JP2011033576A - Method of determining arsenic - Google Patents

Method of determining arsenic Download PDF

Info

Publication number
JP2011033576A
JP2011033576A JP2009182611A JP2009182611A JP2011033576A JP 2011033576 A JP2011033576 A JP 2011033576A JP 2009182611 A JP2009182611 A JP 2009182611A JP 2009182611 A JP2009182611 A JP 2009182611A JP 2011033576 A JP2011033576 A JP 2011033576A
Authority
JP
Japan
Prior art keywords
arsenic
solution
sample
concentration
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009182611A
Other languages
Japanese (ja)
Inventor
Akira Oki
章 大木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Priority to JP2009182611A priority Critical patent/JP2011033576A/en
Publication of JP2011033576A publication Critical patent/JP2011033576A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for determining arsenic which enables the concentration of arsenic in wooden building materials to be measured easily and accurately, without having to use expensive equipment. <P>SOLUTION: A sample 2 is placed in an ash-free filter 1. A wooden building material containing CCA etc. after drying is crushed to 100 mesh or smaller and used as the sample 2. The ash-free filter 1 is longitudinally folded in three and laterally folded into three portions. The ash-free filter 1 enveloping the sample 2 is placed in a platinum cage 4 mounted to a stopper part (glass plug) 3 of a combustion flask. A small quantity of absorption liquid 6, for example, 5 ml of a 1 mM solution of hydrochloric acid, is place in a 500 ml conical flask 5 of the combustion flask, and oxygen is filled therein. The ash-free filter 1 is lit, and the platinum cage 4, to which the ash-free filter 1 is fixed, is inserted in the conical flask 5 to burn the sample 2 inside and to make an absorbent 6 absorb arsenic generated by the burning. In this way, arsenic is turned into a solution in this way. Thereafter, the absorbent 6 which has absorbed arsenic is analyzed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、木材に含まれるヒ素の定量に好適なヒ素の定量方法に関する。   The present invention relates to a method for quantifying arsenic suitable for quantifying arsenic contained in wood.

近年、クロム化ヒ酸銅(CCA)等のヒ素系木材防腐剤を含む木材のリサイクル及び処分の際に、その木材に含まれるヒ素の濃度を正確に測定することが要求されている。しかし、このような木材では、ヒ素濃度の偏在性が大きく、ヒ素濃度を正確に測定することが困難である。従来のヒ素濃度の測定方法としては、木材の表面においてCCA中の銅の発色を利用する方法、近赤外線の反射を利用する方法等がある。しかしながら、これらの方法の定量性は低い。また、蛍光X線を用いる携帯型簡易定量装置が市販されているが、この装置は非常に高価である。また、マイクロ波照射−酸分解法とよばれる方法もあるが、この方法でも、高価な装置を用いる必要がある。また、この装置を携帯することは困難である。   In recent years, when recycling and disposal of wood containing arsenic wood preservatives such as chromated copper arsenate (CCA), it is required to accurately measure the concentration of arsenic contained in the wood. However, such wood has a large uneven distribution of arsenic concentration, and it is difficult to accurately measure the arsenic concentration. As a conventional method for measuring the arsenic concentration, there are a method using the color of copper in CCA on the surface of wood, a method using reflection of near infrared rays, and the like. However, the quantitativeness of these methods is low. Moreover, although the portable simple fixed_quantity | assay apparatus using a fluorescent X ray is marketed, this apparatus is very expensive. Also, there is a method called microwave irradiation-acid decomposition method, but this method also requires an expensive apparatus. Also, it is difficult to carry this device.

特開2003−270137号公報JP 2003-270137 A 特開2005−127932号公報JP 2005-127932 A

本発明の目的は、高価な装置を用いずに簡便且つ正確に木材中のヒ素濃度を測定することができるヒ素の定量方法を提供することにある。   An object of the present invention is to provide a method for quantifying arsenic that can easily and accurately measure the arsenic concentration in wood without using an expensive apparatus.

