JP2011034508A - Method for creating road shape data and device for acquiring road shape data - Google Patents

Method for creating road shape data and device for acquiring road shape data Download PDF

Info

Publication number
JP2011034508A
JP2011034508A JP2009182668A JP2009182668A JP2011034508A JP 2011034508 A JP2011034508 A JP 2011034508A JP 2009182668 A JP2009182668 A JP 2009182668A JP 2009182668 A JP2009182668 A JP 2009182668A JP 2011034508 A JP2011034508 A JP 2011034508A
Authority
JP
Japan
Prior art keywords
constant
section
degree
bending degree
curve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2009182668A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Yasui
由行 安井
Hideaki Koto
英章 古藤
Manabu Tanaka
学 田中
Takayuki Miyajima
孝幸 宮島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advics Co Ltd
Original Assignee
Advics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advics Co Ltd filed Critical Advics Co Ltd
Priority to JP2009182668A priority Critical patent/JP2011034508A/en
Publication of JP2011034508A publication Critical patent/JP2011034508A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Traffic Control Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a road shape data creation method for creating road shape data required for executing curve vehicle speed control that gives a driver a slight sense of incongruity and to provide the same. <P>SOLUTION: Data on a plurality of positions (node points) Nd[n] on a road is acquired, and the degree of curvature Rc[n] of the road in each node point Nd[n] is calculated. A constant curvature degree section Cr# of a curve is identified on the basis of the variation of the degree of curvature in relation to the advancement in a point corresponding to the position data, and a constant degree of curvature Rm# and an end position Pe# of the constant curvature degree section Cr# are determined. The shape of a gentle curve section Eu# that connects two adjacent constant curvature degree sections Cr# with each other is calculated on the basis of the end position Pe# of each of the two constant curvature degree sections Cr# on the sides on which the same connect with the gentle curve section Eu# and the constant curvature degree Rm# of each of the two constant curvature degree sections Cr#. As road shape data, the data regarding a constant curvature degree section having the maximum degree of curvature in the curve is created and provided. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、道路形状データ作成方法、及び、その方法を用いた道路形状データ取得装置に関する。   The present invention relates to a road shape data creation method and a road shape data acquisition apparatus using the method.

図8に示すように、一般的な道路では、1つのカーブは、カーブ開始地点(カーブ入口)からカーブ終了地点(カーブ出口)に向けて順に、進入緩和曲線区間、屈曲度一定区間、及び退出緩和曲線区間から構成されている。緩和曲線は、例えば、クロソイド曲線で構成される。緩和曲線区間が設けられているのは、運転者に急激なステアリングホイール操作を要求することなく、運転者がステアリングホイールを徐々に切り込み、その後徐々に切り戻すことで車両がカーブを円滑に通過できるようにするためである。   As shown in FIG. 8, on a general road, one curve is in order from a curve start point (curve entrance) to a curve end point (curve exit), an approach relaxation curve section, a constant bending degree section, and an exit. It consists of relaxation curve sections. The relaxation curve is composed of a clothoid curve, for example. The relaxation curve section is provided so that the driver can smoothly turn the steering wheel and then gradually turn it back without requiring the driver to operate the steering wheel suddenly. It is for doing so.

従来より、車両がカーブを適正な速度で安定して通過できるように車両がカーブを通過する際に自動減速(カーブ車速制御)を行う車両の速度制御装置が広く知られている。例えば、特許文献1に記載の装置では、車両がカーブに進入する場合に車速を適正な車速とするため、カーブへの進入に際して減速が必要とされる減速距離と、車両の現在位置からカーブ開始地点までの残存距離とが取得される。そして、減少していく残存距離が減速距離に達した時点でカーブ車速制御が開始され、残存距離がゼロとなって車両がカーブ開始地点を通過した時点でカーブ車速制御が終了するようになっている。即ち、カーブ走行時における適正車速がカーブ開始地点にて達成されるようにカーブ車速制御が実行される。   2. Description of the Related Art Conventionally, vehicle speed control devices that perform automatic deceleration (curve vehicle speed control) when a vehicle passes through a curve so that the vehicle can stably pass through the curve at an appropriate speed are widely known. For example, in the device described in Patent Document 1, in order to set the vehicle speed to an appropriate vehicle speed when the vehicle enters a curve, the curve starts from the deceleration distance that requires deceleration when entering the curve and the current position of the vehicle. The remaining distance to the point is acquired. Then, the curve vehicle speed control is started when the decreasing remaining distance reaches the deceleration distance, and the curve vehicle speed control ends when the remaining distance becomes zero and the vehicle passes the curve starting point. Yes. That is, the curve vehicle speed control is executed so that the appropriate vehicle speed during the curve traveling is achieved at the curve start point.

また、特許文献2に記載された装置では、カーブ走行時における適正車速が、カーブ半径に基づいて決定される。そして、決定された適正車速が屈曲度一定区間の道路長、又は緩和曲線区間(クロソイド曲線で構成される区間)の道路長に基づいて調整されるようになっている。   Moreover, in the apparatus described in Patent Document 2, the appropriate vehicle speed during curve traveling is determined based on the curve radius. Then, the determined appropriate vehicle speed is adjusted based on the road length of the section with a constant degree of flexion or the road length of the relaxation curve section (section composed of clothoid curve).

また、特許文献3に記載された装置では、曲率変化開始地点(即ち、カーブ開始地点)を取得することを目的として、以下の処理が行われる。先ず、車両が走行している道路におけるカーブ内の屈曲度一定区間の開始地点とその区間の曲率が取得される。この屈曲度一定区間の識別は、車両の実際の動作情報(例えば、ステアリング舵角が一定の状態が所定時間以上継続したこと)に基づいてなされる。次いで、屈曲度一定区間の曲率に基づいて屈曲度一定区間に連結している緩和曲線区間(クロソイド曲線で構成される区間)を示す情報が取得される。この緩和曲線区間を示す情報と屈曲度一定区間の開始地点とに基づいて、カーブ開始地点が取得される。そして、取得されたカーブ開始地点に基づいてサスペンションの特性をカーブ用に調整するサスペンション制御が実行される。   Moreover, in the apparatus described in Patent Document 3, the following processing is performed for the purpose of acquiring a curvature change start point (that is, a curve start point). First, the starting point of a section with a constant degree of curvature in a curve on the road on which the vehicle is traveling and the curvature of that section are acquired. The section of the constant degree of flexion is identified based on the actual operation information of the vehicle (for example, a state where the steering angle is constant for a predetermined time or more). Next, information indicating a relaxation curve section (section composed of clothoid curve) connected to the constant curvature section is acquired based on the curvature of the constant curvature section. A curve start point is acquired based on the information indicating the relaxation curve section and the start point of the section with a constant degree of curvature. Then, suspension control is performed to adjust the characteristics of the suspension for the curve based on the acquired curve start point.

即ち、特許文献3に記載された装置では、車両の実際の動作情報に基づいてカーブ開始地点が取得される。このため、車両が初めて走行するカーブでは、カーブ開始地点を取得する処理のみが行われ、サスペンション制御は実行され得ない。2回目、或いはそれ以降に車両が走行するカーブにて、取得されたカーブ開始地点を基準としてサスペンション制御が実行される。   That is, in the apparatus described in Patent Document 3, the curve start point is acquired based on the actual operation information of the vehicle. For this reason, in the curve where the vehicle travels for the first time, only the process of acquiring the curve start point is performed, and the suspension control cannot be executed. Suspension control is executed on the basis of the acquired curve start point in the curve that the vehicle travels for the second time or thereafter.

カーブ車速制御を達成するためには、道路形状を表すデータ(道路形状データ)が記憶された道路データベースを用いてカーブを含む道路形状を推定する必要がある。例えば、特許文献4に記載の装置では、道路データベースに道路形状データとして格納されている多数のノード点に関する情報に基づいて、カーブを含む道路形状が正確に推定される。具体的には、道路データベースに基づいて、カーブ区間に対応するクロソイド曲線が算出され、算出されたクロソイド曲線がカーブ区間に適合される。そして、カーブ区間の開始地点(カーブ入口)及び終了地点(カーブ出口)が直線区間上に正確に設定される。   In order to achieve curve vehicle speed control, it is necessary to estimate a road shape including a curve using a road database in which data representing road shape (road shape data) is stored. For example, in the apparatus described in Patent Document 4, a road shape including a curve is accurately estimated based on information on a large number of node points stored as road shape data in a road database. Specifically, a clothoid curve corresponding to the curve section is calculated based on the road database, and the calculated clothoid curve is adapted to the curve section. Then, the start point (curve entrance) and end point (curve exit) of the curve section are accurately set on the straight section.

特許第3385812号公報Japanese Patent No. 3385812 特開2006−331000号公報JP 2006-331000 A 特開2009−32031号公報JP 2009-32031 A 特開2005−214839号公報JP 2005-214839 A

上述のように、一般的な道路では、1つのカーブが、進入緩和曲線区間、屈曲度一定区間、及び退出緩和曲線区間から構成されている。この場合、カーブ内において屈曲度一定区間が最も屈曲度が大きい(曲率が大きい、曲率半径が小さい)。即ち、屈曲度一定区間の開始地点は、車速一定でカーブを通過する場合において車両に作用する横加速度が最大となり且つ最も手前の地点となる。従って、カーブ車速制御が実行される場合、屈曲度一定区間の開始地点近傍において車速が屈曲度一定区間の一定屈曲度を考慮した適切な値まで減少するように車速が調整されることが好ましいと考えられる。これにより、カーブ車速制御が、屈曲度が最も大きい屈曲度一定区間の形状を考慮した運転者の意図に沿ったものとなり易く、この結果、カーブ車速制御により運転者に与えられる違和感を小さくすることができると考えられる。   As described above, on a general road, one curve is composed of an approach relaxation curve section, a constant bending degree section, and an exit relaxation curve section. In this case, the bending degree constant section in the curve has the largest bending degree (the curvature is large, the curvature radius is small). That is, the starting point of the section with a constant degree of flexion is the point at which the lateral acceleration acting on the vehicle is maximum and the foremost point when passing through a curve with a constant vehicle speed. Therefore, when the curve vehicle speed control is executed, it is preferable that the vehicle speed is adjusted so that the vehicle speed decreases to an appropriate value in consideration of the constant bending degree of the constant bending degree section in the vicinity of the starting point of the constant bending degree section. Conceivable. As a result, the curve vehicle speed control is likely to be in line with the driver's intention in consideration of the shape of the constant bending degree section where the degree of bending is the largest, and as a result, the discomfort given to the driver by the curve vehicle speed control is reduced. It is thought that you can.

