JP2011034885A - Grounding structure - Google Patents

Grounding structure Download PDF

Info

Publication number
JP2011034885A
JP2011034885A JP2009181716A JP2009181716A JP2011034885A JP 2011034885 A JP2011034885 A JP 2011034885A JP 2009181716 A JP2009181716 A JP 2009181716A JP 2009181716 A JP2009181716 A JP 2009181716A JP 2011034885 A JP2011034885 A JP 2011034885A
Authority
JP
Japan
Prior art keywords
ground
grounding
camera control
potential
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009181716A
Other languages
Japanese (ja)
Inventor
Seiichi Kato
征一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP2009181716A priority Critical patent/JP2011034885A/en
Publication of JP2011034885A publication Critical patent/JP2011034885A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To protect auxiliary facilities from lightning surge by equalizing grounding potential of the whole power equipment including the auxiliary facilities. <P>SOLUTION: Grounding resistance R5 of a camera control instrument 35 arranged in the periphery of a substation 10 is connected with a plurality of grounding wires 40A, 40B to a grounding net 20 of the substation 10. Thus, rise of the grounding potential of the camera control instrument 35 can be restrained when the lightning surge invades, and grounding potential of the whole substation 10 including the camera control instrument 35 can be equalized. Consequently, the auxiliary facilities located out of the grounding net 20, namely, the camera control instrument 35 can be protected from lightning surge U. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電力設備の周囲に設けられる付属設備の接地構造に関する。   The present invention relates to a grounding structure for an accessory facility provided around a power facility.

下記文献1に記載があるように、発変電所などの電力設備では、メッシュ状の接地網を設けることで、接地電位の均一化を図っている。   As described in the following document 1, in a power facility such as a power generation / substation, a grounding network is provided to make the ground potential uniform.

特開2008−66205公報JP 2008-66205 A

ところが、電力設備の周囲(接地網の外)にあとから、監視カメラなどの付属設備を増設する場合がある。このような場合、付属設備を単独接地すると、雷サージが電力設備に侵入したとき、接地網の接地電位だけが上昇することとなり、付属設備の接地電位との間に電位差が生じる。その結果、付属設備に耐圧を超える過電圧が加わり設備を壊してしまう。   However, there are cases where additional equipment such as a surveillance camera is added around the power equipment (outside the grounding network). In such a case, when the accessory equipment is grounded alone, when a lightning surge enters the power equipment, only the ground potential of the grounding network rises, and a potential difference is generated with respect to the ground potential of the accessory equipment. As a result, an overvoltage exceeding the withstand voltage is applied to the attached equipment and the equipment is broken.

これを回避するには、付属設備の接地抵抗を接地線によって接地網に接続して、付属設備を含む電力設備全体の接地電位を同電位にすることが考えられる。   In order to avoid this, it is conceivable to connect the grounding resistance of the accessory equipment to the grounding network through a grounding wire so that the grounding potential of the entire power equipment including the accessory equipment is the same.

しかし、付属設備の接地抵抗と接地網を単に1本の接地線で接続してしまうと、付属設備がラインの終端となり、そこで反射が起きる。そのため、雷サージが侵入すると、付属設備に高い雷サージ電圧が加って、付属設備の接地電位と接地網の接地電位との間に電位差を生じさせ、付属設備に過電圧が加わる恐れがあった。   However, if the ground resistance of the auxiliary equipment and the grounding network are simply connected by a single ground wire, the auxiliary equipment becomes the end of the line, and reflection occurs there. Therefore, when a lightning surge enters, a high lightning surge voltage is applied to the attached equipment, causing a potential difference between the ground potential of the attached equipment and the ground potential of the grounding network, and there is a risk that overvoltage is applied to the attached equipment. .

本発明は上記のような事情に基づいて完成されたものであって、付属設備を含む電力設備全体の接地電位を均一化して、雷サージから付属設備を保護することを目的とする。   The present invention has been completed based on the above-described circumstances, and an object thereof is to protect the auxiliary equipment from lightning surge by equalizing the ground potential of the entire power equipment including the auxiliary equipment.

本発明は、電力設備の周囲に設けられた付属設備の接地抵抗を、前記電力設備の接地網に対して複数本の接地線により接続することを特徴とする。   The present invention is characterized in that the grounding resistance of the accessory equipment provided around the power equipment is connected to the grounding network of the power equipment by a plurality of ground wires.

