JP2011033347A - Assay of polyphenol - Google Patents

Assay of polyphenol Download PDF

Info

Publication number
JP2011033347A
JP2011033347A JP2009176726A JP2009176726A JP2011033347A JP 2011033347 A JP2011033347 A JP 2011033347A JP 2009176726 A JP2009176726 A JP 2009176726A JP 2009176726 A JP2009176726 A JP 2009176726A JP 2011033347 A JP2011033347 A JP 2011033347A
Authority
JP
Japan
Prior art keywords
polyphenol
concentration
sample
cerium
hydrogen peroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009176726A
Other languages
Japanese (ja)
Other versions
JP5317118B2 (en
Inventor
Koji Tsugukuni
孝司 継国
Takafumi Shigemune
尚文 重宗
Motoichi Nakayama
素一 中山
Hajime Tokuda
一 徳田
Yoshihisa Miyamoto
敬久 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Kyushu University NUC
Original Assignee
Kao Corp
Kyushu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp, Kyushu University NUC filed Critical Kao Corp
Priority to JP2009176726A priority Critical patent/JP5317118B2/en
Publication of JP2011033347A publication Critical patent/JP2011033347A/en
Application granted granted Critical
Publication of JP5317118B2 publication Critical patent/JP5317118B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an assay of polyphenol of measuring concentration of polyphenol in a sample rapidly by simple operation, since hydrogen peroxide generated from the polyphenol itself has not been utilized for assay of the polyphenol and nothing is known about a relationship between crystal matters formed by reaction between hydrogen peroxide and cerium, and concentration of polyphenol, while a method of visualizing localization of hydrogen peroxide in plants and leukocytes by utilizing formation of crystalline cerium perhydroxide (CP) by reaction between the hydrogen peroxide and cerium has been reported, and also it has been reported that polyphenol represented by catechins generates hydrogen peroxide from neutral to alkaline regions. <P>SOLUTION: By the method of assay of polyphenol, the concentration of polyphenol is calculated by allowing a cerium compound to act on a sample containing polyphenol and assaying generated crystal matters. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、セリウム化合物を用いたポリフェノールの定量法に関する。   The present invention relates to a method for quantifying polyphenols using a cerium compound.

ポリフェノールは、植物の果実や種子に含まれる色素、苦味成分の代表的なものとして知られ、古くから食品や化粧品に使われている。近年では、いわゆる「フレンチパラドックス」を背景とした赤ワインブームや、茶カテキン類の体脂肪蓄積抑制効果など、ポリフェノールの健康価値が注目されている(非特許文献1)。また、茶カテキン類に代表されるポリフェノールは、黄色ブドウ球菌や腸炎ビブリオ等の食中毒細菌、薬剤耐性細菌や植物病原菌に有効であることが報告されている(特許文献1−5)。   Polyphenols are known as representative pigments and bitter components contained in plant fruits and seeds, and have been used for food and cosmetics since ancient times. In recent years, the health value of polyphenols such as the red wine boom against the background of so-called “French paradox” and the body fat accumulation-inhibiting effect of tea catechins has attracted attention (Non-Patent Document 1). In addition, polyphenols typified by tea catechins have been reported to be effective against food poisoning bacteria such as Staphylococcus aureus and Vibrio parahaemolyticus, drug resistant bacteria, and plant pathogens (Patent Documents 1-5).

試料中の総ポリフェノールを測定する方法としては、酒石酸鉄吸光光度法、フォーリン・デニス法及びフォーリン・チオカルト法が知られている。これらの方法は、試料中に含まれる総ポリフェノール量を発色的に定量する方法である。また、フラボノール類を測定する方法として、HPLCによる分離分析法が知られている(特許文献6)。
しかし、比色による方法では、試料液の着色が測定の障害になる場合があり、また反応に数時間要するといった欠点を有する。
Known methods for measuring total polyphenol in a sample include iron tartrate absorptiometry, the foreign dennis method, and the foreign thiocult method. These methods are methods for quantitatively determining the total amount of polyphenol contained in a sample. Moreover, the separation analysis method by HPLC is known as a method of measuring flavonols (patent document 6).
However, the colorimetric method has the disadvantages that the coloration of the sample solution may hinder measurement, and the reaction takes several hours.

従来、過酸化水素がセリウムと反応して結晶性のセリウムペルヒドロキシド(CP)を形成することを利用して、植物や白血球における過酸化水素の局在を可視化する手法が報告されている。この手法では、電子顕微鏡により過酸化水素の発生の有無、発生部位及び発生量を定量することができる(非特許文献2−5)。
一方、カテキン類に代表されるポリフェノールは、中性からアルカリ性域で過酸化水素を発生することが報告されている(非特許文献6)。
しかしながら、これまでポリフェノールの定量にこれ自体から生じる過酸化水素を利用したものはなく、また、過酸化水素とセリウムとが反応して形成される結晶物と、ポリフェノール濃度との間にどのような関係があるのか全く知られていない。
Conventionally, there has been reported a technique for visualizing the localization of hydrogen peroxide in plants and leukocytes by utilizing the fact that hydrogen peroxide reacts with cerium to form crystalline cerium perhydroxide (CP). In this technique, the presence / absence, generation site, and generation amount of hydrogen peroxide can be quantified with an electron microscope (Non-patent Documents 2-5).
On the other hand, polyphenols represented by catechins have been reported to generate hydrogen peroxide in a neutral to alkaline region (Non-patent Document 6).
However, no hydrogen peroxide generated by itself has been used for the determination of polyphenols, and what kind of crystallinity is formed between the reaction between hydrogen peroxide and cerium and the concentration of polyphenols? It is not known at all whether there is a relationship.

