JP2011035952A - 情報処理装置、プログラム、および記憶媒体 - Google Patents

情報処理装置、プログラム、および記憶媒体 Download PDF

Info

Publication number
JP2011035952A
JP2011035952A JP2009176764A JP2009176764A JP2011035952A JP 2011035952 A JP2011035952 A JP 2011035952A JP 2009176764 A JP2009176764 A JP 2009176764A JP 2009176764 A JP2009176764 A JP 2009176764A JP 2011035952 A JP2011035952 A JP 2011035952A
Authority
JP
Japan
Prior art keywords
generator
gas
data
amount
setting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009176764A
Other languages
English (en)
Inventor
Katsutoshi Hiromasa
勝利 廣政
Takenori Kobayashi
武則 小林
Yoshiki Murakami
好樹 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009176764A priority Critical patent/JP2011035952A/ja
Publication of JP2011035952A publication Critical patent/JP2011035952A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • Y02E40/76
    • Y04S10/54
    • Y04S10/545

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

【課題】電力系統の発電機の運転に伴う燃料費や温暖化ガスの排出量を抑え、かつ、温暖化ガスの回収・貯留装置の最適な運用を行なう。
【解決手段】発電機運転スケジュール計算部60は、総需要設定部50からの総需要設定データ、LNG使用量設定部51からのLNG使用量設定データ、CO回収量設定部52からのCO回収量設定データ、発電機データ設定部55からの発電機設備データ、CCSデータ設定部56からのCCS設定データ、排出原単位データ設定部57からの排出原単位データを入力し、各発電機の出力が総需要と等しく、各発電機によるLNG使用量がLNG使用量設定データに等しく、各CCS装置によるCO回収量がCO回収量設定データに達する条件で、燃料費とCO排出量とをそれぞれ抑制し、かつCCS装置の稼動数が最適となるように各発電機の運転スケジュールを計算する。
【選択図】 図1

