹脂中の含有酸素モル数1モルに対して、0.01〜0.4が好ましく、0.05〜0.4モルがより好ましく、0.05〜0.3モルがさらに好ましい。
ここで、含有酸素モル数は、有機元素分析によりジメチルナフタレンホルムアルデヒド樹脂中の酸素濃度(質量%)を測定し、下記計算式に従って算出することができる。
計算式:含有酸素モル数=使用樹脂量(g)×酸素濃度(質量%)/16
When modifying dimethylnaphthalene formaldehyde resin, it is essential to use the compound represented by the formula [2]. The amount of the compound used is preferably 0.01 to 0.4, more preferably 0.05 to 0.4 mol, relative to 1 mol of oxygen contained in the dimethylnaphthalene formaldehyde resin represented by the formula [1]. Preferably, 0.05 to 0.3 mol is more preferable.
Here, the number of moles of oxygen contained can be calculated according to the following calculation formula by measuring the oxygen concentration (mass%) in the dimethylnaphthalene formaldehyde resin by organic elemental analysis.
Calculation formula: Number of moles of oxygen contained = Amount of resin used (g) × oxygen concentration (mass%) / 16

また、必要に応じて縮合反応に使用する、式[3]で示されるフェノール類および式[4]で示されるナフトール類は、それらの合計モル数が、式[1]で示されるジメチルナフタレンホルムアルデヒド樹脂中の含有酸素モル数1モルに対して0〜0.6モルが好ましく、0.1〜0.55モルがより好ましく、0.3〜0.55モルがさらに好ましい。
この場合のフェノール類/ナフトール類の使用量は、フェノール類/ナフトール類=0.0/1.0〜0.4/0.6(モル比)が好ましい。
In addition, the phenols represented by the formula [3] and the naphthols represented by the formula [4], which are used for the condensation reaction as necessary, have a total molar number of dimethylnaphthalene formaldehyde represented by the formula [1]. 0-0.6 mol is preferable with respect to 1 mol of oxygen contained in the resin, 0.1-0.55 mol is more preferable, and 0.3-0.55 mol is more preferable.
In this case, the amount of phenols / naphthols used is preferably phenols / naphthols = 0.0 / 1.0 to 0.4 / 0.6 (molar ratio).

式[1]で示されるジメチルナフタレンホルムアルデヒド樹脂と式[2]で示される化合物との縮合反応、さらに、その後の縮合反応で使用される式[3]で示されるフェノール類および/または式[4]で示されるナフトール類との縮合反応は、酸性触媒存在下、通常常圧で行われ、使用される原料および変性剤が相溶する温度以上(通常80〜250℃)で加熱還流させながら行う。また、必要に応じて、加圧下で行うこともできる。さらに、必要に応じて、縮合反応に不活性な溶媒を使用することもできる。該溶媒としては、例えばトルエン、エチルベンゼン、キシレン等の芳香族炭化水素;ヘプタン、ヘキサン等の飽和脂肪族炭化水素;シクロヘキサン等の脂環式炭化水素;メチルイソブチルケトン等のケトン;ジオキサン、ジブチルエーテルなどのエーテル;2−プロパノール等のアルコール;エチルプロピオネート等のカルボン酸エステル;酢酸等のカルボン酸等が挙げられる。   Condensation reaction between the dimethylnaphthalene formaldehyde resin represented by the formula [1] and the compound represented by the formula [2], and further phenols represented by the formula [3] and / or the formula [4] used in the subsequent condensation reaction. The condensation reaction with naphthols is usually carried out at normal pressure in the presence of an acidic catalyst, and while heating and refluxing at a temperature higher than the temperature at which the raw materials used and the modifier are compatible (usually 80 to 250 ° C.). . Moreover, it can also carry out under pressure as needed. Furthermore, if necessary, a solvent inert to the condensation reaction can also be used. Examples of the solvent include aromatic hydrocarbons such as toluene, ethylbenzene, and xylene; saturated aliphatic hydrocarbons such as heptane and hexane; alicyclic hydrocarbons such as cyclohexane; ketones such as methyl isobutyl ketone; dioxane, dibutyl ether, and the like. Ethers such as 2-propanol, carboxylic acid esters such as ethyl propionate, and carboxylic acids such as acetic acid.

