JP2011033216A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2011033216A
JP2011033216A JP2009177197A JP2009177197A JP2011033216A JP 2011033216 A JP2011033216 A JP 2011033216A JP 2009177197 A JP2009177197 A JP 2009177197A JP 2009177197 A JP2009177197 A JP 2009177197A JP 2011033216 A JP2011033216 A JP 2011033216A
Authority
JP
Japan
Prior art keywords
heat exchanger
way valve
indoor heat
refrigerant
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009177197A
Other languages
Japanese (ja)
Inventor
Masatoshi Murawaka
正俊 村若
Hidenori Yokoyama
英範 横山
Shinichi Abe
伸一 阿部
Kazuhiko Kezuka
和彦 毛塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2009177197A priority Critical patent/JP2011033216A/en
Publication of JP2011033216A publication Critical patent/JP2011033216A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air conditioner capable of preventing the attachment of condensate water to a heat transfer pipe and the like applied as a heat radiating mechanism even in a cooling operation, and preventing the deterioration of a cooling capacity. <P>SOLUTION: The air conditioner has a refrigerating cycle constituted by connecting a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger and a radiating section for heating an indoor space by the radiation heat of the heat transfer pipe by refrigerant piping, and circulating a refrigerant. In a heating operation, the refrigerant is circulated to the radiating section and the indoor heat exchanger so that the heating operation is performed by the radiation heat by the radiating section and the heat exchange of the indoor heat exchanger, and in the cooling operation, the refrigerant is not made to flow in the radiating section, but circulated in the indoor heat exchanger to perform the cooling operation by heat exchange with the indoor heat exchanger. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は空気調和機に関する。   The present invention relates to an air conditioner.

近年の冷凍サイクルを用いた空気調和機は、暖房運転及び冷房運転が可能であって、年間を通して空気調和機として使用できるヒートポンプ式が主流である。   In recent years, an air conditioner using a refrigeration cycle is capable of heating operation and cooling operation, and a heat pump type that can be used as an air conditioner throughout the year is the mainstream.

従来の空気調和機として、暖房運転及び冷房運転可能なヒートポンプ式の空気調和機であって、暖房時の快適性向上のため、四方弁と室内側熱交換器との間に輻射パネルを設けているものがある(例えば、特許文献1(第1−3頁,図1,図2)参照)。このような特許文献1に記載の空気調和機は、暖房運転時に、圧縮機からの高温冷媒を輻射パネル及び室内熱交換器に流通させて輻射パネルと室内熱交換器の両方を用いることで、暖房時の快適性向上を図っている。   As a conventional air conditioner, it is a heat pump type air conditioner capable of heating operation and cooling operation, and a radiant panel is provided between the four-way valve and the indoor heat exchanger in order to improve comfort during heating. (For example, refer to Patent Document 1 (page 1-3, FIGS. 1 and 2)). Such an air conditioner described in Patent Document 1 uses both the radiation panel and the indoor heat exchanger by circulating the high-temperature refrigerant from the compressor to the radiation panel and the indoor heat exchanger during heating operation. Aims to improve comfort during heating.

特開昭62−276371号公報Japanese Patent Laid-Open No. 62-276371

冷房運転時には、空気中の水分が結露して凝縮水が室内熱交換器に生成する。このように室内熱交換器に生成した凝縮水が成長して床面や家具等に滴下すると、床面等が汚れてしまうので、空気調和機は、空気調和機内に室内熱交換器から滴下される凝縮水を受ける露受機構や排水機構を備える。   During the cooling operation, moisture in the air is condensed and condensed water is generated in the indoor heat exchanger. When the condensed water generated in the indoor heat exchanger grows and drip on the floor surface or furniture, the floor surface or the like becomes dirty. Therefore, the air conditioner is dropped from the indoor heat exchanger into the air conditioner. Equipped with a dew receiving mechanism and a drainage mechanism.

一方、特許文献1に記載の輻射パネルや伝熱管についても同様の問題が生じる。つまり、室内熱交換器と同様に、冷房運転時に輻射パネルや伝熱管が冷却されると、空気中の水分が結露して凝縮水が生成される。しかしながら、一般的に、輻射パネル等は室内空間に対して露出しているため、室内熱交換器と同様の露受機構や排水機構を新たに設けることは困難である。   On the other hand, the same problem occurs in the radiation panel and heat transfer tube described in Patent Document 1. That is, similarly to the indoor heat exchanger, when the radiation panel and the heat transfer tube are cooled during the cooling operation, moisture in the air is condensed and condensed water is generated. However, generally, since a radiation panel etc. are exposed with respect to indoor space, it is difficult to newly provide the same dew receiving mechanism and drainage mechanism as an indoor heat exchanger.

