JP2011035598A - Optical line fault search device - Google Patents

Optical line fault search device Download PDF

Info

Publication number
JP2011035598A
JP2011035598A JP2009178969A JP2009178969A JP2011035598A JP 2011035598 A JP2011035598 A JP 2011035598A JP 2009178969 A JP2009178969 A JP 2009178969A JP 2009178969 A JP2009178969 A JP 2009178969A JP 2011035598 A JP2011035598 A JP 2011035598A
Authority
JP
Japan
Prior art keywords
light
line
optical
optical fiber
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009178969A
Other languages
Japanese (ja)
Other versions
JP5066555B2 (en
Inventor
Takao Tanimoto
隆生 谷本
Kimiaki Iwasaki
王亮 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2009178969A priority Critical patent/JP5066555B2/en
Publication of JP2011035598A publication Critical patent/JP2011035598A/en
Application granted granted Critical
Publication of JP5066555B2 publication Critical patent/JP5066555B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To allow faults to be detected in a short period of time, in all individual fiber lines of a WDN-PON (Wavelength Division Multiplexing-Passive Optical Network) system using wavelength-fixed branching device. <P>SOLUTION: A wide band optical pulse Pw including all the wavelengths of signal light is generated by a wide band optical pulse generation means 22 and is made incident on the WDN-PON system where individual optical fiber lines 18<SB>1</SB>to 18<SB>n</SB>respectively corresponding to wavelengths of signal light are different, in a communication stop period of the WDN-PON system. Return light Pr from the WDN-PON system with respect to the wide band optical pulse Pw is received by a light receiver 25, and a time waveform of the received optical signal is acquired by a time waveform storage means 27. The latest time waveform is compared with a reference waveform acquired in a normal state and stored in a reference waveform storage means 28 by a fault detection means 29, whereby faults of the WDN-PON system are searched. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、WDM−PON(Wavelength Division Multiplexing-Passive Optical Network)システムにおける局内のOLT(Optical Line
Terminal)側から光スプリッタを経由してユーザ宅側の各ONU(Optical Network Unit)間の光ファイバ線路の障害検知を行う装置に関する。
The present invention relates to an OLT (Optical Line) in a station in a WDM-PON (Wavelength Division Multiplexing-Passive Optical Network) system.
The present invention relates to an apparatus for detecting a failure in an optical fiber line between ONUs (Optical Network Units) on a user's home side via an optical splitter from the terminal side.

光アクセス・システムの高速化は著しく、この5年ほどの間に約100倍程度の高速・広帯域化が実現され、さらなる高速化に向けた研究が行なわれている。   The speed of optical access systems has been remarkably increased, and about 100 times faster and wider bandwidth has been realized in the last five years, and research for further speedup is being conducted.

これを実現する技術としてPONが知られている。PONは、光アクセス回線の途中に受動素子である分岐装置を挿入して、その分岐装置で複数に分岐された各ファイバを複数の加入者宅にそれぞれ引き込み、効率よく光ファイバ通信を行う技術である。   PON is known as a technology for realizing this. PON is a technology that performs optical fiber communication efficiently by inserting a branch device, which is a passive element, in the middle of an optical access line and drawing each fiber branched into a plurality of subscribers into a plurality of subscriber houses. is there.

PONシステムは、局内終端装置のOLTと各ユーザ宅のONUの間を、分岐装置を介して接続するものであり、OLTと複数のONU間の分岐光線路を安価に監視することが要求されている。   The PON system connects the OLT of the in-station terminal device and the ONU of each user's house via a branch device, and is required to monitor the branch optical line between the OLT and a plurality of ONUs at low cost. Yes.

PONシステムの1つにWDM−PONがある。このWDM−PONは、各ONUに異なる光波長を割り当てることによって光ファイバの共有を行うシステムである。この方式は1ユーザに対してそれぞれ1波長を割り当てるため、10Gビット/秒超の高速化が可能と考えられている。   One of the PON systems is WDM-PON. This WDM-PON is a system for sharing an optical fiber by assigning different optical wavelengths to each ONU. Since this method assigns one wavelength to one user, it is considered that a speed exceeding 10 Gbit / sec is possible.

上記のWDM−PON方式のシステムを試験する技術として、特許文献1には、センタ装置からの共通光ファイバ線路を複数の加入者に割り当てられた個別光ファイバ線路に分岐するスターカップラの光加入者装置(ONU)側の各入出力端に、それぞれの信号光の波長を透過し、試験光およびその反射光の波長については通過または遮断を切替可能なフィルタ手段(波長可変フィルタ)をそれぞれ挿入し、各光加入者装置の入出力端に、それぞれの信号光の波長を透過し、試験光については反射する波長選択反射手段(波長選択フィルタ)を設け、通信を行う個別光ファイバ線路のフィルタ手段は試験光遮断状態にし、試験を行う個別光ファイバ線路のフィルタ手段は試験光通過状態にして、センタ装置側の線路に接続された光反射測定装置(OTDR)からパルス状の試験光を入射し、その戻り光に基づいて個別光ファイバ線路毎の障害試験を行う技術が開示されている。   As a technique for testing the above-mentioned WDM-PON system, Patent Document 1 discloses an optical subscriber of a star coupler that branches a common optical fiber line from a center apparatus into individual optical fiber lines assigned to a plurality of subscribers. Filter means (wavelength variable filters) that transmit the wavelength of each signal light and can switch between passing and blocking the wavelength of the test light and its reflected light are inserted into each input / output terminal on the unit (ONU) side. In addition, wavelength selective reflection means (wavelength selective filter) that transmits the wavelength of each signal light and reflects the test light is provided at the input / output ends of each optical subscriber unit, and filter means for individual optical fiber line that performs communication Is the test light blocking state, the filter means of the individual optical fiber line to be tested is in the test light passing state, and the light reflection measuring device connected to the line on the center device side is set. Incident pulsed test light from (OTDR), a technique for fault testing of each individual optical fiber line on the basis of the return light is disclosed.

特許第3255214号公報Japanese Patent No. 3255214

前記特許文献1では、個別光ファイバ線路毎に波長可変フィルタを設ける必要があり、分岐数が膨大になると、それに応じて波長可変フィルタの数も増加し、コスト高になるという問題がある。   In Patent Document 1, it is necessary to provide a wavelength tunable filter for each individual optical fiber line. When the number of branches becomes enormous, the number of wavelength tunable filters increases accordingly, resulting in a high cost.

一方、WDM−PONシステムのうち、共通光ファイバ線路を複数の個別光ファイバ線路に分岐するための分岐手段として、複数の固定波長に分波できるAWG(Arrayed Waveguide Grating)を用いたものが多くあり、これに上記特許文献1のような試験システムを適用することが考えられるが、特許文献1の波長分岐部にAWGを用いた場合、試験光波長を個別光ファイバ線路毎の信号光波長に合わせる必要がある。   On the other hand, among the WDM-PON systems, many branching means for branching a common optical fiber line into a plurality of individual optical fiber lines use AWG (Arrayed Waveguide Grating) capable of demultiplexing into a plurality of fixed wavelengths. It is conceivable to apply a test system such as that of Patent Document 1 to this, but when AWG is used in the wavelength branching section of Patent Document 1, the test light wavelength is adjusted to the signal light wavelength for each individual optical fiber line. There is a need.