縮合反応に使用し得る酸性触媒は、硫酸、パラトルエンスルホン酸等が挙げられる。これらの中でも、パラトルエンスルホン酸が好ましい。酸性触媒の使用量は、パラトルエンスルホン酸を使用する場合、式[1]で示されるジメチルナフタレンホルムアルデヒド樹脂100質量部に対して0.0001〜0.5質量部、より好ましくは0.001〜0.3質量部、さらに好ましくは0.01〜0.1質量部になるように調整する。パラトルエンスルホン酸濃度をこの範囲とすることで、適当な反応速度が得られ、さらに反応速度が大きいことに基づく樹脂粘度が高くなることを防ぐことができる。   Examples of the acidic catalyst that can be used for the condensation reaction include sulfuric acid and p-toluenesulfonic acid. Among these, p-toluenesulfonic acid is preferable. When using paratoluenesulfonic acid, the usage-amount of an acidic catalyst is 0.0001-0.5 mass part with respect to 100 mass parts of dimethylnaphthalene formaldehyde resin shown by Formula [1], More preferably, 0.001- It adjusts so that it may become 0.3 mass part, More preferably, it is 0.01-0.1 mass part. By setting the paratoluenesulfonic acid concentration in this range, an appropriate reaction rate can be obtained, and further, the resin viscosity can be prevented from being increased due to the high reaction rate.

反応時間は1〜10時間が好ましく、2〜6時間程度がより好ましい。この反応時間とすることで、目的の性状を有する変性樹脂が経済的に、且つ工業的に有利に得られる。   The reaction time is preferably 1 to 10 hours, more preferably about 2 to 6 hours. By setting this reaction time, a modified resin having the desired properties can be obtained economically and industrially advantageously.

反応終了後、必要に応じて前記溶媒をさらに添加して希釈した後、静置することにより二相分離させ、油相である樹脂相と水相を分離した後、さらに水洗を行うことにより酸性触媒を完全に除去し、添加した溶媒および未反応の変性剤を、蒸留等の一般的方法で除去することにより、変性樹脂が得られる。   After completion of the reaction, if necessary, the solvent is further added and diluted, and then allowed to stand to cause two-phase separation. The modified resin can be obtained by completely removing the catalyst and removing the added solvent and unreacted modifier by a general method such as distillation.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

<ジメチルナフタレンホルムアルデヒド樹脂中の炭素・酸素濃度>
有機元素分析によりジメチルナフタレンホルムアルデヒド樹脂中の炭素・酸素濃度(質量%)を測定した。また、含有酸素モル数を下記計算式に従って算出した。
装置:CHNコーダーMT−6(ヤナコ分析工業(株)製)
計算式:含有酸素モル数=使用樹脂量(g)×酸素濃度(質量%)/16
<分子量>
ゲル浸透クロマトグラフィー(GPC)分析により、ポリスチレン換算の重量平均分子量(Mw)、数平均分子量(Mn)を求め、分散度(Mw/Mn)を求めた。
装置:Shodex GPC−101型(昭和電工(株)製)
カラム:LF−804×3
溶離液:THF 1ml/min
温度:40℃
<耐熱性>
装置:TG/DTA6200(エス・アイ・アイ・ナノテクノロジー社製)
測定温度:30〜550℃(昇温速度10℃/分)
400℃到達時点における重量減少率(熱分解量(%))を測定した。
<溶剤溶解性>
シクロヘキサノン(CHN)もしくはシクロヘキサノン/プロピレングリコールモノメチルエーテルアセテート(PGMEA)=1/1および1/3(重量比)混合溶剤に、変性樹脂が20重量%になるように配合し、目視にて溶解性を確認した。
変性樹脂が均一に溶解した場合を○、不溶部分が残った場合を×と評価した。
<Carbon and oxygen concentration in dimethylnaphthalene formaldehyde resin>
Carbon / oxygen concentration (% by mass) in dimethylnaphthalene formaldehyde resin was measured by organic elemental analysis. Further, the number of moles of oxygen contained was calculated according to the following formula.
Apparatus: CHN coder MT-6 (manufactured by Yanaco Analytical Co., Ltd.)
Calculation formula: Number of moles of oxygen contained = Amount of resin used (g) × oxygen concentration (mass%) / 16
<Molecular weight>
The weight average molecular weight (Mw) and number average molecular weight (Mn) in terms of polystyrene were determined by gel permeation chromatography (GPC) analysis, and the degree of dispersion (Mw / Mn) was determined.
Apparatus: Shodex GPC-101 (made by Showa Denko KK)
Column: LF-804 × 3
Eluent: THF 1ml / min
Temperature: 40 ° C
<Heat resistance>
Device: TG / DTA6200 (manufactured by SII Nanotechnology)
Measurement temperature: 30 to 550 ° C. (temperature increase rate 10 ° C./min)
The weight loss rate (thermal decomposition amount (%)) at the time when reaching 400 ° C. was measured.
<Solvent solubility>
Blended with cyclohexanone (CHN) or cyclohexanone / propylene glycol monomethyl ether acetate (PGMEA) = 1/1 and 1/3 (weight ratio) so that the modified resin is 20% by weight. confirmed.
The case where the modified resin was uniformly dissolved was evaluated as ◯, and the case where the insoluble portion remained was evaluated as ×.