この発明の実施態様として、以下の構成とすることが好ましい。
・接地線の長さを短くする。このようにすることで、雷サージに起因する付属設備の接地電位の上昇を抑えることが可能となり、付属設備を含む電力設備全体の接地電位を均一化できる。尚、接地線の長さを短くするには、例えば、接地線に余長が生じないように、付属設備の接地抵抗と接地網との間を最短距離で結んでやればよい。
As an embodiment of the present invention, the following configuration is preferable.
・ Reduce the length of the ground wire. By doing in this way, it becomes possible to suppress the increase in the ground potential of the auxiliary equipment due to lightning surge, and the ground potential of the entire power equipment including the auxiliary equipment can be made uniform. In order to shorten the length of the grounding wire, for example, the grounding resistor of the accessory equipment and the grounding network may be connected with the shortest distance so that no extra length is generated in the grounding wire.

・接地線にコイルとコンデンサからなる共振回路を設ける。このようにすることで、共振回路により雷サージを消弧することが可能となり、付属設備を含む電力設備全体の接地電位を均一化できる。 • Provide a resonance circuit consisting of a coil and a capacitor on the ground wire. By doing in this way, it becomes possible to extinguish a lightning surge by a resonance circuit, and the grounding potential of the whole electric power equipment including ancillary equipment can be equalized.

本発明によれば、付属設備の接地抵抗を接地網に対して複数本の接地線により接続している。そのため、接地線が環状に繋がり、終端を作らない。以上のことから、雷サージが接地線を通じて付属設備側に伝播しても、付属設備にて反射がほとんど起きず、付属設備の接地電位を接地網のそれに比してそれほど上昇させない。従って、付属設備を含む電力設備の接地電位を均一化でき、接地鋼外にある付属設備を雷サージから保護できる。   According to the present invention, the grounding resistance of the accessory equipment is connected to the grounding network by a plurality of grounding wires. Therefore, the ground wire is connected in a ring shape and does not make a termination. From the above, even if a lightning surge propagates to the side of the auxiliary equipment through the ground line, reflection does not occur in the auxiliary equipment, and the ground potential of the auxiliary equipment does not increase as much as that of the grounding network. Therefore, the ground potential of the power equipment including the accessory equipment can be made uniform, and the accessory equipment outside the ground steel can be protected from lightning surge.

実施形態1に適用の接地構造を示す図The figure which shows the grounding structure applied to Embodiment 1. カメラ制御機器を2本の接地線により接地網に結線したことを示す図The figure which shows having connected the camera control equipment to the grounding network with two grounding wires 接地電位を示す図Diagram showing ground potential 実験回路を示す図Diagram showing experimental circuit 実験回路に印加したインパルスの波形を示す図Diagram showing the waveform of the impulse applied to the experimental circuit 接地線を1本にしたときの電位差Vdの推移を示す図The figure which shows transition of potential difference Vd when the number of grounding wires is one 接地線を2本にしたときの電位線Vdの推移を示す図The figure which shows transition of the potential line Vd when two ground lines are used 接地線を1本にした時の、回路モデルを示す図The figure which shows a circuit model when there is one grounding wire 接地線を2本にした時の、回路モデルを示す図Diagram showing the circuit model when there are two ground wires 各接地線のインダクタンスをまとめた表A table summarizing the inductance of each ground wire 図8、図9の回路モデルに印加したインパルスの波形図Waveforms of impulses applied to the circuit models of FIGS. 8 and 9 接地線を1本にしたときの電位差Vdの推移を示す図The figure which shows transition of potential difference Vd when the number of grounding wires is one 接地線を2本にしたときの電位差Vdの推移を示す図The figure which shows transition of potential difference Vd when there are two ground wires 図8、図9の回路モデルに印加したインパルスの波形図Waveforms of impulses applied to the circuit models of FIGS. 8 and 9 接地線を1本にしたときの電位差Vdの推移を示す図The figure which shows transition of potential difference Vd when the number of grounding wires is one 接地線を2本にしたときの電位差Vdの推移を示す図The figure which shows transition of potential difference Vd when there are two ground wires 実施形態2に適用の接地構造を示す図The figure which shows the grounding structure applied to Embodiment 2. 共振回路を示す図Diagram showing resonant circuit

<実施形態1>
1.全体説明
本発明の実施形態1を添付する図面によって説明する。この実施形態は、本発明の電力設備の一例として変電所10を例示するものであり、図1には、変電所10の構成図が示されている。変電所10は変圧器などの電気機器11、管理建物13、架空線より分岐する引き込み線17を支持するトラス15A〜15Cなどを備えてなる。これら変電所10の下方(地中)には、変電所10の建設範囲に対応して接地網20が埋設されている。
<Embodiment 1>
1. Overall Description Embodiment 1 of the present invention will be described with reference to the accompanying drawings. This embodiment illustrates a substation 10 as an example of the power equipment of the present invention, and FIG. 1 shows a configuration diagram of the substation 10. The substation 10 includes an electrical device 11 such as a transformer, a management building 13, trusses 15 </ b> A to 15 </ b> C that support a lead-in wire 17 branched from an overhead line. Below these substations 10 (under the ground), a grounding network 20 is embedded corresponding to the construction range of the substation 10.