このようなカーブ車速制御では、屈曲度一定区間の端点位置(特に、開始地点、図8では地点Csを参照)と、屈曲度一定区間の一定屈曲度とを基準に車速が調整される。換言すれば、係るカーブ車速制御に用いられる道路形状データとして、屈曲度一定区間に関するデータが必要となる。しかしながら、車両の実際の動作情報(実際のステアリング舵角の情報等)を用いることなく、屈曲度一定区間に関するデータを作成・提供する手法については、未だ提案されていない。   In such curve vehicle speed control, the vehicle speed is adjusted based on the end point position (particularly, the starting point, see point Cs in FIG. 8) and the constant bending degree of the constant bending degree section. In other words, as road shape data used for such curve vehicle speed control, data relating to a section with a constant degree of curvature is required. However, a method for creating and providing data relating to a section with a constant degree of flexion without using actual operation information of the vehicle (information on actual steering angle, etc.) has not yet been proposed.

本発明の目的は、運転者に与えられる違和感が小さいカーブ車速制御の実行に必要な道路形状データを作成・提供できる道路形状データ作成方法、及び、その方法を用いた道路形状データ取得装置を提供することにある。   An object of the present invention is to provide a road shape data creation method capable of creating and providing road shape data necessary for execution of curve vehicle speed control with a little uncomfortable feeling given to a driver, and a road shape data acquisition device using the method There is to do.

本発明に係る道路形状データ作成方法は、道路位置データ取得工程(S1)と、屈曲度取得工程(S2)と、屈曲度一定区間識別工程(S3)と、一定屈曲度取得工程(S4)と、端点位置決定工程(S5)とを備えている。以下、これらの工程について順に説明する。   The road shape data creation method according to the present invention includes a road position data acquisition step (S1), a bending degree acquisition step (S2), a constant bending degree section identification step (S3), and a constant bending degree acquisition step (S4). And an end point position determining step (S5). Hereinafter, these steps will be described in order.

道路位置データ取得工程(S1)では、道路上の複数の位置データ(Nd[n])が取得される。複数の位置データ(Nd[n])は、例えば、車両用のナビゲーション装置(車載されていなくてもよい)に記憶された道路情報等を利用して取得され得る。   In the road position data acquisition step (S1), a plurality of position data (Nd [n]) on the road is acquired. The plurality of position data (Nd [n]) can be acquired using, for example, road information stored in a vehicle navigation device (not necessarily mounted on the vehicle).

屈曲度取得工程(S2)では、前記位置データ(Nd[n])に対応する地点(ノード点)における前記道路の屈曲度(Rc[n])が取得される。即ち、各ノード点における屈曲度(Rc[n])がそれぞれ取得される。屈曲度(Rc[n])は、例えば、前記ナビゲーション装置に記憶された道路情報等を利用して取得され得る。   In the bending degree acquisition step (S2), the bending degree (Rc [n]) of the road at a point (node point) corresponding to the position data (Nd [n]) is acquired. That is, the bending degree (Rc [n]) at each node point is acquired. The degree of bending (Rc [n]) can be acquired using, for example, road information stored in the navigation device.

各屈曲度(Rc[n])は、前記複数の位置データ(Nd[n])に基づいてそれぞれ取得され得る。具体的には、前記複数の位置データ(Nd[n])に基づいて、(複数のノード点の中から)前記道路上の第1地点(Nd[1])、第2地点(Nd[2])、及び第3地点(Nd[3])が決定された場合、前記第1地点(Nd[1])及び前記第2地点(Nd[2])を両端とする線分の第1垂直二等分線(Ls[1])、及び、前記第2地点(Nd[2])及び前記第3地点(Nd[3])を両端とする線分の第2垂直二等分線(Ls[2])が演算され、前記第1垂直二等分線(Ls[1])と前記第2垂直二等分線(Ls[2])との交点(Ins)に基づいて、前記第2地点(Nd[2])における前記屈曲度(Rc[2])が演算され得る。   Each bending degree (Rc [n]) can be acquired based on the plurality of position data (Nd [n]). Specifically, based on the plurality of position data (Nd [n]), a first point (Nd [1]) and a second point (Nd [2] on the road) (from among a plurality of node points). ]) And the third point (Nd [3]) are determined, the first vertical line segment having the first point (Nd [1]) and the second point (Nd [2]) as both ends A bisector (Ls [1]), and a second vertical bisector (Ls) that has the second point (Nd [2]) and the third point (Nd [3]) as both ends. [2]) is calculated, and based on the intersection (Ins) of the first vertical bisector (Ls [1]) and the second vertical bisector (Ls [2]), the second The bending degree (Rc [2]) at the point (Nd [2]) can be calculated.

従って、この手法により第2地点の屈曲度を取得する処理が、複数のノード点のうち第2地点として設定される地点を順次変更しながら繰り返し実行されることで、各ノード点における屈曲度(Rc[n])がそれぞれ取得される。この手法を採用することで、各ノード点における屈曲度のデータを予め記憶しておく必要がない。従って、前記道路情報が簡略化され得る。   Therefore, the process of acquiring the degree of bending at the second point by this method is repeatedly executed while sequentially changing the point set as the second point among the plurality of node points, so that the degree of bending at each node point ( Rc [n]) is acquired. By adopting this method, it is not necessary to store data on the degree of bending at each node point in advance. Therefore, the road information can be simplified.

屈曲度一定区間識別工程(S3)では、前記位置データに対応する地点(ノード点)(Nd[n])の進行に対する前記屈曲度(Rc[n])の変化状態に基づいて、前記屈曲度(Rc[n])が一定である屈曲度一定区間(Cr#)が識別される。屈曲度一定区間(Cr#)としては、例えば、「隣り合う2つの前記位置データ(Nd[n])に対応する2つの地点の間の距離に対する前記2つの地点における屈曲度(Rc[n])の相違の割合が所定値(hr1)以下となる状態が連続する区間」、或いは、「区間距離が所定距離(kr2)以上の区間であって、且つその区間に含まれる連続する前記位置データ(Nd[n])に対応する複数の地点における屈曲度(Rc[n])の最大値と最小値との差が所定値(hr2)以下である区間」が識別され得る。   In the bending degree constant section identifying step (S3), the bending degree is based on the change state of the bending degree (Rc [n]) with respect to the progress of the point (node point) (Nd [n]) corresponding to the position data. A bending degree constant section (Cr #) in which (Rc [n]) is constant is identified. Examples of the constant bending degree section (Cr #) include “the bending degree (Rc [n] at the two points with respect to the distance between the two points corresponding to the two adjacent position data (Nd [n])”. ) In which the state in which the difference ratio is equal to or less than the predetermined value (hr1) is continuous, or “the section distance is equal to or greater than the predetermined distance (kr2) and is included in the section. A section in which the difference between the maximum value and the minimum value of the degree of curvature (Rc [n]) at a plurality of points corresponding to (Nd [n]) is equal to or less than a predetermined value (hr2) can be identified.

屈曲度一定区間は、カーブ区間に対応する屈曲度一定区間(即ち、カーブ内にて屈曲度が一定となる区間)のみならず、直線区間に対応する屈曲度一定区間をも含む。以下、カーブ区間に対応する屈曲度一定区間を「カーブ内屈曲度一定区間」と呼び、直線区間に対応する屈曲度一定区間を単に「直線区間」と呼ぶこともある。   The constant bend degree section includes not only the bend degree constant section corresponding to the curve section (that is, the section in which the bend degree is constant in the curve) but also the bend degree constant section corresponding to the straight section. Hereinafter, the constant bending degree section corresponding to the curve section may be referred to as “in-curve bending degree constant section”, and the constant bending degree section corresponding to the straight section may be simply referred to as “straight section”.

一定屈曲度取得工程(S4)では、前記屈曲度一定区間(Cr#)の一定の屈曲度(Rm#)が取得される。一定屈曲度(Rm#)は、例えば、屈曲度一定区間(Cr#)に含まれる複数のノード点の屈曲度の平均値等に設定され得る。この一定屈曲度(Rm#)に基づいて、カーブ内屈曲度一定区間と直線区間とが識別され得る。具体的には、一定屈曲度としての一定曲率半径(Rm#)が所定値より大きい場合(或いは、一定屈曲度としての一定曲率(1/Rm#)が所定値よりも小さい場合)に直線区間と識別され、そうでない場合にカーブ内屈曲度一定区間と識別される。以下、カーブ内屈曲度一定区間の一定屈曲度(Rm#)を「カーブ内一定屈曲度」と呼ぶこともある。一定屈曲度取得工程(S4)では、特に、カーブ内一定屈曲度(Rm#)が取得される。   In the constant bending degree acquisition step (S4), a constant bending degree (Rm #) of the constant bending degree section (Cr #) is acquired. The constant bending degree (Rm #) can be set to, for example, an average value of bending degrees of a plurality of node points included in the constant bending degree section (Cr #). On the basis of this constant degree of bending (Rm #), a section within the curve having a constant degree of bending and a straight section can be identified. Specifically, when the constant curvature radius (Rm #) as a constant curvature is larger than a predetermined value (or when the constant curvature (1 / Rm #) as a constant curvature is smaller than a predetermined value), the straight section Otherwise, it is identified as a section with a constant degree of bending in the curve. Hereinafter, the constant bending degree (Rm #) of the section in which the bending degree in the curve is constant may be referred to as “constant bending degree in the curve”. In the constant bending degree acquisition step (S4), in particular, the constant bending degree (Rm #) in the curve is acquired.