つまり、上記のような固定波長分波型の分岐器を用いたWDM−PONの場合、その障害試験に用いる光の波長を可変する必要がある。   That is, in the case of the WDM-PON using the fixed wavelength demultiplexing type branching device as described above, it is necessary to vary the wavelength of light used for the failure test.

しかしながら、この波長数が多い場合、全ての個別光ファイバ線路の検査を行うのに非常に長い時間を要し、その間通信を停止させる必要がある。   However, when this number of wavelengths is large, it takes a very long time to inspect all the individual optical fiber lines, and it is necessary to stop communication during that time.

本発明は、上記課題を解決し、共通光ファイバ線路と個別光ファイバ線路の間をAWGのような波長固定の分岐器を介して接続したWDM−PONシステムの全ての個別ファイバ線路の障害検知を、短時間に行える光線路障害探索装置を提供することを目的とする。   The present invention solves the above-described problems and detects faults in all individual fiber lines of a WDM-PON system in which a common optical fiber line and individual optical fiber lines are connected via a wavelength-fixed branching device such as an AWG. An object of the present invention is to provide an optical line fault search device that can be performed in a short time.

前記目的を達成するために、本発明の請求項1の光線路障害探索装置は、
異なる複数の波長の信号光を合波して共通光ファイバ線路(17)の一端に入射し、該共通光ファイバ線路を介して送られてくる光をその波長毎に分離して受信する電話局側光回線終端装置(10)と、前記共通光ファイバ線路の他端側に接続され、前記電話局側光回線終端装置から送られてくる信号光を受けて、その波長に応じて分離し、波長毎に異なる長さで個別に設けられた個別光ファイバ線路(18〜18)の一端へ入射させ、該各個別光ファイバ線路を介して送られてくる信号光を合波して前記共通光ファイバ線路へ出射する固定波長分波型の分岐器(15)と、前記個別光ファイバ線路の他端側にそれぞれ接続された加入者側光回線終端装置(16〜16)とを有するWDM−PONシステムの光線路の障害を探索する光線路障害探索装置であって、
前記共通光ファイバ線路に接続された線路カプラ(21)と、
前記共通光ファイバ線路を伝送する全ての信号光の波長を含む広帯域光パルスを発生し、する広帯域光パルス発生手段(22)と、
前記広帯域光パルスを第1光路で受けて第2光路から前記線路カプラを介して前記WDM−PONシステムに入射させ、前記広帯域光パルスに対して前記WDM−PONシステムから前記線路カプラに戻ってきた戻り光を前記第2光路で受けて第3光路に出射するカプラ(23)と、
前記カプラの前記第3光路から出射された戻り光を受けてその強度に応じた振幅をもつ電気の信号に変換する受光器(25)と、
通信停止期間中の前記WDM−PONシステムに前記広帯域光パルスを入射させる広帯域光パルス発生手段(22)と、
前記広帯域光パルスを前記WDM−PONシステムに入射したタイミングから所定時間が経過するまでの間、前記受光器から出力された信号の時間波形を取得する時間波形取得手段(27)と、
前記WDM−PONシステムが正常のときに予め取得された時間波形を基準波形として記憶する基準波形記憶手段(28)と、
前記時間波形取得手段で新規に取得された時間波形と前記基準波形とを比較して、前記WDM−PONシステムの障害の探索を行う障害検知手段(29)とを備えたことを特徴とする。
In order to achieve the above object, an optical line fault searching device according to claim 1 of the present invention includes:
A telephone station that multiplexes signal lights of a plurality of different wavelengths to enter one end of a common optical fiber line (17), and separates and receives the light transmitted through the common optical fiber line for each wavelength. Side optical line terminator (10), connected to the other end of the common optical fiber line, receives signal light transmitted from the telephone station side optical line terminator, and separates it according to its wavelength, The light is incident on one end of individual optical fiber lines (18 1 to 18 n ) individually provided with different lengths for each wavelength, and the signal light transmitted through the individual optical fiber lines is multiplexed to A fixed wavelength demultiplexing type branching device (15) that emits light to a common optical fiber line, and subscriber-side optical line terminators (16 1 to 16 n ) respectively connected to the other end side of the individual optical fiber line Search for obstacles in optical line of WDM-PON system An optical path fault searching apparatus,
A line coupler (21) connected to the common optical fiber line;
A broadband optical pulse generating means (22) for generating a broadband optical pulse including wavelengths of all signal lights transmitted through the common optical fiber line;
The broadband optical pulse is received by the first optical path, is incident on the WDM-PON system from the second optical path via the line coupler, and returns to the line coupler from the WDM-PON system in response to the broadband optical pulse. A coupler (23) for receiving return light in the second optical path and emitting it to the third optical path;
A light receiver (25) that receives the return light emitted from the third optical path of the coupler and converts it into an electrical signal having an amplitude corresponding to its intensity;
Broadband optical pulse generating means (22) for causing the broadband optical pulse to enter the WDM-PON system during a communication suspension period;
Time waveform acquisition means (27) for acquiring a time waveform of a signal output from the light receiver until a predetermined time elapses from a timing when the broadband optical pulse is incident on the WDM-PON system;
Reference waveform storage means (28) for storing a time waveform acquired in advance when the WDM-PON system is normal as a reference waveform;
It comprises a failure detection means (29) for searching for a failure in the WDM-PON system by comparing the time waveform newly acquired by the time waveform acquisition means and the reference waveform.

また、本発明の請求項2の光線路障害探索装置は、請求項1記載の光線路障害探索装置において、
前記障害検知手段によって特定の個別光ファイバ線路に障害が発生したと検知された場合に、前記WDM−PONシステムからの戻り光のうち、前記特定の個別光ファイバ線路に対応する信号波長と等しい波長成分の光を選択的に前記受光器に入射させ、該受光器の出力信号の時間波形を取得させて、前記特定の個別光ファイバ線路のより詳細な障害の検知を行わせる個別線路測定手段(40)を設けたことを特徴とする。
Moreover, the optical line failure searching device according to claim 2 of the present invention is the optical line failure searching device according to claim 1,
A wavelength equal to the signal wavelength corresponding to the specific individual optical fiber line out of the return light from the WDM-PON system when the fault detection unit detects that a specific individual optical fiber line has failed. Individual line measuring means for selectively injecting component light into the light receiver and obtaining a time waveform of an output signal of the light receiver to detect a more detailed failure of the specific individual optical fiber line ( 40).

