JP2011036271A - Ultrasonic diagnostic apparatus - Google Patents

Ultrasonic diagnostic apparatus Download PDF

Info

Publication number
JP2011036271A
JP2011036271A JP2007314310A JP2007314310A JP2011036271A JP 2011036271 A JP2011036271 A JP 2011036271A JP 2007314310 A JP2007314310 A JP 2007314310A JP 2007314310 A JP2007314310 A JP 2007314310A JP 2011036271 A JP2011036271 A JP 2011036271A
Authority
JP
Japan
Prior art keywords
blood vessel
vessel wall
boundary
diagnostic apparatus
ultrasonic diagnostic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007314310A
Other languages
Japanese (ja)
Inventor
Taketomo Fukumoto
剛智 福元
Masahiko Kadokura
雅彦 門倉
Makoto Kato
真 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007314310A priority Critical patent/JP2011036271A/en
Priority to PCT/JP2008/003600 priority patent/WO2009072292A1/en
Publication of JP2011036271A publication Critical patent/JP2011036271A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4887Locating particular structures in or on the body
    • A61B5/489Blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a more accurate, reliable and highly stable ultrasonic diagnostic apparatus capable of estimating an elastic property. <P>SOLUTION: The elastic property value of a vascular wall is estimated based on the shape of the vascular wall, the quantity of distortion of the vascular wall computed from the distribution of the maximum displacement in the depth direction between the bloodstream-intima boundary and the adventitia-body tissue boundary, and the blood pressure value captured from a blood pressure acquisition part 113. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、被検体の組織性状を測定する超音波診断装置に関する。   The present invention relates to an ultrasonic diagnostic apparatus for measuring tissue properties of a subject.

従来の超音波診断装置は、超音波を被検体に照射し、その反射エコー信号の強度を対応する画素の輝度に変換し、被検体の構造を断層像として得るものである。また、近年、反射エコー信号の振幅や位相情報を解析することで、被検体内の組織の動きを測定し、その組織の歪みや弾性特性、粘性特性などの組織性状を把握するという試みがある。   A conventional ultrasonic diagnostic apparatus irradiates a subject with ultrasonic waves, converts the intensity of the reflected echo signal into the luminance of a corresponding pixel, and obtains the structure of the subject as a tomographic image. In recent years, there has been an attempt to analyze the amplitude and phase information of the reflected echo signal to measure the movement of the tissue in the subject and grasp the tissue properties such as strain, elastic characteristics, and viscosity characteristics of the tissue. .

例えば、特許文献1や非特許文献1には、心拍に起因する血管壁に設定された測定点の変位量から歪み量を求め、歪み量と血圧差から、測定点周辺の局所的な弾性特性を求める方法および、弾性特性の空間分布を画像表示する方法が記載されている。以下では、その概要について述べる。   For example, in Patent Document 1 and Non-Patent Document 1, a strain amount is obtained from a displacement amount of a measurement point set on a blood vessel wall caused by a heartbeat, and a local elastic characteristic around the measurement point is calculated from the strain amount and a blood pressure difference. And a method for displaying an image of the spatial distribution of elastic properties. The outline is described below.

動脈壁は拍動による血圧変化により変形するが、この変形度合い(歪み量)と、血圧によって生ずる動脈壁内の応力との関係からその弾性特性が定義される。ここで、動脈壁内の応力分布を非観血的に計測することや、間接的に推定することは不可能に近いため、一心拍間における動脈壁の歪み量εを超音波を利用して計測すると共に、別途血圧計にて計測した最低血圧Pdと最高血圧Psとの差、つまり、脈圧ΔP = Ps − Pdとの関係から、次式で動脈血管壁の弾性特性Eを定義する。   The arterial wall is deformed by a change in blood pressure due to pulsation, and its elastic characteristics are defined from the relationship between the degree of deformation (distortion amount) and the stress in the arterial wall caused by the blood pressure. Here, it is almost impossible to measure the stress distribution in the arterial wall non-invasively or indirectly, so the amount of arterial wall strain ε during one heartbeat can be calculated using ultrasound. In addition to the measurement, the elastic characteristic E of the arterial vessel wall is defined by the following equation based on the relationship between the minimum blood pressure Pd and the maximum blood pressure Ps separately measured by the sphygmomanometer, that is, the pulse pressure ΔP = Ps−Pd.

E = ΔP/ε ・・・ (1)
以下では、超音波による歪み量計測の概要を説明する。
今、図2に示すように、動脈壁の内膜側のA点と外膜側のB点の2点間の血管壁の歪み量εを計測することを考える。時刻tでのこの2点の位置をそれぞれXA(t)、XB(t)とし、心拡張末期の心電図R波トリガ時刻をt=0とすると、初期厚みh0はh0=XB(0) − XA(0)、最大厚さ変化量は、
Δh = MAX[|XB(t)−XA(t)|]となるので、歪み量εは次式で表される。
ε = Δh/h0 = MAX[|XB(t)−XA(t)|]/{XB(0)−XA(0)}・・・ (2)
ここで、MAX[*]は*の最大値を返す関数である。
E = ΔP / ε (1)
Below, the outline | summary of the distortion amount measurement by an ultrasonic wave is demonstrated.
Now, as shown in FIG. 2, it is considered to measure the amount of strain ε of the blood vessel wall between two points, the A point on the intima side and the B point on the adventitia side of the artery wall. If the positions of these two points at time t are XA (t) and XB (t), respectively, and the electrocardiogram R wave trigger time at the end diastole is t = 0, the initial thickness h0 is h0 = XB (0) −XA. (0), the maximum thickness variation is
Since Δh = MAX [| XB (t) −XA (t) |], the strain amount ε is expressed by the following equation.
ε = Δh / h0 = MAX [| XB (t) −XA (t) |] / {XB (0) −XA (0)} (2)
Here, MAX [*] is a function that returns the maximum value of *.

一般に動脈壁の変位は数百μm程度であるのに対し、最大厚さ変化量Δhは数十μm程度であり、使用している送受信超音波の波長(約300μm)よりも1桁程度小さな厚さ変化を正確に捉える必要がある。   In general, the displacement of the arterial wall is about several hundreds μm, while the maximum thickness change Δh is about several tens of μm, which is about an order of magnitude smaller than the wavelength of transmitted and received ultrasound (about 300 μm). It is necessary to accurately grasp the change.

上述の説明では、内膜側と外膜側の2点間の歪み量εの算出ついて説明したが、特許文献1や非特許文献1で示されている方法では、図7に示すように、1本の超音波ビーム上に80μm程度の間隔の変位計測点を設定し、各計測点の変位量を計測する。次いで、送受信超音波パルス幅が約400μm程度であることから、式(1)の初期厚みがh0 = 400μm程度離れた2点間で設定し、その層中では厚み変化が均一であると仮定し、式(2)により最大厚さ変化Δhを算出し、その2点間の中心点のΔhとしている。この層を血管壁の内膜側から外膜側まで変位計測点間隔分づつ縦方向に移動させながら、各々の計測点に関してΔhを算出する。さらに、超音波ビームを血管の長軸方向に沿って数百μm程度の間隔で走査することによって、血管壁の軸方向と深さ方向に数千個の微小領域を設定し、各微小領域においてΔhを算出する。このようにして得られたh、Δhとから各微小領域の歪み量εを算出し、別途血圧計にて計測した脈圧ΔPとから、式(1)に従って各微小領域の弾性特性Eを得る。
特開2000−229078号公報 金井 浩 他「INNERVISION」2005年8月号 p.31−33 出版社:インナービジョン
In the above description, the calculation of the strain amount ε between two points on the inner membrane side and the outer membrane side has been described. However, in the method shown in Patent Literature 1 and Non-Patent Literature 1, as shown in FIG. Displacement measurement points with an interval of about 80 μm are set on one ultrasonic beam, and the amount of displacement at each measurement point is measured. Next, since the transmission / reception ultrasonic pulse width is about 400 μm, the initial thickness of equation (1) is set between two points separated by h0 = about 400 μm, and the thickness change is assumed to be uniform in the layer. , The maximum thickness change Δh is calculated by the equation (2), and is set as Δh of the center point between the two points. Δh is calculated for each measurement point while moving this layer in the vertical direction from the inner membrane side to the outer membrane side of the blood vessel wall by the interval of the displacement measurement point. Furthermore, by scanning the ultrasonic beam at intervals of about several hundred μm along the long axis direction of the blood vessel, thousands of micro regions are set in the axial direction and the depth direction of the blood vessel wall. Δh is calculated. The strain amount ε of each minute region is calculated from h and Δh obtained in this way, and the elastic characteristic E of each minute region is obtained from the pulse pressure ΔP measured separately by a sphygmomanometer according to the equation (1). .
JP 2000-229078 A Hiroshi Kanai et al. “INNERVISION” August 2005 p. 31-33 Publisher: Inner Vision

しかし、上記方法では、以下の問題点があり、得られる弾性特性の信頼性を十分保証できなかった。
(1)歪み量を式(2)のように厚さ変化波形の最大値で定義している。
(2)式(1)で定義される弾性特性算出式は血管壁の形状に依存する。
以下では、上記(1)(2)について具体的に述べる。
However, the above method has the following problems, and the reliability of the obtained elastic characteristics cannot be sufficiently guaranteed.
(1) The amount of strain is defined by the maximum value of the thickness change waveform as shown in equation (2).
(2) The elastic characteristic calculation formula defined by the formula (1) depends on the shape of the blood vessel wall.
Hereinafter, the above (1) and (2) will be specifically described.