特開平2−276562号公報JP-A-2-276562 特開平2−117608号公報Japanese Patent Laid-Open No. 2-117608 特開平3−246227号公報JP-A-3-246227 特開平8−38133号公報JP-A-8-38133 特開2000−328443号公報JP 2000-328443 A 特開2009−000098号公報JP 2009-000098 A

Shahidi F, Natural Antioxidant, Chemistry, Health Effects and Application, AOCS press, 1997Shahidi F, Natural Antioxidant, Chemistry, Health Effects and Application, AOCS press, 1997 J. Electr. Microsc. Technol. Med. Biol.21(1), 7-11, 2007J. Electr. Microsc. Technol. Med. Biol. 21 (1), 7-11, 2007 医学生物学電子顕微鏡技術学会第24回予稿集 第19頁、平成20年Medical Biological Electron Microscope Society 24th Proceedings, page 19, 2008 医学生物学電子顕微鏡技術学会第24回予稿集 第20頁、平成20年24th Proceedings of the Society of Medical Biology and Electron Microscopy Technology, page 20, 2008 医学生物学電子顕微鏡技術学会第23回予稿集 第45頁、平成19年The 23rd Preliminary Proceedings of the Society for Medical Biology and Electron Microscopy, page 45, 2007 Biol. Pharm. Bull. 27(3), 277-281, 2004Biol. Pharm. Bull. 27 (3), 277-281, 2004

本発明は、簡便な操作で、迅速に試料中のポリフェノール濃度を測定できるポリフェノールの定量法を提供することに関する。   The present invention relates to providing a polyphenol quantification method capable of quickly measuring the polyphenol concentration in a sample by a simple operation.

本発明者らは、ポリフェノール濃度と、当該ポリフェノールから発生した過酸化水素とセリウムとが反応して形成される結晶物の量との間に極めて高い相関性があることを見出した。そして、ポリフェノールを含有する試料にセリウムを作用させて生成された結晶物の量を、予め求めた結晶物の量とポリフェノールの濃度との関係に照らし合わせることで、試料中のポリフェノール濃度を定量できることを見出した。   The present inventors have found that there is a very high correlation between the concentration of polyphenol and the amount of crystals formed by the reaction of hydrogen peroxide and cerium generated from the polyphenol. And the amount of polyphenols in the sample can be quantified by comparing the amount of crystals produced by the action of cerium on the sample containing polyphenols against the relationship between the amount of crystals obtained in advance and the concentration of polyphenols. I found.

すなわち、本発明は、ポリフェノールを含有する試料にセリウム化合物を作用させ、生成した結晶物を定量することによってポリフェノールの濃度を算出することを特徴とするポリフェノールの定量法を提供するものである。   That is, the present invention provides a polyphenol quantification method characterized in that the concentration of polyphenol is calculated by allowing a cerium compound to act on a sample containing polyphenol and quantifying the produced crystal.

本発明によれば、試料中のポリフェノール濃度を簡便・迅速に算出することができる。   According to the present invention, the polyphenol concentration in a sample can be calculated easily and quickly.

生成した結晶物の量とカテキン濃度との関係を示すグラフである。(a)EGCg、(b)EGCIt is a graph which shows the relationship between the quantity of the produced | generated crystal substance, and catechin density | concentration. (A) EGCg, (b) EGC 生成した結晶物の量とカテキン濃度との関係を示すグラフである。(c)ECg、(d)ECIt is a graph which shows the relationship between the quantity of the produced | generated crystal substance, and catechin density | concentration. (C) ECg, (d) EC 試料に塩化セリウム添加した後の吸光度の経時変化を示すグラフである。It is a graph which shows the time-dependent change of the light absorbency after adding cerium chloride to a sample. 生成した結晶物の量とクロロゲン酸濃度との関係を示すグラフである。It is a graph which shows the relationship between the quantity of the produced | generated crystal substance, and chlorogenic acid concentration. 本発明方法によるEGCgの定量結果と既存法による定量結果を比較した図である。It is the figure which compared the quantitative result of EGCg by the method of this invention, and the quantitative result by the existing method. 本発明方法によるEGCgの定量値を100とした時の既存法による定量値を示す図である。It is a figure which shows the quantitative value by the existing method when the quantitative value of EGCg by the method of this invention is set to 100. FIG. 抗酸化剤存在下でのEGCgの定量結果を示すグラフである。(a)pH8.0、(b)pH5.0It is a graph which shows the fixed_quantity | quantitative_assay result of EGCg in antioxidant presence. (A) pH 8.0, (b) pH 5.0

本発明に用いられるポリフェノールを含有する試料としては、ポリフェノールを含有するものであれば特に制限されず、例えば茶抽出液、果汁、コーヒー抽出液、ココア飲料その他飲食品などが挙げられる。ポリフェノールを含有する試料には、ポリフェノールの他に、例えば軟化剤、乳化剤、防腐剤、香科、安定剤、着色剤、紫外線吸収剤、抗酸化剤、保湿剤、増粘剤等の各種添加剤、食品素材等が含まれていてもよい。
試料中のポリフェノールの含有量は、特に限定されるものではないが、通常、試料中に溶解した状態で0.001質量%程度以上であるのが好適である。また、所望により、試料を緩衝液などの適当な溶媒に溶解又は分散させて用いてもよい。緩衝液としては、例えばHEPES Bufferなどのグッドバッファーが挙げられる。
The polyphenol-containing sample used in the present invention is not particularly limited as long as it contains polyphenol, and examples thereof include tea extract, fruit juice, coffee extract, cocoa beverage, and other foods and drinks. In addition to polyphenols, samples containing polyphenols include various additives such as softeners, emulsifiers, preservatives, fragrances, stabilizers, colorants, ultraviolet absorbers, antioxidants, humectants, thickeners, etc. , Food materials and the like may be included.
The content of polyphenol in the sample is not particularly limited, but usually it is preferably about 0.001% by mass or more in a dissolved state in the sample. If desired, the sample may be dissolved or dispersed in an appropriate solvent such as a buffer solution. Examples of the buffer include good buffers such as HEPES Buffer.