また、輻射パネルを備えた空気調和機においては、暖房運転時には輻射パネルによる暖房に輻射熱が利用されるが、冷房運転時には冷房能力の低下につながるため、輻射熱の吸収による冷房は有効に利用されない場合がある。   Also, in an air conditioner equipped with a radiant panel, radiant heat is used for heating by the radiant panel during heating operation, but cooling capacity is reduced during cooling operation, so cooling by absorbing radiant heat is not used effectively There is.

本発明は上記課題を解決するものであり、冷房運転時であっても輻射パネルや伝熱管等への凝縮水の付着を防止するとともに、冷房能力の低下を抑制した空気調和機を提供することにある。   The present invention solves the above-described problem, and provides an air conditioner that prevents condensation water from adhering to a radiation panel, a heat transfer tube, and the like and suppresses a decrease in cooling capacity even during cooling operation. It is in.

上記課題を解決するために本発明に係る空気調和機は、圧縮機,四方弁,室外熱交換器,減圧装置,室内熱交換器、及び伝熱管の輻射熱により室内空間を暖房する輻射部を、冷媒配管により接続して冷媒を循環させる冷凍サイクルを備え、暖房運転時には、輻射部及び室内熱交換器に冷媒を流通させることにより、輻射部による輻射熱と、室内熱交換器での熱交換により暖房運転し、冷房運転時には、輻射部には冷媒を流通させずに室内熱交換器に冷媒を流通させることにより、室内熱交換器での熱交換により冷房運転する。   In order to solve the above problems, an air conditioner according to the present invention includes a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, and a radiant unit that heats an indoor space by radiant heat of a heat transfer tube, It is equipped with a refrigeration cycle that circulates the refrigerant by connecting with refrigerant piping. During heating operation, the refrigerant is circulated through the radiant section and the indoor heat exchanger, thereby heating by radiant heat from the radiant section and heat exchange in the indoor heat exchanger. During the cooling operation, the refrigerant is circulated through the indoor heat exchanger without circulating the refrigerant through the radiant section, so that the cooling operation is performed by heat exchange in the indoor heat exchanger.

本発明によれば、暖房運転時には輻射部及び室内熱交換器に冷媒を流通させ、冷房運転時には輻射部には冷媒を流通させないようにするとともに室内熱交換器には冷媒を流通させるようにしたので、冷房運転時であっても輻射部を構成する伝熱管等への凝縮水の付着を防止することができるとともに、冷房能力の低下を抑制した空気調和機を提供することができる。   According to the present invention, the refrigerant is circulated through the radiant section and the indoor heat exchanger during the heating operation, and the refrigerant is not circulated through the radiant section during the cooling operation, and the refrigerant is circulated through the indoor heat exchanger. Therefore, it is possible to provide an air conditioner that can prevent the condensed water from adhering to the heat transfer tubes and the like constituting the radiation section even during the cooling operation, and that suppresses the decrease in the cooling capacity.

冷凍サイクル構成図。Refrigeration cycle block diagram. 冷凍サイクル構成図。Refrigeration cycle block diagram. 冷凍サイクル構成図。Refrigeration cycle block diagram. 冷凍サイクル構成図。Refrigeration cycle block diagram. 冷凍サイクル構成図。Refrigeration cycle block diagram. 冷凍サイクル構成図。Refrigeration cycle block diagram. 室内機の側面断面図。Side surface sectional drawing of an indoor unit.

以下本発明に係る第1の実施例を図1−図3及び図7に基づいて説明する。図1−図3は本実施例の冷凍サイクル構成図であり、図7は本実施例の室内機の側面断面図である。   Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1-3 is a refrigeration cycle block diagram of a present Example, FIG. 7 is side surface sectional drawing of the indoor unit of a present Example.

空気調和機1は、主として室内機2と室外機3とから構成される。図7は本実施例の室内機の側面断面図である。図7に示す室内機2は、室内の壁面に掛けられる床置型の室内機であり、輻射式空気調和と対流式空気調和とを併用する。室内機2は、吸込口20及び吹出口21,吸込口20から吸い込まれた室内空気を熱交換する略Λ型の室内熱交換器6,室内熱交換器6の下流に位置し室内熱交換器6により熱交換された室内空気を吹出口21から送風する貫流ファン19,圧縮機4からの高温高圧ガスが流通する伝熱管12,伝熱管12の少なくとも前面又は後面に配置される輻射パネル17、及びこれらを内包する本体ケーシング18等により構成される。   The air conditioner 1 mainly includes an indoor unit 2 and an outdoor unit 3. FIG. 7 is a side sectional view of the indoor unit of the present embodiment. The indoor unit 2 shown in FIG. 7 is a floor-standing indoor unit that is hung on a wall surface in the room, and uses both radiant air conditioning and convection air conditioning. The indoor unit 2 is located downstream of the substantially Λ-type indoor heat exchanger 6 and the indoor heat exchanger 6 for exchanging heat from the air inlet 20, the air outlet 21, and the air sucked from the air inlet 20. A cross-flow fan 19 that blows indoor air heat-exchanged by the air outlet 6 from the air outlet 21, a heat transfer pipe 12 through which high-temperature high-pressure gas from the compressor 4 circulates, a radiation panel 17 that is disposed at least on the front or rear face of the heat transfer pipe 12 And a main body casing 18 or the like that contains them.