端点位置決定工程(S5)では、屈曲度一定区間(Cr#)の端点の位置(Pe#)が決定される。端点位置(Pe#)は、屈曲度一定区間(Cr#)に含まれる複数のノード点のうちの両端に対応するノード点そのものであってもよいし、前記両端に対応するノード点の近傍の点(例えば、両端に対応するノード点とその隣のノード点とを補間する点)であってもよい。以下、カーブ内屈曲度一定区間の端点位置(Pe#)を「カーブ端点位置」と呼び、直線区間の端点位置(Pe#)を「直線端点位置」と呼ぶこともある。端点位置決定工程(S5)では、カーブ端点位置も直線端点位置も決定され得るが、特に、カーブ端点位置が決定される。   In the end point position determination step (S5), the position (Pe #) of the end point of the constant bending degree section (Cr #) is determined. The end point position (Pe #) may be a node point corresponding to both ends of the plurality of node points included in the constant bending degree section (Cr #), or may be in the vicinity of the node point corresponding to the both ends. It may be a point (for example, a point that interpolates a node point corresponding to both ends and the adjacent node point). Hereinafter, the end point position (Pe #) of the section with a constant degree of bending in the curve may be referred to as “curve end position”, and the end position (Pe #) of the straight section may be referred to as “straight end position”. In the end point position determining step (S5), both the curve end point position and the straight line end point position can be determined. In particular, the curve end point position is determined.

上記手法によれば、道路形状データとして、カーブ内において屈曲度が最も大きい屈曲度一定区間に関するデータである、屈曲度一定区間の端点位置(特に、カーブ端点位置)、並びに、屈曲度一定区間の一定屈曲度(特に、カーブ内一定屈曲度)が、車両の実際の動作情報(実際のステアリング舵角の情報等)を用いることなく、簡易且つ容易に作成・提供され得る。即ち、運転者に与えられる違和感が小さいカーブ車速制御の実行に必要なカーブ形状のデータが簡易且つ容易に作成・提供され得る。   According to the above method, as the road shape data, the end point position (particularly, the curve end point position) of the constant bend degree section, which is data related to the bend degree constant section having the largest bend degree in the curve, and the constant bend degree section A certain degree of bending (particularly, a certain degree of bending in the curve) can be created and provided easily and easily without using actual operation information of the vehicle (information on the actual steering angle, etc.). That is, the curve shape data required for executing the curve vehicle speed control with a little uncomfortable feeling given to the driver can be created and provided easily and easily.

上記本発明に係る道路形状データ作成方法においては、前記屈曲度一定区間識別工程(S3)が識別する隣り合う2つの前記屈曲度一定区間(Cr#)を結ぶ緩和曲線区間(Eu#)の形状を、前記2つの屈曲度一定区間(Cr#)の前記緩和曲線区間(Eu#)と接続する側のそれぞれの前記端点位置(Pe#)、及び、前記2つの屈曲度一定区間(Cr#)のそれぞれの前記一定屈曲度(Rm#)に基づいて演算する緩和曲線形状演算工程(S6)が備えられ得る。ここにおいて、前記緩和曲線区間(Eu#)の形状は、クロソイド曲線と仮定して演算され得る。   In the road shape data creation method according to the present invention, the shape of the relaxation curve section (Eu #) connecting the two adjacent constant curvature sections (Cr #) identified by the constant curvature section identification step (S3). Are connected to the relaxation curve section (Eu #) of the two constant bending degree sections (Cr #) and the end point positions (Pe #) of the two constant bending degree sections (Cr #) and the two constant bending degree sections (Cr #). A relaxation curve shape calculation step (S6) for calculating based on each of the constant bending degrees (Rm #) of each may be provided. Here, the shape of the relaxation curve section (Eu #) can be calculated assuming a clothoid curve.

これによれば、識別された隣り合う2つの屈曲度一定区間を結ぶ区間の長さに係わらず、この区間を適切且つ滑らかに結ぶ形状に関するデータ(例えば、クロソイド曲線を表すクロソイド係数(クロソイドパラメータ))が演算され得る。ここで、隣り合う2つの屈曲度一定区間の組み合わせとして、カーブ内屈曲度一定区間同士、及び、カーブ内屈曲度一定区間と直線区間、が挙げられる。   According to this, regardless of the length of the section connecting the two adjacent constant sections of bending degree, the data relating to the shape connecting this section appropriately and smoothly (for example, clothoid coefficient (clothoid parameter) representing a clothoid curve) ) Can be computed. Here, as a combination of two adjacent bend degree constant sections, the in-curve bend degree constant sections and the in-curve bend degree constant section and the straight section may be mentioned.

また、前記隣り合う2つのカーブ内屈曲度一定区間(Crf,Cri)の屈曲方向が異なる場合、例えば、以下の手順のように2種類の緩和曲線(例えば、2種類のクロソイド曲線)を繋ぐことで、隣り合う2つのカーブ内屈曲度一定区間を結ぶ区間を適切且つ滑らかに結ぶ形状に関するデータ(例えば、2つのクロソイド係数)が演算され得る。   Further, when the bending directions of the two adjacent in-curve constant curvature sections (Crf, Cri) are different, for example, two types of relaxation curves (for example, two types of clothoid curves) are connected as in the following procedure. Thus, data (for example, two clothoid coefficients) relating to a shape that appropriately and smoothly connects two adjacent curved inflection constant intervals can be calculated.

即ち、前記2つのカーブ内屈曲度一定区間(Crf,Cri)を結ぶ区間内において前記屈曲度(Rc[n])が直線区間に対応する値となる中間位置(Pmd)が決定される。前記2つのカーブ内屈曲度一定区間(Crf,Cri)のうち第1屈曲度一定区間(Crf)に連続する第1緩和曲線区間(Eug)の形状が、前記第1屈曲度一定区間(Crf)の前記第1緩和曲線区間(Eug)と接続する側の前記端点位置(Peg)、前記第1屈曲度一定区間(Crf)の前記一定屈曲度(Rmf)、及び、前記中間位置(Pmd)に基づいて演算される。同様に、前記2つのカーブ内屈曲度一定区間(Crf,Cri)のうち第2屈曲度一定区間(Cri)に連続する第2緩和曲線区間(Euh)の形状が、前記第2屈曲度一定区間(Cri)の前記第2緩和曲線区間(Euh)と接続する側の前記端点位置(Pei)、前記第2屈曲度一定区間(Cri)の前記一定屈曲度(Rmi)、及び、前記中間位置(Pmd)に基づいて演算される。そして、前記2つのカーブ内屈曲度一定区間(Crf,Cri)を結ぶ前記緩和曲線区間の形状が、前記第1、第2緩和曲線区間(Eug,Euh)を前記中間位置(Pmd)で接続して得られる形状に演算される。   That is, an intermediate position (Pmd) at which the bending degree (Rc [n]) takes a value corresponding to a straight line section is determined in a section connecting the two in-curve bending degree constant sections (Clf, Cri). The shape of the first relaxation curve section (Eug) continuing from the first constant degree of flexion section (Clf) among the two in-curve constant degree of curvature sections (Clf, Cri) is the first constant degree of flexion section (Clf). The end point position (Peg) on the side connected to the first relaxation curve section (Eug), the constant bending degree (Rmf) of the first bending degree constant section (Clf), and the intermediate position (Pmd) Calculated based on Similarly, the shape of the second relaxation curve section (Euh) that is continuous with the second constant bending degree section (Cri) of the two in-curve constant degree bending sections (Clf, Cri) is the second constant bending degree section. (Cri) the end point position (Pei) on the side connected to the second relaxation curve section (Euh), the constant bending degree (Rmi) of the second bending degree constant section (Cri), and the intermediate position ( Pmd) is calculated. The shape of the relaxation curve section connecting the two in-curve bending degree constant sections (Clf, Cri) connects the first and second relaxation curve sections (Eug, Euh) at the intermediate position (Pmd). Is calculated into the shape obtained.

また、本発明に係る道路形状データ取得装置は、上述した本発明に係る道路形状データ作成方法についての道路位置データ取得工程(S1)、屈曲度取得工程(S2)、屈曲度一定区間識別工程(S3)、一定屈曲度取得工程(S4)、及び端点位置決定工程(S5)のそれぞれの工程でなされる処理と同じ処理がそれぞれ行われる道路位置データ取得手段(B1)、屈曲度取得手段(B2)、屈曲度一定区間識別手段(B3)、一定屈曲度取得手段(B4)、及び端点位置決定手段(B5)を備える。更には、上述した緩和曲線形状演算工程(S6)でなされる処理と同じ処理が行われる緩和曲線形状演算手段(B6)が備えられてもよい。   The road shape data acquisition apparatus according to the present invention includes a road position data acquisition step (S1), a bending degree acquisition step (S2), and a constant bending degree section identification step (for the road shape data creation method according to the present invention described above). S3), road position data acquisition means (B1) and bending degree acquisition means (B2) in which the same processes as those performed in the respective steps of the constant bending degree acquisition step (S4) and the end point position determination step (S5) are performed. ), A certain degree of bending section identifying means (B3), a certain degree of bending degree obtaining means (B4), and an end point position determining means (B5). Furthermore, relaxation curve shape calculation means (B6) in which the same processing as that performed in the above-described relaxation curve shape calculation step (S6) may be provided.

本発明の実施形態に係る道路形状データ作成方法(道路形状データ取得装置)により道路形状データが作成される際の機能ブロック図である。It is a functional block diagram when road shape data is created by the road shape data creation method (road shape data acquisition device) according to the embodiment of the present invention. 各ノード点における道路の屈曲度を演算する手法を説明するための図である。It is a figure for demonstrating the method of calculating the curvature degree of the road in each node point. カーブを含む道路形状の典型的な例を示した図である。It is the figure which showed the typical example of the road shape containing a curve. 図3に示した道路についての位置と屈曲度との関係を示したグラフである。It is the graph which showed the relationship between the position about a road shown in FIG. 3, and a bending degree. 2つの屈曲度一定区間が直線区間を介さずに接続される場合等において緩和曲線区間の形状が演算される際の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process at the time of calculating the shape of a relaxation curve area in the case where two sections with a constant degree of bending are connected without going through a straight line section. 2つの屈曲度一定区間が直線区間を介さずに接続される場合等における道路形状の一例を示した図である。It is the figure which showed an example of the road shape in the case where two sections with a constant degree of bending are connected without going through a straight section. 図6に示した道路についての位置と屈曲度との関係を示したグラフである。It is the graph which showed the relationship between the position about the road shown in FIG. 6, and a bending degree. カーブを含む道路の典型的な構成を説明するための図である。It is a figure for demonstrating the typical structure of the road containing a curve.