まず、(1)については、上記手法では、初期厚みh0離れた2点間では厚み変化が均一であると仮定しているにも関わらず、2点間の歪み量をその中点の点の歪み量として存在させており、その歪み量の存在点が2点間に複数存在することになり、前記仮定と矛盾している。   First, regarding (1), although the above method assumes that the thickness change is uniform between two points separated by the initial thickness h0, the distortion amount between the two points is calculated as the midpoint point. It exists as a distortion amount, and a plurality of existence points of the distortion amount exist between two points, which contradicts the above assumption.

又、使用している送信超音波パルスの中心周波数が7MHz程度であり、送受信超音波パルス幅が約400μm程度であることから、式(1)の初期厚みがh0 = 400μm程度離れた2点間で設定しているが、計測対象領域である血管壁の厚さは、例えば頸動脈の場合、重篤な患者以外では高々1mm程度であり、この領域を多層に分け、それぞれの層の歪み量を送受信超音波パルス幅を避け、正確に算出するのは、原理的に不可能に近い。対象領域長がWでパルス幅がPWであれば、W/PW分の層にしか分割できないことになる。   Further, since the center frequency of the transmission ultrasonic pulse used is about 7 MHz and the transmission / reception ultrasonic pulse width is about 400 μm, the initial thickness of the equation (1) is between two points separated by about h0 = 400 μm. However, the thickness of the blood vessel wall, which is the measurement target area, is about 1 mm at most in cases other than serious patients in the case of the carotid artery. This area is divided into multiple layers, and the distortion amount of each layer In principle, it is almost impossible to calculate accurately by avoiding the transmission / reception ultrasonic pulse width. If the target area length is W and the pulse width is PW, it can only be divided into layers of W / PW.

さらに、歪み量を算出する際に、初期厚みhと、最大厚さ変化量Δhを用いているが、この最大厚さ変化量Δhを式(2)で定義している。このような方法で算出する場合、XA(t)−XB(t)が最大値をとる時刻は、最高血圧をとる時刻、つまり、血管壁に最大の応力が加わり、変形が最大になり、血管壁の変位が最大となる時刻に一致するとは限らず、式の最大厚さ変化が本来意味するものが異なるものになる。
(2)については、一般に、材料の弾性特性はその材料固有のものであり、材料の形状に依存しないものであるが、式で表現される血管壁の弾性特性は、血管壁の形状に依存してしまい、血管壁そのものの弾性特性を表現できない。同一被検体の血管壁の同一部位の弾性特性を比較する場合は良いが、例えば、血管壁の厚さが異なるなど、血管壁の形状が異なる場合の比較をするのは不可能である。
Further, when calculating the strain amount, the initial thickness h and the maximum thickness change amount Δh are used, and the maximum thickness change amount Δh is defined by the equation (2). When calculating by such a method, the time when XA (t) -XB (t) takes the maximum value is the time when the highest blood pressure is taken, that is, the maximum stress is applied to the blood vessel wall, and the deformation is maximized. It does not necessarily coincide with the time at which the wall displacement is maximized, and what is originally meant by the maximum thickness change in the equation is different.
Regarding (2), in general, the elastic properties of a material are inherent to the material and do not depend on the shape of the material, but the elastic properties of the blood vessel wall expressed by the formula depend on the shape of the blood vessel wall. Therefore, the elastic characteristics of the blood vessel wall itself cannot be expressed. Although it is good to compare the elastic characteristics of the same part of the blood vessel wall of the same subject, it is impossible to compare when the shape of the blood vessel wall is different, for example, the thickness of the blood vessel wall is different.

つまり、従来用いられている手法では血管壁そのものの弾性特性を信頼性高く推定するのは極めて困難であった。   In other words, it has been extremely difficult to estimate the elastic characteristics of the blood vessel wall with high reliability with a conventionally used method.

本発明は上記従来手法の問題点を可能な限り排除し、正確で信頼性のある血管壁そのものの弾性特性を推定することが可能な超音波診断装置を提供することを目的とする。   An object of the present invention is to provide an ultrasonic diagnostic apparatus that can eliminate the above-described problems of the conventional method as much as possible and can estimate the elastic characteristics of the blood vessel wall itself with accuracy and reliability.

本発明に係る超音波診断装置は、超音波を探触子を通して体外から被検体内部に照射する送信部と、超音波が照射された被検体内部から反射してきた超音波エコーに基づく受信信号を出力する受信部と、前記受信部からの出力に基づいて前記被検体内部の動脈血管壁周辺の任意の部位の変位量を計測する変位計測部と、前記受信部からの出力と前記変位計測部からの出力の少なくとも一方に基づいて、前記探触子の近位側ならびに遠位側の血管壁の血流−血管壁境界と血管壁−周辺組織境界とを検出する境界検出部と、前記境界検出部からの出力に基づいて前記動脈血管壁の形状を決定する形状決定部と、前記探触子の近位側もしくは遠位側の血管壁における、前記境界検出部からの出力もしくは前記変位計測部からの出力から前記動脈血管壁の歪み量を算出する歪み算出部と、前記被検体の血圧値を取り込む血圧値取得部と、前記形状決定部からの出力と前記歪み算出部からの出力と前記血圧値取得部からの出力とに基づいて、前記探触子の近位側もしくは遠位側の血管壁の弾性特性値を推定する弾性特性推定部とを備え、前記歪み算出部で前記歪み量を算出する時刻は、一心拍周期内の前記血流−血管壁境界、もしくは、前記血管壁−周辺体組織境界の変位量が最大となる時刻であり、その時刻において、前記2つの境界間もしくはその周辺における前記血流−血管壁境界から前記血管壁−周辺体組織境界に向かう方向の前記変位量の変化傾向に基づいて歪み量を算出することを特徴とする。このような構成にすることで、従来手法の問題点を可能な限り排除し、正確で信頼性のある血管壁そのものの弾性特性を推定することが可能になる。   The ultrasonic diagnostic apparatus according to the present invention includes a transmitter that irradiates ultrasonic waves from outside the body through the probe to the inside of the subject, and a reception signal based on the ultrasonic echoes reflected from the inside of the subject irradiated with the ultrasonic waves. A receiving unit that outputs, a displacement measuring unit that measures a displacement amount of an arbitrary region around the arterial blood vessel wall inside the subject based on an output from the receiving unit, an output from the receiving unit, and the displacement measuring unit A boundary detection unit for detecting a blood flow-blood vessel wall boundary and a blood vessel wall-peripheral tissue boundary of a blood vessel wall on the proximal side and the distal side of the probe based on at least one of the outputs from the probe; and A shape determining unit that determines the shape of the arterial blood vessel wall based on the output from the detecting unit, and the output from the boundary detecting unit or the displacement measurement in the blood vessel wall on the proximal side or the distal side of the probe The arterial blood vessel from the output from the section A strain calculation unit that calculates a strain amount of the subject, a blood pressure value acquisition unit that captures the blood pressure value of the subject, an output from the shape determination unit, an output from the strain calculation unit, and an output from the blood pressure value acquisition unit And an elastic characteristic estimation unit that estimates an elastic characteristic value of a blood vessel wall on the proximal side or the distal side of the probe, and the time when the distortion calculation unit calculates the distortion amount is one heartbeat It is a time when the displacement amount of the blood flow-blood vessel wall boundary in the cycle or the blood vessel wall-peripheral body tissue boundary becomes maximum, and at that time, the blood flow-blood vessel between or around the two boundaries The distortion amount is calculated based on a change tendency of the displacement amount in a direction from the wall boundary toward the blood vessel wall-peripheral body tissue boundary. By adopting such a configuration, it becomes possible to eliminate the problems of the conventional method as much as possible and to estimate the elastic characteristics of the blood vessel wall itself with accuracy and reliability.

又、本発明に係る超音波診断装置は、前記境界検出部にて検出された各境界と、歪み量算出部にて算出された歪み量の少なくとも一方の特徴量の信頼性を判定し、その結果を報知する手段を有することを特徴とする。このような構成にすることで、その推定された弾性特性の信頼性を判定可能になる。   Further, the ultrasonic diagnostic apparatus according to the present invention determines the reliability of at least one feature amount of each boundary detected by the boundary detection unit and the distortion amount calculated by the distortion amount calculation unit, It has the means to alert | report a result, It is characterized by the above-mentioned. With such a configuration, the reliability of the estimated elastic characteristic can be determined.