本発明の測定対象であるポリフェノールは過酸化水素を発生させるものである。そのようなポリフェノールとしては、フェニルカルボン酸系、リグナン系、クルクミン系、クマリン系又はフラボノイド系のポリフェノールが挙げられ、具体的には、フェニルカルボン酸系のポリフェノールとして、クロロゲン酸、カフェ酸又はフェルラ酸が挙げられる。また、フラボノイド系として、カテキン類、アピゲニン、ルチン、ルテオリン、ケルセチン、ケンフェロール、イソラムネチン又はヘスペレチンが挙げられる。   The polyphenol to be measured according to the present invention generates hydrogen peroxide. Examples of such polyphenols include phenylcarboxylic acid-based, lignan-based, curcumin-based, coumarin-based, or flavonoid-based polyphenols. Specifically, phenylcarboxylic acid-based polyphenols include chlorogenic acid, caffeic acid, or ferulic acid. Is mentioned. Examples of flavonoids include catechins, apigenin, rutin, luteolin, quercetin, kaempferol, isorhamnetin, and hesperetin.

なかでも、フラボノイド系のポリフェノールが好ましく、特にカテキン類が好ましい。カテキン類としては、カテキン、カテキンガレート、ガロカテキン及びガロカテキンガレート等の非エピ体カテキン類並びに、エピカテキン、エピガロカテキン、エピカテキンガレート及びエピガロカテキンガレート等のエピ体カテキン類の1種以上が挙げられる。また、カテキン類は、重合体であってもよい。   Of these, flavonoid polyphenols are preferable, and catechins are particularly preferable. The catechins include one or more of non-epimeric catechins such as catechin, catechin gallate, gallocatechin and gallocatechin gallate, and epicatechins such as epicatechin, epigallocatechin, epicatechin gallate and epigallocatechin gallate. Can be mentioned. The catechins may be a polymer.

本発明において用いられるセリウム化合物は、過酸化水素と反応して結晶物を形成するものであればよく、例えば酢酸セリウム、塩化セリウム、硝酸セリウム、硫酸セリウムなどが挙げられる。なかでも、取扱性・反応性の点から塩化セリウムが好ましい。   The cerium compound used in the present invention only needs to react with hydrogen peroxide to form a crystal, and examples thereof include cerium acetate, cerium chloride, cerium nitrate, and cerium sulfate. Of these, cerium chloride is preferred from the viewpoint of handling and reactivity.

ポリフェノールを含有する試料にセリウム化合物を作用させる方法は、特に制限されないが、例えば試料に最終濃度で0.001〜1質量%、好ましくは0.01〜0.5質量%のセリウム化合物を添加、混合することにより行うのが好ましい。これにより、ポリフェノールから発生する過酸化水素とセリウムが反応し、セリウムの結晶物が生成される。この際、セリウム化合物は、前記と同様の緩衝液、イオン交換水などの適当な溶媒に溶解又は分散させて用いてもよい。   The method for allowing the cerium compound to act on the sample containing polyphenol is not particularly limited, but for example, 0.001-1 mass%, preferably 0.01-0.5 mass% of cerium compound is added to the sample at the final concentration, It is preferable to carry out by mixing. As a result, hydrogen peroxide generated from polyphenol reacts with cerium to produce a cerium crystal. In this case, the cerium compound may be used after being dissolved or dispersed in a suitable solvent such as the above buffer solution or ion-exchanged water.

反応温度は0〜40℃、反応時間は10秒〜20分程度が好ましい。また、反応液のpHは6.5以上、特にpH8〜12の範囲とするのが、ポリフェノールからの過酸化水素発生が良好である点から好ましい。なお、反応液のpHは、水酸化ナトリウムなどにより調整することができる。   The reaction temperature is preferably 0 to 40 ° C., and the reaction time is preferably about 10 seconds to 20 minutes. In addition, the pH of the reaction solution is preferably 6.5 or more, particularly in the range of pH 8 to 12, from the viewpoint of good generation of hydrogen peroxide from polyphenol. The pH of the reaction solution can be adjusted with sodium hydroxide or the like.

本発明において、生成した結晶物を定量する方法は、特に限定されないが、反応液の濁度を測定することにより行うのが好ましい。濁度を測定するには、例えば所定の吸収波長における試料の吸光度を測定すればよい。吸光波長は、好ましくは600nm〜660nmである。   In the present invention, the method for quantifying the produced crystal is not particularly limited, but it is preferably performed by measuring the turbidity of the reaction solution. In order to measure the turbidity, for example, the absorbance of the sample at a predetermined absorption wavelength may be measured. The absorption wavelength is preferably 600 nm to 660 nm.

上記により求めた結晶物の定量値を、予め既知濃度のポリフェノール試料を用いて求めた結晶物の量とポリフェノールの濃度との関係に照らし合わせることで、試料中のポリフェノール濃度を算出する。この両者の関係は、以下の方法により求めることができる。
先ず、既知濃度のポリフェノール試料に、前記と同様にセリウム化合物を添加、混合して結晶物を生成させる。ここで、ポリフェノール試料は、ポリフェノールを前記と同様の緩衝液などの適当な溶媒に溶解又は分散させて所定の濃度に希釈したものを用いることができる。
The polyphenol concentration in the sample is calculated by comparing the quantitative value of the crystal obtained as described above with the relationship between the amount of the crystal obtained in advance using a polyphenol sample having a known concentration and the concentration of polyphenol. The relationship between the two can be obtained by the following method.
First, a cerium compound is added to and mixed with a polyphenol sample having a known concentration in the same manner as described above to form a crystal. Here, the polyphenol sample may be prepared by dissolving or dispersing polyphenol in an appropriate solvent such as the above buffer solution and diluting to a predetermined concentration.