<製造例1>ジメチルナフタレンホルムアルデヒド樹脂の製造
ジムロート冷却管、温度計および攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコに、窒素気流中、1,5−ジメチルナフタレン1.09kg(7mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液2.1kg(ホルムアルデヒドとして28mol、三菱ガス化学(株)製)および98質量%硫酸(関東化学(株)製)0.97kgを仕込み、常圧下、100℃で還流させながら7時間反応させた。希釈溶媒としてエチルベンゼン(和光純薬工業(株)製試薬特級)1.8kgを加え、静置後、下相の水相を除去した。さらに、中和および水洗を行い、エチルベンゼンおよび未反応の1,5−ジメチルナフタレンを減圧下に留去し、淡褐色固体のジメチルナフタレンホルムアルデヒド樹脂1.25kgを得た。
GPC測定の結果、Mn:562、Mw:1168、Mw/Mn:2.08であった。有機元素分析の結果、炭素濃度は84.2質量%、酸素濃度は8.3質量%(含有酸素モル数は5.2mmol/g)であった。得られた樹脂の耐熱性および溶剤溶解性評価結果を表1に示す。
<Production Example 1> Production of dimethylnaphthalene formaldehyde resin 1,5-dimethylnaphthalene 1 in a nitrogen stream in a 10 L four-necked flask equipped with a Dimroth condenser, thermometer and stirring blade and capable of bottoming out 0.09 kg (7 mol, manufactured by Mitsubishi Gas Chemical Co., Ltd.), 2.1 kg of 40% by mass formalin aqueous solution (28 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 98% by mass sulfuric acid (manufactured by Kanto Chemical Co., Ltd.) 97 kg was charged and reacted for 7 hours while refluxing at 100 ° C. under normal pressure. As a diluent solvent, 1.8 kg of ethylbenzene (special grade reagent manufactured by Wako Pure Chemical Industries, Ltd.) was added, and after standing, the lower aqueous phase was removed. Furthermore, neutralization and washing with water were performed, and ethylbenzene and unreacted 1,5-dimethylnaphthalene were distilled off under reduced pressure to obtain 1.25 kg of a light brown solid dimethylnaphthalene formaldehyde resin.
As a result of the GPC measurement, Mn was 562, Mw was 1168, and Mw / Mn was 2.08. As a result of organic elemental analysis, the carbon concentration was 84.2% by mass and the oxygen concentration was 8.3% by mass (the number of moles of oxygen contained was 5.2 mmol / g). The heat resistance and solvent solubility evaluation results of the obtained resin are shown in Table 1.