また、本発明の請求項3の光線路障害探索装置は、請求項2記載の光線路障害探索装置において、
前記個別線路測定手段は、
前記広帯域光パルスの波長成分から前記特定の個別光ファイバ線路に対応する信号波長と等しい波長成分の光を選択的に通過させる可変波長フィルタ(41)と、
前記波長可変フィルタを、前記カプラと前記受光器との間、または、前記広帯域パルス光源と前記カプラとの間、または、該カプラと前記線路カプラとの間のいずれかに挿入させる光スイッチ(42、43)とを含むことを特徴とする。
Further, an optical line failure searching device according to claim 3 of the present invention is the optical line failure searching device according to claim 2,
The individual line measuring means is
A variable wavelength filter (41) for selectively passing light having a wavelength component equal to a signal wavelength corresponding to the specific individual optical fiber line from the wavelength component of the broadband optical pulse;
An optical switch (42) for inserting the tunable filter between the coupler and the light receiver, between the broadband pulse light source and the coupler, or between the coupler and the line coupler. 43).

また、本発明の請求項4の光線路障害探索装置は、請求項1〜3のいずれかに記載の光線路障害探索装置において、
前記広帯域光パルス発生手段は、
前記全ての信号光の波長に一致するスペクトル光を含む光を出射するスーパーコンティニウム(Super Continuum)光源からな広帯域光源(22a)と、
前記広帯域光源の出射光を受けて光パルスを発生させる光パルス発生手段(22b)とにより構成されていることを特徴とする。
Moreover, the optical-path fault searching apparatus of Claim 4 of this invention is the optical-path fault searching apparatus in any one of Claims 1-3,
The broadband optical pulse generating means includes
A broadband light source (22a) from a Super Continuum light source that emits light including spectral light that matches the wavelength of all the signal light;
It is characterized by comprising an optical pulse generating means (22b) for receiving an emitted light from the broadband light source and generating an optical pulse.

上記のように、本発明の請求項1の光線路障害探索装置は、各信号光波長にそれぞれ対応する個別光ファイバ線路の長さが異なるWDM−PONシステムに対し、そのWDM−PONシステムで使用されている全ての信号光の波長を含む広帯域光パルスを通信停止期間に入射させ、その広帯域光パルスに対するWDM−PONシステムからの戻り光を受光して、その受光信号の時間波形を取得して、正常時に取得した基準波形と比較し、WDM−PONシステムの障害の探索を行う。   As described above, the optical line fault searching device according to claim 1 of the present invention is used in a WDM-PON system with respect to WDM-PON systems having different lengths of individual optical fiber lines corresponding to the respective signal light wavelengths. A broadband optical pulse including all the wavelengths of the signal light is incident during the communication stop period, the return light from the WDM-PON system for the broadband optical pulse is received, and the time waveform of the received light signal is acquired. Compared with the reference waveform acquired at the normal time, the fault of the WDM-PON system is searched.

このため、たとえWDM−PONシステムの分岐数が膨大であっても、1線路分の測定時間で短時間に障害検知を行うことができる。   For this reason, even if the number of branches of the WDM-PON system is enormous, failure detection can be performed in a short time with a measurement time of one line.

また、請求項2のものでは、広帯域光パルスで一括に求めた時間波形により障害が発生したと検知された特定の個別光ファイバ線路に対する詳細な情報を得ることができる。   According to the second aspect of the present invention, it is possible to obtain detailed information on a specific individual optical fiber line that has been detected as having failed due to a time waveform obtained collectively with a broadband optical pulse.

また、請求項3の構成のものでは、波長可変フィルタと光スイッチを用いて、障害のあると個別光ファイバ線路についての詳細な情報を簡単に得ることができる。   According to the third aspect of the present invention, detailed information about the individual optical fiber line can be easily obtained when there is a fault by using the wavelength tunable filter and the optical switch.

本発明の実施形態の構成図Configuration diagram of an embodiment of the present invention 広帯域光パルスのスペクトラム図Spectrum diagram of broadband optical pulse 実施形態の動作を説明するための信号波形図Signal waveform diagram for explaining the operation of the embodiment 実施形態の動作を説明するための信号波形図Signal waveform diagram for explaining the operation of the embodiment 個別線路測定手段の一例を示す図The figure which shows an example of an individual track | line measuring means 個別線路測定手段によって得られた詳細な波形図Detailed waveform diagram obtained by individual line measuring means 個別線路測定手段の他の例を示す図The figure which shows the other example of an individual track | line measuring means 個別線路測定手段の他の例を示す図The figure which shows the other example of an individual track | line measuring means

以下、図面に基づいて本発明の実施の形態を説明する。
図1は、WDM−PONシステムと本発明を適用した光線路障害探索装置20の基本構成を示している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a basic configuration of a WDM-PON system and an optical line fault searching apparatus 20 to which the present invention is applied.

試験対象のWDM−PONシステムは、OLT(電話局側光回線終端装置)10、前記AWGで代表される固定波長分波型の分岐器15、複数のONU16〜16(加入者側光回線終端装置)、OLT10と分岐器15の間を接続する単一の共通光ファイバ線路17、分岐器15と各ONU16〜16との間をそれぞれ個別に接続する個別光ファイバ線路18〜18により構成されている。なお、ここでONU16〜16は、通信停止状態で入射光をミラーなどにより全反射する機能を有しているものとする。 The WDM-PON system to be tested includes an OLT (telephone station side optical line terminating device) 10, a fixed wavelength demultiplexing type branching device 15 represented by the AWG, and a plurality of ONUs 16 1 to 16 n (subscriber side optical lines). Termination device), a single common optical fiber line 17 connecting between the OLT 10 and the branching device 15, and individual optical fiber lines 18 1 to 18 connecting individually between the branching device 15 and the ONUs 16 1 to 16 n. n . Here, it is assumed that the ONUs 16 1 to 16 n have a function of totally reflecting incident light by a mirror or the like when communication is stopped.

ここで、OLT10は、それぞれ異なる波長λ〜λの信号光を送受信する複数の送受信器11〜11と、送受信器11〜11からの信号光を合波して共通光ファイバ線路17に出射し、共通光ファイバ線路17からの光を前記波長毎に分波して、対応波長の送受信器11〜11にそれぞれ与えるAWGのような固定波長分波型の分岐器12により構成されている。 Here, the OLT 10 combines a plurality of transceivers 11 1 to 11 n that transmit and receive signal lights having different wavelengths λ 1 to λ n and signal lights from the transceivers 11 1 to 11 n to share a common optical fiber. A fixed wavelength demultiplexing type branching device 12 such as an AWG that emits light to the line 17 and demultiplexes the light from the common optical fiber line 17 for each wavelength and supplies the demultiplexed light to the transceivers 11 1 to 11 n having the corresponding wavelengths. It is comprised by.

この分岐器12で波長多重された光は、共通光ファイバ線路17を経て分岐器15に入射される。   The light wavelength-multiplexed by the branching device 12 enters the branching device 15 through the common optical fiber line 17.