Description

本発明は、複数の発電機を含む電力系統を運用するための情報処理装置、当該運用を行うためのコンピュータに適用されるプログラム、および当該プログラムを記録した記憶媒体に関する。
電力の需要やそれに伴う電力系統の負荷は、季節的・時間的・瞬間的に時々刻々と絶えず変動している。そのため、電力会社等においては、中央給電指令所が、当日の予想気温などの気象情報により前日の予想需要を見直して供給力の過不足の検討を行い、必要な場合、揚水発電機や火力発電機の並列台数の変更など運転スケジュールの修正を行った上で、時々刻々と変わる需用を監視しながら、各発電機の出力量を制御している。高品質の電力を安定して供給するため、一般に、階層化された電力系統監視制御システムの最上位システムとして、電力の安定供給と経済運用を支援する豊富な電力需給運用監視機能が備えられる。
電力需給運用監視機能には、代表的なものとして、以下に示すような機能がある。
需要予測:
過去の需要実績に気象条件を加味し、正確な需要予測を行う機能
発電計画:
予測された需要に対して最も経済的な発電機出力値を決定し、発電機に指令する機能
発電機制御:
自動周波数制御により、周波数偏差の少ない安定した電力を供給する機能
電圧セキュリティ監視:
電圧の不安定性を事前に察知し、電力系統の安定運用に寄与する機能
信頼度監視:
電力系統の信頼度監視をリアルタイムで行う機能
系統監視:
豊富な系統解析計算機能により、適切な系統運用のための情報を運用者に提供する機能(例えば事故発生時において迅速に復旧操作が実行できようにする機能)
ここで示したこれら幾つかの機能において、特に燃料費など経済性に関する重要となる機能が、需給計画機能である。需給計画機能は、発電機をどのように運転すれば最も経済的な運用となるかを決めるものである。
現在の需給運用における需給計画機能は、燃料使用量に制約のある発電機、例えばLNG(liquid natural gas:液化天然ガス)を燃料とする発電機の燃料消費量や、揚水発電所の使用水量などの運用上の制約を考慮し、ラグランジュ緩和法を用いて燃料費が最小(最経済)となるような運転スケジュールを求めるのが一般的であり、以下のような特許文献1や非特許文献1に記載されたものがある。
近年、地球温暖化対策として、原子力や自然エネルギーなどの環境性に優れた電源の拡大、分散型電源の拡大、環境対策ための設備の拡大などが計画されている。
環境対策ための設備とは、温暖化ガスの回収・貯留装置であり。温暖化ガスが二酸化炭素(CO)である場合、この回収・貯留装置はCCS(Carbon Dioxide Capture and Storage)装置と称される。このCCS装置は石炭、LNGなどの火力機に取り付けられることが予想されており、石炭やLNGが放出するCOを回収することが可能となるシステムである(例えば非特許文献2参照)。
このCCS装置に関しては、現在、様々な研究が行われており、近い将来に実用化が見込まれている。このようなことから、今後、火力発電所から排出されるCOの排出量の監視制御、CO排出量の抑制や制限など、地球温暖化対策のための運用上の規制が実施される可能性が高いと考えられる。
しかし、CCS装置の運転によるCOの回収量の監視や、それらを考慮した需給運用方式の機能は実装されていない。発電機からのCO排出量を監視するための監視機能にかかる技術として、例えば特許文献2に開示されるような技術があるが、これは将来のCO排出量を予測するためのものであり、リアルタイムにCO排出量をモニタリングして発電機を制御することを考慮した機能とはなっていない。
特開平10−56734号公報 特開2007−265008号公報
小向敏彦、他2名,「電力システム工学」,丸善,p.128−141 IPCC(気候変動に関する政府間パネル)「二酸化炭素回収隔離に関する特別報告書(SRCCS)」、[online]、[2009年6月16日検索]、インターネット<URL:http://www.ipcc.ch/pdf/special-reports/srccs/srccs_wholereport.pdf>
上述したように、中央給電指令所では、時々刻々と変動する需要に合わせて発電機の出力を調整し、電力の安定供給と経済運用を行っているが、CCS装置の最適な運用、つまり複数台のCCS装置の内いずれかを過不足なく運転するといった運用を考慮した需給計画を行うための機能が実装されていない。そのため、運用者は今後にCO排出量の規制などが行われた場合、どのように発電機やCCS装置の運用を行うべきか分からないという課題があった。
そこで、本発明の目的は、電力系統の発電機の運転に伴う燃料費や温暖化ガスの排出量を抑え、かつ、温暖化ガスの回収・貯留装置の最適な運用を行なうことが可能になる情報処理装置、プログラム、および記憶媒体を提供することにある。
すなわち、本発明に係わる情報処理装置は、複数の発電機を含む電力系統の監視を行なう情報処理装置であって、電力の総需要データを設定する手段と、前記各発電機のうちガスを排出する所定の発電機の燃料使用量の基準値のデータを設定する手段と、前記ガスの回収量の基準値のデータを設定する手段と、前記各発電機の排出原単位データを設定する手段と、前記各発電機の出力値を入力する入力手段と、前記各発電機の燃料費に係る情報を含む設備データを設定する手段と、前記ガスを排出する所定の発電機に取り付けられる前記ガスの回収設備の性能を示すガス回収設備データを設定する手段と、前記入力した前記各発電機の出力値、前記排出原単位データおよび前記ガス回収設備データをもとに、前記ガスを排出する所定の発電機からのガスの回収量を算出するガス回収量算出手段と、前記各発電機の出力値の合計が前記設定した総需要データの値に等しく、かつ、前記各発電機の燃料費の合計が前記設定した燃料使用量の基準値に等しく、かつ前記ガスの回収設備による前記各発電機からのガス回収量の合計が前記設定したガスの回収量の基準値に達する条件下で、前記設定されたそれぞれのデータをもとに、前記発電機の燃料費や前記発電機によるガスの排出量を抑制し、かつ前記ガスの回収設備の稼動数が最適となるように各発電機の運転スケジュールを計算する運転スケジュール計算手段とを備えたことを特徴とする。
本発明によれば、電力系統の発電機の運転に伴う燃料費や温暖化ガスの排出量を抑え、かつ、温暖化ガスの回収・貯留装置の最適な運用を行なうことができる。
本発明の実施形態における電力需給計画作成機能を実現するシステム構成の一例を示す図。 本発明の実施形態における複数の発電機の種類の具体例を示す図。 本発明の実施形態におけるCCS装置付き火力発電機の構成図。 本発明の実施形態において、発電機出力とヒートレートとの関係、ならびに、発電機出力と発電原単位との関係を示すグラフの一例を示す図。 本発明の実施形態において、発電機出力と発熱量との関係、ならびに発電機出力と燃料費との関係を示すグラフの一例を示す図。 本発明の実施形態における電力需給計画作成機能による処理動作の一例を示すフローチャート。 本発明の実施形態における電力需給計画作成機能によるCCS装置の稼働台数の計算のための処理動作の第1の例を示すフローチャート。 本発明の実施形態における電力需給計画作成機能によるCCS装置の稼働台数の計算のための処理動作の第2の例を示すフローチャート。 本発明の実施形態における電力需給計画作成機能による入力データの一例を示す図。 本発明の実施形態において、発電機の燃料種別毎に、発電機設備データおよび計算結果データを表形式で示す画面の一例を示す図。 本発明の実施形態において、図7中の燃料種別を横軸にとり、発電機出力、系統送り出し電力、CCS必要電力、燃料費、CO排出量、もしくはCO回収量を横軸にとった棒グラフによる画面の一例を示す図。 本発明の実施形態において、発電機の燃料種別毎に、24時間分の発電機出力を表形式で示す画面の一例を示す図。 本発明の実施形態において、図12中の時間を横軸にとり、発電機出力を縦軸にとった棒グラフによる画面の一例を示す図。 本発明の実施形態において、発電機の燃料種別毎に、24時間分の系統送り出し電力を表形式で示す画面の一例を示す図。 本発明の実施形態において、図14中の時間を横軸にとり、系統送り出し電力を縦軸にとった棒グラフによる画面の一例を示す図。 本発明の実施形態において、発電機の燃料種別毎に、24時間分のCCS必要電力を表形式で示す画面の一例を示す図。 本発明の実施形態において、図16中の時間を横軸にとり、CCS必要電力を縦軸にとった棒グラフによる画面の一例を示す図。 本発明の実施形態において、発電機の燃料種別毎に、24時間分の燃料費を表形式で示す画面の一例を示す図。 本発明の実施形態において、図18中の時間を横軸にとり、燃料費を縦軸にとった棒グラフによる画面の一例を示す図。 本発明の実施形態において、発電機の燃料種別毎に、24時間分のCO排出量を表形式で示す画面の一例を示す図。 本発明の実施形態において、図20中の時間を横軸にとり、CO排出量を縦軸にとった棒グラフによる画面の一例を示す図。 本発明の実施形態において、発電機の燃料種別毎に、24時間分のCO回収量を表形式で示す画面の一例を示す図。 本発明の実施形態において、図22中の時間を横軸にとり、CO回収量を縦軸にとった棒グラフによる画面の一例を示す図。