ここで、本実施例において、対流式空気調和とは、室内熱交換器6が凝縮器又は蒸発器として機能して、室内熱交換器6を通過した室内空気を暖房又は冷房することをいう。貫流ファン19により吸込口20から室内空気が吸い込まれる。吸い込まれた室内空気は、室内熱交換器6を通過する際に、室内熱交換器6との間で熱交換を行う。室内熱交換器6が凝縮器として機能する場合は、室内空気は室内熱交換器6との間で熱交換されて加熱される。一方、室内熱交換器6が蒸発器として機能する場合は、室内空気は室内熱交換器6との間で熱交換されて冷却される。室内熱交換器6との熱交換により加熱又は冷却された室内空気が吹出口21から室内空間に送風されることにより、対流式空気調和(暖房/冷房)が行われる。   Here, in this embodiment, convection air conditioning means that the indoor heat exchanger 6 functions as a condenser or an evaporator to heat or cool the indoor air that has passed through the indoor heat exchanger 6. Room air is sucked from the suction port 20 by the cross-flow fan 19. The sucked room air exchanges heat with the indoor heat exchanger 6 when passing through the indoor heat exchanger 6. When the indoor heat exchanger 6 functions as a condenser, the indoor air is heated by exchanging heat with the indoor heat exchanger 6. On the other hand, when the indoor heat exchanger 6 functions as an evaporator, the indoor air is cooled by exchanging heat with the indoor heat exchanger 6. The indoor air heated or cooled by heat exchange with the indoor heat exchanger 6 is blown into the indoor space from the air outlet 21 to perform convection air conditioning (heating / cooling).

また、本実施例において、輻射式空気調和とは、伝熱管12及び輻射パネル17により構成された輻射部による輻射熱により室内空間を暖房する(空気調和する)ことをいう。輻射パネル17が室内機2の正面に設けられて、室内の壁面に略平行に配置される。輻射パネル17は、室内機2が設置される室内の居住空間に接しており、輻射により室内空間を暖房する。輻射パネル17は伝熱管12を前後から挟むよう配置され、アルミニウム合金等の金属板又は輻射率の高い材料が用いられる。輻射パネル17は、伝熱管12の熱を室内空間に伝え易いようにするため、1つ又は複数個の穴が開口した形状としてもよい。伝熱管12は、輻射パネル17の間で左右方向に複数回折り返され、輻射パネル17の一部又は全面に渡って設けられる。圧縮機からの高温高圧のガス冷媒が伝熱管12を流れることにより、暖房運転時には輻射パネル17が加熱される。そして、加熱された輻射パネル17の輻射により、室内空間が加熱される。ここで、本実施例においては、暖房運転時には輻射部及び室内熱交換器に冷媒を流通させるが、冷房運転時には室内熱交換器に冷媒を流通させて輻射部には冷媒を流通させない。   In the present embodiment, the radiant air conditioning refers to heating the indoor space (air conditioning) by radiant heat generated by the radiating unit including the heat transfer tube 12 and the radiating panel 17. A radiation panel 17 is provided in front of the indoor unit 2 and is arranged substantially parallel to the wall surface of the room. The radiation panel 17 is in contact with the indoor living space in which the indoor unit 2 is installed, and heats the indoor space by radiation. The radiation panel 17 is disposed so as to sandwich the heat transfer tube 12 from the front and rear, and a metal plate such as an aluminum alloy or a material having a high radiation rate is used. The radiant panel 17 may have a shape in which one or a plurality of holes are opened so that the heat of the heat transfer tube 12 can be easily transferred to the indoor space. A plurality of heat transfer tubes 12 are folded back in the left-right direction between the radiation panels 17 and provided over a part or the entire surface of the radiation panel 17. When the high-temperature and high-pressure gas refrigerant from the compressor flows through the heat transfer pipe 12, the radiation panel 17 is heated during the heating operation. The indoor space is heated by the radiation of the heated radiation panel 17. Here, in the present embodiment, the refrigerant is circulated through the radiant section and the indoor heat exchanger during the heating operation, but the refrigerant is circulated through the indoor heat exchanger during the cooling operation and the refrigerant is not circulated through the radiant section.