本発明に係るヒ素の定量方法は、ヒ素を含有する試料を酸素フラスコ燃焼法により燃焼させることにより、前記試料から発生したヒ素が溶解した溶液を得る工程と、前記溶液中のヒ素濃度を測定する工程と、を有することを特徴とする。   The method for quantifying arsenic according to the present invention comprises a step of obtaining a solution in which arsenic generated from the sample is dissolved by burning a sample containing arsenic by an oxygen flask combustion method, and measuring an arsenic concentration in the solution. And a process.

本発明によれば、酸素フラスコ燃焼法を採用してヒ素を含む溶液を取得するので、正確且つ簡易な分析を行うことができる。   According to the present invention, since an oxygen flask combustion method is employed to obtain a solution containing arsenic, an accurate and simple analysis can be performed.

本発明の実施形態に係るヒ素の溶液化方法を示す模式図である。It is a mimetic diagram showing the solution method of arsenic concerning the embodiment of the present invention. 吸収液6中のヒ素の分析方法を示すフローチャートである。4 is a flowchart showing a method for analyzing arsenic in the absorbent 6.

以下、本発明の実施形態について添付の図面を参照して具体的に説明する。図1は、本発明の実施形態に係るヒ素の溶液化方法を示す模式図である。   Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic view showing a arsenic solution method according to an embodiment of the present invention.

本実施形態では、先ず、図1に示すように、例えば無灰ろ紙1の中に試料2を置く。試料2としては、例えばCCA等のヒ素系木材防腐剤を含む乾燥後の木材を100メッシュ以下に粉砕したものを用いる。試料2の質量は、例えば0.01gとする。   In this embodiment, first, as shown in FIG. 1, for example, a sample 2 is placed in ashless filter paper 1. As the sample 2, for example, a material obtained by pulverizing dried wood containing an arsenic wood preservative such as CCA to 100 mesh or less is used. The mass of the sample 2 is, for example, 0.01 g.

試料2を無灰ろ紙1内に置いた後には、無灰ろ紙1を縦方向に三つ折りにする。その後、横方向に三つ折りにする。続いて、試料2を含包した無灰ろ紙1を、燃焼フラスコの共栓部(ガラス栓)3に取り付けた白金かご4に入れる。また、燃焼フラスコの500ml三角フラスコ5には、少量の吸収液6、例えば1mMの塩酸5mlを入れ、更に酸素を満たしておく。そして、無灰ろ紙1に点火し、無灰ろ紙1が固定された白金かご4を三角フラスコ5に挿入し、内部で試料2を燃焼させる。   After the sample 2 is placed in the ashless filter paper 1, the ashless filter paper 1 is tri-folded in the vertical direction. Then, fold it in the horizontal direction. Subsequently, the ashless filter paper 1 containing the sample 2 is put into a platinum basket 4 attached to the stopper (glass stopper) 3 of the combustion flask. A 500 ml Erlenmeyer flask 5 of the combustion flask is filled with a small amount of absorption liquid 6, for example, 5 ml of 1 mM hydrochloric acid, and further filled with oxygen. Then, the ashless filter paper 1 is ignited, the platinum basket 4 to which the ashless filter paper 1 is fixed is inserted into the Erlenmeyer flask 5, and the sample 2 is burned inside.

燃焼終了後に三角フラスコ5を傾斜させて2分間振盪し、その後30分間放置することにより、燃焼により発生したヒ素を吸収液6に吸収させる。このようにして、ヒ素を溶液化する。   After completion of combustion, the Erlenmeyer flask 5 is tilted and shaken for 2 minutes, and then left to stand for 30 minutes, so that arsenic generated by the combustion is absorbed by the absorbent 6. In this way, arsenic is made into a solution.

その後、ヒ素を吸収した吸収液6をろ過後、分析を行う。この分析では、例えば水素化物発生原子吸光分析(HGAAS)を行う。   Thereafter, the absorbent 6 that has absorbed arsenic is filtered and then analyzed. In this analysis, for example, hydride generation atomic absorption analysis (HGAAS) is performed.