以下図面により本発明の実施形態について説明する。
図1は、本発明の実施形態に係る電力需給計画作成機能を実現するシステム構成の一例を示す図である。ここでは、電力系統内に複数の発電機が有り、その内の幾つかの発電機に環境対策のための設備であるCCS装置が取り付けられている前提条件にて説明する。
図1に示すように、電力系統10は、複数の発電機1,2,…,n(nは任意の整数)を含み、各発電機から出力される電力を需要先に供給するものである。これらの発電機のうち一部はCCS装置を有する。図1に示した例では、発電機2はCCS装置11を有し、発電機nはCCS装置12を有する。
図2は、本発明の実施形態における複数の発電機の種類の具体例を示す図である。
この電力系統10は、各発電機から出力される電力の値(出力値)を信号線を通じてリアルタイムに(例えば一定の時間間隔で)情報処理装置100へ伝送する。なお、前述した複数の発電機1,2,…,nは、例えば図2に示されるように、石炭、石油、LNG、揚水、水力、原子力、自然エネルギー、貯蔵電池など、様々なエネルギーを使用する各種の発電機にて構成される。
情報処理装置100は、例えば中央給電指令所に設置され、MMI(マンマシンインタフェース)100aを通じて複数の発電機1,2,…,nを含む電力系統10の監視を行うコンピュータである。この情報処理装置100は、階層化された電力系統監視制御システムを構成し、その最上位システムとして、電力の安定供給と経済運用を支援する電力需給計画作成機能を実現する。本実施形態では、電力需給計画作成機能において、発電機の運転にかかる燃料費やCOの排出量を最小化するための運転スケジュールを求める。
情報処理装置100は、記憶媒体を用いて各種の情報を記憶する機能として、総需要設定データ記憶部40、LNG使用量設定データ記憶部41、CO回収量設定データ記憶部42、燃料費重み係数設定データ記憶部43、CO重み係数設定データ記憶部44、発電機設備データ記憶部45、CCS設備データ記憶部46、排出原単位データ記憶部47、CO排出量保存データ記憶部48、CO回収量保存データ記憶部49および計算結果保存データ記憶部64を有する。
また、情報処理装置100は、各種の処理を実行する機能として、発電機運転スケジュール指令部20a,20b,…,20e,20n、発電機出力値入力部21a,21b,…,21e,…,21n、CO排出量計算部22a,22b,…,22e,…,22n、CO回収量計算部23a,…,23n、発電機運転スケジュール伝送部24、総需要設定部50、LNG使用量設定部51、CO回収量設定部52、燃料費重み係数設定部53、CO重み係数設定部54、発電機データ設定部55、CCSデータ設定部56、排出原単位データ設定部57および発電機運転スケジュール計算部60を有する。
また、発電機運転スケジュール計算部60は、燃料費計算部61、CO排出量計算部62およびCO回収量計算部63を有する。
総需要設定データ記憶部40は、各発電機の所定の時刻ごとの電力総需要量の設定データを記憶する。LNG使用量設定データ記憶部41は、所定のLNG使用量設定データを記憶する。CO回収量設定データ記憶部42は、所定のCO回収量設定データを記憶する。燃料費重み係数設定データ記憶部43は、所定の燃料費重み係数設定データを記憶する。CO重み係数設定データ記憶部44は、所定のCO重み係数設定データを記憶する。
発電機設備データ記憶部45は、各発電機の名称や型式、燃料種別、最小出力・最大出力などの各種データを記憶する他、燃料種別毎に各発電機の出力値と発熱量との関係を示す発熱量特性の情報、例えば発熱量特性を示す関数および当該関数に使用する係数の情報などを記憶するものである。
CCS設備データ記憶部46は、CCS付きの各発電機の名称や型式、燃料種別、最小出力・最大出力などの各種データを記憶するほか、燃料種別毎に各発電機の出力値と発熱量との関係を示す発熱量特性の情報(発熱量特性を示す関数および当該関数に使用する係数の情報など)を記憶するものである。
排出原単位データ記憶部47は、燃料種別毎に各発電機から排出される単位発熱量当りのCO排出量であるCO排出原単位データを記憶するものである。
CO排出量保存データ記憶部48は、CO排出量計算部22a,22b,…,22nから出力される各発電機のCO排出量を含む情報を記憶するものである。
CO回収量保存データ記憶部49は、CO回収量計算部23a,23b,…,23nから出力される各発電機のCO回収量を含む情報を記憶するものである。
計算結果保存データ記憶部64は、各発電機の出力値が時間的に変化する運転スケジュールの情報を記憶するものである。
発電機出力値入力部21a,21b,…,21nは、電力系統10から信号線を通じて供給される各発電機の出力値をリアルタイムに(例えば一定の時間間隔で)取り込むものである。
CO排出量計算部22a,22b,…,22nは、発電機出力値入力部21a,21b,…,21nにより取り込まれた各発電機の出力値から、各種のデータ記憶部に記憶される情報を用いて、各発電機から排出されるCOの排出量を計算するものである。
CO回収量計算部23a,23b,…,23nは、CO排出量計算部22a,22b,…,22nの出力値を用いて各発電機から排出されるCOの回収量を計算するものである。
ここで、情報処理装置100の内部にて、発電機運転スケジュールが求められて各発電機に指令が行われるまでの流れを示す。
先ず、発電機運転スケジュール計算部60にて算出された運転スケジュールは、発電機運転スケジュール伝送部24に伝送され、その後、各発電機の運転スケジュールの情報が発電機運転スケジュール指令部20に伝送される。最後に、各発電機の運転スケジュールの情報は、発電機伝送用の信号線を介して、各発電機に伝送される。
次に、各発電機の出力値を基に、CO排出量ならびにCO回収量が求められ、それぞれのデータが保存されるまでの流れを示す。
先ず、発電機運転スケジュール指令部20は、各発電機の出力値の情報を発電機出力値入力部21に伝送する。その後、発電機出力値入力部21は、発電機運転スケジュール指令部20から伝送された情報をCO排出量計算部22に伝送する。
また、発電機出力値入力部21は、CCS装置を有する発電機に関しては、発電機運転スケジュール指令部20から伝送された情報を当該発電機に関わるCO回収量計算部23にも伝送する。
最後に、CO排出量計算部22は、得られた各発電機のCO排出量をCO排出量保存データ記憶部48に伝送し、CO回収量計算部23は、得られたCO回収量をCO回収量保存データ記憶部49に伝送する。
次に、発電機運転スケジュール計算部60にて発電機運転スケジュールを求めるための処理の流れを示す。
先ず、初期準備として、総需要設定部50は、総需要設定データ記憶部40から時刻毎の総需要データを発電機運転スケジュール計算部60に伝送する。同様に、LNG使用量設定部51は、LNG使用量設定データ記憶部41からLNG使用量を発電機運転スケジュール計算部60に伝送する。同様に、CO回収量設定部52は、CO回収量設定データ記憶部42からCO回収量を発電機運転スケジュール計算部60に伝送する。
同様に、燃料費重み係数設定部53は、燃料費重み係数設定データ記憶部43から燃料費重み係数を発電機運転スケジュール計算部60に伝送する。同様に、CO重み係数設定部54は、CO重み係数設定データ記憶部44からCO重み係数を発電機運転スケジュール計算部60に伝送する。
同様に、発電機データ設定部55は、発電機設備データ記憶部45から発電機設備データを発電機運転スケジュール計算部60に伝送する。同様に、CCSデータ設定部56は、CCS設備データ記憶部46からCCS装置の設備データを発電機運転スケジュール計算部60に伝送する。同様に、排出原単位データ設定部57は、排出原単位データ記憶部47から排出原単位データを発電機運転スケジュール計算部60に伝送する。
最後に、発電機運転スケジュール計算部60は、総需要設定部50、LNG使用量設定部51、CO回収量設定部52、燃料費重み係数設定部53、CO重み係数設定部54、発電機データ設定部55、CCSデータ設定部56、排出原単位データ設定部57からの情報を基に、各発電機の運転スケジュールを算出する。
この算出した運転スケジュールやCO排出量、CO回収量などの計算結果は、計算結果保存データ記憶部64に格納される。
また、情報処理装置100は、需給運用監視画面70を有する。需給運用監視画面70は、発電機運転スケジュール計算部60にて算出した各発電機の運転スケジュールや、CO排出量、CO回収量など、計算結果保存データ記憶部64に格納されている全てのデータを始め、リアルタイムに変動する各発電機からの出力値やCO排出量、ならびに各CCS装置からのCO回収量など、情報処理装置100内部で使用した全てのデータを表示する画面である。
次に、本実施形態で対象とする電力設備の系統構成を考える。ここでは、図2に示すように、系統に、原子力発電機、水力発電機(調整地、楊水式)、火力発電機(石炭、石油、LNG)など複数台の燃料種別の発電機が連係しており、中央給電指令所である情報処理装置100にて一括で監視・制御が行われている。