分岐器15は分岐器12と同一構成であり、OLT10側から入射された光を各波長λ〜λの信号光に分け、その波長毎に割り当てられ、それぞれ長さが異なる個別光ファイバ線路18〜18へ出射し、ONU16〜16にそれぞれ与える。また、ONU16〜16から出射された信号光を、個別光ファイバ線路18〜18を介して受け、これを合波して共通光ファイバ線路17へ出射する。なお、ここでは、個別光ファイバ線路18〜18の長さが添え字の順に長くなるものとする。 The branching unit 15 has the same configuration as that of the branching unit 12 and divides the light incident from the OLT 10 side into signal light of each wavelength λ 1 to λ n and is assigned for each wavelength, and is an individual optical fiber line having a different length. The light is emitted to 18 1 to 18 n and given to ONUs 16 1 to 16 n , respectively. In addition, the signal light emitted from the ONUs 16 1 to 16 n is received via the individual optical fiber lines 18 1 to 18 n , combined, and emitted to the common optical fiber line 17. Here, it is assumed that the lengths of the individual optical fiber lines 18 1 to 18 n become longer in the order of subscripts.

また、最も短い個別光ファイバ線路18に対する各個別光ファイバ線路18〜18の長さの差(差分長)は、後述する広帯域光パルスPwのパルス幅(時間幅)に対して、それぞれの差分長を光が通過するのに必要な時間に比べて十分長いものとする。 Further, the difference in length (difference length) of each of the individual optical fiber lines 18 2 to 18 n with respect to the shortest individual optical fiber line 18 1 is different from the pulse width (time width) of the broadband optical pulse Pw described later. The difference length is sufficiently longer than the time required for light to pass.

このWDM−PONシステムの試験を行うための光線路障害探索装置20は、共通光ファイバ線路17に接続された線路カプラ21を介して、試験用の光パルスをWDM−PONシステムに入射させ、その光パルスに対するWDM−PONシステムからの戻り光を、線路カプラ21を介して装置内に入射させる。   The optical line fault searching device 20 for testing this WDM-PON system causes a test optical pulse to enter the WDM-PON system via a line coupler 21 connected to the common optical fiber line 17. Return light from the WDM-PON system in response to the optical pulse is made incident into the apparatus via the line coupler 21.

広帯域光パルス発生手段22は、図2に示すように、共通光ファイバ線路17を伝送する全ての信号光の波長λ1〜λnを含む広帯域光パルスPwを生成し、カプラ23および線路カプラ21を介して通信停止期間中のWDM−PONシステムに入射させる。   As shown in FIG. 2, the broadband optical pulse generating means 22 generates a broadband optical pulse Pw including the wavelengths λ1 to λn of all signal lights transmitted through the common optical fiber line 17, and passes through the coupler 23 and the line coupler 21. To enter the WDM-PON system during the communication suspension period.

広帯域光パルス発生手段22は、広帯域光源22aと光パルス発生手段22bにより構成されている。広帯域光源22aとしては全ての信号光波長λ1〜λnに一致するスペクトル光を含む光を出射するスーパーコンティニウム(Super Continuum)光源やSLD等が使用できる。   The broadband optical pulse generating means 22 is composed of a broadband light source 22a and an optical pulse generating means 22b. As the broadband light source 22a, a super continuum light source, an SLD, or the like that emits light including spectral light that matches all signal light wavelengths λ1 to λn can be used.

スーパーコンティニウム光源は、ガラス等の透明な媒質(光ファイバのような細い媒質中で起きやすい)に非常に強い種光を入射することにより、広波長帯域に渡る発振スペクトルを有する光を出射する光源であり、上記広帯域光源22aとして適している。   A supercontinuum light source emits light having an oscillation spectrum over a wide wavelength band by injecting a very strong seed light into a transparent medium such as glass (which tends to occur in a thin medium such as an optical fiber). It is a light source and is suitable as the broadband light source 22a.

また、光パルス発生手段22bは、広帯域光源22aから出射された広帯域光をパルス変調するLN型変調器等が使用できる。ここでは変調用のクロックパルスCに同期した広帯域光パルスPwを出射するものとする。   Further, as the optical pulse generating means 22b, an LN modulator or the like that performs pulse modulation on the broadband light emitted from the broadband light source 22a can be used. Here, it is assumed that a broadband optical pulse Pw synchronized with the modulation clock pulse C is emitted.

カプラ23は、光を入出射する3つの異なる光路を有し、広帯域光パルスPwを第1光路で受けて第2光路から線路カプラ21へ出射する。また、線路カプラ21からの戻り光Prを第2光路で受けて第3光路から受光器25へ出射する。   The coupler 23 has three different optical paths for entering and exiting light, receives the broadband optical pulse Pw on the first optical path, and emits it from the second optical path to the line coupler 21. Further, the return light Pr from the line coupler 21 is received by the second optical path and is emitted from the third optical path to the light receiver 25.

受光器25は、戻り光Prを受けてその強度に応じた振幅をもつ電気の信号Vrに変換し、その信号をA/D変換器26に入力する。   The light receiver 25 receives the return light Pr and converts it into an electric signal Vr having an amplitude corresponding to the intensity thereof, and inputs the signal to the A / D converter 26.

A/D変換器26によって得られたデジタルのデータ信号Dは、時間波形取得手段27に入力される。時間波形取得手段27は、広帯域光パルスPwをWDM−PONシステムに入射したタイミング(クロックパルスCに同期したタイミング)から所定時間(入射した光パルスが最も長い個別光ファイバ線路の末端まで往復するのに必要な時間以上)、受光器25から出力された一連の信号(実際には一連のデータ信号D)を記憶し、複数回(例えば10〜100回)の広帯域光パルスPwの入射で得られたデータの平均化処理を行いランダムノイズ成分が除去された時間波形を取得する。   The digital data signal D obtained by the A / D converter 26 is input to the time waveform acquisition means 27. The time waveform acquisition means 27 reciprocates from the timing at which the broadband optical pulse Pw is incident on the WDM-PON system (timing synchronized with the clock pulse C) to the end of the individual optical fiber line where the incident optical pulse is the longest. A series of signals (actually a series of data signals D) output from the light receiver 25 are stored and obtained by the incidence of the broadband optical pulse Pw a plurality of times (for example, 10 to 100 times). A time waveform from which random noise components are removed is obtained by averaging the obtained data.

基準波形記憶手段28には、WDM−PONシステムが正常のときに予め時間波形取得手段27によって取得された時間波形が基準波形として記憶されている。   The reference waveform storage unit 28 stores a time waveform acquired in advance by the time waveform acquisition unit 27 when the WDM-PON system is normal as a reference waveform.

障害検知手段29は、時間波形取得手段27で新規に取得された時間波形と基準波形とを比較して、WDM−PONシステムの障害の探索を行う。   The failure detection means 29 searches for a failure in the WDM-PON system by comparing the time waveform newly acquired by the time waveform acquisition means 27 with the reference waveform.

制御部30は、この光線路障害探索装置20の測定に必要な種々の制御を行うものであり、少なくともWDM−PONシステムが通信を停止している期間に広帯域光パルスPwをWDM−PONシステムに入射させて障害の探索を行わせ、通信を行っている期間は広帯域光パルスPwの入射を規制する広帯域光パルス入射手段を形成している。   The control unit 30 performs various types of control necessary for the measurement of the optical line fault searching device 20, and transmits the broadband optical pulse Pw to the WDM-PON system at least during a period when the WDM-PON system stops communication. A broadband optical pulse incident means for restricting the incidence of the broadband optical pulse Pw is formed during the period during which communication is performed by searching for a fault.