又、本発明に係る超音波診断装置は、前記歪み算出量において、前記血流−血管壁境界から前記血管壁−周辺体組織境界に向かう方向の前記変位量の変化傾向を関数で近似し、前記方向の空間微分値を歪み量とする。このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度が向上し、推定される弾性特性の信頼性が向上する。   Further, the ultrasonic diagnostic apparatus according to the present invention approximates the change tendency of the displacement amount in the direction from the blood flow-blood vessel wall boundary to the blood vessel wall-peripheral body tissue boundary as a function in the strain calculation amount, The spatial differential value in the direction is defined as the distortion amount. With such a configuration, the problems of the conventional method can be avoided, the calculation accuracy of the distortion amount of the blood vessel wall used in estimating the elastic characteristics is improved, and the reliability of the estimated elastic characteristics is improved.

又、本発明に係る超音波診断装置は、前記関数が線形関数であることを特徴とする。
このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度が向上し、推定される弾性特性の信頼性が向上する。
The ultrasonic diagnostic apparatus according to the present invention is characterized in that the function is a linear function.
With such a configuration, the problems of the conventional method can be avoided, the calculation accuracy of the distortion amount of the blood vessel wall used in estimating the elastic characteristics is improved, and the reliability of the estimated elastic characteristics is improved.

又、本発明に係る超音波診断装置は、前記線形関数が1次関数であることを特徴とする。このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度が向上し、推定される弾性特性の信頼性が向上する。   In the ultrasonic diagnostic apparatus according to the present invention, the linear function is a linear function. With such a configuration, the problems of the conventional method can be avoided, the calculation accuracy of the distortion amount of the blood vessel wall used in estimating the elastic characteristics is improved, and the reliability of the estimated elastic characteristics is improved.

又、本発明に係る超音波診断装置は、前記1次関数の空間微分値を、前記2つの境界のそれぞれの境界付近に存在する2点での最大変位量の差分と、前記2点間距離により定義することを特徴とする。このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度や耐ノイズ性が向上し、推定される弾性特性の信頼性が向上する。   In the ultrasonic diagnostic apparatus according to the present invention, the spatial differential value of the linear function may be calculated using the difference between the maximum displacement amount at two points existing near each of the two boundaries and the distance between the two points. It is characterized by defining by. With this configuration, the problems of the conventional method can be avoided, the calculation accuracy and noise resistance of the vascular wall distortion used for estimating the elastic properties are improved, and the reliability of the estimated elastic properties is improved. Will improve.

又、本発明に係る超音波診断装置は、前記2点は、前記2つのそれぞれの境界付近でエコー強度が局所的に最大値をとる位置であることを特徴とする。このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度や耐ノイズ性が向上し、推定される弾性特性の信頼性が向上する。   The ultrasonic diagnostic apparatus according to the present invention is characterized in that the two points are positions where the echo intensity locally takes a maximum value in the vicinity of the boundary between the two points. With this configuration, the problems of the conventional method can be avoided, the calculation accuracy and noise resistance of the vascular wall distortion used for estimating the elastic properties are improved, and the reliability of the estimated elastic properties is improved. Will improve.

又、本発明に係る超音波診断装置は、前記2点それぞれの最大変位量を、前記2点それぞれの周辺の複数箇所の最大変位量の平均とすることを特徴とする。このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度や耐ノイズ性が向上し、推定される弾性特性の信頼性が向上する。   The ultrasonic diagnostic apparatus according to the present invention is characterized in that the maximum displacement amount at each of the two points is an average of the maximum displacement amounts at a plurality of locations around each of the two points. With this configuration, the problems of the conventional method can be avoided, the calculation accuracy and noise resistance of the vascular wall distortion used for estimating the elastic properties are improved, and the reliability of the estimated elastic properties is improved. Will improve.

又、本発明に係る超音波診断装置は、前記空間微分値を線形最小2乗法により算出することを特徴とする。このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度や耐ノイズ性が向上し、推定される弾性特性の信頼性が向上する。   The ultrasonic diagnostic apparatus according to the present invention is characterized in that the spatial differential value is calculated by a linear least square method. With this configuration, the problems of the conventional method can be avoided, the calculation accuracy and noise resistance of the vascular wall distortion used for estimating the elastic properties are improved, and the reliability of the estimated elastic properties is improved. Will improve.

又、本発明に係る超音波診断装置は、前記空間微分値を、受信信号の大きさによって重み付けした線形最小2乗法により算出することを特徴とする。このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度や耐ノイズ性が向上し、推定される弾性特性の信頼性が向上する。   The ultrasonic diagnostic apparatus according to the present invention is characterized in that the spatial differential value is calculated by a linear least square method weighted by the magnitude of the received signal. With this configuration, the problems of the conventional method can be avoided, the calculation accuracy and noise resistance of the vascular wall distortion used for estimating the elastic properties are improved, and the reliability of the estimated elastic properties is improved. Will improve.

又、本発明に係る超音波診断装置は、前記関数が非線形関数であることを特徴とする。
このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度や耐ノイズ性が向上し、推定される弾性特性の信頼性が向上する。
The ultrasonic diagnostic apparatus according to the present invention is characterized in that the function is a nonlinear function.
With this configuration, the problems of the conventional method can be avoided, the calculation accuracy and noise resistance of the vascular wall distortion used for estimating the elastic properties are improved, and the reliability of the estimated elastic properties is improved. Will improve.

又、本発明に係る超音波診断装置は、前記空間微分値を非線形最小2乗法により算出することを特徴とする。このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度や耐ノイズ性が向上し、推定される弾性特性の信頼性が向上する。   The ultrasonic diagnostic apparatus according to the present invention is characterized in that the spatial differential value is calculated by a non-linear least square method. With this configuration, the problems of the conventional method can be avoided, the calculation accuracy and noise resistance of the vascular wall distortion used for estimating the elastic properties are improved, and the reliability of the estimated elastic properties is improved. Will improve.

又、本発明に係る超音波診断装置は、前記空間微分値を、受信信号の大きさによって重み付けした非線形最小2乗法により算出することを特徴とする。このような構成にすることで、従来手法の問題点が回避でき、弾性特性推定の際に使用する血管壁の歪み量の算出精度や耐ノイズ性が向上し、推定される弾性特性の信頼性が向上する。   The ultrasonic diagnostic apparatus according to the present invention is characterized in that the spatial differential value is calculated by a non-linear least square method weighted according to the magnitude of a received signal. With this configuration, the problems of the conventional method can be avoided, the calculation accuracy and noise resistance of the vascular wall distortion used for estimating the elastic properties are improved, and the reliability of the estimated elastic properties is improved. Will improve.

又、本発明に係る超音波診断装置は、前記動脈壁の弾性特性値の信頼性を判定する際に使用する特徴量が、前記歪み量の符号であることを特徴とする。このような構成にすることで、推定された弾性特性の信頼性を簡単に判別することができる。   The ultrasonic diagnostic apparatus according to the present invention is characterized in that a feature amount used when determining the reliability of the elastic characteristic value of the artery wall is a sign of the strain amount. With this configuration, the reliability of the estimated elastic characteristic can be easily determined.

又、本発明に係る超音波診断装置は、前記動脈壁の弾性特性値の信頼性を判定する際に使用する特徴量が、前記血流−内膜境界と外膜−体組織境界との距離であることを特徴とする。このような構成にすることで、推定された弾性特性の信頼性を簡単に判別することができる。   In the ultrasonic diagnostic apparatus according to the present invention, the feature value used when determining the reliability of the elastic characteristic value of the artery wall is a distance between the blood flow-intima boundary and the epicardium-body tissue boundary. It is characterized by being. With this configuration, the reliability of the estimated elastic characteristic can be easily determined.

又、本発明に係る超音波診断装置は、前記動脈血管壁の形状が円筒管状であり、その形状が血管壁の厚さと血管の内径とで表現されることを特徴とする。このような構成にすることで、従来手法の問題点が回避でき、推定される弾性特性は血管の形状に依存しなくなり、正確な信頼性のある弾性特性の推定が可能になる。   In the ultrasonic diagnostic apparatus according to the present invention, the shape of the arterial blood vessel wall is a cylindrical tube, and the shape is expressed by the thickness of the blood vessel wall and the inner diameter of the blood vessel. By adopting such a configuration, the problems of the conventional method can be avoided, and the estimated elastic characteristic does not depend on the shape of the blood vessel, and the elastic characteristic can be estimated accurately and reliably.

又、本発明に係る超音波診断装置は、前記探触子の遠位側の血管壁の弾性特性を推定することを特徴とする。このような構成にすることで、変位計測精度が向上し、正確な信頼性のある弾性特性の推定が可能になる。   The ultrasonic diagnostic apparatus according to the present invention is characterized by estimating an elastic characteristic of a blood vessel wall on the distal side of the probe. By adopting such a configuration, the displacement measurement accuracy is improved, and accurate and reliable estimation of elastic characteristics becomes possible.