酸素フラスコ燃焼法では、1回の燃焼操作に要する時間は、数分間程度(放置時間を含めると30分間程度)である。このため、短時間でヒ素の溶液化を行うことが可能である。また、各段階の処理も容易であり、特別な習熟がなくとも正確な操作を行うことが可能である。従って、本実施形態によれば、容易且つ正確に木材中のヒ素を溶液化することができる。   In the oxygen flask combustion method, the time required for one combustion operation is about several minutes (about 30 minutes when the standing time is included). For this reason, arsenic solution can be formed in a short time. In addition, processing at each stage is easy, and it is possible to perform an accurate operation without special proficiency. Therefore, according to this embodiment, arsenic in wood can be easily and accurately made into a solution.

しかし、水素化物発生原子吸光分析(HGAAS)に必要な装置は搬送しにくく、より一層簡便な分析方法が好ましい。そこで、モリブデンブルー法による発色分析を行うことが好ましい。但し、吸収液6には、5価のヒ素及び5価のリン等が含まれているため、吸収液6をそのまま用いた場合、リンがヒ素と同程度の発色(吸光度)を示し、ヒ素の正確な定量が困難である。そこで、本実施形態では、次のようにして、ヒ素及びリンの総濃度を求め、更に、リンの濃度を求め、ヒ素及びリンの総濃度からリンの濃度を減じる。図2は、吸収液6中のヒ素の分析方法を示すフローチャートである。   However, an apparatus necessary for hydride generation atomic absorption spectrometry (HGAAS) is difficult to transport, and a simpler analysis method is preferable. Therefore, it is preferable to perform color analysis by the molybdenum blue method. However, since the absorption liquid 6 contains pentavalent arsenic, pentavalent phosphorus, and the like, when the absorption liquid 6 is used as it is, phosphorus exhibits the same color development (absorbance) as arsenic, Accurate quantification is difficult. Therefore, in the present embodiment, the total concentration of arsenic and phosphorus is obtained as follows, the concentration of phosphorus is further obtained, and the concentration of phosphorus is subtracted from the total concentration of arsenic and phosphorus. FIG. 2 is a flowchart showing a method for analyzing arsenic in the absorbent 6.

この分析方法では、先ず、吸収液6をろ過後、25mlに定溶し、この一部(例えば10ml)について、還元剤、例えば5質量%L−システイン溶液2mlを加える(ステップS11)。次いで、2分間の湯浴を行う(ステップS12)。このとき、浴の温度は、例えば75℃程度とする。この結果、リンの価数が5価に保持されたまま、ヒ素の価数が3価に変化する。その後、酸性モリブデン酸アンモニウム溶液(6M硝酸と3質量%モリブデン酸アンモニウムの5:2混合溶液)を適当量(例えば1.2ml)添加し、5分間程度放置する(ステップS13)。続いて、5質量%アスコルビン酸水溶液を、例えば1.2ml添加する(ステップS14)。そして、75℃の湯浴で3分間加熱し、その後、7分間〜10分間放置する(ステップS15)。   In this analysis method, first, the absorbent 6 is filtered and then dissolved in 25 ml, and a reducing agent, for example, 2 ml of a 5 mass% L-cysteine solution is added to a part (for example, 10 ml) (step S11). Subsequently, a hot water bath for 2 minutes is performed (step S12). At this time, the temperature of a bath shall be about 75 degreeC, for example. As a result, the valence of arsenic changes to trivalence while the valence of phosphorus is maintained at pentavalence. Thereafter, an appropriate amount (for example, 1.2 ml) of acidic ammonium molybdate solution (5: 2 mixed solution of 6M nitric acid and 3% by mass ammonium molybdate) is added and left for about 5 minutes (step S13). Then, 1.2 ml of 5 mass% ascorbic acid aqueous solution is added, for example (step S14). And it heats for 3 minutes with a 75 degreeC hot water bath, and is then left to stand for 7 minutes-10 minutes (step S15).

また、吸収液6の定溶後の一部(例えば10ml)に対しては、純水2mlを加えた後(ステップS21)、酸性モリブデン酸アンモニウム溶液を適当量(例えば1.2ml)添加し、5分間程度放置する(ステップS23)。続いて、5質量%アスコルビン酸水溶液を添加する(ステップS24)。そして、75℃の湯浴で3分間加熱し、その後、7分間〜10分間程度放置する(ステップS25)。   In addition, for a part of the absorbent 6 after the dissolution (for example, 10 ml), after adding 2 ml of pure water (step S21), an appropriate amount (for example, 1.2 ml) of an acidic ammonium molybdate solution is added, Leave for about 5 minutes (step S23). Then, 5 mass% ascorbic acid aqueous solution is added (step S24). And it heats for 3 minutes with a 75 degreeC hot water bath, and is then left to stand for about 7 minutes-10 minutes (step S25).