以下、本発明による道路形状データ作成方法(道路形状データ取得装置)の実施形態について図面を参照しつつ説明する。先ず、図1を参照しながら、本発明の実施形態に係る道路形状データ作成方法(道路形状データ取得装置)により道路形状データが作成される際の処理について説明する。   Embodiments of a road shape data creation method (road shape data acquisition apparatus) according to the present invention will be described below with reference to the drawings. First, a process when road shape data is created by a road shape data creation method (road shape data acquisition apparatus) according to an embodiment of the present invention will be described with reference to FIG.

道路位置データ取得工程S1(道路位置データ取得手段B1)では、道路上における複数の位置データNd[n]が取得される。これらの位置データNd[n]は、所定の記憶媒体(ハードディスク等)に予め記憶され、保存されている。位置データNd[n]は緯度・経度の情報として記憶され得る。以下、位置データNd[n]に対応する地点を「ノード点Nd[n]」と呼ぶ。   In the road position data acquisition step S1 (road position data acquisition means B1), a plurality of position data Nd [n] on the road is acquired. These position data Nd [n] are stored and stored in advance in a predetermined storage medium (such as a hard disk). The position data Nd [n] can be stored as latitude / longitude information. Hereinafter, a point corresponding to the position data Nd [n] is referred to as “node point Nd [n]”.

屈曲度取得工程S2(屈曲度取得手段B2)では、各ノード点(位置データ)Nd[n]に対応する道路の屈曲度Rc[n]がそれぞれ取得される。屈曲度Rc[n]として、曲率半径Rc、曲率1/Rc等が使用され得る。屈曲度Rc[n]は、位置データ(ノード点)Nd[n]と関連付けられて記憶媒体に記憶され得る。   In the bending degree acquisition step S2 (flexion degree acquiring means B2), the road bending degree Rc [n] corresponding to each node point (position data) Nd [n] is acquired. As the bending degree Rc [n], a curvature radius Rc, a curvature 1 / Rc, or the like can be used. The degree of bending Rc [n] can be stored in a storage medium in association with the position data (node point) Nd [n].

以下、図2を参照しながら、近接する3つの位置データ(ノード点)Nd[n]に基づいて1つのノード点における屈曲度Rc[n]を演算する手法について説明する。図2に示すように、先ず、ノード点Nd[n]の中から、第1ノード点Nd[1]、第2ノード点Nd[2]、及び、第3ノード点Nd[3]が選択される。選択されるこれらのノード点は、互いに隣り合うノード点である必要はないが、互いに近接するノード点である。   Hereinafter, a method of calculating the bending degree Rc [n] at one node point based on three adjacent position data (node points) Nd [n] will be described with reference to FIG. As shown in FIG. 2, first, the first node point Nd [1], the second node point Nd [2], and the third node point Nd [3] are selected from the node points Nd [n]. The These selected node points need not be adjacent node points, but are adjacent node points.

第1ノード点Nd[1]と第2ノード点Nd[2]とに基づいて、第1ノード点Nd[1]と第2ノード点Nd[2]とを両端とする線分の第1垂直二等分線Ls[1]が演算される。同様に、第2ノード点Nd[2]と第3ノード点Nd[3]とに基づいて、第2ノード点Nd[2]と第3ノード点Nd[3]とを両端とする線分の第2垂直二等分線Ls[2]が演算される。   Based on the first node point Nd [1] and the second node point Nd [2], a first vertical line segment having both ends of the first node point Nd [1] and the second node point Nd [2]. The bisector Ls [1] is calculated. Similarly, based on the second node point Nd [2] and the third node point Nd [3], a line segment having both ends of the second node point Nd [2] and the third node point Nd [3] is used. A second vertical bisector Ls [2] is calculated.

次いで、第1垂直二等分線Ls[1]と第2垂直二等分線Ls[2]との交点Insが決定される。この交点Insと第2ノード点Nd[2]との距離(=曲率半径)が、第2ノード点Nd[2]における屈曲度Rc[2]として演算される。以上の手法により、第1、第2、第3ノード点Nd[1],Nd[2],Nd[3]に基づいて第2ノード点Nd[2]における屈曲度Rc[2]が取得される。   Next, an intersection point Ins between the first vertical bisector Ls [1] and the second vertical bisector Ls [2] is determined. The distance (= curvature radius) between the intersection Ins and the second node point Nd [2] is calculated as the bending degree Rc [2] at the second node point Nd [2]. By the above method, the bending degree Rc [2] at the second node point Nd [2] is acquired based on the first, second, and third node points Nd [1], Nd [2], Nd [3]. The

この手法により第2ノード点Nd[2]における屈曲度を取得する処理が、複数のノード点Nd[n]のうち第2ノード点Nd[2]として設定される地点を順次変更しながら繰り返し実行されることで、複数の点Nd[n]における屈曲度Rc[n]がそれぞれ取得される。この手法を採用することで、複数のノード点Nd[n]における屈曲度のデータを予め記憶しておく必要がない。従って、記憶される道路情報が簡略化され得る。   The process of acquiring the degree of bending at the second node point Nd [2] by this method is repeatedly executed while sequentially changing the point set as the second node point Nd [2] among the plurality of node points Nd [n]. As a result, the bending degree Rc [n] at each of the plurality of points Nd [n] is acquired. By adopting this method, it is not necessary to store in advance the degree of flexure data at a plurality of node points Nd [n]. Therefore, the stored road information can be simplified.

以下、図3、図4を参照しながら説明を続ける。図3は、カーブを含む道路形状の典型的な一例を示す。図4は、図3に示した道路の各ノード点Nd[n]についての位置と屈曲度との関係を示す。図4では、各ノード点Nd[n]の屈曲度Rc[n]として曲率1/Rcが使用されている。   Hereinafter, the description will be continued with reference to FIGS. FIG. 3 shows a typical example of a road shape including a curve. FIG. 4 shows the relationship between the position and the bending degree for each node point Nd [n] on the road shown in FIG. In FIG. 4, the curvature 1 / Rc is used as the bending degree Rc [n] of each node point Nd [n].

屈曲度一定区間識別工程S3(屈曲度一定区間識別手段B3)では、複数の位置データ(ノード点)Nd[n]、及び、それぞれに対応する屈曲度Rc[n]に基づいて、屈曲度Rc[n]が一定である屈曲度一定区間Cr#が識別される。屈曲度一定区間Cr#は、カーブ内にて屈曲度Rc[n]が一定となる区間のみならず、直線区間をも含む。以下、カーブ内にて屈曲度Rc[n]が一定となる区間を「カーブ内屈曲度一定区間」と呼ぶこともある。なお、各種記号等の末尾に付された「#」はアルファベット1文字の包括表記である。   In the constant bending degree section identifying step S3 (fixed degree bending section identifying means B3), the bending degree Rc is based on the plurality of position data (node points) Nd [n] and the corresponding bending degree Rc [n]. A flexion constant section Cr # in which [n] is constant is identified. The bending degree constant section Cr # includes not only a section where the bending degree Rc [n] is constant in the curve but also a straight section. Hereinafter, a section in which the degree of bending Rc [n] is constant in the curve may be referred to as a section in which the degree of bending in the curve is constant. Note that “#” appended to the end of various symbols and the like is a comprehensive notation of one alphabetic character.

識別された屈曲度一定区間Cr#は、更に、直線区間とカーブ内屈曲度一定区間との何れかに識別される。図3、図4に示す例では、屈曲度一定区間Cr#として、区間Cra,Crc,Creが識別され、これらのうちで、区間Cra,Creが直線区間として識別され、区間Crcがカーブ内屈曲度一定区間として識別されている。以下、これらの識別方法について説明する。   The identified constant bending degree section Cr # is further identified as either a straight section or a constant in-curve bending degree section. In the example shown in FIGS. 3 and 4, the sections Cra, Crc, and Cre are identified as the constant bending degree section Cr #. Among these, the sections Cra and Cre are identified as straight sections, and the section Crc is bent in the curve. Is identified as a constant interval. Hereinafter, these identification methods will be described.

屈曲度一定区間Cr#は、位置データに対応する地点(ノード点)Nd[n]の進行(即ち、距離)に対する屈曲度Rc[n]の変化状態に基づいて、識別される。具体的には、例えば、隣り合う2つのノード点Nd[n]の間の距離に対する前記2つのノード点Nd[n]における屈曲度Rc[n]の差の割合が所定値hr1以下となる状態が連続する区間が屈曲度一定区間Cr#として識別され得る。   The bending degree constant section Cr # is identified based on the change state of the bending degree Rc [n] with respect to the progress (ie, distance) of the point (node point) Nd [n] corresponding to the position data. Specifically, for example, the ratio of the difference in the degree of curvature Rc [n] at the two node points Nd [n] to the distance between the two adjacent node points Nd [n] is equal to or less than a predetermined value hr1. Can be identified as a constant bending degree section Cr #.

また、区間距離が所定距離kr2以上の区間であって、且つその区間に含まれる連続する複数のノード点Nd[n]における屈曲度Rc[n]の最大値と最小値との差(屈曲度変動幅)が所定値hr2以下である区間が屈曲度一定区間Cr#として識別される。この場合、区間距離kr2且つ屈曲度変動幅hr2に対応するウィンドウ(図4を参照)が走査されるとともに、走査中のウインドウ内に連続する位置データ(ノード点)Nd[n]が収まるか否かを順次判定していくことで、屈曲度一定区間Cr#が識別され得る。   In addition, the difference between the maximum value and the minimum value of the degree of curvature Rc [n] at a plurality of continuous node points Nd [n] included in the section in which the section distance is equal to or greater than the predetermined distance kr2. A section in which (variation width) is equal to or less than a predetermined value hr2 is identified as a section with constant bending degree Cr #. In this case, a window (see FIG. 4) corresponding to the section distance kr2 and the bending degree fluctuation width hr2 is scanned, and whether or not continuous position data (node point) Nd [n] fits in the window being scanned. By sequentially determining whether or not, the constant bending degree section Cr # can be identified.