次いで、生成した結晶物を定量し、該定量値とポリフェノールの濃度をプロットする。さらに、ポリフェノール試料の濃度を変えて同様の操作を数回行い、結晶物の量とポリフェノールの濃度との関係を示すグラフを作成し、検量線とする。後記実施例に示すように、ポリフェノールの濃度に応じて生成する結晶物の量は増大する。すなわち、結晶物の量とポリフェノールの濃度とは相関関係にある。   Next, the produced crystal is quantified, and the quantitative value and the concentration of polyphenol are plotted. Further, the same operation is performed several times by changing the concentration of the polyphenol sample, and a graph showing the relationship between the amount of the crystalline substance and the concentration of the polyphenol is prepared as a calibration curve. As will be shown in the examples described later, the amount of crystallized matter generated increases with the concentration of polyphenol. That is, the amount of crystal and the concentration of polyphenol are correlated.

従って、生成した結晶物の量とポリフェノールの濃度との関係を示す検量線や関係式を予め作製しておけば、同様な方法でポリフェノールを含有する試料から生成した結晶物を定量し、その定量値を前記検量線や関係式と照らし合わせることで試料中のポリフェノールの濃度を知ることができる。また、予めポリフェノールの特定濃度に相当する箇所に目盛りや印などを付しておけば、結晶物の量がその箇所を超えるか超えないかにより、半定量的に評価することもできる。なお、反応時のpHや定量したいポリフェノールの種類により結晶物の量は異なるので、一つの系に対して一つの検量線が必要である。   Therefore, if a calibration curve or a relational expression showing the relationship between the amount of the produced crystal and the concentration of polyphenol is prepared in advance, the crystal produced from the sample containing polyphenol is quantified by the same method, and the quantification is performed. The concentration of polyphenol in the sample can be known by comparing the value with the calibration curve or the relational expression. In addition, if a scale or mark is attached to a location corresponding to a specific concentration of polyphenol in advance, it can be evaluated semi-quantitatively depending on whether the amount of the crystal exceeds or does not exceed the location. In addition, since the amount of the crystal varies depending on the pH during the reaction and the type of polyphenol to be quantified, one calibration curve is required for one system.

上記方法を利用して定量可能なポリフェノールの濃度は特に規定されないが1000ppm以下が好ましく、更に500ppm以下がより好ましい。   The concentration of polyphenol that can be quantified using the above method is not particularly limited, but is preferably 1000 ppm or less, and more preferably 500 ppm or less.

実施例
[試料]
EGCg;エピガロカテキンガレート(ニュートリションジャパン(株)商品名;テアビゴ)
EGC;エピガロカテキン(SIGMA社製)
ECg;エピカテキンガレート(SIGMA社製)
EC;エピカテキン(SIGMA社製)
CA;クロロゲン酸(Cayman CHEMICAL)
L(+)-アスコルビン酸ナトリウム 和光特級(和光純薬工業株式会社)
L(+)-アスコルビン酸 和光特級(和光純薬工業株式会社)
[緩衝液]
HEPES Buffer (Irvine Scientific)
Example [Sample]
EGCg: Epigallocatechin gallate (trade name of Nutrition Japan Co., Ltd .; Teabigo)
EGC: Epigallocatechin (manufactured by SIGMA)
ECg: Epicatechin gallate (SIGMA)
EC: Epicatechin (manufactured by SIGMA)
CA; chlorogenic acid (Cayman CHEMICAL)
L (+)-sodium ascorbate Wako Special Grade (Wako Pure Chemical Industries, Ltd.)
L (+)-Ascorbic acid Wako Special Grade (Wako Pure Chemical Industries, Ltd.)
[Buffer solution]
HEPES Buffer (Irvine Scientific)

実施例1 検量線の作製
(1)EGCg、EGC、ECg、ECの4種のカテキン溶液を0.1、0.05、0.025、0.0125、0.00625、0質量%の濃度になるようにpH6.0〜8.0の10mM HEPES Buffer(Irvine Scientific)にそれぞれ溶解して試料を調製後、96穴タイタープレート(Falcon)に0.18mLずつ分注した。分注した試料に、イオン交換水に溶解し1.0質量%に調製したCeCl3溶液を0.02mLずつ添加し、室温(25℃、以下同じ)で0、5、10、20、30、60分間静置した後、撹拌し、直ちに吸光度測定器(SPECTRA MAX190 Molecular Devices)にて吸光度(650nm)を測定した。
Example 1 Preparation of calibration curve
(1) Four kinds of catechin solutions of EGCg, EGC, ECg, and EC are added to 10 mM HEPES Buffer (Irvine Scientific) at pH 6.0 to 8.0 so that the concentration becomes 0.1, 0.05, 0.025, 0.0125, 0.00625, and 0% by mass. Each sample was prepared by dissolution and then dispensed in 0.18 mL portions into a 96-well titer plate (Falcon). To the dispensed sample, add 0.02 mL of CeCl 3 solution dissolved in ion-exchanged water and adjusted to 1.0% by mass, and let it stand for 0, 5 , 10, 20, 30 , 60 minutes at room temperature (25 ° C, the same shall apply hereinafter) After placing, the mixture was stirred and the absorbance (650 nm) was immediately measured with an absorbance meter (SPECTRA MAX190 Molecular Devices).