また、一部の火力発電機、例えば石炭を燃料種別とする発電機にはCCS装置が備えられている。CCS装置を稼動するための必要となる電力エネルギーは、基本的にはCCS装置に接続される火力発電機となるが、他に風力や地熱などの自然エネルギーによる電力供給も考えることができる。また、自然エネルギーにより発電された電力を貯蔵し、CCS装置の稼動時に当該CCS装置が必要となるエネルギーを供給するような考え方もできる。
次に、CCS装置付き火力発電機における電力エネルギーの流れ、ならびにCO排出量やCO回収量の流れについて考える。図3は、本発明の実施形態におけるCCS装置付き火力発電機の構成図である。ここでは、CCS装置に接続される火力発電機が当該CCS装置の稼動のための必要エネルギーを賄うとする。
CCS装置は、COをより多く排出する燃料である、石炭やLNGを燃料種別とする火力発電機に取り付けられることで当該発電機により発生したCOの回収が行われる。CCS装置の取り付け形態としては、今後新規に建設する火力発電機に取り付けたり、既存の火力発電機に後付けで取り付けたりする場合などが考えられる。
また、発電機にCCS装置を取り付けることで、自然界に排出されるCOは減ることになるが、当該CCS装置を稼動するための電力エネルギーが別途必要となるので、系統側に送り出される電力エネルギーは発電機にCCS装置を取り付けない場合と比較して減ることになる。
ここで、CCS装置が有る場合と無い場合とでの、電力エネルギー、CO排出量、ならびに燃料費の関係式を以下に示す。
まず、電力エネルギーについて説明する。CCS装置が有る場合、先に記したように、当該CCS装置を稼動するための電力エネルギーが必要となる。ここでは、当該火力発電機がPG[MW]の電力を発電した際に、その内のα[%]がCCS装置を稼動するための必要電力エネルギー比率であるとして考え、以下の式(1)にて発電機運転スケジュール計算部60によりCCS装置の必要電力エネルギーを算出することとする。また、系統側に送り出される電力エネルギーは以下の式(2)にて発電機運転スケジュール計算部60により算出される。
尚、CCS稼動電力エネルギー比率αは運用者側によるMMI100aの入力操作にて任意に設定できる。実際には発電所内の所内負荷が存在するため、系統側に送り出される電力エネルギーは更に少なくなるが、ここでは所内負荷は考えないこととする。
Pccs=α×PG …式(1)
PG´=(1−α)×PG …式(2)
ここで、
PG:火力発電機の発電出力[MW]
PG´:系統側送り出しの電力エネルギー[MW]
Pccs:CCS必要電力エネルギー[MW]
α:CCS稼動電力エネルギー比率(CCS無し:0)
次に、CO排出量について説明する。
基本的に、発電機の電力量が増えれば、この発電機から排出されるCO排出量も増えることになる。但し、単位電力量当りのCO排出量(発電原単位[t−CO/MWh])で考えた場合、どのような発電出力で運転したかによって、その値は異なる。
発電原単位は、発電出力の関数となり、発電出力が小さければヒートレート、つまり効率の逆数(=発熱量÷発電出力)が悪くなり、同様に発電原単位は大きくなる。逆に、発電出力が大きければヒートレートが良くなり、同様に発電原単位は小さくなる。
図4は、本発明の実施形態において、発電機出力とヒートレートとの関係、ならびに発電機出力と発電原単位との関係を示すグラフの一例を示す図である。
また、CCS装置が有る場合、火力発電機から排出されるCOを回収することになるため、この発電機から最終的に自然界に排出されるCOはCCS装置が無い発電機に比べ減ることになる。
ここでは、当該火力発電機がPG[MW]発電し、CO排出量(発電原単位)がC[t−CO/MWh]であったとすると、その内のβ[%]がCCS装置によりCO回収する回収比率として考え、以下の式(3−1)にて単位電力量あたりのCO排出量(発電原単位)を算出することとする。また、トータルのCO排出量は以下の式(3−2)にて算出される。CCS装置が無い場合は、βは0[%]となる。尚、CO回収比率は運用者側でのMMI100aの入力操作にて任意に設定できる。
これらの算出は発電機運転スケジュール計算部60によってなされ、特にCO排出量にかかる算出はCO排出量計算部62によってなされ、CO回収量にかかる算出はCO回収量計算部63によってなされる。
C´=(Q/PG)×EF×(1−β) …式(3−1)
C=Q×EF×(1−β) …式(3−2)
ここで、
C´:単位電力量あたりのCO排出量(発電原単位)[t−CO/MWh]
C:CO排出量(発電原単位)[t−CO/h]
Q:発熱量[kJ/h]
PG:火力発電機の発電出力[MW]
EF:排出原単位[t−CO/kJ]
β:CO回収比率(CCS無し:0)
次に、燃料費について説明する。
図5は、本発明の実施形態において、発電機出力と発熱量との関係、ならびに発電機出力と燃料費との関係を示すグラフの一例を示す図である。
燃料費は、CO排出量と同様に発電出力の関数となる。この関数は、通常、2次関数で近似するのが一般的であり、図5に示すように、最小、最大出力間で下部に凸部を有する曲線となる。
燃料費に関しては、CCS装置が有りの場合でも無しの場合でもPG[MW]の電力を発電する場合の燃料費は同じとし、燃料費は以下の式(4)にて算出する。この算出は発電機運転スケジュール計算部60の燃料費計算部61によってなされる。
F=Q×PC …式(4)
ここで、
F:燃料費[円/kJ]
Q:発熱量[kJ/h]
PC:燃料単価[円/kJ]
また、燃料費最小化、温暖化ガス排出量の最小化を考慮した発電機運転スケジュールを決定するために、以下の式(5)のような目的関数、ならびに以下の式(6),式(7),式(8),式(9),式(10),式(10−2)のような制約条件にて定式化を行う。
Figure 2011035952
制約条件としては、下記の4項目について考慮し、ここでは送電損失は考慮しない。
第1の項目である電力需給バランスの制約条件は、以下の式(7)で示される。
Figure 2011035952
第2の項目であるLNG発電ユニットの燃料消費量制約の条件は、以下の式(8)で示される。
Figure 2011035952
第3の項目である発電ユニットの最大・最小出力制約の条件は、以下の式(9)で示される。
Figure 2011035952
第4の項目であるCO回収量制約の条件は、以下の式(10)もしくは式(10−2)で示される。式(10),式(10−2)のうちいずれをCO回収量制約の条件として用いるかは、運用者がMMI100aへの入力操作を行なうことで任意に設定される。
Figure 2011035952
ここで、各種変数は以下の意味を成す。この各種変数の意味の説明における右端の括弧書きの部分は、当該変数に対応するデータの設定元を示す。
T:時間(任意設定)
N:発電機の数[台](発電機データ設定部55)
D(t):時刻tにおける総需要[MW](総需要設定部50)
PG(t):発電機iの時刻tにおける発電出力[MW](結果出力)
:発電機iの燃料費特性[円/h](発電機データ設定部55)
:発電機iのCO排出量特性[t−CO/h](排出原単位データ設定部57)
I1:同一基地を持つLNG発電機[台](発電機データ設定部55)
I2:CCSを有する発電機[台](CCSデータ設定部56)
LNG0:LNG発電機のT時間のLNG使用量[kJ](LNG使用量設定部51)
LNG0:LNG使用量に対する燃料費[円](LNG使用量設定部51)
CO2R:T時間のCO回収量[t−CO/h](CO回収量設定部52)
α:CCS稼動電力量比率(CCSデータ設定部56)
β:CO回収比率(CCSデータ設定部56)
:燃料費重み係数(燃料費重み係数設定部53)
2:CO排出量重み係数(CO重み係数設定部54)
PC:燃料単価[円/kJ](発電機データ設定部55)
EF:排出原単位[t−CO/kJ](排出原単位データ設定部57)
Figure 2011035952
ここで、wとw2は、燃料費ならびにCO排出量に掛かる係数であるが、燃料費とCO排出量とは相反するため、運用者は、優先させたい側、つまり重視する側の重み係数をMMI100aへの操作により大きく設定し、逆に優先度を下げる、つまり重視しない場合には、重み係数をMMI100aへの操作により小さく設定する。このように運用者が任意に重み係数を変更できる。
次に、制約条件を満足するような発電機運転スケジュールについて説明する。
ここでは、例として、制約条件式である以下の式(6)にλ(t)、式(8)にγ、式(10)にδとなる未定乗数を導入して、式(11)のラグランジュ関数Lを構成した、ラグランジュ緩和法による解法を紹介する。
Figure 2011035952
発電機運転スケジュールは、次の解として求められる。
Figure 2011035952
図6は、本発明の実施形態における電力需給計画作成機能による処理動作の一例を示すフローチャートである。
まず、発電機運転スケジュール計算部60は、式(11)におけるλ(t)、γおよびδの初期設定を行なう(ステップS1)。
次に、発電機運転スケジュール計算部60は、各発電機の出力を決定する(ステップS2)。発電機運転スケジュール計算部60は、式(11)で示される電力需給、つまり、各発電機の出力の合計と総需要設定データとのバランスの誤差が所定の範囲内であるか否かを判定する(ステップS3)。