一定屈曲度取得工程S4(一定屈曲度取得手段B4)では、屈曲度一定区間Cr#内の一定の屈曲度Rm#(より具体的には、一定曲率半径Rm#、又は一定曲率1/Rm#)が取得される。一定屈曲度Rm#は、例えば、屈曲度一定区間Cr#に含まれる複数のノード点Nd[n]の屈曲度Rc[n]の平均値等に設定され得る。この一定屈曲度Rm#に基づいて、屈曲度一定区間Cr#がカーブ内屈曲度一定区間と直線区間との何れかに識別され得る。具体的には、一定曲率半径Rm#が所定値rc1より大きい場合(或いは、一定曲率1/Rm#が所定値kc1(=1/rc1)より小さい場合)、屈曲度一定区間Cr#が直線区間と識別され、そうでない場合、屈曲度一定区間Cr#がカーブ内屈曲度一定区間と識別される。以下、カーブ内屈曲度一定区間の一定屈曲度Rm#を特に「カーブ内一定屈曲度」と呼ぶこともある。   In the constant bending degree acquisition step S4 (constant bending degree acquisition means B4), the constant bending degree Rm # (more specifically, the constant curvature radius Rm # or the constant curvature 1 / Rm # in the constant bending degree section Cr #). ) Is acquired. The constant bending degree Rm # can be set to, for example, an average value of the bending degrees Rc [n] of a plurality of node points Nd [n] included in the constant bending degree section Cr #. Based on the constant bending degree Rm #, the constant bending degree section Cr # can be identified as either a constant bending degree in-curve section or a straight section. Specifically, when the constant curvature radius Rm # is larger than the predetermined value rc1 (or when the constant curvature 1 / Rm # is smaller than the predetermined value kc1 (= 1 / rc1)), the constant curvature degree section Cr # is a straight section. Otherwise, the constant curvature degree section Cr # is identified as the constant curve in-curve degree section. Hereinafter, the constant bending degree Rm # in the section where the bending degree within the curve is constant may be particularly referred to as “constant bending degree within the curve”.

端点位置決定工程S5(端点位置決定工程B5)では、屈曲度一定区間Cr#の端点位置Pe#が決定される。屈曲度一定区間Cr#がカーブ内屈曲度一定区間である場合、その端点位置Pe#を「カーブ端点位置」と呼び、屈曲度一定区間Cr#が直線区間である場合、その端点位置Pe#を「直線端点位置」と呼ぶこともある。なお、上述した「カーブ内屈曲度一定区間か直線区間かの識別」は、この端点位置決定工程S5(端点位置決定工程B5)で実行されてもよい。   In the end point position determination step S5 (end point position determination step B5), the end point position Pe # of the constant bending degree section Cr # is determined. When the constant curvature degree section Cr # is a constant in-curve degree curvature section, the end point position Pe # is referred to as a “curve end position”. When the constant curvature degree section Cr # is a straight section, the end position Pe # is Sometimes referred to as “straight end point position”. It should be noted that the above-mentioned “identification of whether the in-curve bending degree constant section or the straight section” is performed may be executed in this end point position determining step S5 (end point position determining step B5).

図3、図4に示す例では、カーブ端点位置Pe#として、地点Pec,Pedが決定され、直線端点位置Pe#として、地点Peb,Peeが決定されている。カーブ端点位置Pec,Pedはそれぞれ、カーブ内屈曲度一定区間Crcの開始地点、終了地点に対応している。図3、図4に示すカーブでは、カーブ内屈曲度一定区間Crcが最も屈曲度が大きい(曲率が大きい、曲率半径が小さい)。従って、カーブ端点位置Pec,Pedは、図3、図4に示すカーブ内において最も屈曲度が大きい区間の両端の地点といえる。直線端点位置Peb,Peeはそれぞれ、進入直線区間Craの終了地点(即ち、カーブ入口)、退出直線区間Creの開始地点(即ち、カーブ出口)に対応している。   In the example shown in FIGS. 3 and 4, the points Pec and Ped are determined as the curve end point position Pe #, and the points Peb and Pee are determined as the straight end point position Pe #. The curve end point positions Pec and Ped correspond to the start point and end point of the in-curve bending degree constant section Crc, respectively. In the curves shown in FIGS. 3 and 4, the in-curve constant curvature section Crc has the largest degree of curvature (the curvature is large and the curvature radius is small). Therefore, the curve end point positions Pec and Ped can be said to be the points at both ends of the section having the greatest degree of bending in the curves shown in FIGS. The straight end point positions Peb and Pee correspond to the end point (that is, the curve entrance) of the approach straight line section Cra and the start point (that is, the curve exit) of the exit straight line section Cre, respectively.

カーブ端点位置Pe#、及び直線端点位置Pe#は、屈曲度一定区間Cr#に含まれる複数のノード点Nd[n]のうちの両端に対応するノード点そのものであってもよいし、両端に対応するノード点Nd[n]の近傍の点であってもよい。両端に対応するノード点Nd[n]の近傍の点とは、例えば、両端に対応するノード点Nd[n]とその隣のノード点Nd[n](=屈曲度一定区間に含まれないノード点Nd[n])とを補間する点である。   The curve end point position Pe # and the straight end point position Pe # may be node points themselves corresponding to both ends of the plurality of node points Nd [n] included in the constant bending degree section Cr #. It may be a point in the vicinity of the corresponding node point Nd [n]. The points in the vicinity of the node point Nd [n] corresponding to both ends are, for example, the node point Nd [n] corresponding to both ends and the adjacent node point Nd [n] (= nodes not included in the bending degree constant section) Point Nd [n]).

緩和曲線区間形状演算工程S6(緩和曲線区間形状演算手段B6)では、隣り合う2つの屈曲度一定区間Cr#を結ぶ緩和曲線区間Eu#の形状(Eu#内の位置Pd#に対応する屈曲度Rd#)が、端点位置Pe#、及び、一定屈曲度Rm#に基づいて演算される。屈曲度Rd#の演算においては、緩和曲線区間Eu#がクロソイド曲線により構成されることが仮定される。即ち、緩和曲線区間内では、位置Pd#の変化(距離)に対する曲率(曲率半径の逆数)1/Rd#の変化が線形で表わされることが仮定されて、位置Pd#に対する屈曲度Rd#が演算される。そして、Pd#とRd#との関係を表すクロソイド係数(クロソイドパラメータともいう)Kc#が演算される。   In the relaxation curve section shape calculation step S6 (relaxation curve section shape calculation means B6), the shape of the relaxation curve section Eu # connecting two adjacent bending degree constant sections Cr # (the bending degree corresponding to the position Pd # in Eu #). Rd #) is calculated based on the end point position Pe # and the constant bending degree Rm #. In the calculation of the bending degree Rd #, it is assumed that the relaxation curve section Eu # is constituted by a clothoid curve. That is, in the relaxation curve section, it is assumed that the change of the curvature (reciprocal of the radius of curvature) 1 / Rd # with respect to the change (distance) of the position Pd # is expressed linearly, and the bending degree Rd # with respect to the position Pd # is Calculated. Then, a clothoid coefficient (also referred to as a clothoid parameter) Kc # representing the relationship between Pd # and Rd # is calculated.

図3、図4に示す例では、緩和曲線区間Eubの形状(Eub内の位置Pdbに対応する屈曲度Rdb)、及びクロソイド係数Kcbが、屈曲度一定区間(直線区間)Craの端点位置(直線端点位置)Peb、屈曲度一定区間(カーブ内屈曲度一定区間)Crcの端点位置(カーブ端点位置)Pec、屈曲度一定区間(直線区間)Craの一定屈曲度(曲率=0)、及び、屈曲度一定区間(カーブ内屈曲度一定区間)Crcの一定屈曲度(カーブ内一定屈曲度)Rmcに基づいて演算される。緩和曲線区間Eubのクロソイド係数Kcbは、図4に示す勾配(ノード点の進行(距離)に対する屈曲度(曲率)の変化)Gbを用いて、Kcb=√(1/Gb)なる関係式に基づいて演算され得る。   In the example shown in FIGS. 3 and 4, the shape of the relaxation curve section Eub (the bending degree Rdb corresponding to the position Pdb in the Eub) and the clothoid coefficient Kcb are the end point positions (straight lines) of the constant bending degree section (straight section) Cra. End point position Peb, constant bend degree section (curve in-curve constant section) Crc end point position (curve end point position) Pec, constant bend degree section (straight section) Cra constant bend degree (curvature = 0), and bend Is calculated based on a constant degree of curvature (constant degree of curvature in the curve) Rmc. The clothoid coefficient Kcb of the relaxation curve section Eub is based on a relational expression of Kcb = √ (1 / Gb) using the gradient (change in curvature (curvature) with respect to the progress (distance) of the node point) Gb shown in FIG. Can be calculated.

同様に、緩和曲線区間Eudの形状(Eud内の位置Pddに対応する屈曲度Rdd)、及びクロソイド係数Kcdが、屈曲度一定区間(直線区間)Creの端点位置(直線端点位置)Pee、屈曲度一定区間(カーブ内屈曲度一定区間)Crcの端点位置(カーブ端点位置)Ped、屈曲度一定区間(直線区間)Creの一定屈曲度(曲率=0)、及び、屈曲度一定区間(カーブ内屈曲度一定区間)Crcの一定屈曲度(カーブ内一定屈曲度)Rmcに基づいて演算される。緩和曲線区間Eudのクロソイド係数Kcdは、図4に示す勾配(ノード点の進行(距離)に対する屈曲度(曲率)の変化)Gdを用いて、Kcd=√(1/Gd)なる関係式に基づいて演算され得る。   Similarly, the shape of the relaxation curve section Eud (the bending degree Rdd corresponding to the position Pdd in Eud) and the clothoid coefficient Kcd are the end point position (straight end point position) Pee and the bending degree of the constant bending degree section (straight section) Cre. Fixed section (curved bending degree constant section) Crc end point position (curve end point position) Ped, fixed bending degree section (straight section) Cre fixed bending degree (curvature = 0), and bending degree constant section (curved bending within curve) It is calculated based on a constant degree of curvature of Crc (a constant degree of curvature in the curve) Rmc. The clothoid coefficient Kcd of the relaxation curve section Eud is based on the relational expression of Kcd = √ (1 / Gd) using the gradient (change in curvature (curvature) with respect to the progression (distance) of the node point) Gd shown in FIG. Can be calculated.