<実施例1>
ジムロート冷却管、温度計および攪拌翼を備えた内容積0.5Lの四つ口フラスコに、窒素気流下で、製造例1で得た樹脂80g(0.41mol)、アセナフテン(和光純薬工業(株)製試薬特級)33.5g(0.22mol)およびパラトルエンスルホン酸(和光純薬工業(株)製試薬特級)0.11gを加え、180℃まで昇温させて5時間反応させた。溶剤(メタキシレン(三菱ガス化学(株)製/メチルイソブチルケトン(和光純薬工業(株)製)=1/1(重量比)混合溶剤)227gで希釈後、中和および水洗を行い、溶剤を減圧下に除去し、黒褐色固体の変性樹脂86.5gを得た。
GPC分析の結果、Mn:584、Mw:1669、Mw/Mn:2.88であった。有機元素分析の結果、炭素濃度は91.8質量%、酸素濃度は1.3質量%あった。得られた変性樹脂の耐熱性および溶剤溶解性評価結果を表1に示す。
<Example 1>
Under a nitrogen stream, 80 g (0.41 mol) of the resin obtained in Production Example 1 and acenaphthene (Wako Pure Chemical Industries, Ltd.) were added to a 0.5 L four-necked flask equipped with a Dimroth condenser, thermometer, and stirring blade. 33.5 g (0.22 mol) of a reagent special grade manufactured by Co., Ltd. and 0.11 g of paratoluenesulfonic acid (special grade of reagent manufactured by Wako Pure Chemical Industries, Ltd.) were added, and the mixture was heated to 180 ° C. and reacted for 5 hours. Diluted with 227g of solvent (metaxylene (Mitsubishi Gas Chemical Co., Ltd./Methyl Isobutyl Ketone (Wako Pure Chemical Industries, Ltd.) = 1/1 (weight ratio) mixed solvent)), neutralized and washed with water. Was removed under reduced pressure to obtain 86.5 g of a dark brown solid modified resin.
The results of GPC analysis were Mn: 584, Mw: 1669, and Mw / Mn: 2.88. As a result of organic elemental analysis, the carbon concentration was 91.8% by mass and the oxygen concentration was 1.3% by mass. Table 1 shows the heat resistance and solvent solubility evaluation results of the resulting modified resin.

<実施例2>
ジムロート冷却管、温度計および攪拌翼を備えた内容積0.5Lの四つ口フラスコに、窒素気流下で、製造例1で得た樹脂80g(0.41mol)、アセナフテン20.1g(0.12mol)およびパラトルエンスルホン酸0.12gを加え、180℃まで昇温させて2時間反応させた。その後1−ナフトール18.8g(0.13mol)を加え、205℃まで昇温させて2時間反応させた。溶剤希釈後、中和および水洗を行い、溶剤を減圧下に除去し、黒褐色固体の変性樹脂109.1gを得た。
GPC分析の結果、Mn:746、Mw:2083、Mw/Mn:2.79であった。有機元素分析の結果、炭素濃度は90.9質量%、酸素濃度は2.5質量%あった。得られた変性樹脂の耐熱性および溶剤溶解性評価結果を表1に示す。
<Example 2>
In a four-necked flask with an internal volume of 0.5 L equipped with a Dimroth condenser, thermometer, and stirring blade, 80 g (0.41 mol) of the resin obtained in Production Example 1 and 20.1 g of acenaphthene (0. 12 mol) and 0.12 g of paratoluenesulfonic acid were added, and the mixture was heated to 180 ° C. and reacted for 2 hours. Thereafter, 18.8 g (0.13 mol) of 1-naphthol was added, and the temperature was raised to 205 ° C. and reacted for 2 hours. After the solvent was diluted, neutralization and water washing were performed, and the solvent was removed under reduced pressure to obtain 109.1 g of a dark brown solid modified resin.
The results of GPC analysis were Mn: 746, Mw: 2083, and Mw / Mn: 2.79. As a result of organic elemental analysis, the carbon concentration was 90.9% by mass and the oxygen concentration was 2.5% by mass. Table 1 shows the heat resistance and solvent solubility evaluation results of the resulting modified resin.