接地網20は、複数の接地抵抗Rを網状に張り巡らした接地線により互いに接続したものであり、変電所10の建設範囲のほぼ全体をカバーする大きさとなっている。そして、この接地網20に対して電気機器11、管理建物13、トラス15A〜15Cなどが共通接地されると共に、送電鉄塔5の架空地線8も接地されている。   The grounding network 20 is connected to each other by a grounding wire in which a plurality of grounding resistors R are stretched in a net shape, and has a size that covers almost the entire construction range of the substation 10. The electrical equipment 11, the management building 13, trusses 15A to 15C and the like are grounded to the grounding network 20, and the overhead ground wire 8 of the power transmission tower 5 is also grounded.

また、変電所10の周囲には周囲柵21が設けられている。この周囲柵21は、変電所10を周辺と区画するものである。そして、周囲柵21により区画された領域内には、カメラ30及びそれを制御するカメラ制御機器35が設けられている。カメラ制御機器35と建物13の電源装置13Aとの間には電源線25が引かれており、カメラ制御装置35は建物13の電源装置13Aから電源供給される構成となっている。   A surrounding fence 21 is provided around the substation 10. This surrounding fence 21 partitions the substation 10 from the periphery. A camera 30 and a camera control device 35 that controls the camera 30 are provided in an area partitioned by the surrounding fence 21. A power line 25 is drawn between the camera control device 35 and the power supply device 13A of the building 13, and the camera control device 35 is configured to be supplied with power from the power supply device 13A of the building 13.

上記カメラ30及びカメラ制御機器35は接地網20の範囲外にあって、カメラ制御機器35の接地抵抗R5は接地網20から外れた場所に設置されている。これは、カメラ30が変電所10の建設の後に、増設されたためである。   The camera 30 and the camera control device 35 are out of the range of the grounding network 20, and the grounding resistance R5 of the camera control device 35 is installed at a place away from the grounding network 20. This is because the camera 30 is added after the construction of the substation 10.

カメラ制御機器35には、並列的に避雷器36が接続されている。この避雷器36は、カメラ制御機器35に耐圧(約10kV)以上の電圧が加わると、導通してカメラ制御機器35に耐圧以上の過電圧が加わらないように電圧制限するものである。   A lightning arrester 36 is connected to the camera control device 35 in parallel. This lightning arrester 36 is for limiting the voltage so that, when a voltage higher than the withstand voltage (about 10 kV) is applied to the camera control device 35, the lightning arrester 36 becomes conductive and an overvoltage higher than the withstand voltage is not applied to the camera control device 35.

さて、本実施形態では、図2に示すように、カメラ制御機器35の接地抵抗R5と接地網20との間を2本の接地線(具体的にはCVケーブル)40A、40Bにより接続している。このような接地構造とすることで、カメラ制御機器35を含む変電所10全体の接地電位を均一化できる。以下、変電所周囲の鉄塔5に落雷があり、発電所10に架空地線8を通じて、雷サージUが侵入した場合を例にとって、その理由を具体的に説明する。   In this embodiment, as shown in FIG. 2, the ground resistance R5 of the camera control device 35 and the ground network 20 are connected by two ground wires (specifically, CV cables) 40A and 40B. Yes. By adopting such a ground structure, the ground potential of the entire substation 10 including the camera control device 35 can be made uniform. Hereinafter, the reason will be specifically described by taking a case where a lightning strike occurs on the steel tower 5 around the substation and a lightning surge U enters the power plant 10 through the overhead ground wire 8 as an example.

雷サージUが架空地線8を通って接地網20に伝播すると、図3に示すように、接地網20の接地電位(対地間電圧)を、「V1」に上昇させる。また、接地網20に伝播した雷サージUは、接地線40A、40Bを通じてカメラ30側に伝播する。ここで、2本の接地線40A、40Bは環状に繋がっているから、カメラ制御機器35はラインの終端とならない。そのため、伝播する雷サージUのカメラ制御機器35における反射を抑えることが可能となる。   When the lightning surge U propagates to the grounding network 20 through the overhead ground wire 8, the grounding potential (voltage between the grounds) of the grounding network 20 is raised to “V1” as shown in FIG. Further, the lightning surge U propagated to the grounding network 20 propagates to the camera 30 side through the grounding wires 40A and 40B. Here, since the two ground wires 40A and 40B are connected in a ring shape, the camera control device 35 does not end the line. Therefore, it is possible to suppress reflection of the lightning surge U that propagates in the camera control device 35.