ここで、制御部30はWDM−PONシステムの通信停止期間を把握していることになるが、これは例えば以下の方式が考えられる。   Here, although the control part 30 has grasped | ascertained the communication stop period of a WDM-PON system, the following system can consider this, for example.

即ち、WDM−PONシステムの通信スケジュールを制御部30が予め記憶していて、その停止期間に広帯域光パルスPwを一定周期で所定回数入射させる方式、また図示しない通信手段を介してWDM−PONシステムと制御部30が通信を行い、WDM−PONシステム側から通信停止を知らせる情報を受けて、停止期間に広帯域光パルスPwを一定周期で所定回数入射させる方式、あるいは制御部30側から通信停止の要求をWDM−PONシステム側へ行い、その要求に応えてWDM−PONシステムが通信を停止したときに広帯域光パルスPwを一定周期で所定回数入射させる方式である。   That is, the control unit 30 stores the communication schedule of the WDM-PON system in advance, and the broadband optical pulse Pw is incident a predetermined number of times at a fixed period during the stop period, and the WDM-PON system via communication means (not shown). And the control unit 30 communicate with each other, receive information notifying the communication stop from the WDM-PON system side, and injecting the broadband optical pulse Pw a predetermined number of times in the fixed period, or the communication stop from the control unit 30 side This is a method in which a request is made to the WDM-PON system side, and when the WDM-PON system stops communication in response to the request, the broadband optical pulse Pw is incident a predetermined number of times at a constant period.

また、通信停止期間中にWDM−PONシステムへ広帯域光パルスPwを入射させ、それ以外の期間に広帯域光パルスPwの入射を規制するための具体的な技術としては、広帯域光パルスPwを生成するためのクロックパルスCの出力をオンオフさせたり、図示しないシャッタを、線路カプラ21とカプラ23の間あるいはカプラ23と広帯域光パルス発生手段22との間に設け、そのシャッタの開閉制御することで行う。   In addition, as a specific technique for causing the broadband optical pulse Pw to enter the WDM-PON system during the communication stop period and restricting the incidence of the broadband optical pulse Pw during other periods, the broadband optical pulse Pw is generated. The output of the clock pulse C is turned on and off, or a shutter (not shown) is provided between the line coupler 21 and the coupler 23 or between the coupler 23 and the broadband optical pulse generator 22 and the opening and closing of the shutter is controlled. .

このように構成された光線路障害探索装置20では、WDM−PONシステムが通信を行っている期間はその通信の妨げになる光の出射を規制しているが、通信停止期間になると、例えば一定周期のクロックパルスCが広帯域光パルス発生手段22と時間波形取得手段27に与えられて、図3の(a)のように、広帯域光パルスPwが広帯域光パルス発生手段22で一定周期に生成され、カプラ23および線路カプラ21を介してWDM−PONシステムに入射される。   In the optical line fault searching device 20 configured as described above, the emission of light that hinders the communication is restricted during the period in which the WDM-PON system is communicating. A clock pulse C having a period is given to the broadband optical pulse generating means 22 and the time waveform acquiring means 27, and the broadband optical pulse Pw is generated at a constant period by the broadband optical pulse generating means 22, as shown in FIG. The light enters the WDM-PON system via the coupler 23 and the line coupler 21.

この広帯域光パルスPwは、共通光ファイバ線路17から分岐器15へ伝搬し、分岐器15で各波長成分に別れてそれぞれ個別光ファイバ線路18〜18へ伝搬する。 The broadband optical pulse Pw propagates from the common optical fiber line 17 to the branching device 15, and is propagated to the individual optical fiber lines 18 1 to 18 n separately by the branching device 15 by each wavelength component.

そしてそれぞれの波長成分の後方散乱光(レイリー散乱光)やフレネル反射成分あるいはONU16〜16による全反射光が、個別光ファイバ線路18〜18を経て分岐器15に戻り、分岐器15で合波されて共通光ファイバ線路17、線路カプラ21およびカプラ23を介して受光器25に入射される。 Then, backscattered light (Rayleigh scattered light) of each wavelength component, Fresnel reflection component, or total reflection light by ONUs 16 1 to 16 n returns to the branching unit 15 through the individual optical fiber lines 18 1 to 18 n , and the branching unit 15 And are incident on the light receiver 25 via the common optical fiber line 17, the line coupler 21 and the coupler 23.

広帯域光パルスPwに含まれる各波長成分についての戻り光Pr(λ1)〜Pr(λn)の波形(この波形は実際には取得できない)は、WDM−PONシステムの線路に異常がなければ、例えば図3の(b1)〜(bn)のように、出射地点でのフレネル反射成分Ra(1)〜Ra(n)、分岐器15でのフレネル反射成分Rb(1)〜Rb(n)、ONU入射端での全反射Rc(1)〜Rc(n)の成分がパルス状に現れるものとなり、時間波形取得手段27ではこれらの波形が時間合成された図3の(c)の波形が得られることになる(ファイバの中継接続点は省略している)。   The waveform of the return light Pr (λ1) to Pr (λn) for each wavelength component included in the broadband optical pulse Pw (this waveform cannot be actually acquired) is normal if there is no abnormality in the line of the WDM-PON system. As shown in (b1) to (bn) of FIG. 3, Fresnel reflection components Ra (1) to Ra (n) at the exit point, Fresnel reflection components Rb (1) to Rb (n) at the branching device 15, ONU The components of total reflection Rc (1) to Rc (n) at the incident end appear in the form of pulses, and the time waveform acquisition means 27 obtains the waveform shown in FIG. (The fiber junction point is omitted).

ここで、前記したように各個別光ファイバ線路18〜18の長さはそれぞれ異なり、その差分長は、広帯域光パルスPwのパルス幅に対して、それぞれの差分長を光が通過するのに必要な時間に比べて十分長いので、それぞれの波長成分の戻り光のうち全反射成分Rc(1)〜Rc(n)の位置(距離および時間)は、その差分長ずつ離れた位置に分離して表示される。 Here, as described above, the lengths of the individual optical fiber lines 18 1 to 18 n are different, and the difference length is such that light passes through the difference length with respect to the pulse width of the broadband optical pulse Pw. Therefore, the positions (distance and time) of the total reflection components Rc (1) to Rc (n) in the return light of the respective wavelength components are separated into positions separated by the difference length. Is displayed.

なお、同一特性の光ファイバを伝搬する光の速度は波長差により変化するので、フレネル反射の位置も厳密には差がでるが、この波長差は通常のシングルモードファイバを低損失で伝搬できる波長帯域内にあってその差は小さいため、図3の(c)の合成波形では互いに重なった波形(実際には若干幅が拡がる)となっている。勿論それらのフレネル反射成分が分離された波形であっても後述の波形比較は同様に行える。   Since the speed of light propagating through an optical fiber with the same characteristics changes depending on the wavelength difference, the position of Fresnel reflection also differs strictly, but this wavelength difference is a wavelength that can propagate through a normal single mode fiber with low loss. Since the difference is small within the band, the combined waveform in FIG. 3C is a waveform that overlaps each other (actually, the width slightly increases). Of course, the waveform comparison described later can be performed in the same manner even if the waveforms are obtained by separating these Fresnel reflection components.