<実施例3>
ジムロート冷却管、温度計および攪拌翼を備えた内容積0.5Lの四つ口フラスコに、窒素気流下で、製造例1で得た樹脂93g(0.48mol)、アセナフテン18.8g(0.12mol)およびパラトルエンスルホン酸0.14gを加え、180℃まで昇温させて2時間反応させた。その後1−ナフトール28.2g(0.20mol)を加え、205℃まで昇温させて2時間反応させた。溶剤希釈後、中和および水洗を行い、溶剤を減圧下に除去し、黒褐色固体の変性樹脂112.9gを得た。
GPC分析の結果、Mn:779、Mw:2122、Mw/Mn:2.35であった。有機元素分析の結果、炭素濃度は91.0質量%、酸素濃度は2.4質量%あった。得られた変性樹脂の耐熱性および溶剤溶解性評価結果を表1に示す。
<Example 3>
In a 0.5 L four-necked flask equipped with a Dimroth condenser, thermometer and stirring blade, in a nitrogen stream, 93 g (0.48 mol) of the resin obtained in Production Example 1 and 18.8 g of acenaphthene (0. 12 mol) and 0.14 g of paratoluenesulfonic acid were added, and the mixture was heated to 180 ° C. and reacted for 2 hours. Thereafter, 28.2 g (0.20 mol) of 1-naphthol was added, and the temperature was raised to 205 ° C. and reacted for 2 hours. After diluting the solvent, neutralization and washing with water were performed, and the solvent was removed under reduced pressure to obtain 112.9 g of a dark brown solid modified resin.
The results of GPC analysis were Mn: 779, Mw: 2122, and Mw / Mn: 2.35. As a result of organic elemental analysis, the carbon concentration was 91.0% by mass and the oxygen concentration was 2.4% by mass. Table 1 shows the heat resistance and solvent solubility evaluation results of the resulting modified resin.

<実施例4>
ジムロート冷却管、温度計および攪拌翼を備えた内容積0.5Lの四つ口フラスコに、窒素気流下で、製造例1で得た樹脂95g(0.49mol)、アセナフテン7.5g(0.05mol)およびパラトルエンスルホン酸0.14gを加え、180℃まで昇温させて2時間反応させた。その後1−ナフトール38.7g(0.27mol)を加え、205℃まで昇温させて2時間反応させた。溶剤希釈後、中和および水洗を行い、溶剤を減圧下に除去し、黒褐色固体の変性樹脂108.7gを得た。
GPC分析の結果、Mn:880、Mw:2583、Mw/Mn:3.19であった。有機元素分析の結果、炭素濃度は90.3質量%、酸素濃度は3.2質量%あった。得られた変性樹脂の耐熱性および溶剤溶解性評価結果を表1に示す。
<Example 4>
In a 0.5 L four-necked flask equipped with a Dimroth condenser, thermometer and stirring blade, under a nitrogen stream, 95 g (0.49 mol) of the resin obtained in Production Example 1 and 7.5 g of acenaphthene (0. 05 mol) and 0.14 g of paratoluenesulfonic acid were added, and the mixture was heated to 180 ° C. and reacted for 2 hours. Thereafter, 38.7 g (0.27 mol) of 1-naphthol was added, and the temperature was raised to 205 ° C. and reacted for 2 hours. After diluting the solvent, neutralization and washing with water were performed, and the solvent was removed under reduced pressure to obtain 108.7 g of a dark brown solid modified resin.
As a result of GPC analysis, they were Mn: 880, Mw: 2583, and Mw / Mn: 3.19. As a result of organic elemental analysis, the carbon concentration was 90.3% by mass and the oxygen concentration was 3.2% by mass. Table 1 shows the heat resistance and solvent solubility evaluation results of the resulting modified resin.

<実施例5>
ジムロート冷却管、温度計および攪拌翼を備えた内容積0.5Lの四つ口フラスコに、窒素気流下で、製造例1で得た樹脂97g(0.5mol)、アセナフテン19.0g(0.13mol)およびパラトルエンスルホン酸0.14gを加え、180℃まで昇温させて2時間反応させた。その後1−ナフトール25.9g(0.18mol)とフェノール1.9g(0.02mol)を加え、205℃まで昇温させて2時間反応させた。溶剤希釈後、中和および水洗を行い、溶剤を減圧下に除去し、黒褐色固体の変性樹脂102.1gを得た。
GPC分析の結果、Mn:829、Mw:2323、Mw/Mn:2.80であった。有機元素分析の結果、炭素濃度は90.0質量%、酸素濃度は3.4質量%あった。得られた変性樹脂の耐熱性および溶剤溶解性評価結果を表1に示す。
<Example 5>
In a 0.5 L four-necked flask equipped with a Dimroth condenser, thermometer, and stirring blade, under a nitrogen stream, 97 g (0.5 mol) of the resin obtained in Production Example 1 and 19.0 g of acenaphthene (0. 13 mol) and 0.14 g of paratoluenesulfonic acid were added, and the mixture was heated to 180 ° C. and reacted for 2 hours. Thereafter, 25.9 g (0.18 mol) of 1-naphthol and 1.9 g (0.02 mol) of phenol were added, and the mixture was heated to 205 ° C. and reacted for 2 hours. After solvent dilution, neutralization and water washing were performed, and the solvent was removed under reduced pressure to obtain 102.1 g of a black brown solid modified resin.
As a result of GPC analysis, they were Mn: 829, Mw: 2323, and Mw / Mn: 2.80. As a result of organic elemental analysis, the carbon concentration was 90.0% by mass and the oxygen concentration was 3.4% by mass. Table 1 shows the heat resistance and solvent solubility evaluation results of the resulting modified resin.