以上のことから、カメラ制御機器35の接地電位「V2」が接地網20の接地電位「V1」に比してそれほど上昇しない。そのため、カメラ制御機器35を含む変電所10全体の接地電位を均一化でき、接地電位「V2」と接地電位「V1」の電位差Vdを小さく出来る。   From the above, the ground potential “V2” of the camera control device 35 does not rise as much as the ground potential “V1” of the ground network 20. Therefore, the ground potential of the entire substation 10 including the camera control device 35 can be made uniform, and the potential difference Vd between the ground potential “V2” and the ground potential “V1” can be reduced.

また、接地線40A、40Bの長さは極力短く設定することが好ましい。これは、接地線の距離が短いほど、反射の抑制効果を大きく出来ると、考えられるからである。そして、電位差Vdが避雷器36の耐圧を下回るように、接地線40A、接地線40Bの長さを決定することで、雷サージUからカメラ制御機器35を保護することが可能となる。   Moreover, it is preferable to set the lengths of the ground wires 40A and 40B as short as possible. This is because it is considered that the effect of suppressing reflection can be increased as the distance of the ground wire is shorter. The camera control device 35 can be protected from the lightning surge U by determining the lengths of the ground wire 40A and the ground wire 40B so that the potential difference Vd is less than the withstand voltage of the lightning arrester 36.

というのも、カメラ制御機器35に対して耐圧を超える過電圧が加わった場合、避雷器36が作動してカメラ制御機器35に加わる電圧を耐圧以下に抑える。しかし、そのような過電圧が繰り返し加わると避雷器36が作動しなくなり、やがて、カメラ制御機器35を破壊してしまう結果となるからである。   This is because when an overvoltage exceeding the withstand voltage is applied to the camera control device 35, the lightning arrester 36 is activated to suppress the voltage applied to the camera control device 35 below the withstand voltage. However, if such an overvoltage is repeatedly applied, the lightning arrester 36 will not operate and eventually the camera control device 35 will be destroyed.

本実施形態では、後述する回路モデルを用いたシミュレーションを行うことで、電位差Vdが避雷器36の耐圧「10kV」を下回るように、接地線40A、40Bの長さを決定している。   In this embodiment, the lengths of the ground lines 40A and 40B are determined so that the potential difference Vd is less than the withstand voltage “10 kV” of the lightning arrester 36 by performing a simulation using a circuit model to be described later.

また、図3には、比較例として、カメラ制御機器35の接地抵抗R5と接地網20との間を1本の接地線40Aだけで接続した場合のカメラ制御機器35の接地電位「V3」が示されている。図3で示されるように、1本の接地線40Aだけで接続した場合の接地電位「V3」は、接地電位「V1」を大きく上回っている。これは、接地線を1本にすると、カメラ制御機器35の接地抵抗R5がラインの終端になるため、反射が大きく(反射係数が大)なって、カメラ制御機器35の接地電位を上昇させるからである。   In FIG. 3, as a comparative example, the ground potential “V3” of the camera control device 35 when the ground resistance R5 of the camera control device 35 and the ground network 20 are connected by only one ground line 40A. It is shown. As shown in FIG. 3, the ground potential “V3” when connected by only one ground line 40A is significantly higher than the ground potential “V1”. This is because if the number of ground lines is one, the ground resistance R5 of the camera control device 35 becomes the end of the line, so that reflection is large (reflection coefficient is large) and the ground potential of the camera control device 35 is increased. It is.

また、図3には、比較例として、カメラ制御機器35を接地抵抗R5によって単独接地(接地線なし)した場合の、カメラ制御機器35の接地電位V4が示されている。単独接地の場合、接地電位V4は上昇しないが、やはり、接地網20の接地電位「V1」に対する電位差Vdが大きくなってしまう。このように接地線を1本にした場合、単独接地した場合のいずれの場合も、接地電位が均一化できず、雷サージUに対して脆弱な接地構造となる。   FIG. 3 shows a ground potential V4 of the camera control device 35 when the camera control device 35 is single-grounded (no ground wire) by the ground resistor R5 as a comparative example. In the case of single grounding, the ground potential V4 does not increase, but the potential difference Vd of the ground network 20 with respect to the ground potential “V1” is also increased. As described above, in the case of using one grounding wire or in the case of single grounding, the grounding potential cannot be made uniform and a grounding structure that is vulnerable to the lightning surge U is obtained.