又、本発明に係る超音波診断装置は、前記送信部は、前記血管の長軸方向に沿った複数のポイントに向けて複数の超音波パルスを送信し、血管の長軸方向の弾性特性分布を得ることを特徴とする。このような構成にすることで、血管の長軸方向に沿った弾性特性分布が得られ、異常病変の発見が簡便に行えるようになる。   In the ultrasonic diagnostic apparatus according to the present invention, the transmitting unit transmits a plurality of ultrasonic pulses toward a plurality of points along the long axis direction of the blood vessel, and the elastic characteristic distribution in the long axis direction of the blood vessel is transmitted. It is characterized by obtaining. With such a configuration, an elastic characteristic distribution along the long axis direction of the blood vessel can be obtained, and an abnormal lesion can be easily found.

本発明によれば、より正確で信頼性・安定性の高い弾性特性を得ることができる。   According to the present invention, more accurate and highly reliable and stable elastic characteristics can be obtained.

(第1の実施の形態)
図1は、本発明の第1の実施の形態の超音波診断装置のブロック図である。図1の超音波診断装置は、探触子101、送信部102、受信部103、断層画像処理部104、メモリ105、画像合成部106、モニタ107、変位計測部108、歪み算出部109、、境界検出部110、弾性特性推定部111、メモリ112、血圧値取得部113、信頼性判定部114、形状決定部115、を含んで構成される。
(First embodiment)
FIG. 1 is a block diagram of the ultrasonic diagnostic apparatus according to the first embodiment of the present invention. 1 includes a probe 101, a transmission unit 102, a reception unit 103, a tomographic image processing unit 104, a memory 105, an image synthesis unit 106, a monitor 107, a displacement measurement unit 108, a distortion calculation unit 109, A boundary detection unit 110, an elastic characteristic estimation unit 111, a memory 112, a blood pressure value acquisition unit 113, a reliability determination unit 114, and a shape determination unit 115 are configured.

図示していないが、キーボードやトラックボール、スイッチ、ボタンといったユーザーインターフェースも超音波診断装置に接続されている。   Although not shown, a user interface such as a keyboard, trackball, switch, and button is also connected to the ultrasonic diagnostic apparatus.

送信部102は、指定されたタイミングで探触子101を駆動する高圧の送信信号を発生する。探触子101は、送信部102で発生した送信信号を超音波に変換して被検体に照射するとともに、被検体内部から反射してきた超音波エコーを電気信号に変換する。探触子101内には複数の圧電変換素子が配置され、これらの圧電変換素子の選択、および、圧電変換素子に電圧を与えるタイミングによって送信する超音波の偏向角およびフォーカスを制御する。   The transmission unit 102 generates a high-voltage transmission signal that drives the probe 101 at a designated timing. The probe 101 converts the transmission signal generated by the transmission unit 102 into ultrasonic waves and irradiates the subject, and converts ultrasonic echoes reflected from the inside of the subject into electric signals. A plurality of piezoelectric transducer elements are arranged in the probe 101, and the deflection angle and focus of the ultrasonic wave to be transmitted are controlled according to the selection of these piezoelectric transducer elements and the timing of applying a voltage to the piezoelectric transducer elements.

受信部103は、超音波エコーを電気信号に変換した受信信号を増幅するとともに、各圧電変換素子で受信された受信信号毎に異なる遅延を与えて加算することで、定められた位置(フォーカス)または方向(偏向角)からの超音波のみに基づく受信信号を出力する。   The receiving unit 103 amplifies a reception signal obtained by converting an ultrasonic echo into an electric signal, and adds a different delay for each reception signal received by each piezoelectric transducer, thereby determining a predetermined position (focus). Alternatively, a reception signal based only on ultrasonic waves from the direction (deflection angle) is output.

断層画像処理部104は、フィルタ、検波器、対数増幅器などからなり、受信部103から出力される受信信号の少なくとも振幅を解析して、被検体の組織構造を画像化する。   The tomographic image processing unit 104 includes a filter, a detector, a logarithmic amplifier, and the like, analyzes at least the amplitude of the reception signal output from the reception unit 103, and images the tissue structure of the subject.

境界検出部110は前記受信信号と前記任意の部位の変位量の少なくとも一方を解析して、被検体の血管壁の探触子101から近位側ならびに遠位側の血流−内膜境界、中膜−外膜境界、外膜−周辺組織境界を検出し、その境界位置を歪み算出部109と信頼性判定部114に出力する。   The boundary detection unit 110 analyzes at least one of the received signal and the displacement amount of the arbitrary part, and the blood flow-intima boundary on the proximal side and the distal side from the probe 101 of the blood vessel wall of the subject, The medial-epicardial boundary and the epicardial-peripheral tissue boundary are detected, and the boundary positions are output to the strain calculation unit 109 and the reliability determination unit 114.

変位計測部108は、少なくとも受信信号の位相を解析して計測点の変位量を計測する。例えば、特許文献1に記載の方法を利用して、変位量を計測しても良い。   The displacement measuring unit 108 analyzes at least the phase of the received signal and measures the displacement amount of the measurement point. For example, the amount of displacement may be measured using the method described in Patent Document 1.

歪み算出部109では、境界検出部110にて検出された血管壁の血流−内膜境界、中膜−外膜境界、外膜−周辺組織境界、もしくは、その周辺における任意の部位の変位量から、血管壁の歪み量を算出する。   In the strain calculation unit 109, the displacement amount of the blood vessel wall blood-intima boundary, media-outer membrane boundary, outer membrane-peripheral tissue boundary detected by the boundary detection unit 110, or an arbitrary part in the vicinity thereof From this, the distortion amount of the blood vessel wall is calculated.

形状決定部115は、境界検出部110にて検出された血管壁の各境界から、血管壁の形状を決定する。   The shape determination unit 115 determines the shape of the blood vessel wall from each boundary of the blood vessel wall detected by the boundary detection unit 110.

血圧値取得部113は、血圧値を取得する手段であり、検者が血圧値の手入力に使用するキーボードであっても、接続された血圧計そのものであってもよい。   The blood pressure value acquisition unit 113 is a means for acquiring a blood pressure value, and may be a keyboard used by the examiner for manual input of the blood pressure value or a connected sphygmomanometer itself.

弾性特性推定部111では、形状決定部115にて決定した血管壁の形状と、歪み算出部109にて算出された血管壁の歪み量と、血圧値取得部113で取得した血圧値とから、血管壁の弾性特性を推定する。 画像合成部106は、断層画像と、少なくとも弾性特性を示す数値や弾性特性分布画像のいずれか一方を合成し、モニタ107に表示する。   In the elastic characteristic estimation unit 111, from the shape of the blood vessel wall determined by the shape determination unit 115, the strain amount of the blood vessel wall calculated by the strain calculation unit 109, and the blood pressure value acquired by the blood pressure value acquisition unit 113, Estimate the elastic properties of the vessel wall. The image synthesizing unit 106 synthesizes the tomographic image and at least one of the numerical value indicating the elastic characteristic and the elastic characteristic distribution image, and displays the synthesized image on the monitor 107.

メモリ112は、受信信号を記憶するものであり、超音波送受信停止時(以下フリーズ状態という)に弾性特性を再推定する際に利用される。メモリ105は、断層画像を記憶するものであり、フリーズ状態のときに組織性状値に同期した断層画像を出力する。   The memory 112 stores received signals, and is used to re-estimate the elastic characteristics when the ultrasonic transmission / reception is stopped (hereinafter referred to as the freeze state). The memory 105 stores a tomographic image, and outputs a tomographic image synchronized with the tissue property value in a frozen state.

以上のように構成された超音波診断装置における、歪み量の算出方法ならびに弾性特性推定方法について具体的に述べる。なお、以下では、探触子101から遠位側の血管壁を対象にした場合に説明を限定する。   A strain amount calculation method and an elastic property estimation method in the ultrasonic diagnostic apparatus configured as described above will be specifically described. In the following, the description is limited to the case where the blood vessel wall distal to the probe 101 is targeted.

まず、歪み算出部109にて算出されるべき歪み量は、図3に示すように、探触子101から遠位側の血管壁の歪み量であり、境界検出部110にて検出された血管壁の血流−内膜境界と外膜−周辺組織境界との間の歪み量を算出する必要がある。ここで、外膜−周辺組織境界を受信信号を解析して決定するのは困難である場合が多い。そのような場合、外膜−周辺組織境界と中膜−外膜境界とは近接していることから、外膜−周辺組織境界を中膜−外膜境界と同一もしくは、ある距離分はなれた位置として考えても実用上問題ない。以下の説明では、血管壁と周辺組織との境界を外膜−周辺組織境界として説明するが、これを中膜−外膜境界と同一もしくは、ある距離分はなれた位置と置き換えて考えても良い。   First, as shown in FIG. 3, the strain amount to be calculated by the strain calculation unit 109 is the strain amount of the blood vessel wall distal to the probe 101, and the blood vessel detected by the boundary detection unit 110. It is necessary to calculate the amount of strain between the wall blood flow-intima boundary and the outer membrane-peripheral tissue boundary. Here, it is often difficult to determine the boundary between the outer membrane and the surrounding tissue by analyzing the received signal. In such a case, since the outer membrane-peripheral tissue boundary and the media-exterior membrane boundary are close to each other, the outer membrane-peripheral tissue boundary is the same as or separated from the media-outer membrane boundary by a certain distance. As a matter of fact, there is no practical problem. In the following description, the boundary between the blood vessel wall and the surrounding tissue is described as the outer membrane-peripheral tissue boundary, but this may be replaced with a position that is the same as or separated from the middle membrane-outer membrane boundary. .