<実施例6>
ジムロート冷却管、温度計および攪拌翼を備えた内容積0.5Lの四つ口フラスコに、窒素気流下で、製造例1で得た樹脂97g(0.5mol)、アセナフテン19.0g(0.13mol)およびパラトルエンスルホン酸0.14gを加え、180℃まで昇温させて2時間反応させた。その後1−ナフトール14.4g(0.1mol)とフェノール9.4g(0.1mol)を加え、205℃まで昇温させて2時間反応させた。溶剤希釈後、中和および水洗を行い、溶剤を減圧下に除去し、黒褐色固体の変性樹脂101.0gを得た。
GPC分析の結果、Mn:894、Mw:2761、Mw/Mn:3.01であった。有機元素分析の結果、炭素濃度は89.4質量%、酸素濃度は4.1質量%あった。得られた変性樹脂の耐熱性および溶剤溶解性評価結果を表1に示す。
<Example 6>
In a 0.5 L four-necked flask equipped with a Dimroth condenser, thermometer, and stirring blade, under a nitrogen stream, 97 g (0.5 mol) of the resin obtained in Production Example 1 and 19.0 g of acenaphthene (0. 13 mol) and 0.14 g of paratoluenesulfonic acid were added, and the mixture was heated to 180 ° C. and reacted for 2 hours. Thereafter, 14.4 g (0.1 mol) of 1-naphthol and 9.4 g (0.1 mol) of phenol were added, and the temperature was raised to 205 ° C. and reacted for 2 hours. After solvent dilution, neutralization and water washing were performed, and the solvent was removed under reduced pressure to obtain 101.0 g of a dark brown solid modified resin.
It was Mn: 894, Mw: 2761, Mw / Mn: 3.01 as a result of the GPC analysis. As a result of organic elemental analysis, the carbon concentration was 89.4% by mass and the oxygen concentration was 4.1% by mass. Table 1 shows the heat resistance and solvent solubility evaluation results of the resulting modified resin.

<比較例1>アセナフテン樹脂
ジムロート冷却管、温度計および攪拌翼を備えた、底抜きが可能な内容積10Lの四つ口フラスコに、窒素気流中、アセナフテン1.52kg(10mol、三菱ガス化学(株)製)、40質量%ホルマリン水溶液1.5kg(ホルムアルデヒドとして20mol、三菱ガス化学(株)製)および98質量%硫酸(関東化学(株)製)0.27kgを仕込み、常圧下、100℃で還流させながら7時間反応させた。希釈溶媒としてエチルベンゼン1.8kgを加え、静置後、下相の水相を除去した。さらに、中和および水洗を行い、エチルベンゼンおよび未反応のアセナフテンを減圧下に留去し、褐色固体のアセナフテン樹脂1.25kgを得た。
GPC測定の結果、Mn:501、Mw:1028、Mw/Mn:2.05であった。有機元素分析の結果、炭素濃度は85.7質量%、酸素濃度は5.1質量%あった。得られたアセナフテン樹脂の耐熱性および溶剤溶解性評価結果を表1に示す。
<Comparative Example 1> Acenaphthene resin Into a four-necked flask with an internal volume of 10 L, equipped with a Dimroth condenser, thermometer, and stirring blade and capable of bottoming out, 1.52 kg of acenaphthene (10 mol, Mitsubishi Gas Chemical ( Co., Ltd.), 1.5 kg of 40% by weight formalin aqueous solution (20 mol as formaldehyde, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and 0.27 kg of 98% by mass sulfuric acid (manufactured by Kanto Chemical Co., Ltd.), 100 ° C. under normal pressure The mixture was reacted for 7 hours while refluxing. As a diluent solvent, 1.8 kg of ethylbenzene was added, and after standing, the lower aqueous phase was removed. Furthermore, neutralization and washing with water were performed, and ethylbenzene and unreacted acenaphthene were distilled off under reduced pressure to obtain 1.25 kg of a brown solid acenaphthene resin.
It was Mn: 501, Mw: 1028, Mw / Mn: 2.05 as a result of the GPC measurement. As a result of organic elemental analysis, the carbon concentration was 85.7% by mass and the oxygen concentration was 5.1% by mass. Table 1 shows the heat resistance and solvent solubility evaluation results of the obtained acenaphthene resin.