そして、ステップS15の処理により得られた液、及びステップS25の処理により得られた液について、分光光度計で波長が830nmの吸光度を測定する。ステップS15の処理により得られた液では、ヒ素の価数が3価になっているため、ヒ素はモリブデンブルー法に不活性であり、リンの濃度のみが測定される。一方、ステップS25の処理により得られた液では、ヒ素及びリンの総濃度が測定される。そこで、ヒ素及びリンの総濃度からリンの濃度を減算することにより、ヒ素の濃度を得ることができる。   And about the liquid obtained by the process of step S15, and the liquid obtained by the process of step S25, the light absorbency whose wavelength is 830 nm is measured with a spectrophotometer. In the liquid obtained by the process of step S15, since the valence of arsenic is trivalent, arsenic is inactive to the molybdenum blue method, and only the phosphorus concentration is measured. On the other hand, the total concentration of arsenic and phosphorus is measured in the liquid obtained by the process of step S25. Therefore, the concentration of arsenic can be obtained by subtracting the concentration of phosphorus from the total concentration of arsenic and phosphorus.

なお、吸収液6には、ヒ素及びリンの他にもケイ素、クロム、鉄及び銅等の種々の元素が含まれているが、これらによってはヒ素及びリンの濃度結果に影響は生じない。   The absorbing solution 6 contains various elements such as silicon, chromium, iron, and copper in addition to arsenic and phosphorus, but these do not affect the arsenic and phosphorus concentration results.

このような発色分析を行うためには、発色試薬及び吸光光度計があればよく、水素化物発生原子吸光分析(HGAAS)に必要な装置よりも搬送しやすい。このため、当該木材がある場所、例えば建造物の解体作業が行われている場所及び木材の廃棄処理を行おうとしている場所等においてヒ素の定量分析を行うことが容易となる。つまり、分析対象である木材から試料を取り出して分析施設等まで搬送してくる必要がなくなる。   In order to perform such color development analysis, a color development reagent and an absorptiometer are sufficient, and it is easier to transport than a device necessary for hydride generation atomic absorption analysis (HGAAS). For this reason, it becomes easy to perform a quantitative analysis of arsenic in a place where the wood is present, for example, a place where a building is being demolished or a place where wood is being disposed of. That is, it is not necessary to take a sample from the wood to be analyzed and transport it to an analysis facility or the like.

次に、本願発明者が実際に行った実験の結果について説明する。   Next, the results of experiments actually performed by the present inventors will be described.

この実験では、先ず、CCAを含む5種類の木材(試料No.1〜No.5)に対して、上述の酸素フラスコ燃焼法を用いたヒ素の溶液化を行った。次いで、各試料から得られた吸収液について、水素化物発生原子吸光分析によるヒ素濃度の定量を行った。また、各試料から得られた吸収液について、上述の発色分析によるヒ素濃度の定量も行った。更に、マイクロ波照射−酸分解法によるヒ素濃度の定量も行った。これらの結果を表1に示す。   In this experiment, first, arsenic solution using the above-mentioned oxygen flask combustion method was performed on five kinds of wood (samples No. 1 to No. 5) containing CCA. Next, the absorption liquid obtained from each sample was quantified for arsenic concentration by hydride generation atomic absorption spectrometry. The absorption liquid obtained from each sample was also quantified for the arsenic concentration by the color development analysis described above. Furthermore, the arsenic concentration was also determined by microwave irradiation-acid decomposition method. These results are shown in Table 1.

Figure 2011033576
Figure 2011033576

表1に示すように、水素化物発生原子吸光分析を行った場合も、発色分析を行った場合も、マイクロ波照射−酸分解法による測定の結果と同等の結果を得ることができた。   As shown in Table 1, in the case of performing hydride generation atomic absorption analysis and in the case of performing color development analysis, a result equivalent to the measurement result by microwave irradiation-acid decomposition method could be obtained.