歪み量は変位量の空間微分で定義されるが、今、図1に示す超音波診断装置では、超音波ビームを1次元的に送受信することを考えているため、超音波ビームの進行方向、つまり、被検体表面から血管や体組織に向かう方向(以下、深さ方向)の変位量の空間微分を考えれば良い。   The amount of distortion is defined by the spatial differential of the amount of displacement. Now, in the ultrasonic diagnostic apparatus shown in FIG. 1, since the ultrasonic beam is considered to be transmitted and received one-dimensionally, the traveling direction of the ultrasonic beam, That is, the spatial differential of the displacement amount in the direction from the subject surface toward the blood vessel or body tissue (hereinafter, depth direction) may be considered.

ここで、血管壁は血圧の変動により、1心拍周期にわたって伸縮するので、歪み量、つまり、変位量の空間微分を1心拍周期のどの時刻にとるか決定しなければならない。従来の方法では、400μm程度離れた2点間の厚さ変化が最大値をとる時刻としているが、この方法では、血管壁の変形が最大になり、血管壁の変位が最大となる時刻に一致するとは限らず、式(1)(2)の最大厚さ変化が本来意味するものが異なるものになる。   Here, since the blood vessel wall expands and contracts over one heartbeat cycle due to fluctuations in blood pressure, it is necessary to determine at which time in one heartbeat cycle the amount of distortion, that is, the spatial differential of the displacement amount is taken. In the conventional method, the time when the thickness change between two points separated by about 400 μm takes the maximum value is the time, but in this method, the deformation of the blood vessel wall becomes the maximum and the time when the displacement of the blood vessel wall becomes the maximum This is not necessarily the case, but what is originally meant by the maximum thickness change in equations (1) and (2) is different.

通常、歪み量が最大になる時刻は、血管壁の変形が最大になる時刻と考えて良い。そこで、本実施の形態では、歪み量を定義する時刻を変位量計測された変位量が1心拍周期間に最大値をとる時刻に限定する。つまり、歪み量を1心拍周期間の最大変位量の深さ方向の空間微分で定義する。なお、血管壁内の各変位計測点において、外乱ノイズの影響により最大変位をとる時刻が異なってしまう場合が想定されるが、その場合は、一般に、強エコー部位の変位計測精度が高いことから、血管壁内の強エコー部位の変位量が最大変位をとる時刻としても良いし、血管壁内の各測定点の最大変位をとる時刻の平均としても良い。   Usually, the time when the amount of distortion becomes maximum may be considered as the time when the deformation of the blood vessel wall becomes maximum. Therefore, in the present embodiment, the time for defining the distortion amount is limited to the time at which the displacement amount measured for the displacement amount takes the maximum value during one heartbeat period. That is, the distortion amount is defined by the spatial differential in the depth direction of the maximum displacement amount during one heartbeat cycle. In addition, it is assumed that the time to take the maximum displacement at each displacement measurement point in the blood vessel wall is different due to the influence of disturbance noise. In that case, the displacement measurement accuracy of the strong echo site is generally high. Further, the time when the displacement amount of the strong echo portion in the blood vessel wall takes the maximum displacement may be set, or the average time when the maximum displacement of each measurement point in the blood vessel wall is taken.

本実施の形態では、弾性特性推定部で血管壁の弾性特性を推定する際に、血管壁を厚肉円筒管とみなし、その弾性特性を、歪み量と血圧と血管の形状とから推定する。血管が厚肉円筒管とみなせ、血圧により一様に伸縮すれば、その変形の度合い、つまり、最大変位量は、血流−内膜境界から外膜−体組織境界にむかって図4のように単調に減少する。   In the present embodiment, when the elastic characteristic estimation unit estimates the elastic characteristic of the blood vessel wall, the blood vessel wall is regarded as a thick cylindrical tube, and the elastic characteristic is estimated from the strain amount, blood pressure, and the shape of the blood vessel. If the blood vessel can be regarded as a thick-walled cylindrical tube and is uniformly expanded and contracted by the blood pressure, the degree of deformation, that is, the maximum displacement amount is as shown in FIG. 4 from the blood flow-intima boundary to the outer membrane-body tissue boundary. It decreases monotonously.

しかし、通常、血管壁の内中膜領域の最大変位量は、受信信号強度が小さいことや、血流−内膜境界と中膜−外膜境界付近に存在する強エコー部分の干渉などにより、変位計測精度が悪く、図5に示すように、血流−内膜境界から外膜−体組織境界に向かった単調減少傾向を示さない。このような状況下で、従来の方法を用いて、血管壁の血流−内膜境界から外膜−体組織境界にわたって複数箇所の歪み量を算出しても、その信頼性を保証することは困難となる。又、前述のように、初期厚み分離れた2点間では厚み変化が均一であると仮定しているにも関わらず、2点間の歪み量をその中点の点の歪み量として存在させている。歪み量の存在点が2点間に複数存在することになり、前記仮定と矛盾する。   However, the maximum displacement amount of the intima region of the blood vessel wall is usually due to the small received signal strength, interference of the strong echo part existing near the blood flow-intima boundary and the intima-outer membrane boundary, etc. As shown in FIG. 5, the displacement measurement accuracy is poor and does not show a monotonous decreasing trend from the blood flow-intima boundary toward the outer membrane-body tissue boundary. Under such circumstances, even if the amount of strain is calculated at multiple locations from the blood flow-intima boundary to the outer membrane-tissue boundary using the conventional method, the reliability can be guaranteed. It becomes difficult. In addition, as described above, although it is assumed that the thickness change is uniform between the two points separated by the initial thickness, the strain amount between the two points is present as the strain amount at the midpoint. ing. There are a plurality of distortion amount existing points between the two points, which contradicts the above assumption.

さらに、前述のように、従来の方法で使用されている送受信超音波の中心周波数は7MHz程度であり、パルス幅の干渉を考慮すると、ある2点間の変位量を独立した2点間の変位として観測できるのは、2点間の間隔が400μm程度である。ヒト頸動脈の血管壁は重篤でプラークが存在する場合を除いては、高々1mm程度であり、単純に考えても、歪み量を算出できる区間は、高々2区間程度である。   Furthermore, as described above, the center frequency of the transmission / reception ultrasonic wave used in the conventional method is about 7 MHz, and considering the interference of the pulse width, the displacement amount between the two points is independent of the displacement amount between the two points. The distance between the two points can be observed as about 400 μm. The vascular wall of the human carotid artery is about 1 mm at most, except for the case where plaque is present, and even if it is simply considered, the section where the amount of distortion can be calculated is about two sections at most.

そこで、本実施の形態では、従来の方法のように血管壁を微小領域に分割してそのそれぞれに対して歪み量を算出するのではなく、血管壁全体の歪み量を算出する。このような構成にすることで、結果的に得られる弾性特性の信頼性を保証しやすくなるほか、耐ノイズ性が向上する。具体的には、変位計測精度が比較的高い、血流−内膜境界と外膜−体組織境界のそれぞれの境界付近に存在する強エコー部分の2点(図5のA、B)での最大変位量の差分ΔXmax = XBmax − XAmaxと、その2点間距離ΔX =A−Bにより、歪み量をΔXmax/ΔXと定義する。なお、2点A、Bをそれぞれどこに設定するかは、それぞれの境界付近に存在すれば、どこでも良いが、それぞれの境界付近でエコー強度が局所的に最大値をとる場所にするのが最適である。又、エコー強度が局所的に最大値をとる場所2点A、Bを設定し、最大変位量はそれぞれの位置の周辺数箇所での最大変位量を平均して、それぞれの位置の最大変位量としても良い。又、予め最大変位量に対し、深さ方向フィルタを施しても良く、こうすることで、耐ノイズ性を高くできる。   Therefore, in the present embodiment, the amount of distortion of the entire blood vessel wall is calculated instead of dividing the blood vessel wall into minute regions and calculating the amount of distortion for each of them as in the conventional method. With such a configuration, it becomes easy to guarantee the reliability of the resulting elastic characteristics, and noise resistance is improved. Specifically, the displacement measurement accuracy is relatively high at two points (A and B in FIG. 5) of the strong echo portion existing near each of the blood flow-intima boundary and the outer membrane-tissue boundary. The distortion amount is defined as ΔXmax / ΔX by the difference ΔXmax = XBmax−XAmax of the maximum displacement amount and the distance ΔX = A−B between the two points. The two points A and B may be set anywhere as long as they exist in the vicinity of the respective boundaries. However, it is optimal to set the echo intensity locally at the maximum value in the vicinity of each boundary. is there. In addition, two points A and B where the echo intensity is locally maximized are set, and the maximum displacement is obtained by averaging the maximum displacements at several locations around each position to obtain the maximum displacement at each position. It is also good. Further, a depth direction filter may be applied to the maximum displacement amount in advance, so that noise resistance can be increased.