発電機運転スケジュール計算部60は、ステップS3の処理で「NO」と判定した場合は、λ(t)の値を修正して(ステップS3→S4)、ステップS2の処理に戻る。
発電機運転スケジュール計算部60は、ステップS3の処理で「YES」と判定した場合は、λ(t)の値を固定する(ステップS3→S5)。
そして、発電機運転スケジュール計算部60は、式(11)における時間帯分のループが終了していなければ(ステップS6のNO)、ステップS2の処理へ戻る。また、発電機運転スケジュール計算部60は、式(11)における時間帯分のループが終了していれば(ステップS6のYES)、発電機運転スケジュール計算部60は、式(11)で示される燃料費制約の誤差が所定の範囲内であるか否かを判定する(ステップS7)。
発電機運転スケジュール計算部60は、ステップS7の処理で「NO」と判定した場合は、γの値を修正して(ステップS7→S8)、ステップS2の処理に戻る。
発電機運転スケジュール計算部60は、ステップS7の処理で「YES」と判定した場合は、γの値を固定する(ステップS7→S9)。
次に、発電機運転スケジュール計算部60は、式(11)で示されるCO回収量制約の誤差が所定の範囲内であるか否かを判定する(ステップS10)。
発電機運転スケジュール計算部60は、ステップS10の処理で「NO」と判定した場合は、δの値を修正して(ステップS10→S11)、ステップS2の処理に戻る。
発電機運転スケジュール計算部60は、ステップS10の処理で「YES」と判定した場合は、δの値を固定する(ステップS10→S12)。これにより、式(11)におけるλ(t)、γおよびδが確定する。
CCS装置付きの発電機に対して、CCSを稼動するか停止させるかは以下の手順により決定することとする。尚、この方法は、発電機運転スケジュール計算部60内部にて行う処理機能であり、ここではCCS稼動台数決定方法の例として、以下の2通りの手段を考える。
図7は、本発明の実施形態における電力需給計画作成機能によるCCS装置の稼働台数の計算のための処理動作の第1の例を示すフローチャートである。
この処理動作は、CCS装置の稼働台数を1機ずつ追加することでCCS装置の稼働台数を定める方法である。
まず、発電機運転スケジュール計算部60は、全てのCCS付き発電機をCCS停止条件(CCS稼動電力量比率α=0、CO回収比率β=0とする)、且つ、CO回収量制約を除外とする初期条件を設定する(ステップS21)。
次に、発電機運転スケジュール計算部60は、CO回収量制約を除く需給計画、つまり、式(6),式(7),式(8),式(9)を満たす条件下における式(11)の解を求める(ステップS22)
次に、発電機運転スケジュール計算部60は、CCS装置を有する発電機について式(11)の解および式(3−2)から導かれるCO排出量および設定済みのCO回収比率をもとにCO回収量を算出する(ステップS23)。
発電機運転スケジュール計算部60は、この算出したCO回収量が規定値(制約量)未満である場合(ステップS24のNO)には、CCSを1台稼動(対象発電機のα、βを設定)し、ステップS22の処理へ戻る。
また、発電機運転スケジュール計算部60は、CO回収量が規定値(制約量)以上である場合(ステップS24のYES)には、CCS装置の稼働台数を現在の稼動台数に決定する(ステップS25)。
発電機運転スケジュール計算部60は、稼働台数の決定後、CO回収量制約式が式(10)に設定されている場合には(ステップS27のYES)、処理を終了する。
また、発電機運転スケジュール計算部60は、CO回収量制約式が式(10−2)に設定されている場合には(ステップS27のNO)、CO回収量制約を考慮した、再度の需給計画、つまり、式(6),式(7),式(8),式(9),式(10−2)を満たす条件下における式(11)の解を求め(ステップS28)、処理を終了する。
図8は、本発明の実施形態における電力需給計画作成機能によるCCS装置の稼働台数の計算のための処理動作の第2の例を示すフローチャートである。
この処理動作は、CCS装置の稼働台数を1台ずつ減少させることでCCS装置の稼働台数を定める方法である。
まず、発電機運転スケジュール計算部60は、全てのCCS付き発電機をCCS稼動条件(CCS稼動電力量比率α,CO回収比率βを設定する)、且つCO回収量制約を除外とする初期条件を設定する(ステップS31)。
次に、発電機運転スケジュール計算部60は、CO回収量制約を除く需給計画、つまり、式(6),式(7),式(8),式(9)を満たす条件下における式(11)の解を求める(ステップS32)
次に、発電機運転スケジュール計算部60は、CCS装置を有する発電機について式(11)の解および式(3−2)からから導かれるCO排出量および設定済みのCO回収比率をもとにCO回収量を算出する(ステップS33)。
発電機運転スケジュール計算部60は、この算出したCO回収量が規定値(制約量)未満でない場合(ステップS34のNO)には、CCSを1台停止(対象発電機のα、βを設定)し、ステップS32の処理へ戻る。
また、発電機運転スケジュール計算部60は、CO回収量が規定値(制約量)未満である場合(ステップS34のYES)には、CCS装置の稼働台数を現在の稼動台数に決定する(ステップS35)。
発電機運転スケジュール計算部60は、稼働台数の決定後、CO回収量制約式が式(10)に設定されている場合には(ステップS37のYES)、処理を終了する。
また、発電機運転スケジュール計算部60は、CO回収量制約式が式(10−2)に設定されている場合には(ステップS37のNO)、CO回収量制約を考慮した再度の需給計画、つまり、式(6),式(7),式(8),式(9),式(10−2)を満たす条件下における式(11)の解を求め(ステップS38)、処理を終了する。
つまり、図7に示した方法は、全てのCCS装置が停止した状態を初期条件として、CO回収量が制約量以上となるまでCCS装置を1機ごと徐々に稼動する方法であり、図8に示した方法は、全てのCCS装置が稼動した状態を初期条件とし、CO回収量が制約量を下回るまでCCS装置を1機ごと徐々に停止する方法である。
次に、前述したようにCCS装置を稼動もしくは停止する発電機の優先順位の設定方法について説明する。
CCS装置を徐々に稼動する発電機の優先順位としては、以下のような順位が考えられる。
(1)定格出力(PG=最大出力)時の増分CO排出量が小さい順
(2)定格出力(PG=最大出力)時の増分単価が小さい順
(3)定格容量が小さい順
(4)運用者によるMMI100aへの入力操作による優先順位の設定
また、CCS装置を停止する発電機の優先順位としては、以下のような順位が考えられる。
(1)定格出力(PG=最大出力)時の増分CO排出量が大きい順
(2)定格出力(PG=最大出力)時の増分単価が大きい順
(3)定格容量が大きい順
(4)運用者によるMMI100aへの入力操作による優先順位の設定
ここで、
増分CO排出量=dC/dPG
増分単価=dF/dPG
C:CO排出量特性[t−CO/h]
F:燃料費特性[円/h]
PG:発電出力[MW]
図9は、本発明の実施形態における電力需給計画作成機能による入力データの一例を示す図である。
図9(a)に示すように、総需要設定データは、24時間のそれぞれにおける総需要量D(t)[MW]である。
また、図9(b),(c)に示すように、LNG使用量設定データは、所定のLNG使用量であるLNG0[kJ]および当該LNG使用量に対する燃料費であるFLNG0[円]が1種類ずつ定められ、CO回収量設定データは、T時間のCO回収量であるCO2R[t−CO/h]が1種類定められる。
また、図9(d)に示すように、燃料費重み係数wおよびCO排出量重み係数w2はそれぞれ1種類定められる。
また、図9(e)に示すように、発電機設備データ、CCS設備データおよび排出原単位データを示す表の縦方向には、発電機のクラスや燃料の違いを示す「発電機名」として、「石炭−A−1」,「石炭−A−2」,「石炭−B−1」,「石炭−B−2」,「石油−1」,「石油−2」,…といった項目が用意される。
一方、表の横方向には、発電機の最小出力,最大出力、発熱量係数a,b,c、燃料単価、排出原単位、燃料使用量制約対象/非対象の区分、CCS装置の有無の区分、CCS稼動電力量比率およびCO回収比率が用意され、各項目に対応するデータ欄に発電機毎のデータが表示される。
次に、発電機運転スケジュール計算部60により計算され、需給運用監視画面70にて表示される各種の出力データについて説明する。
図10は、本発明の実施形態において、発電機の燃料種別毎に、発電機設備データおよび計算結果データを表形式で示す画面の一例を示す図である。
図10に示した画面における表の縦方向には、発電機の燃料の違いを示す「燃料種別」として、「石炭」,「石油」,「LNG」,「水力」,「原子力」,「自然エネ」,「貯蔵」,…といった項目が用意され、さらに一番下側には、「合計」といった項目が用意されている。