Figure 2011037992
Figure 2011037992

表1より、式[2]で示される化合物を変性剤として製造した変性ジメチルナフタレンホルムアルデヒド樹脂は、耐熱性に優れ、また溶剤に対する溶解性も優れた変性ジメチルナフタレンホルムアルデヒド樹脂であることが分かる。   From Table 1, it can be seen that the modified dimethylnaphthalene formaldehyde resin produced using the compound represented by the formula [2] as a modifying agent is a modified dimethylnaphthalene formaldehyde resin having excellent heat resistance and excellent solubility in solvents.

本発明の変性ジメチルナフタレンホルムアルデヒド樹脂は、電気用絶縁材料、レジスト用樹脂、半導体用封止樹脂、プリント配線板用接着剤、電気機器・電子機器・産業機器等に搭載される電気用積層板およびプリプレグのマトリックス樹脂、ビルドアップ積層板材料、繊維強化プラスチック用樹脂、液晶表示パネルの封止用樹脂、塗料、各種コーティング剤、接着剤等の広範な用途に利用可能である。   The modified dimethylnaphthalene formaldehyde resin of the present invention includes an electrical insulating material, a resist resin, a semiconductor sealing resin, an adhesive for printed wiring boards, electrical laminates mounted on electrical equipment / electronic equipment / industrial equipment, and the like, and It can be used in a wide range of applications such as prepreg matrix resin, build-up laminate material, fiber reinforced plastic resin, liquid crystal display panel sealing resin, paint, various coating agents, and adhesives.

Claims (6)

式[1]で示される構成単位を有するジメチルナフタレンホルムアルデヒド樹脂を原料とし、式[2]で示される化合物を必須成分とする変性剤で変性した変性ジメチルナフタレンホルムアルデヒド樹脂。
Figure 2011037992

Figure 2011037992
A modified dimethylnaphthalene formaldehyde resin modified with a denaturant containing a compound represented by the formula [2] as an essential component, starting from a dimethylnaphthalene formaldehyde resin having a structural unit represented by the formula [1].
Figure 2011037992

Figure 2011037992
前記変性剤として、さらに式[3]で示されるフェノール類および式[4]で示されるナフトール類からなる群から選択される少なくとも1種の化合物を使用する請求項1記載の変性ジメチルナフタレンホルムアルデヒド樹脂。
Figure 2011037992

Figure 2011037992
The modified dimethylnaphthalene formaldehyde resin according to claim 1, wherein at least one compound selected from the group consisting of phenols represented by formula [3] and naphthols represented by formula [4] is further used as the modifier. .
Figure 2011037992