上記の図3の(c)の波形は、WDM−PONシステムの線路に異常がない時の波形であり、この波形と例えば線路敷設時などに得られて基準波形記憶手段28に予め記憶されている基準波形と比較されるが、線路に断線や大きな劣化等がない場合、その波形はほぼ一致する。よってこの時間波形からは、障害は発生していないと判断される。   The waveform shown in FIG. 3 (c) is a waveform when there is no abnormality in the line of the WDM-PON system. This waveform is obtained when the line is laid, for example, and stored in the reference waveform storage means 28 in advance. Compared with the reference waveform, the waveform is almost the same when there is no disconnection or large deterioration in the line. Therefore, it is determined from this time waveform that no failure has occurred.

なお、時間波形の一致不一致は、それぞれの時間波形の時間軸とレベル軸からなる座標点を厳密に比較するものではなく、時間波形の特徴(ピークの数、概略レベル、概略位置を示すパターン情報)を求めて、それを比較することにより行う。   The coincidence / disagreement of the time waveforms does not strictly compare the coordinate points consisting of the time axis and level axis of each time waveform, but the pattern information indicating the characteristics of the time waveform (number of peaks, approximate level, approximate position) ) And compare it.

また、上記のように障害発生がないと判断された場合には、最新の時間波形を基準波形として更新記憶する。これにより、経年変化による誤差の影響を受けないで比較が行える。   When it is determined that no failure has occurred as described above, the latest time waveform is updated and stored as a reference waveform. As a result, the comparison can be performed without being affected by errors due to aging.

また、上記図3の状態から時間が経過したあるタイミングで同様の測定を行ったときに、例えば個別光ファイバ線路18の途中に断線があると、その線路に対応した波長の戻り光成分についての波形は、図4の(b1)のように、断線位置で大きく減衰したものとなり、各波長成分を合成した時間波形は、図4の(c)のように、n−1個の全反射成分Rc(2)〜Rc(n)しか現れない(図4の他の図は図3と同様である)。 Also, when subjected to the same measurements at a certain timing a lapse of time from the state of FIG. 3, for example, if there is a break in the middle of the individual optical fiber lines 18 1, the returned light component of the wavelength corresponding to the line 4 is greatly attenuated at the disconnection position as shown in (b1) of FIG. 4, and the time waveform obtained by synthesizing each wavelength component is n-1 total reflections as shown in (c) of FIG. Only the components Rc (2) to Rc (n) appear (the other figures in FIG. 4 are the same as those in FIG. 3).

したがって前記した基準波形と比較すると、その波長λ1についての全反射成分Rc(1)が無いことが判明する。   Therefore, when compared with the reference waveform described above, it is found that there is no total reflection component Rc (1) for the wavelength λ1.

このため、障害検知手段29は、個別光ファイバ線路18の途中に断線障害が発生したと判定し、図示しない通信手段等を介して例えばWDM−PONシステムを管理している部署などへアラーム情報を通知する。 Therefore, failure detection means 29 determines that the disconnection failure has occurred in the middle of the individual optical fiber lines 18 1, alarm information into to a department that manages the WDM-PON system for example via the communication means, not shown To be notified.

なお、他の個別光ファイバ線路の断線障害も上記同様に基準波形との比較により判別することができ、さらに共通光ファイバ線路17の断線障害もフレネル反射成分Rbが現れなくなることで容易に判別することができる。   In addition, disconnection faults of other individual optical fiber lines can be determined by comparison with the reference waveform in the same manner as described above, and disconnection faults of the common optical fiber line 17 can be easily determined by the absence of the Fresnel reflection component Rb. be able to.

このように、実施形態の光線路障害探索装置20では、各信号光波長にそれぞれ対応する個別光ファイバ線路の長さが異なるWDM−PONシステムに対し、そのWDM−PONシステムで使用されている全ての信号光の波長を含む広帯域光パルスPwを通信停止期間に入射させ、その広帯域光パルスPwに対するWDM−PONシステムからの戻り光を受光して、その受光信号の時間波形を取得して、正常時に取得した基準波形と比較し、WDM−PONシステムの障害の探索を行っている。   As described above, in the optical line fault searching device 20 according to the embodiment, all the WDM-PON systems used in the WDM-PON system have different lengths of individual optical fiber lines corresponding to the respective signal light wavelengths. The broadband optical pulse Pw including the wavelength of the signal light is incident during the communication stop period, the return light from the WDM-PON system with respect to the broadband optical pulse Pw is received, and the time waveform of the received light signal is acquired. In comparison with the reference waveform acquired at times, the WDM-PON system is searched for a fault.

このため、たとえWDM−PONシステムの分岐数が膨大であっても、1線路分の測定時間で障害検知を行うことができ、波長毎に順次時間波形を求める方法に比べ格段に高速な障害検知が行える。   For this reason, even if the number of branches of the WDM-PON system is enormous, it is possible to detect faults in the measurement time for one line, and fault detection is much faster than the method of obtaining the time waveform sequentially for each wavelength. Can be done.

前記実施形態では、異常のある光ファイバ線路の特定を行っていたが、その線路についてのより詳細な特性を求めることも可能である。   In the above embodiment, an abnormal optical fiber line is specified, but more detailed characteristics of the line can be obtained.

即ち、障害検知手段29によって特定の個別光ファイバ線路に障害が発生したと検知された場合に、WDM−PONシステムからの戻り光のうち、特定の個別光ファイバ線路に対応する信号波長と等しい波長成分の光を選択的に受光器25に入射させ、その受光器25の出力信号の時間波形を取得させて、特定の個別光ファイバ線路のより詳細な障害の検知を行わせるための個別線路測定手段を設ける。   That is, when the failure detection means 29 detects that a failure has occurred in a specific individual optical fiber line, the return light from the WDM-PON system has a wavelength equal to the signal wavelength corresponding to the specific individual optical fiber line. Individual line measurement for selectively injecting component light into the light receiver 25 and acquiring the time waveform of the output signal of the light receiver 25 to detect more detailed faults in a specific individual optical fiber line Means are provided.

例えば図5に示す個別線路測定手段40のように、波長可変フィルタ41と光スイッチ42、43とを、カプラ23と受光器25との間に設け、障害の有無の検知を行う場合には、光スイッチ42、43をスルー側に接続して前記同様の測定を行い、個別光ファイバ線路18xに障害が検知された場合には、波長可変フィルタ41の通過波長をその線路に対応する波長λxに設定して、戻り光のうちその波長λxの光だけを受光器25へ入射させて、図6のような時間波形を求め、大きく減衰している断線位置Aを見つける。なお、波長可変フィルタ41の通過波長の設定や光スイッチ42、43の切替は制御部30によって行う。   For example, like the individual line measuring means 40 shown in FIG. 5, when the wavelength tunable filter 41 and the optical switches 42 and 43 are provided between the coupler 23 and the light receiver 25 to detect the presence or absence of a failure, The optical switches 42 and 43 are connected to the through side and the same measurement is performed. When a failure is detected in the individual optical fiber line 18x, the pass wavelength of the wavelength tunable filter 41 is set to the wavelength λx corresponding to the line. After setting, only the light of the wavelength λx of the return light is made incident on the light receiver 25, the time waveform as shown in FIG. 6 is obtained, and the disconnection position A that is greatly attenuated is found. The control unit 30 sets the pass wavelength of the wavelength tunable filter 41 and switches the optical switches 42 and 43.