一方、この表の横方向には、ある時間断面における発電機出力、系統側送り出しの電力エネルギー、CCS必要電力エネルギー、発熱量、燃料費、熱消費率、CO排出量およびCO回収量が用意されており、各項目に対応するデータ欄に燃料種別毎のデータが表示される。
図11は、本発明の実施形態において、図7中の燃料種別を横軸にとり、発電機出力、系統送り出し電力、CCS必要電力、燃料費、CO排出量、もしくはCO回収量を横軸にとった棒グラフによる画面の一例を示す図である。
図11に示した画面では、燃料種別毎の発電機出力、系統送り出し電力、CCS必要電力、燃料費、CO排出量およびCO回収量が棒状に表示される。これにより、運用者は、ある時間断面における燃料種別毎の発電機出力、系統送り出し電力、CCS必要電力、燃料費、CO排出量およびCO回収量の違いを視覚的に捉えやすくなる。
図12は、本発明の実施形態において、発電機の燃料種別毎に、24時間分の発電機出力を表形式で示す画面の一例を示す図である。
図12に示した画面では、燃料種別毎の24時間分の1時間毎の発電機出力が表示される。
図13は、本発明の実施形態において、図12中の時間を横軸にとり、発電機出力を縦軸にとった棒グラフによる画面の一例を示す図である。
図13に示した画面では、燃料種別毎の24時間分の1時間毎の発電機出力が棒状に表示される。これにより、運用者は、1時間毎に変化する発電機出力の様子を視覚的に捉えやすくなる。
図14は、本発明の実施形態において、発電機の燃料種別毎に、24時間分の系統送り出し電力を表形式で示す画面の一例を示す図である。
図14に示した画面では、燃料種別毎の24時間分の1時間毎の系統送り出し電力が表示される。
図15は、本発明の実施形態において、図14中の時間を横軸にとり、系統送り出し電力を縦軸にとった棒グラフによる画面の一例を示す図である。
図15に示した画面では、燃料種別毎の24時間分の1時間毎の系統送り出し電力が棒状に表示される。これにより、運用者は、1時間毎に変化する系統送り出し電力の様子を視覚的に捉えやすくなる。
図16は、本発明の実施形態において、発電機の燃料種別毎に、24時間分のCCS必要電力を表形式で示す画面の一例を示す図である。
図16に示した画面では、燃料種別毎の24時間分の1時間毎のCCS必要電力が表示される。
図17は、本発明の実施形態において、図16中の時間を横軸にとり、CCS必要電力を縦軸にとった棒グラフによる画面の一例を示す図である。
図17に示した画面では、燃料種別毎の24時間分の1時間毎のCCS必要電力が棒状に表示される。これにより、運用者は、1時間毎に変化するCCS必要電力の様子を視覚的に捉えやすくなる。
図18は、本発明の実施形態において、発電機の燃料種別毎に、24時間分の燃料費を表形式で示す画面の一例を示す図である。
図18に示した画面では、燃料種別毎の24時間分の1時間毎の燃料費が表示される。
図19は、本発明の実施形態において、図18中の時間を横軸にとり、燃料費を縦軸にとった棒グラフによる画面の一例を示す図である。
図19に示した画面では、燃料種別毎の24時間分の1時間毎の燃料費が棒状に表示される。これにより、運用者は、1時間毎に変化する燃料費の様子を視覚的に捉えやすくなる。
図20は、本発明の実施形態において、発電機の燃料種別毎に、24時間分のCO排出量を表形式で示す画面の一例を示す図である。
図20に示した画面では、燃料種別毎の24時間分の1時間毎のCO排出量を表示させている。
図21は、本発明の実施形態において、図20中の時間を横軸にとり、CO排出量を縦軸にとった棒グラフによる画面の一例を示す図である。
図21に示した画面では、燃料種別毎の24時間分の1時間毎のCO排出量が棒状に表示される。これにより、運用者は、1時間毎に変化するCO排出量の様子を視覚的に捉えやすい。
図22は、本発明の実施形態において、発電機の燃料種別毎に、24時間分のCO回収量を表形式で示す画面の一例を示す図である。
図22に示した画面では、燃料種別毎の24時間分の1時間毎のCO回収量が表示される。
図23は、本発明の実施形態において、図22中の時間を横軸にとり、CO回収量を縦軸にとった棒グラフによる画面の一例を示す図である。
図23に示した画面では、燃料種別毎の24時間分の1時間毎のCO回収量が棒状に表示される。これにより、運用者は、1時間毎に変化するCO回収量の様子を視覚的に捉えやすくなる。
以上のように、本発明の実施形態における電力需給計画作成機能を実現するシステムでは、発電機運転スケジュール計算部60は、総需要設定部50からの総需要設定データ、LNG使用量設定部51からのLNG使用量設定データ、CO回収量設定部52からのCO回収量設定データ、発電機データ設定部55からの発電機設備データ、CCSデータ設定部56からのCCS設定データ、排出原単位データ設定部57からの排出原単位データを入力し、各発電機の出力が総需要と等しく、各発電機によるLNG使用量がLNG使用量設定データに等しく、各CCS装置によるCO回収量がCO回収量設定データに達する条件で、燃料費とCO排出量がそれぞれ最小化されるように各発電機の運転スケジュールを計算して、この計算結果を需給運用監視画面70にて表示させる。これにより、運用者は、燃料費とCO排出量をそれぞれ抑え、かつCCS装置の稼働台数が過不足なくなるような各発電機の運転スケジュールを容易に把握でき、電力系統の発電機の運転に伴う燃料費や温暖化ガスの排出量を抑え、かつ、CCS装置の最適な運用を行なうことが可能になる。
なお、本実施形態では、監視の対象となるガスが二酸化炭素(CO)である場合を例にとって説明したが、本発明はこれに限定されるものではなく、他のガスを適用することが可能である。例えば、環境にダメージを与えるガス(地球温暖化もしくは環境汚染を促進させるガス)の例として、二酸化炭素(CO)のほかに、6フッ化硫黄(SF)、メタンガス(CH)などが挙げられる。
なお、上記実施形態に記載した手法は、コンピュータに実行させることのできるプログラムとして、磁気ディスク(フロッピー(登録商標)ディスク、ハードディスクなど)、光ディスク(CD−ROM、DVDなど)、光磁気ディスク(MO)、半導体メモリなどの記憶媒体に格納して頒布することもできる。
また、この記憶媒体としては、プログラムを記憶でき、かつコンピュータが読み取り可能な記憶媒体であれば、その記憶形式は何れの形態であっても良い。
また、記憶媒体からコンピュータにインストールされたプログラムの指示に基づきコンピュータ上で稼働しているOS(オペレーティングシステム)や、データベース管理ソフト、ネットワークソフト等のMW(ミドルウェア)等が上記実施形態を実現するための各処理の一部を実行しても良い。
さらに、本発明における記憶媒体は、コンピュータと独立した媒体に限らず、LANやインターネット等により伝送されたプログラムをダウンロードして記憶または一時記憶した記憶媒体も含まれる。
また、記憶媒体は1つに限らず、複数の媒体から上記実施形態における処理が実行される場合も本発明における記憶媒体に含まれ、媒体構成は何れの構成であっても良い。
尚、本発明におけるコンピュータは、記憶媒体に記憶されたプログラムに基づき、上記実施形態における各処理を実行するものであって、パソコン等の1つからなる装置、複数の装置がネットワーク接続されたシステム等の何れの構成であっても良い。
また、本発明におけるコンピュータとは、パーソナルコンピュータに限らず、情報処理機器に含まれる演算処理装置、マイコン等も含み、プログラムによって本発明の機能を実現することが可能な機器、装置を総称している。
なお、この発明は前記実施形態そのままに限定されるものではなく実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、前記実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を省略してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
1,2,5,n…発電機、10…電力系統、11,12…CCS装置、20a,20b,…,20e,…,20n…発電機運転スケジュール指令部、21a,21b,…,21e,…,21n…発電機出力信号入力部、22a,22b,…,22e,…,22n…CO排出量計算部、23a,…,23n…CO回収量計算部、24…発電機運転スケジュール伝送部、40…総需要設定データ記憶部、41…LNG使用量設定データ記憶部、42…CO回収量設定データ記憶部、43…燃料費重み係数設定データ記憶部、44…CO重み係数設定データ記憶部、45…発電機設備データ記憶部、46…CCS設備データ記憶部、47…排出原単位データ記憶部、48…CO排出量保存データ記憶部、49…CO回収量保存データ記憶部、50…総需要設定部、51…LNG使用量設定部、52…CO回収量設定部、53…燃料費重み係数設定部、54…CO重み係数設定部、55…発電機データ設定部、56…CCSデータ設定部、57…排出原単位データ設定部、60…発電機運転スケジュール計算部、61…燃料費計算部、62…CO排出量計算部、63…CO回収量計算部、64…計算結果保存データ記憶部、70…需給運用監視画面、100…情報処理装置、100a…MMI(マンマシンインタフェース)。