得られた吸光度と対応するカテキンの濃度をそれぞれプロットし、グラフを作成して検量線とした。図1−1及び図1−2は、5分間反応させた、吸光度(生成した結晶物の量)とカテキン濃度との関係を示すグラフである。図1−1及び図1−2に示すように、吸光度とカテキン濃度の関係は用量依存的に変化し相関関係があることが確認された。また、最小二乗法による回帰分析を行い、相関係数と回帰式を求めたところ、高い相関係数が得られた。反応液はpH6.5以上であれば測定可能であった。また、pHが高いほどグラフの傾きが大きかった。   The obtained absorbance and the corresponding catechin concentration were plotted, and a graph was prepared as a calibration curve. FIGS. 1-1 and 1-2 are graphs showing the relationship between the absorbance (the amount of the produced crystal product) and the catechin concentration after reaction for 5 minutes. As shown in FIGS. 1-1 and 1-2, it was confirmed that the relationship between the absorbance and the catechin concentration varied in a dose-dependent manner and had a correlation. Moreover, when a regression analysis by the least square method was performed and a correlation coefficient and a regression equation were obtained, a high correlation coefficient was obtained. The reaction solution was measurable at pH 6.5 or higher. Further, the slope of the graph was larger as the pH was higher.

CeCl3溶液を添加した後の吸光度を経時的に測定した結果を図2に示す(pH8.0)。添加直後から時間の経過とともに回帰式の傾きが小さくなり、さらには添加30分後にはカテキン濃度と吸光度の相関が低下した。 FIG. 2 shows the results of measuring the absorbance over time after adding the CeCl 3 solution (pH 8.0). The slope of the regression equation decreased with the passage of time immediately after the addition, and the correlation between the catechin concentration and the absorbance decreased 30 minutes after the addition.

(2)クロロゲン酸を0.05、0.025、0.0125、0.00625、0質量%の濃度になるようにpH8.0の10mM HEPES Buffer(Irvine Scientific)にそれぞれ溶解して試料を調製後、96穴タイタープレート(Falcon)に0.18mLずつ分注した。分注した溶液にpH8.0、10mM HEPES Buffer(Irvine Scientific)に溶解し1.0質量%に調製したCeCl3溶液を0.02mLずつ添加し、室温で5分間静置後、撹拌し、直ちに吸光度測定器(SPECTRA MAX190 Molecular Devices)にて吸光度(650nm)を測定した。 (2) Dissolve chlorogenic acid in 10 mM HEPES Buffer (Irvine Scientific) at pH 8.0 to a concentration of 0.05, 0.025, 0.0125, 0.00625, and 0% by mass. ) 0.18 mL each. 0.02 mL of CeCl 3 solution dissolved in 1.0 mM HEPES Buffer (Irvine Scientific) and adjusted to 1.0% by mass was added to the dispensed solution, 0.02 mL each, and the mixture was allowed to stand at room temperature for 5 minutes, stirred, and immediately measured for absorbance. Absorbance (650 nm) was measured with (SPECTRA MAX190 Molecular Devices).

得られた吸光度と対応するクロロゲン酸の濃度をそれぞれプロットし、グラフを作成して検量線とした(図3)。
図3に示すように、吸光度(生成した結晶物の量)とクロロゲン酸濃度の関係は用量依存的に変化し相関関係があることが確認された。また、最小二乗法による回帰分析を行い、相関係数と回帰式を求めたところ、高い相関係数が得られた。
The obtained absorbance and the corresponding chlorogenic acid concentration were plotted, and a graph was prepared as a calibration curve (FIG. 3).
As shown in FIG. 3, it was confirmed that the relationship between the absorbance (the amount of the produced crystal) and the chlorogenic acid concentration changed in a dose-dependent manner and had a correlation. Moreover, when a regression analysis by the least square method was performed and a correlation coefficient and a regression equation were obtained, a high correlation coefficient was obtained.

実施例2 未知試料を用いたカテキン類の定量
(1)試料の調製
pH5.0の10mM HEPES Buffer(Irvine Scientific)に濃度未知となるようにEGCgを適宜溶解し試料(試料No.1〜No.3)を調製した。
Example 2 Determination of catechins using unknown sample (1) Sample preparation
EGCg was appropriately dissolved in 10 mM HEPES Buffer (Irvine Scientific) at pH 5.0 so that the concentration was unknown, and samples (samples No. 1 to No. 3) were prepared.

(2)検量線の作製
実施例1の方法に従いEGCgの検量線を作製した。
(2) Preparation of calibration curve According to the method of Example 1, an EGCg calibration curve was prepared.

(3)EGCgの定量
試料No.1〜No.3を96穴タイタープレート(Falcon)に0.18mLずつ分注した。分注した試料に、0.1N NaOHを0.01mLずつ添加しpHを8.0に調整し、更にイオン交換水に溶解し2.0質量%に調製したCeCl3溶液を0.01mLずつ添加し、室温で5分間静置後、撹拌し、直ちに吸光度測定器(SPECTRA MAX190 Molecular Devices)にて吸光度(650nm)を測定した。
(3) Quantification of EGCg Samples No. 1 to No. 3 were dispensed in 0.18 mL portions into a 96-well titer plate (Falcon). Add 0.1 mL of 0.1N NaOH to the dispensed sample to adjust the pH to 8.0, add 0.01 mL of CeCl 3 solution dissolved in ion-exchanged water and adjusted to 2.0% by mass, and let stand at room temperature for 5 minutes. After placement, the mixture was stirred, and immediately the absorbance (650 nm) was measured with an absorbance meter (SPECTRA MAX190 Molecular Devices).