Claims (4)

ヒ素を含有する試料を酸素フラスコ燃焼法により燃焼させることにより、前記試料から発生したヒ素が溶解した溶液を得る工程と、
前記溶液中のヒ素濃度を測定する工程と、
を有することを特徴とするヒ素の定量方法。
Burning a sample containing arsenic by an oxygen flask combustion method to obtain a solution in which arsenic generated from the sample is dissolved;
Measuring the arsenic concentration in the solution;
Arsenic quantification method characterized by having.
前記試料として、防腐剤を含む木材を用いることを特徴とする請求項1に記載のヒ素の定量方法。   The method for quantifying arsenic according to claim 1, wherein wood containing a preservative is used as the sample. 前記ヒ素濃度の測定をモリブデンブルー法により行うことを特徴とする請求項1又は2に記載のヒ素の定量方法。   The method for quantifying arsenic according to claim 1 or 2, wherein the arsenic concentration is measured by a molybdenum blue method. 前記ヒ素濃度を測定する工程は、
前記溶液から第1の溶液及び第2の溶液を取り出す工程と、
前記第1の溶液中のヒ素及びリンの総濃度をモリブデンブルー法により測定する工程と、
前記第2の溶液の還元処理を行うことにより、前記第2の溶液中のリンの価数を5価に維持しながらヒ素の価数を5価から3価に変化させる工程と、
前記還元処理後の前記第2の溶液中のリンの濃度をモリブデンブルー法により測定する工程と、
前記第1の溶液から測定されたヒ素及びリンの総濃度から前記第2の溶液から測定されたリンの濃度を減じる工程と、
を有することを特徴とする請求項3に記載のヒ素の定量方法。
The step of measuring the arsenic concentration comprises
Removing the first solution and the second solution from the solution;
Measuring the total concentration of arsenic and phosphorus in the first solution by a molybdenum blue method;
Changing the valence of arsenic from pentavalent to trivalent while maintaining the valence of phosphorus in the second solution at pentavalence by reducing the second solution;
Measuring the concentration of phosphorus in the second solution after the reduction treatment by a molybdenum blue method;
Subtracting the concentration of phosphorus measured from the second solution from the total concentration of arsenic and phosphorus measured from the first solution;
The method for quantifying arsenic according to claim 3, wherein:
JP2009182611A 2009-08-05 2009-08-05 Method of determining arsenic Pending JP2011033576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009182611A JP2011033576A (en) 2009-08-05 2009-08-05 Method of determining arsenic

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009182611A JP2011033576A (en) 2009-08-05 2009-08-05 Method of determining arsenic

Publications (1)

Publication Number Publication Date
JP2011033576A true JP2011033576A (en) 2011-02-17

Family

ID=43762774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009182611A Pending JP2011033576A (en) 2009-08-05 2009-08-05 Method of determining arsenic

Country Status (1)

Country Link
JP (1) JP2011033576A (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868297A (en) * 1971-12-01 1973-09-18
JPH03177302A (en) * 1989-11-30 1991-08-01 E I Du Pont De Nemours & Co Purification of hydrogen fluoride
JPH09157120A (en) * 1995-12-08 1997-06-17 Furukawa Co Ltd Production of wood preservative
JPH09274030A (en) * 1996-04-04 1997-10-21 Kikushige Ono Pretreatment of analytical sample by combustion pipe
JP2003066025A (en) * 2001-08-28 2003-03-05 Tohoku Techno Arch Co Ltd Simple detection method of trace quantity of arsenic in water
JP2004301609A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Measuring method and device for arsenic concentration
JP2006167617A (en) * 2004-12-16 2006-06-29 Kobe Steel Ltd Treatment method of soil polluted with arsenic
JP2007024634A (en) * 2005-07-14 2007-02-01 Tohoku Univ High-sensitivity absorptiometric detection method of arsenic, phosphorus and silica