Claims (9)

  1. 複数の発電機を含む電力系統の監視を行なう情報処理装置であって、
    電力の総需要データを設定する手段と、
    前記各発電機のうちガスを排出する所定の発電機の燃料使用量の基準値のデータを設定する手段と、
    前記ガスの回収量の基準値のデータを設定する手段と、
    前記各発電機の排出原単位データを設定する手段と、
    前記各発電機の出力値を入力する入力手段と、
    前記各発電機の燃料費に係る情報を含む設備データを設定する手段と、
    前記ガスを排出する所定の発電機に取り付けられる前記ガスの回収設備の性能を示すガス回収設備データを設定する手段と、
    前記入力した前記各発電機の出力値、前記排出原単位データおよび前記ガス回収設備データをもとに、前記ガスを排出する所定の発電機からのガスの回収量を算出するガス回収量算出手段と、
    前記各発電機の出力値の合計が前記設定した総需要データの値に等しく、かつ、前記各発電機の燃料費の合計が前記設定した燃料使用量の基準値に等しく、かつ前記ガスの回収設備による前記各発電機からのガス回収量の合計が前記設定したガスの回収量の基準値に達する条件下で、前記設定されたそれぞれのデータをもとに、前記発電機の燃料費や前記発電機によるガスの排出量を抑制し、かつ前記ガスの回収設備の稼動数が最適となるように各発電機の運転スケジュールを計算する運転スケジュール計算手段と
    を備えたことを特徴とする情報処理装置。
  2. 燃料費重み係数を設定する手段と、
    ガス重み係数を設定する手段とをさらに備え、
    前記運転スケジュール計算手段は、
    前記各発電機の出力値の合計が前記設定した総需要データの値に等しく、かつ、前記各発電機の燃料費の合計が前記設定した燃料使用量の基準値に等しく、かつ前記ガスの回収設備による前記各発電機からのガス回収量の合計が前記設定したガスの回収量の基準値に達する条件下で、前記各発電機の燃料費の合計と前記燃料費重み係数との積および前記ガス回収量の合計と前記ガス重み係数との積の和を抑制し、かつ前記ガスの回収設備の稼動数が最適となるように各発電機の運転スケジュールを計算する
    ことを特徴とする請求項1に記載の情報処理装置。
  3. 前記運転スケジュール計算手段は、
    前記ガスの回収設備の稼動数の初期状態を0として、前記各発電機からのガス回収量の合計が前記設定したガスの回収量の基準値に達するまで前記稼動数を増加させることで前記ガスの回収設備の稼動数が最適となるように各発電機の運転スケジュールを計算する
    ことを特徴とする請求項1に記載の情報処理装置。
  4. 前記運転スケジュール計算手段は、
    前記ガスの回収設備の稼動数の初期状態を全部として、前記各発電機からのガス回収量の合計が前記設定したガスの回収量の基準値未満となるまで前記稼動数を減少させることで前記ガスの回収設備の稼動数が最適となるように各発電機の運転スケジュールを計算する
    ことを特徴とする請求項1に記載の情報処理装置。
  5. 前記運転スケジュール計算手段は、
    前記ガスの回収設備の稼動数を変化させるための稼動の有無の変更対象の設備を所定の優先順位にしたがって選択する
    ことを特徴とする請求項3または4に記載の情報処理装置。
  6. 前記優先順位の設定のための入力を受け付ける入力手段をさらに備えたことを特徴とする請求項5に記載の情報処理装置。
  7. 前記ガスは二酸化炭素であることを特徴とする請求項1に記載の情報処理装置。
  8. 複数の発電機を含む電力系統の監視を行なうコンピュータを、
    電力の総需要データを設定する手段、
    前記各発電機のうちガスを排出する所定の発電機の燃料使用量の基準値のデータを設定する手段、
    前記ガスの回収量の基準値のデータを設定する手段、
    前記各発電機の排出原単位データを設定する手段、
    前記各発電機の出力値を入力する入力手段、
    前記各発電機の燃料費に係る情報を含む設備データを設定する手段、
    前記ガスを排出する所定の発電機に取り付けられる前記ガスの回収設備の性能を示すガス回収設備データを設定する手段、
    前記入力した前記各発電機の出力値、前記排出原単位データおよび前記ガス回収設備データをもとに、前記ガスを排出する所定の発電機からのガスの回収量を算出するガス回収量算出手段、および
    前記各発電機の出力値の合計が前記設定した総需要データの値に等しく、かつ、前記各発電機の燃料費の合計が前記設定した燃料使用量の基準値に等しく、かつ前記ガスの回収設備による前記各発電機からのガス回収量の合計が前記設定したガスの回収量の基準値に達する条件下で、前記設定されたそれぞれのデータをもとに、前記発電機の燃料費や前記発電機によるガスの排出量を抑制し、かつ前記ガスの回収設備の稼動数が最適となるように各発電機の運転スケジュールを計算する運転スケジュール計算手段
    をして機能させるようにしたコンピュータ読み取り可能なプログラム。
  9. 請求項8に記載のプログラムを記録した、コンピュータ読み取り可能な記録媒体。
JP2009176764A 2009-07-29 2009-07-29 情報処理装置、プログラム、および記憶媒体 Withdrawn JP2011035952A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009176764A JP2011035952A (ja) 2009-07-29 2009-07-29 情報処理装置、プログラム、および記憶媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009176764A JP2011035952A (ja) 2009-07-29 2009-07-29 情報処理装置、プログラム、および記憶媒体