(4)既存の方法による定量
試料No.1〜No.3中のEGCg濃度を既存の方法(特開2009-000098号公報参照)により以下の様に定量した。なお、EGCgの分解及び重合を考慮し、カテキン類及び没食子酸として検出されたものの合計をEGCgの値として濃度の算出を行った。
試料No.1〜No.3をそれぞれフィルター(0.45μm)で濾過し、島津製作所製、高速液体クロマトグラフ(型式SCL-10AVP)を用い、オクタデシル基導入液体クロマトグラフ用パックドカラムL−カラムTM ODS(4.6mmφ×250mm:財団法人 化学物質評価研究機構製)を装着し、カラム温度35℃でグラディエント法により行った。移動相A液は酢酸を0.1mol/L含有の蒸留水溶液、B液は酢酸を0.1mol/L含有のアセトニトリル溶液とし、流速は1mL/分、試料注入量は10μL、UV検出器波長は280nmの条件で行った。グラディエント条件は以下の通りである。
(4) Quantification by Existing Method The EGCg concentration in samples No. 1 to No. 3 was quantified as follows by an existing method (see JP-A-2009-000098). In consideration of decomposition and polymerization of EGCg, the concentration was calculated using the total of those detected as catechins and gallic acid as the value of EGCg.
Samples No. 1 to No. 3 were filtered through a filter (0.45 μm), respectively, and a packed column L-column TM ODS for octadecyl group-introduced liquid chromatograph using a high performance liquid chromatograph (model SCL-10AVP) manufactured by Shimadzu Corporation (4.6 mmφ × 250 mm: manufactured by Chemicals Evaluation and Research Institute) was attached, and the gradient method was performed at a column temperature of 35 ° C. The mobile phase A solution is a distilled aqueous solution containing 0.1 mol / L acetic acid, the B solution is an acetonitrile solution containing 0.1 mol / L acetic acid, the flow rate is 1 mL / min, the sample injection volume is 10 μL, and the UV detector wavelength is 280 nm. Performed under conditions. The gradient conditions are as follows.

時間(分) A液濃度(体積%) B液濃度
0 97% 3%
5 97% 3%
37 80% 20%
43 80% 20%
43.5 0% 100%
48.5 0% 100%
49 97% 3%
60 97% 3%
Time (minutes) Liquid A concentration (volume%) Liquid B concentration 0 97% 3%
5 97% 3%
37 80% 20%
43 80% 20%
43.50% 100%
48.5 0% 100%
49 97% 3%
60 97% 3%

(5)本発明方法と既存定量法の比較
pH8.0で塩化セリウムを作用させた本発明方法によるEGCgの定量結果と既存法による定量結果を比較した(図4)。
また、本発明方法によるEGCgの定量値を100とした時の既存法による定量値を表した結果を図5に示す。本発明方法と既存法の差は±10%以内であり、本発明方法によりポリフェノールの定量が可能であることが確認された。
(5) Comparison between the method of the present invention and the existing quantification method The quantification result of EGCg by the method of the present invention with cerium chloride acting at pH 8.0 was compared with the quantification result by the existing method (FIG. 4).
Further, FIG. 5 shows the result of the quantitative value obtained by the existing method when the quantitative value of EGCg obtained by the method of the present invention is set to 100. The difference between the method of the present invention and the existing method is within ± 10%, and it was confirmed that polyphenols can be quantified by the method of the present invention.

実施例3 抗酸化剤存在下でのカテキン類の定量
(1)試料の調製
抗酸化剤として0.05質量%のL(+)-アスコルビン酸ナトリウムを添加したpH8.0の10mM HEPES Buffer(Irvine Scientific)及び0.05質量%のL(+)-アスコルビン酸を添加したpH5.0の10mM HEPES Buffer(Irvine Scientific)に、それぞれEGCgを0.1、0.05、0.025、0.0125質量%の濃度になるように溶解し試料を調製した。コントロールとして、L(+)-アスコルビン酸ナトリウム未添加のpH8.0の10mM HEPES Buffer(Irvine Scientific)及びL(+)-アスコルビン酸未添加のpH5.0の10mM HEPES Buffer(Irvine Scientific)に、同様にEGCgを溶解した試料を調製した。
Example 3 Quantitative determination of catechins in the presence of an antioxidant (1) Sample preparation 10 mM HEPES Buffer (Irvine Scientific) at pH 8.0 with 0.05% by mass of L (+)-sodium ascorbate added as an antioxidant EGCg was dissolved in 0.1 mM, 0.05, 0.025, and 0.0125 mass% in pH 5.0 10 mM HEPES Buffer (Irvine Scientific) to which 0.05 mass% L (+)-ascorbic acid was added. Prepared. As controls, 10 mM HEPES Buffer (Irvine Scientific) with pH 8.0 without L (+)-sodium ascorbate and 10 mM HEPES Buffer (Irvine Scientific) with pH 5.0 without L (+)-ascorbate were the same. A sample in which EGCg was dissolved was prepared.

(2)EGCgの定量
試料0.18mLを96穴タイタープレート(Falcon)に分注した。分注したpH8.0の試料に対しては、イオン交換水に溶解した1質量% CeCl3溶液を0.02mLずつ添加した。分注したpH5.0の試料に対しては、0.1N NaOHを0.01mL添加しpH8.0に調整し、イオン交換水に溶解した2質量% CeCl3溶液を0.01mLずつ添加した。室温で5分間静置後、撹拌し、直ちに吸光度測定器(SPECTRA MAX190 Molecular Devices)にて吸光度(650nm)を測定した。
(2) Quantification of EGCg 0.18 mL of the sample was dispensed into a 96-well titer plate (Falcon). To the dispensed pH 8.0 sample, 0.02 mL of 1 mass% CeCl 3 solution dissolved in ion-exchanged water was added. To the dispensed pH 5.0 sample, 0.01 mL of 0.1N NaOH was added to adjust the pH to 8.0, and 0.01 mL each of a 2 mass% CeCl 3 solution dissolved in ion-exchanged water was added. The mixture was allowed to stand at room temperature for 5 minutes and then stirred, and the absorbance (650 nm) was immediately measured with an absorbance meter (SPECTRA MAX190 Molecular Devices).