2.実験
次に、サージ試験について説明する。図4に示す符号50はインパルス発生器であり、雷サージを想定したインパルス(雷サージに対して波形を似せたインパルス)を発生するものである。
2. Experiment Next, the surge test will be described. Reference numeral 50 shown in FIG. 4 is an impulse generator, which generates an impulse that assumes a lightning surge (an impulse having a waveform similar to that of a lightning surge).

この実験では、図4に示すように、インパルス発生器50にて、図5に示すインパルスを発生させ、それを接地網20に共通接地したトラス15Aに印加させている。   In this experiment, as shown in FIG. 4, the impulse generator 50 generates the impulse shown in FIG. 5 and applies it to the truss 15 </ b> A that is commonly grounded to the grounding network 20.

そして、接地線を「40A」の1本だけにした時と、接地線を「40A」と「40B」の2本にした時の、それぞれについて、カメラ制御機器35の接地電位と接地網20の接地電位(具体的にはトラス15Bの接地電位)の電位差Vdを電圧計60にて計測している。   The ground potential of the camera control device 35 and the grounding network 20 are respectively set when the ground wire is only “40A” and when the ground wire is “40A” and “40B”. The voltmeter 60 measures the potential difference Vd of the ground potential (specifically, the ground potential of the truss 15B).

尚、この実験では、接地線にCVケーブルを用いており、接地線40Aは単位長当たりのインダクタンスLの大きさが6.3μH/mのものを使用し、接地線40Bは、単位長当たりのインダクタンスLの大きさが1.0μH/mのものを使用した。また、接地線40Aの長さは約90mであり、接地線40Bの長さは約15mとした。   In this experiment, a CV cable is used for the grounding wire, the grounding wire 40A has an inductance L per unit length of 6.3 μH / m, and the grounding wire 40B is used per unit length. An inductance L having a size of 1.0 μH / m was used. The length of the ground line 40A is about 90 m, and the length of the ground line 40B is about 15 m.

上記したサージ試験の結果、接地線を「40A」の1本にした時の電位差Vdは、図6に示すように最大で約52Vであるのに対して、接地線を「40A」と「40B」の2本にした時の電位差Vdは、図7に示すように約21Vとなっている。このように、接地線を2本にしたときの方が、電位差Vdを小さく出来ることが、実験により証明できた。   As a result of the above-described surge test, the potential difference Vd when the ground line is set to one of “40 A” is about 52 V at the maximum as shown in FIG. 6, whereas the ground lines are “40 A” and “40 B”. ", The potential difference Vd is about 21 V as shown in FIG. Thus, it has been proved by experiments that the potential difference Vd can be made smaller when two ground wires are used.

3.シミュレーション
次に、回路モデルを用いてのシミュレーションについて説明する。図8の回路モデルは、図4に示す実験モデルにおいて、カメラ制御機器35と接地網20との間を1本の接地線40Aに接続した回路を模擬したものである。また、図9の回路モデルはカメラ制御機器35と接地網20との間を2本の接地線40A、40Bにより接続した回路を模擬したものである。
3. Simulation Next, simulation using a circuit model will be described. The circuit model in FIG. 8 is a simulation of the circuit in which the camera control device 35 and the ground network 20 are connected to one ground line 40A in the experimental model shown in FIG. The circuit model in FIG. 9 is a simulation of a circuit in which the camera control device 35 and the grounding network 20 are connected by two grounding wires 40A and 40B.

尚、図8、図9中において、ノード(A)はトラス15A、ノード(B)はトラス15B、ノード(C)はカメラ制御機器35を示している。すなわち、R1はトラス15Aの接地抵抗、R3はトラス15Bの接地抵抗、R5はカメラ制御機器35の接地抵抗である。   8 and 9, the node (A) indicates the truss 15A, the node (B) indicates the truss 15B, and the node (C) indicates the camera control device 35. That is, R1 is the ground resistance of the truss 15A, R3 is the ground resistance of the truss 15B, and R5 is the ground resistance of the camera control device 35.

また、「Lab」はトラスAとトラスBとの間を結ぶ接地網20のインダクタンス、「Lca」はトラスAとカメラ制御機器35を結ぶ接地線40Aのインダクタンス、「Lbc」はカメラ制御機器35とトラスBとを結ぶ接地線40Bのインダクタンスである。   “Lab” is the inductance of the grounding network 20 connecting the truss A and the truss B, “Lca” is the inductance of the grounding wire 40A connecting the truss A and the camera control device 35, and “Lbc” is the camera control device 35. This is the inductance of the ground wire 40B connecting the truss B.