以上、上記のように演算された屈曲度一定区間Cr#の端点位置Pe#(特に、カーブ端点位置)、屈曲度一定区間Cr#の一定屈曲度Rm#(特に、カーブ内一定屈曲度)、及び、緩和曲線区間Eu#の位置Pd#に対する屈曲度Rd#(又は、クロソイド係数Kc#)が、道路形状を表すための道路形状データとして、道路形状データベースDBに記憶される。この道路形状データベースDBは、車両がカーブを適正な速度で安定して通過できるように車両がカーブを通過する際に自動減速(カーブ車速制御)を行う車両の速度制御装置等に活用され得る。   As described above, the end point position Pe # (particularly the curve end point position) of the constant bending degree section Cr # calculated as described above, the constant bending degree Rm # (particularly, the constant bending degree within the curve) of the constant bending degree section Cr #, In addition, the bending degree Rd # (or clothoid coefficient Kc #) with respect to the position Pd # of the relaxation curve section Eu # is stored in the road shape database DB as road shape data for representing the road shape. This road shape database DB can be utilized in a vehicle speed control device that performs automatic deceleration (curve vehicle speed control) when the vehicle passes through a curve so that the vehicle can stably pass through the curve at an appropriate speed.

以上、本発明の実施形態に係る道路形状データ作成方法(道路形状データ取得装置)によれば、道路上の複数の位置データ(ノード点)Nd[n](緯度・経度の情報)が取得され、各ノード点Nd[n]における道路の屈曲度Rc[n]が演算される。ノード点Nd[n]の進行に対する屈曲度Rc[n]の変化(即ち、距離と屈曲度の変化状態との関係)に基づいて、カーブ内屈曲度一定区間Cr#(記号末尾の「#」はアルファベット1文字の包括表記)が識別され、Cr#についてのカーブ内一定屈曲度Rm#、及びカーブ端点位置Pe#が決定される。   As described above, according to the road shape data creation method (road shape data acquisition apparatus) according to the embodiment of the present invention, a plurality of position data (node points) Nd [n] (latitude / longitude information) on the road is acquired. The road bending degree Rc [n] at each node point Nd [n] is calculated. Based on the change of the bending degree Rc [n] with respect to the progress of the node point Nd [n] (that is, the relationship between the distance and the changing state of the bending degree), the in-curve bending degree constant section Cr # ("#" at the end of the symbol) Is a comprehensive notation of one alphabetic character), and the in-curve constant bending degree Rm # and the curve end point position Pe # for Cr # are determined.

カーブ入口からカーブ出口に向けて順に、進入緩和曲線区間、カーブ内屈曲度一定区間、及び退出緩和曲線区間から構成される典型的なカーブでは、カーブ内において屈曲度一定区間が最も屈曲度が大きい。即ち、屈曲度一定区間の開始地点は、車速一定でカーブを通過する場合において車両に作用する横加速度が最大となり且つ最も手前の地点となる。従って、車両がカーブを円滑に通過するためにカーブ車速制御が実行される場合、カーブ内屈曲度一定区間Cr#の開始地点(図3では地点Pec)とカーブ内一定屈曲度Rm#(図3では曲率半径Rmc)とを少なくとも基準に車速が調整されることが好ましい。   In a typical curve composed of an approach relaxation curve section, an in-curve bending constant section, and an exit relaxation curve section in order from the curve entrance to the curve exit, the constant bending degree section has the highest bending degree in the curve. . That is, the starting point of the section with a constant degree of flexion is the point at which the lateral acceleration acting on the vehicle is maximum and the foremost point when passing through a curve with a constant vehicle speed. Therefore, when curve vehicle speed control is executed so that the vehicle passes smoothly through the curve, the starting point of the in-curve constant curvature section Cr # (point Pec in FIG. 3) and the in-curve constant curvature Rm # (FIG. 3). Then, it is preferable that the vehicle speed be adjusted based on at least the curvature radius Rmc).

本実施形態によれば、道路形状データとして、カーブ内において屈曲度が最も大きい屈曲度一定区間に関するデータである、屈曲度一定区間の端点位置、並びに、屈曲度一定区間の一定屈曲度が、車両の実際の動作情報(実際のステアリング舵角の情報等)を用いることなく、簡易且つ容易に作成・提供され得る。即ち、運転者に与えられる違和感が小さいカーブ車速制御の実行に必要なカーブ形状のデータが簡易且つ容易に作成・提供され得る。   According to the present embodiment, as the road shape data, the end point position of the constant bending degree section and the constant bending degree of the constant bending degree section, which are data related to the fixed bending degree section within the curve, are the vehicle. The actual operation information (actual steering angle information, etc.) can be created and provided simply and easily. That is, the curve shape data required for executing the curve vehicle speed control with a little uncomfortable feeling given to the driver can be created and provided easily and easily.

更には、識別された隣り合う2つの屈曲度一定区間Cr#を結ぶ緩和曲線区間Eu#の形状が、2つの屈曲度一定区間Cr#の(緩和曲線区間Eu#と接続する側の)それぞれの端点位置Pe#、及び、2つの屈曲度一定区間Cr#のそれぞれの一定屈曲度Rm#に基づいて演算される。これにより、識別された隣り合う2つの屈曲度一定区間を結ぶ区間の長さに係わらず、且つ、隣り合う2つの屈曲度一定区間の組み合わせが「カーブ内屈曲度一定区間同士」か「カーブ内屈曲度一定区間と直線区間」かに係わらず、この区間を適切且つ滑らかに結ぶ形状に関するデータ(例えば、クロソイド曲線を表すクロソイド係数)が演算され得る。   Furthermore, the shape of the relaxation curve section Eu # that connects the two adjacent adjacent constant curvature degrees Cr # is the same in each of the two constant curvature sections Cr # (on the side connected to the relaxation curve section Eu #). The calculation is based on the end point position Pe # and the constant bending degree Rm # of each of the two constant bending degree sections Cr #. As a result, regardless of the length of the section connecting the two adjacent adjacent constant degrees of flexion, the combination of the two adjacent constant constant degrees of curvature is “inter-curve constant degree sections” or “ Regardless of “a section with a constant degree of bending and a straight section”, data (for example, a clothoid coefficient representing a clothoid curve) regarding a shape that connects the sections appropriately and smoothly can be calculated.

以下、2つの屈曲度一定区間が直線区間を介さずに接続される場合等における緩和曲線区間の形状の演算について図5〜7を参照しながら付言する。図5は、この場合における処理の流れを示す。図6は、この場合における道路形状の一例を示す。図7は、図6に示した道路についての位置と屈曲度との関係を示す。   Hereinafter, the calculation of the shape of the relaxation curve section in the case where the two sections with a constant degree of bending are connected without going through the straight section will be added with reference to FIGS. FIG. 5 shows the flow of processing in this case. FIG. 6 shows an example of the road shape in this case. FIG. 7 shows the relationship between the position and the bending degree for the road shown in FIG.

図5に示すように、先ず、ステップ505にて、屈曲度一定区間Cr#の端点位置Pe#が取得される。ステップ510にて、屈曲度一定区間Cr#の一定屈曲度Rm#が取得される。次いで、ステップ515にて、隣り合う2つの屈曲度一定区間Cr#の一方が直線区間であるか否かが判定される。   As shown in FIG. 5, first, at step 505, the end point position Pe # of the constant bending degree section Cr # is acquired. In step 510, a constant bending degree Rm # of a constant bending degree section Cr # is acquired. Next, at step 515, it is determined whether one of the two adjacent constant bending degree sections Cr # is a straight section.

隣り合う2つの屈曲度一定区間Cr#の一方が直線区間である場合とは、例えば、隣り合う2つの屈曲度一定区間Cr#として、上述した図3、図4に示すCra及びCrc、或いは、Crc及びCreが採用される場合である。この場合、ステップ515にて肯定判定(Yes)がなされ、ステップ520にて、前述と同じ方法に基づいて緩和曲線区間Eub,Eudのそれぞれの形状が、クロソイド曲線を仮定して演算される。   The case where one of the two adjacent constant curvature sections Cr # is a straight section is, for example, the above-described two constant curvature sections Cr #, Cra and Crc shown in FIGS. 3 and 4 described above, or This is a case where Crc and Cre are employed. In this case, an affirmative determination (Yes) is made in step 515, and in step 520, the respective shapes of the relaxation curve sections Eub and Eud are calculated assuming a clothoid curve based on the same method as described above.

一方、隣り合う2つの屈曲度一定区間Cr#の一方が直線区間でない場合(即ち、両区間が共にカーブ区間である場合)とは、例えば、隣り合う2つの屈曲度一定区間Cr#として、図6、図7に示すCrk及びCri、或いは、Cri及びCrfが採用される場合である。この場合、ステップ515にて否定判定(No)がなされ、ステップ525にて、隣り合う2つのカーブ内屈曲度一定区間Cr#の屈曲方向が同一であるか否かが判定される。屈曲方向が同一か否かの判定は、Rm#の符号に基づいて行われる。具体的には、Rm#の符号が一致する場合は屈曲方法が同一と判定され、そうでない場合は屈曲方向が異なると判定される。   On the other hand, when one of the two adjacent constant bending degree sections Cr # is not a straight section (that is, when both sections are curved sections), for example, as two adjacent constant bending degree sections Cr #, 6. This is a case where Crk and Cri or Cri and Clf shown in FIG. 7 are employed. In this case, a negative determination (No) is made in step 515, and in step 525, it is determined whether or not the bending directions of the two adjacent in-curve bending degree constant sections Cr # are the same. Whether the bending directions are the same is determined based on the sign of Rm #. Specifically, if the signs of Rm # match, it is determined that the bending method is the same, and if not, it is determined that the bending direction is different.