次に、このようにして得られた歪み量と、血圧と血管壁の形状とから弾性特性を推定する方法について述べる。   Next, a method for estimating the elastic characteristic from the strain amount thus obtained, the blood pressure, and the shape of the blood vessel wall will be described.

従来の方法のように式(1)に従って、歪み量と血圧値とから推定された弾性特性は、形状によって変化してしまうため、血管壁そのものの弾性特性を反映したものではない。血管壁を厚肉円筒管とみなした場合、その弾性特性は次式で表現される。
E = {(1+ν)(2νRi/h +1) / (2+h/Ri) }・(−ΔP/ε) …(3)
ここで、Riは血管の内径、hは心電図のR波トリガ時刻における血管壁の厚さ、ΔPは脈圧、νはポアソン比である。
よって、本実施の形態における弾性特性推定部では、境界検出部にて決定された各境界から、血管の内径R、血管壁の厚さhを算出し、それらと、歪み算出部にて算出された歪み量ε、血圧値取得部で取得された最高・最低血圧の差分である脈圧ΔP、とを式(3)に代入することにより、血管壁の弾性特性を推定する。
The elastic characteristic estimated from the strain amount and the blood pressure value according to the equation (1) as in the conventional method changes depending on the shape, and thus does not reflect the elastic characteristic of the blood vessel wall itself. When the blood vessel wall is regarded as a thick cylindrical tube, its elastic characteristic is expressed by the following equation.
E = {(1 + ν) (2νRi / h + 1) / (2 + h / Ri)} · (−ΔP / ε) (3)
Here, Ri is the inner diameter of the blood vessel, h is the thickness of the blood vessel wall at the R-wave trigger time of the electrocardiogram, ΔP is the pulse pressure, and ν is the Poisson's ratio.
Therefore, in the elastic characteristic estimation unit in the present embodiment, the inner diameter R of the blood vessel and the thickness h of the blood vessel wall are calculated from each boundary determined by the boundary detection unit, and these are calculated by the strain calculation unit. The elasticity characteristic of the blood vessel wall is estimated by substituting the strain amount ε and the pulse pressure ΔP, which is the difference between the highest and lowest blood pressures acquired by the blood pressure value acquisition unit, into the equation (3).

以上は、複数ある超音波ビームのうち1本の超音波ビーム上での処理についての説明であり、1本の超音波ビーム上の血管壁において1つの弾性特性を推定する場合の説明であるが、これを図7のように血管の長軸方向への超音波送受信を順次行い、同様の手順で各超音波ビーム上で弾性特性を推定することで、血管の長軸方向の弾性特性の分布が得られることになる。なお、本実施の形態の場合、弾性特性は血管壁領域においてのみ定義されるので、画像合成部にて断層像と合成してモニタへ表示する際には、血管壁領域にのみカラーコーディングするなどして表示する。また、各超音波ビーム上で推定された弾性特性をそれぞれ数値で表示しても良いし、超音波ビーム走査範囲の平均的な値を数値で表示しても良い。   The above is a description of processing on one ultrasonic beam among a plurality of ultrasonic beams, and is an explanation of estimating one elastic characteristic in a blood vessel wall on one ultrasonic beam. Then, as shown in FIG. 7, ultrasonic transmission / reception is sequentially performed in the major axis direction of the blood vessel, and the elastic characteristics are estimated on each ultrasonic beam in the same procedure, thereby distributing the elastic characteristics in the major axis direction of the blood vessel. Will be obtained. In the case of the present embodiment, since the elastic characteristics are defined only in the blood vessel wall region, color coding is performed only on the blood vessel wall region when the image composition unit displays the result on the monitor by combining with the tomographic image. And display. Further, the elastic characteristics estimated on each ultrasonic beam may be displayed numerically, and the average value of the ultrasonic beam scanning range may be displayed numerically.

ここで、上述したように、血管壁を厚肉円筒管とみなし、それが血圧により伸縮する場合、その最大変位の深さ方向分布は単調減少傾向を示す。よって、血管壁が常識的に伸縮していれば、歪み量算出部にて算出される歪み量の符号は負になるはずであり、正の場合は式を用いて推定された弾性特性の信頼性は極めて低いことになる。又、血流−内膜境界と外膜−体組織境界が近接し、その2つの境界距離が超音波のパルス幅と同等かそれより短い場合は、その2つの境界位置のそれぞれの位置の変位量計測精度は極めて低くなる。   Here, as described above, when the blood vessel wall is regarded as a thick cylindrical tube and it expands and contracts due to blood pressure, the depth direction distribution of the maximum displacement shows a monotonous decreasing tendency. Therefore, if the blood vessel wall expands and contracts in a common sense, the sign of the strain amount calculated by the strain amount calculation unit should be negative, and if it is positive, the reliability of the elastic property estimated using the formula The nature will be very low. When the blood flow-intima boundary and the outer membrane-tissue boundary are close to each other, and the distance between the two boundaries is equal to or shorter than the pulse width of the ultrasonic wave, the displacement of each of the two boundary positions is changed. The quantity measurement accuracy is extremely low.

そこで、信頼性判定部において、歪み算出部にて算出された歪み量の符号が負であるか、もしくは、境界検出部にて検出された血流−内膜境界と外膜−体組織境界間の距離が予め与えられた閾値より短い場合は、推定された弾性特性の信頼性が低いと判定し、その旨報知する手段を有する。信頼性が低い場合は、画像合成部にて弾性特性分布を表示しない構成にしたり、文字等の視覚的な手段で報知する構成にしても良い。なお、上述の説明では、歪み量もしくは境界位置を使用することを前提にしているが、いずれか一方を使用する構成でも構わない。
(第2の実施の形態)
本実施の形態と第1の実施の形態で異なる点は、変位量から歪み量を算出する部分のみで、その他は第1の実施の形態と同様なので、説明を省略する。
Therefore, in the reliability determination unit, the sign of the strain amount calculated by the strain calculation unit is negative, or between the blood flow-intima boundary and the outer membrane-body tissue boundary detected by the boundary detection unit. If the distance is shorter than a predetermined threshold value, it is determined that the reliability of the estimated elastic property is low, and means for notifying that is provided. When the reliability is low, the image composition unit may be configured not to display the elastic characteristic distribution, or may be configured to notify by visual means such as letters. In the above description, it is assumed that the distortion amount or the boundary position is used. However, any one of the configurations may be used.
(Second Embodiment)
The difference between the present embodiment and the first embodiment is only the part for calculating the strain amount from the displacement amount, and the rest is the same as in the first embodiment, and the description thereof will be omitted.

第1の実施の形態では、変位計測精度が比較的高い、血流−内膜境界と外膜−体組織境界のそれぞれの境界付近に存在する強エコー部分の2点(図5のA、B)での最大変位量の差分と、その2点間距離により、歪み量を定義していたが、本実施の形態においては、血流−内膜境界と外膜−体組織境界のそれぞれの境界付近に存在する2つの強エコー部分(図5のA、B) の間の最大変位量の深さ方向分布がある関数で近似できると仮定し、その関数の深さ方向の空間微分を歪み量とすることを特徴とする。   In the first embodiment, two points (A and B in FIG. 5) of the strong echo portion existing near the boundaries of the blood flow-intima boundary and the epicardium-body tissue boundary with relatively high displacement measurement accuracy. ), And the distortion amount is defined by the difference between the maximum displacement amount and the distance between the two points. In the present embodiment, each boundary between the blood flow-intima boundary and the outer membrane-tissue boundary Assuming that the depth distribution of the maximum displacement between two strong echo parts (A and B in Fig. 5) in the vicinity can be approximated by a function, the spatial differential in the depth direction of the function is the amount of distortion. It is characterized by.

図6には、簡単な例として、近似関数を1次関数とした場合の歪み量算出例を示してある。図6における血流−内膜境界と外膜−体組織境界のそれぞれの境界付近に存在する強エコー部分の2点C、D間の最大変位量の深さ方向分布が次式で表現される1次関数で近似されると仮定する。   FIG. 6 shows a distortion amount calculation example when the approximation function is a linear function as a simple example. The depth direction distribution of the maximum displacement amount between the two points C and D of the strong echo portion existing in the vicinity of each of the blood flow-intima boundary and the outer membrane-body tissue boundary in FIG. Suppose that it is approximated by a linear function.

Xmax(d) = α・d + β …(4)
ここで、Xmax(d)はある深さdにおける最大変位量で、α、βは近似した1次関数の傾きと切片である。
Xmax (d) = α · d + β (4)
Here, Xmax (d) is the maximum displacement at a certain depth d, and α and β are the slope and intercept of the approximated linear function.