Figure 2011037992
前記ジメチルナフタレンホルムアルデヒド樹脂が、1,5−ジメチルナフタレン、1,6−ジメチルナフタレン、2,6−ジメチルナフタレン、1,7−ジメチルナフタレン、1,8−ジメチルナフタレンおよび2,7−ジメチルナフタレンからなる群から選択される少なくとも1種のジメチルナフタレンとホルムアルデヒドの縮合反応で得られたものである、請求項1または2に記載の変性ジメチルナフタレンホルムアルデヒド樹脂。   The dimethylnaphthalene formaldehyde resin comprises 1,5-dimethylnaphthalene, 1,6-dimethylnaphthalene, 2,6-dimethylnaphthalene, 1,7-dimethylnaphthalene, 1,8-dimethylnaphthalene and 2,7-dimethylnaphthalene. The modified dimethylnaphthalene formaldehyde resin according to claim 1 or 2, which is obtained by a condensation reaction of at least one dimethylnaphthalene selected from the group and formaldehyde. 式[2]で示される化合物がアセナフテンである請求項1〜3のいずれかに記載の変性ジメチルナフタレンホルムアルデヒド樹脂。   The modified dimethylnaphthalene formaldehyde resin according to any one of claims 1 to 3, wherein the compound represented by the formula [2] is acenaphthene. 式[3]で示されるフェノール類が、フェノール、クレゾール、4−t−ブチルフェノールおよびキシレノールからなる群から選択される少なくとも1種である、請求項2〜4のいずれかに記載の変性ジメチルナフタレンホルムアルデヒド樹脂。   The modified dimethylnaphthalene formaldehyde according to any one of claims 2 to 4, wherein the phenol represented by the formula [3] is at least one selected from the group consisting of phenol, cresol, 4-t-butylphenol and xylenol. resin. 式[4]で示されるナフトール類が、1−ナフトールおよび2−ナフトールからなる群から選択される少なくとも1種である、請求項2〜5のいずれかに記載の変性ジメチルナフタレンホルムアルデヒド樹脂。   The modified dimethylnaphthalene formaldehyde resin according to any one of claims 2 to 5, wherein the naphthol represented by the formula [4] is at least one selected from the group consisting of 1-naphthol and 2-naphthol.
JP2009186848A 2009-08-11 2009-08-11 Modified dimethylnaphthalene formaldehyde resin Pending JP2011037992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009186848A JP2011037992A (en) 2009-08-11 2009-08-11 Modified dimethylnaphthalene formaldehyde resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009186848A JP2011037992A (en) 2009-08-11 2009-08-11 Modified dimethylnaphthalene formaldehyde resin

Publications (1)

Publication Number Publication Date
JP2011037992A true JP2011037992A (en) 2011-02-24

Family

ID=43766084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009186848A Pending JP2011037992A (en) 2009-08-11 2009-08-11 Modified dimethylnaphthalene formaldehyde resin

Country Status (1)

Country Link
JP (1) JP2011037992A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072465A1 (en) * 2007-12-07 2009-06-11 Mitsubishi Gas Chemical Company, Inc. Composition for forming base film for lithography and method for forming multilayer resist pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072465A1 (en) * 2007-12-07 2009-06-11 Mitsubishi Gas Chemical Company, Inc. Composition for forming base film for lithography and method for forming multilayer resist pattern

Similar Documents

Publication Publication Date Title
US8563665B2 (en) Modified naphthalene formaldehyde resin, tricyclodecane skeleton-containing naphthol compound and ester compound
JP2010180147A (en) Cyanic acid ester compound and cured product thereof
US8648152B2 (en) Polyfunctional dimethylnaphthalene formaldehyde resin, and process for production thereof
JP2011046837A (en) Modified dimethylnaphtalene formaldehyde resin
JP2009155638A (en) Modified dimethylnaphthalene formaldehyde resin
TW201134831A (en) Thermosetting monomers and compositions containing phosphorus and cyanato groups
JP5353546B2 (en) Process for producing modified dimethylnaphthalene formaldehyde resin
JP2017114947A (en) Fluorene condensate composition and epoxidation composition and manufacturing method thereof
JP5870918B2 (en) Method for purifying alkylnaphthalene formaldehyde polymer
JP2008120697A (en) Adamantyl succinic acid anhydride
US9200105B2 (en) Naphthalene formaldehyde resin, deacetalized naphthalene formaldehyde resin, and modified naphthalene formaldehyde resin
JP2011037992A (en) Modified dimethylnaphthalene formaldehyde resin
JP6150213B2 (en) Aromatic hydrocarbon formaldehyde resin and modified aromatic hydrocarbon formaldehyde resin
KR20160125347A (en) Epoxy resin, epoxy resin composition, and cured product thereof
JP7396742B1 (en) Bismaleimide and its manufacturing method
TW201835134A (en) Substituted allyl ether resin, methallyl ether resin, epoxy resin, curable resin composition, and cured products of these
JPWO2014203867A1 (en) Aromatic hydrocarbon formaldehyde resin, modified aromatic hydrocarbon formaldehyde resin, epoxy resin, and production method thereof
JP2018127505A (en) Adamantane structure-containing polymer
JP2016190994A (en) Method for producing polyvalent hydroxy compound
JP2006151859A (en) Phenol derivative having oxetane ring and its manufacturing method
JPH03275680A (en) New epoxy compound and production thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20120119

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131126