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4868297A (en) * 1971-12-01 1973-09-18
JPH03177302A (en) * 1989-11-30 1991-08-01 E I Du Pont De Nemours & Co Purification of hydrogen fluoride
JPH09157120A (en) * 1995-12-08 1997-06-17 Furukawa Co Ltd Production of wood preservative
JPH09274030A (en) * 1996-04-04 1997-10-21 Kikushige Ono Pretreatment of analytical sample by combustion pipe
JP2003066025A (en) * 2001-08-28 2003-03-05 Tohoku Techno Arch Co Ltd Simple detection method of trace quantity of arsenic in water
JP2004301609A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Measuring method and device for arsenic concentration
JP2006167617A (en) * 2004-12-16 2006-06-29 Kobe Steel Ltd Treatment method of soil polluted with arsenic
JP2007024634A (en) * 2005-07-14 2007-02-01 Tohoku Univ High-sensitivity absorptiometric detection method of arsenic, phosphorus and silica

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6007015697; 鉄鋼プロセス化学分析技術のスキルフリー化の研究 平成15年 , 2003, Page.63-68 *
JPN6012062338; 第43回日本水環境学会年会プログラム , 200903, p.21 *
JPN6013008913; A. D. Campbell: 'Determination of Arsenic in Organic Compounds' Mikrochimica Acta Vol.1/No.1-2, 1980, 139-145 *

Similar Documents

Publication Publication Date Title
Antes et al. Determination of toxic elements in coal by ICP-MS after digestion using microwave-induced combustion
Zhang et al. Simultaneous determination of arsenic, cadmium and lead in plant foods by ICP-MS combined with automated focused infrared ashing and cold trap
da Silva Gomes et al. A novel strategy for preparing calibration standards for the analysis of plant materials by laser-induced breakdown spectroscopy: a case study with pellets of sugar cane leaves
Wang et al. Interaction mechanism of Eu (III) with MX-80 bentonite studied by batch, TRLFS and kinetic desorption techniques
Mateo et al. Characterization of inorganic species in coal by laser-induced breakdown spectroscopy using UV and IR radiations
Sarıca et al. Speciation and determination of inorganic mercury and methylmercury by headspace single drop microextraction and electrothermal atomic absorption spectrometry in water and fish
Alvarez et al. Determination of calcium, potassium, manganese, iron, copper and zinc levels in representative samples of two onion cultivars using total reflection X-ray fluorescence and ultrasound extraction procedure
Picoloto et al. Combining pyrohydrolysis and ICP-MS for bromine and iodine determination in airborne particulate matter
Seidi et al. Low voltage electrically stimulated lab-on-a-chip device followed by red-green-blue analysis: a simple and efficient design for complicated matrices
Madden et al. Investigation of ultraviolet photolysis vapor generation with in-atomizer trapping graphite furnace atomic absorption spectrometry for the determination of mercury
Chen et al. Simultaneous determination of trace cadmium and lead in single human hair by tungsten electrothermal vaporization-flame atomic fluorescence spectrometry
Midander et al. The cobalt spot test–further insights into its performance and use
CN101738376B (en) Method for measuring graphite oven atomic absorption spectrum of arsenic element in steel
Jim et al. Sulfur determination in coal using molecular absorption in graphite filter vaporizer
Niazi Spectrophotometric simultaneous determination of uranium and thorium using partial least squares regression and orthogonal signal correction
Ren et al. Ultrasensitive and rapid colorimetric detection of urotropin boosted by effective electrostatic probing and non-covalent sampling
JP2002168789A (en) Detection method and device of polycyclic aromatic hydrocarbons
JP2011033576A (en) Method of determining arsenic
CN101614657B (en) Method for measuring arsenic in gas and dust discharged by roasting and burning furnace
Bakircioglu et al. A novel preconcentration method for determination of iron and lead using Chromosorb-103 and flame atomic absorption spectrometry
CN103149270B (en) Method for detecting grease by utilizing ion mobility spectrometer
CN106092933A (en) The method of gold content in activated carbon adsorption aas determination mud
CN101539524A (en) Fluorescence detection card and fluorescence detection method for organic contaminants in food and environment
Cruz et al. Microwave-induced self-ignition: An efficient approach for high purity graphite digestion and multitechnique halogen determination
Ngobeni et al. Transverse heated filter atomizer: atomic absorption determination of Pb and Cd in urine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Effective date: 20130415

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217