この式(4)の1次関数の傾きαを線形最小2乗法により推定し、それを歪み量とする。なお、前述のように、血管壁の内中膜領域はエコー強度が弱く、変位計測精度が比較的悪いため、線形最小2乗法により傾きαを推定する際に、各測定点でのエコー強度に応じて、最大変位量に重み付けをしても良い。又、予め最大変位量に対し、深さ方向フィルタを施しても良く、こうすることで、耐ノイズ性を高くできる。   The slope α of the linear function of the equation (4) is estimated by the linear least square method, and is used as the distortion amount. As described above, the intima region of the blood vessel wall has low echo intensity and relatively poor displacement measurement accuracy. Therefore, when estimating the inclination α by the linear least square method, the echo intensity at each measurement point is calculated. Accordingly, the maximum displacement amount may be weighted. Further, a depth direction filter may be applied to the maximum displacement amount in advance, so that noise resistance can be increased.

又、信頼性判定部においては、第1の実施の形態のように、推定された傾きαの符号が負である場合は、弾性特性推定部で推定された弾性特性の信頼性が低いと判定しても良いし、式(4)の1次関数のあてはまりの度合いを表す次式で表される値Eが設定された閾値よりも高い場合は、弾性特性推定部で推定された弾性特性の信頼性が低いと判定しても良い。   In the reliability determination unit, as in the first embodiment, when the sign of the estimated slope α is negative, it is determined that the reliability of the elastic property estimated by the elastic property estimation unit is low. If the value E represented by the following equation representing the degree of fit of the linear function of Equation (4) is higher than the set threshold value, the elastic property estimated by the elastic property estimating unit It may be determined that the reliability is low.

Error = Σ| Xmax_e(d) − Xmax_m(d)|^2…(5)
ここで、Xmax_e(d)は推定された近似関数で算出した最大変位量の深さ方向分布であり、Xmax_m(d)は実際に計測された最大変位量の深さ方向分布である。
Error = Σ | Xmax_e (d) −Xmax_m (d) | ^ 2 (5)
Here, Xmax_e (d) is the depth direction distribution of the maximum displacement amount calculated by the estimated approximate function, and Xmax_m (d) is the depth direction distribution of the maximum displacement amount actually measured.

なお、上述の説明では、近似関数を1次関数として説明しているが、多項式関数などの線形関数でも良いし、他の非線形関数でも良く、本発明はこれを制限するものではない。又、近似関数の傾きを推定する方法として、線形最小2乗法やエコー強度で重み付けされた線形最小2乗法を用いた説明をしているが、非線形最小2乗法など、他の推定方法を用いても良く、本発明はこれを制限するものではない。   In the above description, the approximate function is described as a linear function, but it may be a linear function such as a polynomial function or another nonlinear function, and the present invention does not limit this. In addition, as a method for estimating the slope of the approximate function, the linear least square method or the linear least square method weighted by the echo intensity is described. However, other estimation methods such as a nonlinear least square method are used. The present invention is not limited to this.

以上、説明したように、本発明によれば、より正確で信頼性・安定性が高い血管壁の弾性特性を推定することができ、被検体の組織性状を計測する超音波診断装置として有用である。 As described above, according to the present invention, it is possible to estimate the elastic characteristics of the blood vessel wall with higher accuracy, reliability, and stability, and it is useful as an ultrasonic diagnostic apparatus for measuring tissue properties of a subject. is there.

本発明の第1の実施の形態の超音波診断装置のブロック図1 is a block diagram of an ultrasonic diagnostic apparatus according to a first embodiment of the present invention. 血管壁の弾性特性推定の概要説明図Outline explanatory diagram of elastic property estimation of blood vessel wall 血管壁の各境界、領域の説明図Illustration of each boundary and region of blood vessel wall 最大変位量の血管壁周辺分布の概念図Schematic diagram of distribution of maximum displacement around vessel wall 本発明の第1の実施の形態における歪み算出方法の概要説明図Outline | summary explanatory drawing of the distortion calculation method in the 1st Embodiment of this invention 本発明の第2の実施の形態における歪み算出方法の概要説明図Outline explanatory drawing of the distortion calculation method in the 2nd Embodiment of this invention 従来例における弾性特性推定の概要説明図Outline explanatory diagram of elastic property estimation in the conventional example

符号の説明Explanation of symbols

101 探触子
102 送信部
103 受信部
104 断層画像処理部
105 メモリ
106 画像合成部
107 モニタ
108 変位計測部
109 歪算出部
110 境界検出部
111 弾性特性推定部
112 メモリ
113 血圧値取得部
114 信頼性判定部
115 形状決定部
DESCRIPTION OF SYMBOLS 101 Probe 102 Transmission part 103 Reception part 104 Tomographic image processing part 105 Memory 106 Image composition part 107 Monitor 108 Displacement measurement part 109 Strain calculation part 110 Boundary detection part 111 Elastic property estimation part 112 Memory 113 Blood pressure value acquisition part 114 Reliability Judgment unit 115 Shape determination unit

Claims (19)