そして、図8に示す回路モデル、図9に示す回路モデルの双方に対して、雷サージUを想定した図11のインパルス(雷サージと同波形、同電圧のインパルス)をそれぞれ印加して、ノード(B)とノード(C)の電位差Vdを計測するシミュレーションを、図10に示す諸元(回路定数)をそれぞれ変えてコンピュータ(図略)にて行っている。   8 is applied to both the circuit model shown in FIG. 8 and the circuit model shown in FIG. 9 by applying the impulse of FIG. 11 assuming the lightning surge U (the impulse having the same waveform and voltage as the lightning surge). A simulation for measuring the potential difference Vd between (B) and the node (C) is performed by a computer (not shown) while changing the specifications (circuit constants) shown in FIG.

そして、図8の回路モデル(接地線1本のパターン)では、ノード(B)とノード(C)の電位差Vdが、図12に示すように「36kV」となった。   In the circuit model of FIG. 8 (pattern with one ground line), the potential difference Vd between the node (B) and the node (C) is “36 kV” as shown in FIG.

これに対して図9の回路モデル(接地線2本のパターン)では、接地線1本のパターンに比べて、ノード(B)とノード(C)の電位差Vdが格段に小さくでき、接地電位を均一化出来るという、結果が得られた。   On the other hand, in the circuit model of FIG. 9 (pattern of two ground lines), the potential difference Vd between the node (B) and the node (C) can be remarkably reduced compared to the pattern of one ground line, and the ground potential can be reduced. The result that it can be made uniform was obtained.

また、接地線を2本にした場合であっても、図10に示す諸元を変えると電位差Vdは異なる数値を示し、接地線40A、40Bの長さが短い程、電位差Vdは小さくなる傾向を示す事が解った。   Further, even when the number of ground lines is two, the potential difference Vd shows a different value when the specifications shown in FIG. 10 are changed, and the potential difference Vd tends to decrease as the length of the ground lines 40A and 40B decreases. It was understood that

そして、図9の回路モデルを用いたシミュレーションでは、接地線40Aは既設として取り扱い、接地線40Aの長さ、単位長当たりのインダクタンスはそれぞれ固定した。具体的には、長さは「90m」とし、単位長当たりのインダクタンスは「6.3μH/m」とした。   In the simulation using the circuit model of FIG. 9, the ground line 40A is handled as an existing one, and the length of the ground line 40A and the inductance per unit length are fixed. Specifically, the length was “90 m” and the inductance per unit length was “6.3 μH / m”.

そして、接地線40Bの長さ、単位長当たりのインダクタンスをそれぞれ調整して、電位差Vdが、避雷器の耐圧である「10kV」を下回るように、長さ、及び単位長当たりのインダクタンスを決定した。   Then, the length and the inductance per unit length were determined by adjusting the length of the ground line 40B and the inductance per unit length so that the potential difference Vd was less than “10 kV” which is the withstand voltage of the lightning arrester.

その結果、図10の表のように接地線40Bの長さを「15m」、単位長当たりのインダクタンスを「1.0μH/m」に設定してやれば、図13に示すように、ノード(B)とノード(C)の電位差Vdを、耐圧の約6割程度の「6kV」に抑えることが可能となり、雷サージUに強い接地構造に出来ることが確認出来た。   As a result, as shown in the table of FIG. 10, if the length of the ground wire 40B is set to “15 m” and the inductance per unit length is set to “1.0 μH / m”, the node (B) as shown in FIG. And the node (C) potential difference Vd can be suppressed to “6 kV”, which is about 60% of the withstand voltage, and it has been confirmed that a grounding structure resistant to lightning surge U can be achieved.

尚、電位差Vdと接地線の単位長当たりのインダクタンスとの関係については、次のように考えられる。すなわち電位差Vdを小さくするには、単位長当たりのインダクタンスを小さくすることが好ましい。しかし、例えば、2つの接地線間の単位長当たりのインダクタンスの値が異なると、それに応じて反射の度合いが変わるので、単位長当たりのインダクタンスをどのように設定するかは、他の接地線の単位長当たりのインダクタンスの値などを考慮した上で決定する必要がある。   The relationship between the potential difference Vd and the inductance per unit length of the ground wire can be considered as follows. That is, in order to reduce the potential difference Vd, it is preferable to reduce the inductance per unit length. However, for example, if the inductance value per unit length between two ground wires is different, the degree of reflection changes accordingly, so how to set the inductance per unit length depends on the other ground wires. It is necessary to determine in consideration of the inductance value per unit length.