また、図7のように波長可変フィルタ41と光スイッチ42、43とを広帯域光パルス発生手段22とカプラ23との間に設けたり、図8のようにカプラ23と線路カプラ23との間に設け、障害の有無の検知を行う場合には、光スイッチ42、43をスルー側に接続して前記同様の測定を行い、個別光ファイバ線路18xに障害が検知された場合には、波長可変フィルタ41の通過波長をその線路に対応する波長λxに設定して、WDM−PONシステムへの入射光および戻り光の波長をλxだけに制限して前記同様の測定を行う。   Further, the wavelength tunable filter 41 and the optical switches 42 and 43 are provided between the broadband optical pulse generator 22 and the coupler 23 as shown in FIG. 7, or between the coupler 23 and the line coupler 23 as shown in FIG. When the presence or absence of a fault is detected, the optical switches 42 and 43 are connected to the through side to perform the same measurement as described above. When a fault is detected in the individual optical fiber line 18x, the wavelength tunable filter 41 is set to the wavelength λx corresponding to the line, and the wavelength of incident light and return light to the WDM-PON system is limited to λx, and the same measurement as described above is performed.

10……OLT(電話局側光回線終端装置)、15……分岐器、16〜16……ONU(加入者側光回線終端装置)、17……共通光ファイバ線路、18〜18……個別光ファイバ線路、20……光線路障害探索装置、21……線路カプラ、22……広帯域光パルス発生手段、23……カプラ、25……受光器、26……A/D変換器、27……時間波形取得手段、30……制御部、40……個別線路測定手段、41……波長可変フィルタ、42、43……光スイッチ DESCRIPTION OF SYMBOLS 10 ... OLT (telephone station side optical line terminator), 15 ... branching device, 16 1 to 16 n ... ONU (subscriber side optical line terminator), 17 ... common optical fiber line, 18 1 to 18 n: individual optical fiber line, 20: optical line fault searching device, 21: line coupler, 22: broadband optical pulse generating means, 23: coupler, 25: light receiver, 26: A / D conversion 27... Time waveform acquisition means 30... Control unit 40. Individual line measurement means 41. Wavelength tunable filter 42 and 43.

Claims (4)

異なる複数の波長の信号光を合波して共通光ファイバ線路(17)の一端に入射し、該共通光ファイバ線路を介して送られてくる光をその波長毎に分離して受信する電話局側光回線終端装置(10)と、前記共通光ファイバ線路の他端側に接続され、前記電話局側光回線終端装置から送られてくる信号光を受けて、その波長に応じて分離し、波長毎に異なる長さで個別に設けられた個別光ファイバ線路(18〜18)の一端へ入射させ、該各個別光ファイバ線路を介して送られてくる信号光を合波して前記共通光ファイバ線路へ出射する固定波長分波型の分岐器(15)と、前記個別光ファイバ線路の他端側にそれぞれ接続された加入者側光回線終端装置(16〜16)とを有するWDM−PONシステムの光線路の障害を探索する光線路障害探索装置であって、
前記共通光ファイバ線路に接続された線路カプラ(21)と、
前記共通光ファイバ線路を伝送する全ての信号光の波長を含む広帯域光パルスを発生する広帯域光パルス発生手段(22)と、
前記広帯域光パルスを第1光路で受けて第2光路から前記線路カプラを介して前記WDM−PONシステムに入射させ、前記広帯域光パルスに対して前記WDM−PONシステムから前記線路カプラに戻ってきた戻り光を前記第2光路で受けて第3光路に出射するカプラ(23)と、
前記カプラの前記第3光路から出射された戻り光を受けてその強度に応じた振幅をもつ電気の信号に変換する受光器(25)と、
通信停止期間中の前記WDM−PONシステムに前記広帯域光パルスを入射させる広帯域光パルス発生手段(22)と、
前記広帯域光パルスを前記WDM−PONシステムに入射したタイミングから所定時間が経過するまでの間、前記受光器から出力された信号の時間波形を取得する時間波形取得手段(27)と、
前記WDM−PONシステムが正常のときに予め取得された時間波形を基準波形として記憶する基準波形記憶手段(28)と、
前記時間波形取得手段で新規に取得された時間波形と前記基準波形とを比較して、前記WDM−PONシステムの障害の探索を行う障害検知手段(29)とを備えたことを特徴とする光線路障害探索装置。
A telephone station that multiplexes signal lights of a plurality of different wavelengths to enter one end of a common optical fiber line (17), and separates and receives the light transmitted through the common optical fiber line for each wavelength. Side optical line terminator (10), connected to the other end of the common optical fiber line, receives signal light transmitted from the telephone station side optical line terminator, and separates it according to its wavelength, The light is incident on one end of individual optical fiber lines (18 1 to 18 n ) individually provided with different lengths for each wavelength, and the signal light transmitted through the individual optical fiber lines is multiplexed to A fixed wavelength demultiplexing type branching device (15) that emits light to a common optical fiber line, and subscriber-side optical line terminators (16 1 to 16 n ) respectively connected to the other end side of the individual optical fiber line Search for obstacles in optical line of WDM-PON system An optical path fault searching apparatus,
A line coupler (21) connected to the common optical fiber line;
Broadband optical pulse generating means (22) for generating a broadband optical pulse including the wavelengths of all signal lights transmitted through the common optical fiber line;
The broadband optical pulse is received by the first optical path, is incident on the WDM-PON system from the second optical path via the line coupler, and returns to the line coupler from the WDM-PON system in response to the broadband optical pulse. A coupler (23) for receiving return light in the second optical path and emitting it to the third optical path;
A light receiver (25) that receives the return light emitted from the third optical path of the coupler and converts it into an electrical signal having an amplitude corresponding to its intensity;
Broadband optical pulse generating means (22) for causing the broadband optical pulse to enter the WDM-PON system during a communication suspension period;
Time waveform acquisition means (27) for acquiring a time waveform of a signal output from the light receiver until a predetermined time elapses from a timing when the broadband optical pulse is incident on the WDM-PON system;
Reference waveform storage means (28) for storing a time waveform acquired in advance when the WDM-PON system is normal as a reference waveform;
A light beam comprising a failure detection unit (29) for searching for a failure in the WDM-PON system by comparing the time waveform newly acquired by the time waveform acquisition unit and the reference waveform. Road obstacle search device.
前記障害検知手段によって特定の個別光ファイバ線路に障害が発生したと検知された場合に、前記WDM−PONシステムからの戻り光のうち、前記特定の個別光ファイバ線路に対応する信号波長と等しい波長成分の光を選択的に前記受光器に入射させ、該受光器の出力信号の時間波形を取得させて、前記特定の個別光ファイバ線路のより詳細な障害の検知を行わせる個別線路測定手段(40)を設けたことを特徴とする請求項1記載の光線路障害探索装置。   A wavelength equal to the signal wavelength corresponding to the specific individual optical fiber line out of the return light from the WDM-PON system when the fault detection unit detects that a specific individual optical fiber line has failed. Individual line measuring means for selectively injecting component light into the light receiver and obtaining a time waveform of an output signal of the light receiver to detect a more detailed failure of the specific individual optical fiber line ( 40) The optical line fault searching device according to claim 1, wherein 40) is provided. 前記個別線路測定手段は、
前記広帯域光パルスの波長成分から前記特定の個別光ファイバ線路に対応する信号波長と等しい波長成分の光を選択的に通過させる可変波長フィルタ(41)と、
前記波長可変フィルタを、前記カプラと前記受光器との間、または、前記広帯域パルス光源と前記カプラとの間、または、該カプラと前記線路カプラとの間のいずれかに挿入させる光スイッチ(42、43)とを含むことを特徴とする請求項2記載の光線路障害探索装置。
The individual line measuring means is
A variable wavelength filter (41) for selectively passing light having a wavelength component equal to a signal wavelength corresponding to the specific individual optical fiber line from the wavelength component of the broadband optical pulse;
An optical switch (42) for inserting the tunable filter between the coupler and the light receiver, between the broadband pulse light source and the coupler, or between the coupler and the line coupler. 43) The optical line fault searching device according to claim 2.
前記広帯域光パルス発生手段は、
前記全ての信号光の波長に一致するスペクトル光を含む光を出射するスーパーコンティニウム(Super Continuum)光源からな広帯域光源(22a)と、
前記広帯域光源の出射光を受けて光パルスを発生させる光パルス発生手段(22b)とにより構成されていることを特徴とする請求項1〜3のいずれかに記載の光線路障害探索装置。
The broadband optical pulse generating means includes
A broadband light source (22a) from a Super Continuum light source that emits light including spectral light that matches the wavelength of all the signal light;
The optical line fault searching device according to any one of claims 1 to 3, further comprising: an optical pulse generating means (22b) for receiving an emitted light from the broadband light source and generating an optical pulse.
JP2009178969A 2009-07-31 2009-07-31 Optical line fault search device Active JP5066555B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009178969A JP5066555B2 (en) 2009-07-31 2009-07-31 Optical line fault search device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009178969A JP5066555B2 (en) 2009-07-31 2009-07-31 Optical line fault search device