超音波を探触子を通して体外から被検体内部に照射する送信部と、
超音波が照射された被検体内部から反射してきた超音波エコーに基づく受信信号を出力する受信部と、
前記受信部からの出力に基づいて前記被検体内部の動脈血管壁周辺の任意の部位の変位量を計測する変位計測部と、
前記受信部からの出力と前記変位計測部からの出力の少なくとも一方に基づいて、
前記探触子の近位側ならびに遠位側の血管壁の血流−血管壁境界と血管壁−周辺組織境界とを検出する境界検出部と、
前記境界検出部からの出力に基づいて前記動脈血管壁の形状を決定する形状決定部と、
前記探触子の近位側もしくは遠位側の血管壁における
前記境界検出部からの出力もしくは前記変位計測部からの出力から前記動脈血管壁の歪み量を算出する歪み算出部と、
前記被検体の血圧値を取り込む血圧値取得部と、
前記形状決定部からの出力と前記歪み算出部からの出力と前記血圧値取得部からの出力とに基づいて、
前記探触子の近位側もしくは遠位側の血管壁の弾性特性値を推定する弾性特性推定部とを備え、
前記歪み算出部で前記歪み量を算出する時刻は、一心拍周期内の前記血流−血管壁境界、もしくは、前記血管壁−周辺体組織境界の変位量が最大となる時刻であり、
その時刻において、前記2つの境界間もしくはその周辺における前記血流−血管壁境界から前記血管壁−周辺体組織境界に向かう方向の前記変位量の変化傾向に基づいて歪み量を算出することを特徴とする超音波診断装置。
A transmitter that emits ultrasonic waves from outside the body through the probe to the inside of the subject; and
A receiving unit that outputs a reception signal based on an ultrasonic echo reflected from the inside of the subject irradiated with ultrasonic waves;
A displacement measuring unit for measuring a displacement amount of an arbitrary part around the arterial blood vessel wall inside the subject based on an output from the receiving unit;
Based on at least one of the output from the receiving unit and the output from the displacement measuring unit,
A boundary detector for detecting blood flow-blood vessel wall boundary and blood vessel wall-peripheral tissue boundary of the blood vessel wall on the proximal side and the distal side of the probe;
A shape determining unit that determines the shape of the arterial blood vessel wall based on the output from the boundary detecting unit;
A strain calculation unit that calculates the amount of distortion of the arterial blood vessel wall from the output from the boundary detection unit or the output from the displacement measurement unit in the blood vessel wall on the proximal side or the distal side of the probe;
A blood pressure value acquisition unit that captures the blood pressure value of the subject;
Based on the output from the shape determination unit, the output from the distortion calculation unit, and the output from the blood pressure value acquisition unit,
An elastic property estimation unit for estimating an elastic property value of a blood vessel wall on the proximal side or the distal side of the probe;
The time when the distortion calculation unit calculates the distortion amount is a time when the displacement amount of the blood flow-blood vessel wall boundary in one heartbeat cycle or the blood vessel wall-peripheral body tissue boundary becomes maximum.
At that time, a distortion amount is calculated based on a change tendency of the displacement amount in a direction from the blood flow-blood vessel wall boundary to the blood vessel wall-peripheral body tissue boundary between or around the two boundaries. Ultrasonic diagnostic equipment.
前記境界検出部にて検出された各境界と、歪み量算出部にて算出された歪み量の少なくとも一方の特徴量の信頼性を判定し、その結果を報知する手段を有することを特徴とする請求項1に記載の超音波診断装置。 It has means for determining the reliability of at least one feature amount of each boundary detected by the boundary detection unit and the distortion amount calculated by the distortion amount calculation unit, and notifying the result. The ultrasonic diagnostic apparatus according to claim 1. 前記歪み算出量において、前記血流−血管壁境界から前記血管壁−周辺体組織境界に向かう方向の前記変位量の変化傾向を関数で近似し、前記方向の空間微分値を歪み量であることを特徴とする請求項1、2のいずれかに記載の超音波診断装置。 In the strain calculation amount, the change tendency of the displacement amount in the direction from the blood flow-blood vessel wall boundary to the blood vessel wall-peripheral body tissue boundary is approximated by a function, and the spatial differential value in the direction is the strain amount. The ultrasonic diagnostic apparatus according to any one of claims 1 and 2. 前記関数は、線形関数であることを特徴とする請求項3に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 3, wherein the function is a linear function. 前記線形関数は、1次関数であることを特徴とする請求項4に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 4, wherein the linear function is a linear function. 前記1次関数の空間微分値を、前記2つの境界のそれぞれの境界付近に存在する2点での最大変位量の差分と、前記2点間距離により定義することを特徴とする請求項5に記載の超音波診断装置。 6. The spatial differential value of the linear function is defined by a difference between maximum displacement amounts at two points existing in the vicinity of each of the two boundaries and a distance between the two points. The ultrasonic diagnostic apparatus as described. 前記2点は、前記2つのそれぞれの境界付近でエコー強度が局所的に最大値をとる位置であることを特徴とする請求項6に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 6, wherein the two points are positions where the echo intensity locally takes a maximum value near each of the two boundaries. 前記2点それぞれの最大変位量を、前記2点それぞれの周辺の複数箇所の最大変位量の平均とすることを特徴とする請求項6、7のいずれかに記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 6, wherein the maximum displacement amount at each of the two points is an average of the maximum displacement amounts at a plurality of locations around each of the two points. 前記空間微分値を、線形最小2乗法により算出することを特徴とする請求項3、4、5のいずれかに記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 3, wherein the spatial differential value is calculated by a linear least square method. 前記空間微分値を、受信信号の大きさによって重み付けした線形最小2乗法により算出することを特徴とする請求項3、4、5のいずれかに記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 3, wherein the spatial differential value is calculated by a linear least square method weighted according to a magnitude of a received signal. 前記関数は、非線形関数であることを特徴とする請求項3に記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 3, wherein the function is a nonlinear function. 前記空間微分値を非線形最小2乗法により算出することを特徴とする請求項3、4、5、11のいずれかに記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 3, wherein the spatial differential value is calculated by a non-linear least square method. 前記空間微分値を、受信信号の大きさによって重み付けした非線形最小2乗法により算出することを特徴とする請求項3、4、5、11のいずれかに記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 3, wherein the spatial differential value is calculated by a non-linear least square method weighted according to a magnitude of a received signal. 前記動脈壁の弾性特性値の信頼性を判定する際に使用する特徴量は、前記歪み量の符号であることを特徴とする請求項1から13のいずれかに記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 1, wherein a feature amount used when determining the reliability of the elastic characteristic value of the artery wall is a sign of the strain amount. 前記動脈壁の弾性特性値の信頼性を判定する際に使用する特徴量は、前記血流−内膜境界と外膜−体組織境界との距離であることを特徴とする請求項1から13のいずれかに記載の超音波診断装置。 14. The feature amount used when determining the reliability of the elastic characteristic value of the arterial wall is a distance between the blood flow-intima boundary and the epicardium-body tissue boundary. The ultrasonic diagnostic apparatus in any one of. 前記動脈壁の弾性特性値の信頼性を判定する際に使用する特徴量は、前記血流−内膜境界と外膜−体組織境界との距離であることを特徴とする請求項1から13のいずれかに記載の超音波診断装置。 14. The feature amount used when determining the reliability of the elastic characteristic value of the arterial wall is a distance between the blood flow-intima boundary and the epicardium-body tissue boundary. The ultrasonic diagnostic apparatus in any one of. 前記動脈血管壁の形状が円筒管状であり、その形状が血管壁の厚さと血管の内径とで表現されることを特徴とする請求項1から16のいずれかに記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 1, wherein the arterial blood vessel wall has a cylindrical tubular shape, and the shape is expressed by the thickness of the blood vessel wall and the inner diameter of the blood vessel. 前記探触子の遠位側の血管壁の弾性特性を推定することを特徴とする請求項1から17のいずれかに記載の超音波診断装置。 The ultrasonic diagnostic apparatus according to claim 1, wherein an elastic characteristic of a blood vessel wall on a distal side of the probe is estimated. 前記送信部は、前記血管の長軸方向に沿った複数のポイントに向けて複数の超音波パルスを送信し、血管の長軸方向の弾性特性分布を得ることを特徴とする請求項1から18のいずれかに記載の超音波診断装置。 The transmission unit transmits a plurality of ultrasonic pulses toward a plurality of points along the long axis direction of the blood vessel to obtain an elastic characteristic distribution in the long axis direction of the blood vessel. The ultrasonic diagnostic apparatus in any one of.
JP2007314310A 2007-12-05 2007-12-05 Ultrasonic diagnostic apparatus Pending JP2011036271A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007314310A JP2011036271A (en) 2007-12-05 2007-12-05 Ultrasonic diagnostic apparatus
PCT/JP2008/003600 WO2009072292A1 (en) 2007-12-05 2008-12-04 Ultrasonic diagnostic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007314310A JP2011036271A (en) 2007-12-05 2007-12-05 Ultrasonic diagnostic apparatus

Publications (1)

Publication Number Publication Date
JP2011036271A true JP2011036271A (en) 2011-02-24

Family

ID=40717474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007314310A Pending JP2011036271A (en) 2007-12-05 2007-12-05 Ultrasonic diagnostic apparatus

Country Status (2)

Country Link
JP (1) JP2011036271A (en)
WO (1) WO2009072292A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2497425A1 (en) * 2011-03-08 2012-09-12 Fujifilm Corporation Ultrasound diagnostic apparatus and method of determining elasticity index reliability
JP2015012923A (en) * 2013-07-03 2015-01-22 株式会社東芝 Elastic modulus measuring device and elastic modulus measuring method
JP2016507313A (en) * 2013-02-22 2016-03-10 ユニヴェルシテ ジョセフ フーリエ−グレノーブル アンUniversite Joseph Fourier−Grenoble 1 Generation method of elastic modulus distribution image

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6358954B2 (en) * 2012-10-18 2018-07-18 株式会社日立製作所 Ultrasonic diagnostic equipment
JP6462340B2 (en) * 2013-12-13 2019-01-30 キヤノンメディカルシステムズ株式会社 Ultrasonic diagnostic apparatus, image processing apparatus, and image processing method
JP6299397B2 (en) * 2014-05-02 2018-03-28 コニカミノルタ株式会社 Signal processing apparatus, ultrasonic diagnostic apparatus, and signal processing method
CN112515704B (en) * 2020-12-01 2022-07-19 声泰特(成都)科技有限公司 Blood vessel hardness measuring method based on ultrasound

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005019173D1 (en) * 2004-07-28 2010-03-18 Panasonic Corp ULTRASONIC UNIT AND ULTRASONIC CONTROL PROCEDURE
US9380994B2 (en) * 2004-12-24 2016-07-05 Konica Minolta, Inc. Ultrasonic diagnostic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2497425A1 (en) * 2011-03-08 2012-09-12 Fujifilm Corporation Ultrasound diagnostic apparatus and method of determining elasticity index reliability
JP2012183261A (en) * 2011-03-08 2012-09-27 Fujifilm Corp Ultrasonic diagnostic apparatus and method for determining elasticity index reliability
US8852102B2 (en) 2011-03-08 2014-10-07 Fujifilm Corporation Ultrasound diagnostic apparatus and method of determining elasticity index reliability
JP2016507313A (en) * 2013-02-22 2016-03-10 ユニヴェルシテ ジョセフ フーリエ−グレノーブル アンUniversite Joseph Fourier−Grenoble 1 Generation method of elastic modulus distribution image
JP2015012923A (en) * 2013-07-03 2015-01-22 株式会社東芝 Elastic modulus measuring device and elastic modulus measuring method

Also Published As

Publication number Publication date
WO2009072292A1 (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4890554B2 (en) Ultrasonic diagnostic equipment
JP4667394B2 (en) Ultrasonic diagnostic equipment
JP4766546B2 (en) Ultrasonic diagnostic equipment
US20100113930A1 (en) Ultrasonic diagnostic device
JP5161954B2 (en) Ultrasonic diagnostic equipment
JP5158880B2 (en) Ultrasonic diagnostic equipment
US8512248B2 (en) Ultrasonograph that measures tissue displacements based on a reference point
US8672847B2 (en) Ultrasound diagnostic apparatus and method
JP2011036271A (en) Ultrasonic diagnostic apparatus
JPWO2007034738A1 (en) Ultrasonic diagnostic equipment
US8550999B2 (en) Ultrasound diagnostic apparatus
JP5166154B2 (en) Ultrasonic diagnostic equipment
JP5384919B2 (en) Ultrasonic diagnostic equipment
JP2004041382A (en) Ultrasonograph
JP4918369B2 (en) Ultrasonic diagnostic equipment
JP2009039277A (en) Ultrasonic diagnostic apparatus
JP5346555B2 (en) Ultrasound diagnostic device with arteriosclerosis risk display function
JPWO2007080870A1 (en) Ultrasonic diagnostic equipment
JP5014132B2 (en) Ultrasonic diagnostic equipment
JP2004159672A (en) Ultrasonograph and ultrasonic measuring method
JP5462474B2 (en) Ultrasonic diagnostic equipment
JP4627220B2 (en) Ultrasonic diagnostic equipment
WO2006126485A1 (en) Ultrasonograph
US11602333B2 (en) Ultrasound diagnostic apparatus
JP2008212548A (en) Ultrasonic diagnostic apparatus