また、図8の回路モデルに図14に示す波形のインパルスを印加するシミュレーションを行ったところ、電位差Vdは図15に示す波形となった。また、図9の回路モデルに図14に示す波形のインパルスを印加するシミュレーションを行ったところ、電位差Vdは図16に示す波形となった。このシミュレーション結果は、サージ実験により得られたデータとほぼ同等であり、図8、図9の回路モデルの妥当性についても確認できている。   Further, when a simulation was performed in which the impulse having the waveform shown in FIG. 14 was applied to the circuit model shown in FIG. 8, the potential difference Vd became the waveform shown in FIG. Further, when a simulation was performed in which the impulse having the waveform shown in FIG. 14 was applied to the circuit model shown in FIG. 9, the potential difference Vd became the waveform shown in FIG. The simulation result is almost the same as the data obtained by the surge experiment, and the validity of the circuit models of FIGS. 8 and 9 can be confirmed.

<実施形態2>
次に、実施形態2を図17、図18を参照して説明する。実施形態1の構成に対して接地線40A、40Bのいずれか一方、又は双方に共振回路70を追加したものである。
<Embodiment 2>
Next, Embodiment 2 will be described with reference to FIGS. The resonance circuit 70 is added to one or both of the ground lines 40A and 40B with respect to the configuration of the first embodiment.

共振回路70は図18に示すように、コイルLとコンデンサCとを並列接続した並列共振回路であり、共振周波数を雷サージUの周波数に設定している。このようにすることで、共振回路70によって雷サージUを消弧することが可能となる結果、電位差Vdを小さく出来、接地電位を均一化できる。   As shown in FIG. 18, the resonance circuit 70 is a parallel resonance circuit in which a coil L and a capacitor C are connected in parallel, and the resonance frequency is set to the lightning surge U frequency. In this way, the lightning surge U can be extinguished by the resonance circuit 70, so that the potential difference Vd can be reduced and the ground potential can be made uniform.

尚、この実施形態も、カメラ制御機器35の接地抵抗R5と接地網20との間を、2本の接地線40A、40Bにより接続している点は、実施形態1と変わるところがない。   In this embodiment, the grounding resistor R5 of the camera control device 35 and the grounding network 20 are connected by the two grounding wires 40A and 40B.

<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれる。
(1)上記実施形態1、2では、いずれも電力設備の一例として変電所10を例示したが、電力設備は変電所10に限定されるものではなく、発電所、開閉所などであってもよい。
(2)上記実施形態1、2では、いずれも周辺設備の一例としてカメラ制御装置35を例示したが、周辺設備はカメラ30に関連する機器に限定されるものではなく、水銀灯及びそれを点灯制御するための制御装置などであってもよい。
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention.
(1) In the first and second embodiments, the substation 10 is illustrated as an example of the power facility. However, the power facility is not limited to the substation 10 and may be a power plant, a switching station, or the like. Good.
(2) In the first and second embodiments, the camera control device 35 is illustrated as an example of the peripheral equipment. However, the peripheral equipment is not limited to the equipment related to the camera 30, and the mercury lamp and lighting control thereof are performed. It may be a control device or the like.

(3)上記実施形態1、2では、いずれも接地線を2本としたが、接地線の本数は2本に限定されるものではなく、2本以上であっても無論よい。   (3) In the first and second embodiments, the number of ground lines is two. However, the number of ground lines is not limited to two, and may be two or more.

(4)上記実施形態2では接地線40A、40Bに共振回路70を取り付けるものを示したが、接地線40A、40Bのうち、接地線に可変インダクタンスを設けるようにしてもよい。これは、雷サージUに対する接地電位の上昇度合いは電力設備が建てられている土壌の影響もあり、机上の計算との誤差が生じ易い。そのため、可変インダクタンスを設けておけば、このような誤差を調整することが可能となる。   (4) In the second embodiment, the resonant circuit 70 is attached to the ground lines 40A and 40B. However, of the ground lines 40A and 40B, a variable inductance may be provided on the ground line. This is because the increase in the ground potential with respect to the lightning surge U is also affected by the soil where the power equipment is built, and an error from the calculation on the desk tends to occur. Therefore, if a variable inductance is provided, such an error can be adjusted.