Publications (2)

Publication Number Publication Date
JP2011035598A true JP2011035598A (en) 2011-02-17
JP5066555B2 JP5066555B2 (en) 2012-11-07

Family

ID=43764243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009178969A Active JP5066555B2 (en) 2009-07-31 2009-07-31 Optical line fault search device

Country Status (1)

Country Link
JP (1) JP5066555B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085056A (en) * 2011-10-07 2013-05-09 Anritsu Corp Optical pulse testing system and optical pulse testing method
JP2015080020A (en) * 2013-10-15 2015-04-23 日本電信電話株式会社 Optical fiber line wavelength measurement system and optical test device
CN113783610A (en) * 2021-04-09 2021-12-10 武汉飞沃科技有限公司 Passive wavelength division fault detection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113413A (en) * 1995-10-18 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> Branched light line with optical pulse-testing function
JPH10327104A (en) * 1997-05-23 1998-12-08 Hitachi Cable Ltd Optical fiber fault point detector
JPH1168663A (en) * 1997-08-18 1999-03-09 Kokusai Denshin Denwa Co Ltd <Kdd> Optical transmission line supervisory equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113413A (en) * 1995-10-18 1997-05-02 Nippon Telegr & Teleph Corp <Ntt> Branched light line with optical pulse-testing function
JPH10327104A (en) * 1997-05-23 1998-12-08 Hitachi Cable Ltd Optical fiber fault point detector
JPH1168663A (en) * 1997-08-18 1999-03-09 Kokusai Denshin Denwa Co Ltd <Kdd> Optical transmission line supervisory equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085056A (en) * 2011-10-07 2013-05-09 Anritsu Corp Optical pulse testing system and optical pulse testing method
JP2015080020A (en) * 2013-10-15 2015-04-23 日本電信電話株式会社 Optical fiber line wavelength measurement system and optical test device
CN113783610A (en) * 2021-04-09 2021-12-10 武汉飞沃科技有限公司 Passive wavelength division fault detection system

Also Published As

Publication number Publication date
JP5066555B2 (en) 2012-11-07

Similar Documents

Publication Publication Date Title
JP5130262B2 (en) Optical line fault search device
Rad et al. Passive optical network monitoring: challenges and requirements
EP2748949B1 (en) Methods and apparatuses for supervision of optical networks
US9008503B2 (en) Supervision of wavelength division multiplexed optical networks
US8594496B2 (en) Tunable coherent optical time division reflectometry
US7542673B2 (en) Fault localization apparatus for optical line in wavelength division multiplexed passive optical network
ES2397024B1 (en) METHOD AND SYSTEM FOR MONITORING PHYSICAL LAYER IN PASSIVE OPTICAL NETWORKS
US20060110161A1 (en) Method and apparatus for monitoring optical fibers of passive optical network system
Urban et al. Fiber plant manager: An OTDR-and OTM-based PON monitoring system
EP2337240B1 (en) Multichannel WDM-PON module with integrated OTDR function
CN104202084B (en) A kind of device and method monitoring TDM optical network link failure
EP2726837B1 (en) Device, remote node and methods for pon supervision
WO2008116309A1 (en) Method and system for testing for defects in a multipath optical network
JP5066555B2 (en) Optical line fault search device
JP6024634B2 (en) Optical line fault detection device and optical line fault detection method
ES2417954B1 (en) METHOD AND SYSTEM FOR SUPERVISING PASSIVE TO MULTIPOINT OPTICAL NETWORKS BASED ON REFLECTOMETRY SYSTEMS
CN102742184A (en) Optical fiber link detection method, optical line terminal and passive optical network system
JPH08201223A (en) Method and system for monitoring optical fiber network
JP4383162B2 (en) Optical branch line monitoring system
Fathallah et al. Performance evaluation of special optical coding techniques appropriate for physical layer monitoring of access and metro optical networks
Cen Study on supervision of wavelength division multiplexing passive optical network systems
WO2013017302A1 (en) A method and a system for physical layer monitoring in point to multipoint passive optical networks based on reflectometry systems
JP2018157247A (en) Fault detection device and fault detection method
JP5438660B2 (en) Optical line test apparatus and optical line test system
Fernández et al. PON Monitoring Technique Based on 2D Encoders and Wavelength-to-Time Mapping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120813

R150 Certificate of patent or registration of utility model

Ref document number: 5066555

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250