得られた吸光度と対応するEGCgの濃度をそれぞれプロットし、グラフを作成して検量線とした(図6の▲)。一方、コントロール溶液も同様にして吸光度を測定し、その測定値と対応するEGCg濃度をそれぞれプロットし、グラフを作成して検量線とした(図6の◆)。
その結果、図6(a)、(b)に示すように、抗酸化剤を添加した試料においては吸光度が抗酸化剤未添加試料より低くなるものの吸光度とカテキン濃度の関係は用量依存的に変化し相関関係があることが確認された。また、最小二乗法による回帰分析を行い、相関係数と回帰式を求めたところ、高い相関係数が得られた。この結果から、抗酸化剤を含む試料中のポリフェノール濃度の測定は、試料と同濃度の抗酸化剤を含む緩衝液などで濃度既知のポリフェノール試料を調製し、その試料を用いて検量線を作製することで測定可能であることが示された。なお、試料中の抗酸化剤濃度は、常法に従って、HPLC法、滴定法、比色法等により測定できる。
The obtained absorbance and the corresponding EGCg concentration were respectively plotted, and a graph was prepared as a calibration curve (▲ in FIG. 6). On the other hand, the absorbance of the control solution was measured in the same manner, the measured value and the corresponding EGCg concentration were plotted, and a graph was created to make a calibration curve (♦ in FIG. 6).
As a result, as shown in FIGS. 6 (a) and 6 (b), the absorbance and catechin concentration change in a dose-dependent manner, although the absorbance is lower in the sample to which the antioxidant is added than in the sample to which the antioxidant is not added. It was confirmed that there was a correlation. Moreover, when a regression analysis by the least square method was performed and a correlation coefficient and a regression equation were obtained, a high correlation coefficient was obtained. From this result, the polyphenol concentration in a sample containing an antioxidant is measured by preparing a polyphenol sample with a known concentration in a buffer solution containing an antioxidant at the same concentration as the sample, and creating a calibration curve using that sample. It was shown that it can be measured. In addition, the antioxidant concentration in a sample can be measured by an HPLC method, a titration method, a colorimetric method or the like according to a conventional method.

Claims (5)

ポリフェノールを含有する試料にセリウム化合物を作用させ、生成した結晶物を定量することによってポリフェノールの濃度を算出するポリフェノールの定量法。   A polyphenol quantification method for calculating the concentration of polyphenol by allowing a cerium compound to act on a sample containing polyphenol and quantifying the produced crystal. ポリフェノールがカテキン類である請求項1記載のポリフェノールの定量法。   The method for quantifying polyphenols according to claim 1, wherein the polyphenols are catechins. セリウム化合物が塩化セリウムである請求項1又は2記載のポリフェノールの定量法。   The method for quantifying polyphenols according to claim 1 or 2, wherein the cerium compound is cerium chloride. セリウム化合物をpH6.5以上の条件下で作用させる請求項1〜3のいずれか1項記載のポリフェノールの定量法。   The method for quantifying a polyphenol according to any one of claims 1 to 3, wherein the cerium compound is allowed to act under conditions of pH 6.5 or higher. 結晶物の定量を、反応液の濁度を測定することにより行う請求項1〜4のいずれか1項記載のポリフェノールの定量法。   The method for quantifying a polyphenol according to any one of claims 1 to 4, wherein the crystal is quantified by measuring the turbidity of the reaction solution.
JP2009176726A 2009-07-29 2009-07-29 Determination of polyphenols Active JP5317118B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009176726A JP5317118B2 (en) 2009-07-29 2009-07-29 Determination of polyphenols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009176726A JP5317118B2 (en) 2009-07-29 2009-07-29 Determination of polyphenols

Publications (2)

Publication Number Publication Date
JP2011033347A true JP2011033347A (en) 2011-02-17
JP5317118B2 JP5317118B2 (en) 2013-10-16

Family

ID=43762584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009176726A Active JP5317118B2 (en) 2009-07-29 2009-07-29 Determination of polyphenols

Country Status (1)

Country Link
JP (1) JP5317118B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411990A (en) * 2018-04-27 2019-11-05 中国科学院福建物质结构研究所 A method of hydrogen peroxide and related objective object are detected based on nano-probe
JP2021103124A (en) * 2019-12-25 2021-07-15 国立研究開発法人農業・食品産業技術総合研究機構 Detection method for taste, taste substance detection agent, taste substance detection agent composite, and detection device
CN113419011A (en) * 2021-07-26 2021-09-21 深圳波顿香料有限公司 Method for measuring contents of nine natural active ingredients in tobacco essence
CN114965907A (en) * 2022-04-02 2022-08-30 浙江大学 Rapid tea grade detection method based on turbidity difference

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520946B (en) * 2018-11-22 2021-06-25 福建医科大学 Method for measuring cerous ions based on nanogold simulated peroxidase