10…変電所(本発明の「電力設備」に相当)
11…変圧器
13…管理建物
15…トラス
20…接地網
25…電源線
30…カメラ
35…カメラ制御機器(本発明の「周辺機器」に相当)
36…避雷器
R5…接地抵抗
40A…接地線
40B…接地線
10 ... Substation (corresponding to "electric power equipment" of the present invention)
DESCRIPTION OF SYMBOLS 11 ... Transformer 13 ... Management building 15 ... Truss 20 ... Grounding network 25 ... Power supply line 30 ... Camera 35 ... Camera control apparatus (equivalent to "peripheral apparatus" of this invention)
36 ... Arrester R5 ... Ground resistance 40A ... Ground wire 40B ... Ground wire

Claims (3)

電力設備の周囲に設けられた付属設備の接地抵抗を、前記電力設備の接地網に対して複数本の接地線により接続する接地構造。 A grounding structure for connecting a grounding resistance of an accessory facility provided around a power facility to a grounding network of the power facility by a plurality of ground wires. 前記接地線の長さを、短くすることを特徴とする請求項1に記載の接地構造。 The grounding structure according to claim 1, wherein a length of the grounding wire is shortened. 前記接地線にコイルとコンデンサからなる共振回路を設けることを特徴とする請求項1又は請求項2に記載の接地構造。 The ground structure according to claim 1, wherein a resonance circuit including a coil and a capacitor is provided on the ground line.
JP2009181716A 2009-08-04 2009-08-04 Grounding structure Pending JP2011034885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009181716A JP2011034885A (en) 2009-08-04 2009-08-04 Grounding structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009181716A JP2011034885A (en) 2009-08-04 2009-08-04 Grounding structure

Publications (1)

Publication Number Publication Date
JP2011034885A true JP2011034885A (en) 2011-02-17

Family

ID=43763743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009181716A Pending JP2011034885A (en) 2009-08-04 2009-08-04 Grounding structure

Country Status (1)

Country Link
JP (1) JP2011034885A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175298A (en) * 2013-03-13 2014-09-22 Railway Technical Research Institute Grounding device
JP2015179624A (en) * 2014-03-19 2015-10-08 中国電力株式会社 Connection method between connection tube and conductive wires
JP2016039757A (en) * 2014-08-11 2016-03-22 ▲高▼橋 直人 Ground system for charging vehicle
CN114465026A (en) * 2021-12-22 2022-05-10 西北核技术研究所 Impact current grounding device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014175298A (en) * 2013-03-13 2014-09-22 Railway Technical Research Institute Grounding device
JP2015179624A (en) * 2014-03-19 2015-10-08 中国電力株式会社 Connection method between connection tube and conductive wires
JP2016039757A (en) * 2014-08-11 2016-03-22 ▲高▼橋 直人 Ground system for charging vehicle
CN114465026A (en) * 2021-12-22 2022-05-10 西北核技术研究所 Impact current grounding device and method
CN114465026B (en) * 2021-12-22 2023-07-21 西北核技术研究所 Impact current grounding device and method

Similar Documents

Publication Publication Date Title
US20100195256A1 (en) Method and apparatus for protecting power systems from extraordinary electromagnetic pulses
Bakar et al. Lightning back flashover double circuit tripping pattern of 132 kV lines in Malaysia
EP2577701B1 (en) A very fast transient suppressing device
CA2772219A1 (en) Method and apparatus for protecting power systems from extraordinary electromagnetic pulses
JP2011034885A (en) Grounding structure
CN110706568A (en) Cable fault simulation device and system
CN211529450U (en) Cable fault simulation device and system
Mahdiraji Investigation of overvoltages caused by lightning strikes on transmission lines and GIS substation equipment
CN101882491B (en) Protective resistor for use in ultrahigh-voltage very fast transient overvoltage test
US7606017B2 (en) Protection device: surge suppressing conductor
JP2007312466A (en) Thunder protection communication system
JP2007163139A (en) Earth resistance management method
Phan Reduction of the number of faults caused by lightning for transmission line
AU2011201033B2 (en) Method and apparatus for protecting power systems from extraordinary electromagnetic pulses
Moraes et al. Assessment of lightning overvoltages on lines with different voltages sharing the same structures
Pramanik et al. Interleaved winding and suppression of natural frequencies
CN103730842B (en) A kind of high-resistance loop in transformer station
CN203760885U (en) Pole-mounted distribution transformation system
CN204131118U (en) A kind of earth potential counterattack protector
JP2007068262A (en) Excessive voltage prevention device
Ishimoto et al. Study on Lightning Protection Measures for Distribution Lines and Customer Equipment against Back Flow Lightning Current from Radio Communication Station
CN203521645U (en) Earthing device of secondary electrical equipment and earthing system
Denker et al. Evaluation of lightning current distribution on macro base station telecom sites
JP2022066031A (en) DC power supply system and DC power supply method
CN103529367B (en) A kind of DSL Modem anti-lightning method of testing