Publications (1)

Publication Number Publication Date
JP2011035952A true JP2011035952A (ja) 2011-02-17

Family

ID=43764478

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009176764A Withdrawn JP2011035952A (ja) 2009-07-29 2009-07-29 情報処理装置、プログラム、および記憶媒体

Country Status (1)

Country Link
JP (1) JP2011035952A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378782A (zh) * 2012-04-25 2013-10-30 科勒公司 用于调节发电机的运行时间表的系统和方法
US9109565B2 (en) 2013-01-11 2015-08-18 Kohler Co. Power system that operates in an exercise mode based on measured parameters
DE102022120267A1 (de) 2021-09-15 2023-03-16 Toyota Jidosha Kabushiki Kaisha Co2-recyclingverfahren und co2-recyclingsystem
WO2024009436A1 (ja) * 2022-07-06 2024-01-11 株式会社日立製作所 炭素管理システム及び演算処理装置
WO2024024049A1 (ja) * 2022-07-28 2024-02-01 株式会社日立製作所 炭素管理システム及び情報処理装置
CN117578627A (zh) * 2024-01-16 2024-02-20 国网浙江省电力有限公司 发电调度方法、装置、电子设备和存储介质

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103378782A (zh) * 2012-04-25 2013-10-30 科勒公司 用于调节发电机的运行时间表的系统和方法
EP2657798A1 (en) * 2012-04-25 2013-10-30 Kohler Co. System and method for adjusting the exercise schedule of a generator
US9754227B2 (en) 2012-04-25 2017-09-05 Kohler Co. System and method for adjusting the exercise schedule of a generator
US9109565B2 (en) 2013-01-11 2015-08-18 Kohler Co. Power system that operates in an exercise mode based on measured parameters
US9397598B2 (en) 2013-01-11 2016-07-19 Kohler Co. Power system that operates in an exercise mode based on measured parameters
US9837942B2 (en) 2013-01-11 2017-12-05 Kohler Co. Power system that operates in an exercise mode based on measured parameters
DE102022120267A1 (de) 2021-09-15 2023-03-16 Toyota Jidosha Kabushiki Kaisha Co2-recyclingverfahren und co2-recyclingsystem
WO2024009436A1 (ja) * 2022-07-06 2024-01-11 株式会社日立製作所 炭素管理システム及び演算処理装置
WO2024024049A1 (ja) * 2022-07-28 2024-02-01 株式会社日立製作所 炭素管理システム及び情報処理装置
CN117578627A (zh) * 2024-01-16 2024-02-20 国网浙江省电力有限公司 发电调度方法、装置、电子设备和存储介质
CN117578627B (zh) * 2024-01-16 2024-04-16 国网浙江省电力有限公司 发电调度方法、装置、电子设备和存储介质

Similar Documents

Publication Publication Date Title
Lara et al. Deterministic electric power infrastructure planning: Mixed-integer programming model and nested decomposition algorithm
Shields et al. Impacts of turbine and plant upsizing on the levelized cost of energy for offshore wind
Palmintier Incorporating operational flexibility into electric generation planning: Impacts and methods for system design and policy analysis
Zhang et al. Electricity-natural gas operation planning with hourly demand response for deployment of flexible ramp
Heussen et al. Unified system-level modeling of intermittent renewable energy sources and energy storage for power system operation
US8706311B2 (en) Electric power demand/supply planning apparatus and method for the same
Huang et al. Electrical power unit commitment: deterministic and two-stage stochastic programming models and algorithms
Capitanescu et al. Cautious operation planning under uncertainties
Huang et al. A portfolio risk analysis on electricity supply planning
Antenucci et al. Extensive CO2 recycling in power systems via Power-to-Gas and network storage
Mukherjee et al. Optimal sizing of an electrolytic hydrogen production system using an existing natural gas infrastructure
Huang et al. Robust coordination expansion planning for active distribution network in deregulated retail power market
JP2011035952A (ja) 情報処理装置、プログラム、および記憶媒体
US9576259B2 (en) Systems, methods and apparatus for optimizing fuel mix, fuel allocation and scheduling of generator resources
Ulbig et al. Framework for multiple time-scale cascaded MPC application in power systems
Xiao et al. Operating reserve policies with high wind power penetration
Li et al. Optimal trade-off between regulation and wind curtailment in the economic dispatch problem
Pourahmadi et al. Economically optimal uncertainty set characterization for power system operational flexibility
Tong et al. Energy demand management for process systems through production scheduling and control
Ayamolowo et al. Optimal planning of Renewable energy generators in modern power grid for enhanced system inertia
Mahmud et al. Optimal deloading of PV power plants for frequency control: A techno-economic assessment
JP2011019331A (ja) 情報処理装置、プログラム、および記憶媒体
Teng et al. Assessment of the value of plant flexibility in low carbon energy system
Tapia-Ahumada EleMod: A model for capacity expansion planning, hourly operation and economic dispatch in electric power systems with intermittent renewable generation
Pourkhalili et al. Utility Scale Battery as Capacity Source for Electric Grid Systems

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121002