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942450A (en) * 1982-09-02 1984-03-09 Susumu Honda Qualitative and quantitative analysis of catechols
JPH0426528A (en) * 1990-05-22 1992-01-29 Nippon Shokubai Co Ltd Production of cerium oxide sol
JP2000169307A (en) * 1998-12-04 2000-06-20 Yamagata Prefecture Technopolis Zaidan Antimicrobial agent
JP2002238554A (en) * 2001-02-15 2002-08-27 Morinaga Milk Ind Co Ltd Urease-deactivated composition and beverage
WO2008043703A2 (en) * 2006-10-09 2008-04-17 Rhodia Operations Liquid suspension and powder of cerium oxide particles, methods for making the same and uses thereof in polishing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942450A (en) * 1982-09-02 1984-03-09 Susumu Honda Qualitative and quantitative analysis of catechols
JPH0426528A (en) * 1990-05-22 1992-01-29 Nippon Shokubai Co Ltd Production of cerium oxide sol
JP2000169307A (en) * 1998-12-04 2000-06-20 Yamagata Prefecture Technopolis Zaidan Antimicrobial agent
JP2002238554A (en) * 2001-02-15 2002-08-27 Morinaga Milk Ind Co Ltd Urease-deactivated composition and beverage
WO2008043703A2 (en) * 2006-10-09 2008-04-17 Rhodia Operations Liquid suspension and powder of cerium oxide particles, methods for making the same and uses thereof in polishing
JP2010505735A (en) * 2006-10-09 2010-02-25 ロデイア・オペラシヨン Liquid suspensions and powders of cerium oxide particles, their production process and their use in polishing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANALYST, vol. Vol.126, No.5, Page.553-554, JPN6013027524, 2001, ISSN: 0002551284 *
J CHEM SOC CHEM COMMUN, vol. No.5, Page.617-618, JPN6013027527, 1994, ISSN: 0002551285 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110411990A (en) * 2018-04-27 2019-11-05 中国科学院福建物质结构研究所 A method of hydrogen peroxide and related objective object are detected based on nano-probe
CN110411990B (en) * 2018-04-27 2020-11-20 中国科学院福建物质结构研究所 Method for detecting hydrogen peroxide and related target object based on nano probe
JP2021103124A (en) * 2019-12-25 2021-07-15 国立研究開発法人農業・食品産業技術総合研究機構 Detection method for taste, taste substance detection agent, taste substance detection agent composite, and detection device
JP7449555B2 (en) 2019-12-25 2024-03-14 国立研究開発法人農業・食品産業技術総合研究機構 Taste detection method and detection device
CN113419011A (en) * 2021-07-26 2021-09-21 深圳波顿香料有限公司 Method for measuring contents of nine natural active ingredients in tobacco essence
CN113419011B (en) * 2021-07-26 2022-09-06 中香香料(深圳)有限公司 Method for measuring contents of nine natural active ingredients in tobacco essence
CN114965907A (en) * 2022-04-02 2022-08-30 浙江大学 Rapid tea grade detection method based on turbidity difference

Also Published As

Publication number Publication date
JP5317118B2 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
Fan et al. Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation
Hidalgo et al. Flavonoid–flavonoid interaction and its effect on their antioxidant activity
Fernandez-Panchon et al. Antioxidant activity of phenolic compounds: from in vitro results to in vivo evidence
Li et al. Total phenolic contents and antioxidant capacities of 51 edible and wild flowers
Farhadi et al. Determination of phenolic compounds content and antioxidant activity in skin, pulp, seed, cane and leaf of five native grape cultivars in West Azerbaijan province, Iran
Roidoung et al. Gallic acid as a protective antioxidant against anthocyanin degradation and color loss in vitamin-C fortified cranberry juice
Meng et al. Phenolic content and antioxidant capacity of Chinese raisins produced in Xinjiang Province
Garaguso et al. Polyphenols content, phenolics profile and antioxidant activity of organic red wines produced without sulfur dioxide/sulfites addition in comparison to conventional red wines
Gómez-Alonso et al. HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence
Meng et al. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii Foex) in Chongyi County (China)
Chiang et al. Phenolic compounds and antioxidant properties of gooseberry as affected by in vitro digestion
Zhou et al. Factors influencing the antioxidant and pro-oxidant activity of polyphenols in oil-in-water emulsions
Rødtjer et al. Antioxidative and prooxidative effects of extracts made from cherry liqueur pomace
Mattiello et al. Effects of pomegranate juice and extract polyphenols on platelet function
JP5317118B2 (en) Determination of polyphenols
EP1774319B1 (en) Method for analyzing oligomeric proanthocyanidin (opc)
Cavia-Saiz et al. Effect of enzymatic debittering on antioxidant capacity and protective role against oxidative stress of grapefruit juice in comparison with adsorption on exchange resin
Kim et al. Assessment and comparison of the antioxidant activities and nitrite scavenging activity of commonly consumed beverages in Korea
China et al. In vitro antioxidant activity of different cultivars of banana flower (Musa paradicicus L.) extracts available in India
WO2009105626A1 (en) Milk-based beverage and method for preventing off-flavors in a milk-based beverage
Salacheep et al. Optimization of ultrasound-assisted extraction of anthocyanins and bioactive compounds from butterfly pea petals using Taguchi method and Grey relational analysis
Apak et al. Cupric ion reducing antioxidant capacity assay for food antioxidants: vitamins, polyphenolics, and flavonoids in food extracts
Chang et al. Antioxidative, antibrowning and antibacterial activities of sixteen floral honeys
Kivimäki et al. Lingonberry juice lowers blood pressure of spontaneously hypertensive rats (SHR)
Kundu et al. Evaluating tyrosinase (monophenolase) inhibitory activity from fragrant roots of Hemidesmus indicus for potent use in herbal products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130703

R150 Certificate of patent or registration of utility model

Ref document number: 5317118

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250