隣り合う2つのカーブ内屈曲度一定区間Cr#の屈曲方向が同一の場合とは、例えば、隣り合う2つのカーブ内屈曲度一定区間Cr#として、図6、図7に示すCrk及びCriが採用される場合であり、1つのカーブ内にて一定屈曲度Rm#が異なり屈曲方向が同じ2つのカーブ内屈曲度一定区間Cr#が存在し得る場合である。この場合、ステップ525にて肯定判定(Yes)がなされ、ステップ520の処理がなされる。即ち、この場合も、前述と同じ方法に基づいて緩和曲線区間Eujの形状が、クロソイド曲線を仮定して演算される。   The case where the bending directions of two adjacent in-curve degree-of-curvature constant sections Cr # are the same is, for example, the two adjacent in-curve degree-of-curvature constant sections Cr # are adopted by Crk and Cri shown in FIGS. This is a case where there can be two in-curve bend degree constant sections Cr # having different bend degree Rm # and the same bend direction in one curve. In this case, an affirmative determination (Yes) is made in step 525, and the process of step 520 is performed. That is, also in this case, based on the same method as described above, the shape of the relaxation curve section Euj is calculated assuming a clothoid curve.

具体的には、緩和曲線区間Eujの形状(Euj内の位置Pdjに対応する屈曲度Rdj)、及びクロソイド係数(クロソイドパラメータ)Kcjが、屈曲度一定区間Crkの端点位置Pek、屈曲度一定区間Criの端点位置Pej、屈曲度一定区間Crkの一定屈曲度Rmk、及び、屈曲度一定区間Criの一定屈曲度Rmiに基づいて演算される。緩和曲線区間Eujのクロソイド係数Kcjは、図7に示す勾配Gjを用いて、Kcj=√(1/Gj)なる関係式に基づいて演算され得る。   Specifically, the shape of the relaxation curve section Euj (the bending degree Rdj corresponding to the position Pdj in Euj) and the clothoid coefficient (clothoid parameter) Kcj are the end point position Pek and the constant bending degree section Cri of the constant bending degree section Crk. Is calculated based on the end point position Pej, the constant bending degree Rmk of the constant bending degree section Crk, and the constant bending degree Rmi of the constant bending degree section Cri. The clothoid coefficient Kcj of the relaxation curve section Euj can be calculated based on the relational expression Kcj = √ (1 / Gj) using the gradient Gj shown in FIG.

隣り合う2つのカーブ内屈曲度一定区間Cr#の屈曲方向が異なる場合とは、例えば、隣り合う2つのカーブ内屈曲度一定区間Cr#として、図6、図7に示すCrf及びCriが採用される場合である。この場合、ステップ525にて否定判定(No)がなされ、ステップ530にて、先ず、隣り合う2つの屈曲度一定区間Cr#を結ぶ区間内における中間位置Pmdが決定される。中間位置Pmdとは、曲率が概ね「0」(曲率が所定値1/rc1未満)となる位置(直線区間に相当する)に決定される。   The case where the bending directions of two adjacent in-curve-curvature constant intervals Cr # are different means that, for example, Clf and Cri shown in FIGS. 6 and 7 are adopted as two adjacent in-curve-curvature constant intervals Cr #. This is the case. In this case, a negative determination (No) is made in step 525, and in step 530, first, an intermediate position Pmd in a section connecting two adjacent constant bending degree sections Cr # is determined. The intermediate position Pmd is determined as a position (corresponding to a straight line section) where the curvature is substantially “0” (the curvature is less than a predetermined value 1 / rc1).

次いで、ステップ535にて、隣り合う2つのカーブ内屈曲度一定区間Cr#のうちの第1屈曲度一定区間Crfに連続する第1緩和曲線区間Eugの形状が、クロソイド曲線を仮定して演算される。具体的には、緩和曲線区間Eugの形状(Eug内の位置Pdgに対応する屈曲度Rdg)、及びクロソイド係数Kcgが、屈曲度一定区間Crfの端点位置Peg、屈曲度一定区間Crfの一定屈曲度Rmf、及び、中間位置Pmdに基づいて演算される。緩和曲線区間Eugのクロソイド係数Kcgは、図7に示す勾配Ggを用いて、Kcg=√(1/Gg)なる関係式に基づいて演算され得る。   Next, in step 535, the shape of the first relaxation curve section Eug that is continuous with the first constant curvature degree section Crf of the two adjacent in-curve curvature constant sections Cr # is calculated assuming a clothoid curve. The Specifically, the shape of the relaxation curve section Eug (the bending degree Rdg corresponding to the position Pdg in the Eug) and the clothoid coefficient Kcg are the end point position Peg of the constant bending degree section Clf and the constant bending degree of the constant bending degree section Clf. Calculation is performed based on Rmf and the intermediate position Pmd. The clothoid coefficient Kcg of the relaxation curve section Eug can be calculated based on the relational expression Kcg = √ (1 / Gg) using the gradient Gg shown in FIG.

同様に、ステップ540にて、隣り合う2つのカーブ内屈曲度一定区間Cr#のうちの第2屈曲度一定区間Criに連続する第2緩和曲線区間Euhの形状が、クロソイド曲線を仮定して演算される。具体的には、緩和曲線区間Euhの形状(Euh内の位置Pdhに対応する屈曲度Rdh)、及びクロソイド係数Kchが、屈曲度一定区間Criの端点位置Pei、屈曲度一定区間Criの一定屈曲度Rmi、及び、中間位置Pmdに基づいて演算される。緩和曲線区間Euhのクロソイド係数Kchは、図7に示す勾配Ghを用いて、Kch=√(1/Gh)なる関係式に基づいて演算され得る。   Similarly, in step 540, the shape of the second relaxation curve section Euh that is continuous with the second constant curvature degree section Cri of two adjacent in-curve curvature constant sections Cr # is calculated assuming a clothoid curve. Is done. Specifically, the shape of the relaxation curve section Euh (the degree of curvature Rdh corresponding to the position Pdh in the Euh) and the clothoid coefficient Kch are the end point position Pei of the constant degree of curvature section Cri and the constant degree of curvature of the constant degree of curvature Cri. Calculation is performed based on Rmi and the intermediate position Pmd. The clothoid coefficient Kch of the relaxation curve section Euh can be calculated based on the relational expression Kch = √ (1 / Gh) using the gradient Gh shown in FIG.

このように、隣り合う2つの屈曲方向が異なるカーブ内屈曲度一定区間Cr#が直線区間を介さずに結ばれる道路形状(所謂、S字カーブ)の場合、屈曲度の変極点が中間位置Pmdに決定される。そして、2つの屈曲度一定区間を結ぶ区間が2つの緩和曲線区間に分けられ、各緩和曲線区間の形状が別個に演算される。この結果、2つの屈曲度一定区間を結ぶ区間を適切且つ滑らかに結ぶ形状に関するデータ(具体的には、クロソイド曲線を表すクロソイド係数)が演算され得る。   In this way, in the case of a road shape (so-called S-shaped curve) in which the adjacent in-curve degree-of-curvature constant section Cr # in which two adjacent bending directions are different is connected without passing through the straight section, the inflection point of the degree of curvature is at the intermediate position Pmd. To be determined. Then, a section connecting the two sections with a constant degree of bending is divided into two relaxation curve sections, and the shape of each relaxation curve section is calculated separately. As a result, data (specifically, a clothoid coefficient representing a clothoid curve) related to a shape connecting two sections with a constant degree of flexion appropriately and smoothly can be calculated.

S1(B1)…道路位置データ取得工程(手段)、S2(B2)…屈曲度取得工程(手段)、S3(B3)…屈曲度一定区間識別工程(手段)、S4(B4)…一定屈曲度取得工程(手段)、S5(B5)…端点位置決定工程(手段)、S6(B6)…緩和曲線区間形状演算工程(手段)、DB…道路形状データベース   S1 (B1) ... road position data acquisition step (means), S2 (B2) ... flexure degree acquisition step (means), S3 (B3) ... flexion degree constant section identification step (means), S4 (B4) ... constant flexion degree Acquisition step (means), S5 (B5) ... end point position determination step (means), S6 (B6) ... relaxation curve section shape calculation step (means), DB ... road shape database

Claims (9)

道路上の複数の位置データを取得する道路位置データ取得工程と、
前記位置データに対応する地点における前記道路の屈曲度を取得する屈曲度取得工程と、
前記位置データに対応する地点の進行に対する前記屈曲度の変化状態に基づいて、前記屈曲度が一定である屈曲度一定区間を識別する屈曲度一定区間識別工程と、
前記道路のカーブ区間に対応する前記屈曲度一定区間の一定の屈曲度を取得する一定屈曲度取得工程と、
前記道路のカーブ区間に対応する前記屈曲度一定区間の端点の位置を決定する端点位置決定工程と、
を備えた道路形状データ作成方法。
A road position data acquisition step for acquiring a plurality of position data on the road;
A bending degree acquisition step of acquiring the bending degree of the road at a point corresponding to the position data;
Based on the change state of the bending degree with respect to the progress of the point corresponding to the position data, the bending degree constant section identifying step for identifying the bending degree constant section in which the bending degree is constant;
A constant bending degree acquisition step of acquiring a constant bending degree of the bending degree constant section corresponding to the curve section of the road;
An end point position determining step for determining a position of an end point of the constant degree of bending section corresponding to the curve section of the road;
A road shape data creation method comprising:
請求項1に記載の道路形状データ作成方法において、
前記屈曲度取得工程は、
前記位置データに基づいて、前記道路上の第1地点、第2地点、及び第3地点を決定し、
前記第1地点及び前記第2地点を両端とする線分の第1垂直二等分線、及び、前記第2地点及び前記第3地点を両端とする線分の第2垂直二等分線を演算し、
前記第1垂直二等分線と前記第2垂直二等分線との交点に基づいて、前記第2地点における前記屈曲度を演算する道路形状データ作成方法。
In the road shape data creation method according to claim 1,
The bending degree acquisition step includes
Based on the position data, determine the first point, the second point, and the third point on the road,
A first vertical bisector of a line segment having both ends of the first point and the second point, and a second vertical bisector of a line segment having both ends of the second point and the third point Operate,
A road shape data creation method for calculating the bending degree at the second point based on an intersection of the first vertical bisector and the second vertical bisector.
請求項1又は請求項2に記載の道路形状データ作成方法において、
前記屈曲度一定区間識別工程は、
隣り合う2つの前記位置データに対応する2つの地点の間の距離に対する前記2つの地点における屈曲度の相違の割合が所定値以下となる状態が連続する区間を前記屈曲度一定区間と識別する道路形状データ作成方法。
In the road shape data creation method according to claim 1 or claim 2,
The bending degree constant section identifying step includes:
A road that identifies a section in which the ratio of the difference in the degree of bending at the two points relative to the distance between the two points corresponding to the two adjacent position data is equal to or less than a predetermined value as the constant degree of bending section Shape data creation method.
請求項1又は請求項2に記載の道路形状データ作成方法において、
前記屈曲度一定区間識別工程は、
区間距離が所定距離以上の区間であって、且つその区間に含まれる連続する前記位置データに対応する複数の地点における屈曲度の最大値と最小値との差が所定値以下である区間を前記屈曲度一定区間と識別する道路形状データ作成方法。
In the road shape data creation method according to claim 1 or claim 2,
The bending degree constant section identifying step includes:
The section where the section distance is a predetermined distance or more and the difference between the maximum value and the minimum value of the bending degree at a plurality of points corresponding to the continuous position data included in the section is a predetermined value or less. Road shape data creation method for identifying a section with a constant degree of flexion.
請求項1乃至請求項4の何れか一項に記載の道路形状データ作成方法であって、
前記屈曲度一定区間識別工程が識別する隣り合う2つの前記屈曲度一定区間を結ぶ緩和曲線区間の形状を、前記2つの屈曲度一定区間の前記緩和曲線区間と接続する側のそれぞれの前記端点位置、及び、前記2つの屈曲度一定区間のそれぞれの前記一定屈曲度に基づいて演算する緩和曲線形状演算工程を備えた道路形状データ作成方法。
The road shape data creation method according to any one of claims 1 to 4,
Each of the end point positions on the side connecting the relaxation curve sections connecting the two adjacent fixed curvature sections identified by the constant curvature section identification step with the relaxation curve sections of the two fixed curvature sections And the road shape data creation method provided with the relaxation curve shape calculation process calculated based on the said fixed bending degree of each of the said 2 bending degree fixed area.
請求項5に記載の道路形状データ作成方法において、
前記緩和曲線形状演算工程は、
前記緩和曲線区間の形状をクロソイド曲線と仮定して演算する道路形状データ作成方法。
In the road shape data creation method according to claim 5,
The relaxation curve shape calculation step includes:
A road shape data creation method for calculating on the assumption that the shape of the relaxation curve section is a clothoid curve.
請求項5又は請求項6に記載の道路形状データ作成方法において、
前記緩和曲線形状演算工程は、
前記隣り合う2つの屈曲度一定区間の屈曲方向が異なる場合、前記2つの屈曲度一定区間を結ぶ区間内において前記屈曲度が直線区間に対応する値となる中間位置を決定し、
前記2つの屈曲度一定区間のうち第1屈曲度一定区間に連続する第1緩和曲線区間の形状を、前記第1屈曲度一定区間の前記第1緩和曲線区間と接続する側の前記端点位置、前記第1屈曲度一定区間の前記一定屈曲度、及び、前記中間位置に基づいて演算するとともに、
前記2つの屈曲度一定区間のうち第2屈曲度一定区間に連続する第2緩和曲線区間の形状を、前記第2屈曲度一定区間の前記第2緩和曲線区間と接続する側の前記端点位置、前記第2屈曲度一定区間の前記一定屈曲度、及び、前記中間位置に基づいて演算し、
前記2つの屈曲度一定区間を結ぶ前記緩和曲線区間の形状を、前記第1、第2緩和曲線区間を前記中間位置で接続して得られる形状に演算する道路形状データ作成方法。
In the road shape data creation method according to claim 5 or 6,
The relaxation curve shape calculation step includes:
When the adjacent two bending degree constant sections have different bending directions, an intermediate position where the bending degree becomes a value corresponding to a straight section in a section connecting the two constant bending degree sections is determined.
The end point position on the side connecting the shape of the first relaxation curve section that is continuous to the first bending degree constant section of the two bending degree constant sections to the first relaxation curve section of the first bending degree constant section, While calculating based on the constant bending degree of the first bending degree constant section and the intermediate position,
The end point position on the side connecting the shape of the second relaxation curve section that continues to the second bending degree constant section of the two constant bending degree sections to the second relaxation curve section of the second bending degree constant section, Based on the constant bending degree of the second bending degree constant section and the intermediate position,
A road shape data creation method for calculating a shape of the relaxation curve section connecting the two sections with a constant degree of bending to a shape obtained by connecting the first and second relaxation curve sections at the intermediate position.
道路上の複数の位置データを取得する道路位置データ取得手段と、
前記位置データに対応する地点における前記道路の屈曲度を取得する屈曲度取得手段と、
前記位置データに対応する地点の進行に対する前記屈曲度の変化状態に基づいて、前記屈曲度が一定である屈曲度一定区間を識別する屈曲度一定区間識別手段と、
前記道路のカーブ区間に対応する前記屈曲度一定区間の一定の屈曲度を取得する一定屈曲度取得手段と、
前記道路のカーブ区間に対応する前記屈曲度一定区間の端点の位置を決定する端点位置決定手段と、
を備えた道路形状データ取得装置。
Road position data acquisition means for acquiring a plurality of position data on the road;
Bend degree acquisition means for acquiring the bend degree of the road at a point corresponding to the position data;
A bending degree constant section identifying means for identifying a bending degree constant section in which the bending degree is constant based on a change state of the bending degree with respect to the progress of a point corresponding to the position data;
A constant bending degree acquisition means for acquiring a constant bending degree of the bending degree constant section corresponding to the curve section of the road;
End point position determining means for determining the position of the end point of the constant degree of bending section corresponding to the curve section of the road;
A road shape data acquisition device.
請求項8に記載の道路形状データ取得装置であって、
前記屈曲度一定区間識別手段が識別する隣り合う2つの前記屈曲度一定区間を結ぶ緩和曲線区間の形状を、前記2つの屈曲度一定区間の前記緩和曲線区間と接続する側のそれぞれの前記端点位置、及び、前記2つの屈曲度一定区間のそれぞれの前記一定屈曲度に基づいて演算する緩和曲線形状演算手段を備えた道路形状データ取得装置。
The road shape data acquisition device according to claim 8,
Each of the end point positions on the side connecting the two relaxation degree curve sections connecting the two constant bending degree sections identified by the constant bending degree section identification means to the relaxation curve section of the two constant bending degree sections And a road shape data acquisition device comprising a relaxation curve shape calculation means for calculating based on the constant bending degree of each of the two constant bending degree sections.
JP2009182668A 2009-08-05 2009-08-05 Method for creating road shape data and device for acquiring road shape data Abandoned JP2011034508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182668A JP2011034508A (en) 2009-08-05 2009-08-05 Method for creating road shape data and device for acquiring road shape data

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182668A JP2011034508A (en) 2009-08-05 2009-08-05 Method for creating road shape data and device for acquiring road shape data

Publications (1)

Publication Number Publication Date
JP2011034508A true JP2011034508A (en) 2011-02-17

Family

ID=43763486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182668A Abandoned JP2011034508A (en) 2009-08-05 2009-08-05 Method for creating road shape data and device for acquiring road shape data

Country Status (1)

Country Link
JP (1) JP2011034508A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137354A1 (en) * 2011-04-08 2012-10-11 トヨタ自動車株式会社 Road shape inferring system
JP2013015735A (en) * 2011-07-05 2013-01-24 Denso It Laboratory Inc Map creation device, method, and in-vehicle navigation device
JP2019086331A (en) * 2017-11-02 2019-06-06 株式会社トヨタマップマスター Computing device, computing method and computing program, and recording medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137354A1 (en) * 2011-04-08 2012-10-11 トヨタ自動車株式会社 Road shape inferring system
CN103459227A (en) * 2011-04-08 2013-12-18 丰田自动车株式会社 Road shape inferring system
JP2013015735A (en) * 2011-07-05 2013-01-24 Denso It Laboratory Inc Map creation device, method, and in-vehicle navigation device
JP2019086331A (en) * 2017-11-02 2019-06-06 株式会社トヨタマップマスター Computing device, computing method and computing program, and recording medium

Similar Documents

Publication Publication Date Title
CN109415062B (en) Adaptive passenger comfort enhancement in autonomous vehicles
JP4950494B2 (en) Traveling lane estimation apparatus and traveling lane estimation method
JP4832903B2 (en) Navigation device and current position calculation method
EP3379531A1 (en) Training method and apparatus for speech recognition
CN109033966B (en) Detour detection model training method and device, and detour detection method and device
JP2018087763A (en) Travelable region setting device and setting method of travelable region
US9738279B2 (en) Method for determining a lane course of a lane
JP2011501224A5 (en)
JP6278381B2 (en) Corner information providing apparatus and corner information providing method
JP2011501173A5 (en)
US20080228389A1 (en) Route-selection-supporting device, method, and program
JP2001093095A (en) Road shape estimating device and curve approach controller using the same
JP2008076593A (en) Simplified map generating apparatus and simplified map generation method
JP2011034508A (en) Method for creating road shape data and device for acquiring road shape data
WO2017124331A1 (en) Navigation apparatus and method
CN115027495B (en) Trust enhancement method and equipment for intelligent driving system
CN112009460B (en) Vehicle control method, device, equipment and storage medium
JP2014197351A (en) Driving state determination system, driving state determination method and driving state determination program
JP2004294953A (en) Road shape restoring device
WO2020059555A1 (en) Learning device, estimation device, learning method, estimation method, and program
CN105765346B (en) Map display system, method and recording medium
CN112578796B (en) Curvature constraint-based guide line generation method and device
WO2017199999A1 (en) Map display system and map display program
CN115372020A (en) Automatic driving vehicle test method, device, electronic equipment and medium
JP2007192581A (en) Road curvature calculating method and navigation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20120713

Free format text: JAPANESE INTERMEDIATE CODE: A621

A762 Written abandonment of application

Effective date: 20130617

Free format text: JAPANESE INTERMEDIATE CODE: A762