図1は本実施例の冷凍サイクル構成図である。図1に示すように、空気調和機1は、圧縮機4,四方弁5,室内熱交換器6,両方向流れの絞り制御及び全開状態が可能な減圧装置7,室外熱交換器8,圧縮機への液戻りを防止するアキュムレータ9,矢印方向へ冷媒が流れることが可能な逆止弁10,11、及び室内機に配置された伝熱管12を、冷媒配管で接続して冷媒を循環させる冷凍サイクルを備える。   FIG. 1 is a configuration diagram of the refrigeration cycle of the present embodiment. As shown in FIG. 1, the air conditioner 1 includes a compressor 4, a four-way valve 5, an indoor heat exchanger 6, a pressure reducing device 7 capable of restricting and fully opening a bidirectional flow, an outdoor heat exchanger 8, and a compressor. Refrigeration in which the accumulator 9 that prevents the liquid from returning to the refrigerant, the check valves 10 and 11 that allow the refrigerant to flow in the direction of the arrow, and the heat transfer pipe 12 that is arranged in the indoor unit are connected by a refrigerant pipe to circulate the refrigerant. Provide a cycle.

冷房運転時には、減圧装置7を適切に絞ることにより、圧縮機4,四方弁5,室外熱交換器8,減圧装置7,室内熱交換器6,逆止弁10,四方弁5,アキュムレータ9の順で冷媒が流れる。尚、室内熱交換器6から四方弁5までの経路として、逆止弁10を流れる経路(第1経路)と逆止弁11(第2経路)を流れる経路があるが、逆止弁10は室内熱交換器6から四方弁5方向へ冷媒を流し、逆止弁11は室内熱交換器6から四方弁5方向へ冷媒を流さないため、冷媒は室内熱交換器6から逆止弁10(第1経路)を通り四方弁5へ流れる。   During the cooling operation, the decompression device 7 is appropriately throttled so that the compressor 4, the four-way valve 5, the outdoor heat exchanger 8, the decompression device 7, the indoor heat exchanger 6, the check valve 10, the four-way valve 5, and the accumulator 9 The refrigerant flows in order. The route from the indoor heat exchanger 6 to the four-way valve 5 includes a route that flows through the check valve 10 (first route) and a route that flows through the check valve 11 (second route). Since the refrigerant flows from the indoor heat exchanger 6 toward the four-way valve 5 and the check valve 11 does not flow the refrigerant from the indoor heat exchanger 6 toward the four-way valve 5, the refrigerant flows from the indoor heat exchanger 6 to the check valve 10 ( It flows to the four-way valve 5 through the first path).

暖房運転時には、減圧装置7を適切に絞ることにより、圧縮機4,四方弁5,伝熱管12,逆止弁11,室内熱交換器6,減圧装置7,室外熱交換器8,四方弁5,アキュムレータ9の順で冷媒が流れる。尚、四方弁5から室内熱交換器6までの経路として、逆止弁10を流れる経路(第1経路)と逆止弁11を流れる経路(第2経路)があるが、逆止弁10は四方弁5から室内熱交換器6方向へ冷媒を流さず、逆止弁11は四方弁5から室内熱交換器6方向へ冷媒を流すため、冷媒は四方弁5から伝熱管12,逆止弁11(第2経路)を通り、室内熱交換器6へ流れる。また、点aと点bでの圧力について圧力損失を考慮すると、点aの方が点bより圧力が大きい又は等しいため、逆止弁11を通り室内熱交換器6へ冷媒が流れる際、逆止弁10を通り四方弁5側に冷媒が戻ることはない。   During the heating operation, the compressor 4, the four-way valve 5, the heat transfer pipe 12, the check valve 11, the indoor heat exchanger 6, the pressure reducer 7, the outdoor heat exchanger 8, and the four-way valve 5 are appropriately throttled. , The refrigerant flows in the order of the accumulator 9. The route from the four-way valve 5 to the indoor heat exchanger 6 includes a route (first route) that flows through the check valve 10 and a route (second route) that flows through the check valve 11. Since the refrigerant does not flow from the four-way valve 5 to the indoor heat exchanger 6 and the check valve 11 flows from the four-way valve 5 to the indoor heat exchanger 6, the refrigerant flows from the four-way valve 5 to the heat transfer pipe 12 and the check valve. 11 (second path) and flows to the indoor heat exchanger 6. Further, considering the pressure loss with respect to the pressure at the points a and b, since the pressure at the point a is greater than or equal to the point b, when the refrigerant flows through the check valve 11 to the indoor heat exchanger 6, The refrigerant does not return to the four-way valve 5 side through the stop valve 10.

このように、本実施例に係る空気調和機は、圧縮機,四方弁,室外熱交換器,減圧装置,室内熱交換器、及び伝熱管の輻射熱により室内空間を暖房する輻射部を、冷媒配管により接続して冷媒を循環させる冷凍サイクルを備え、暖房運転時には、輻射部及び室内熱交換器に冷媒を流通させることにより、輻射部による輻射熱と、室内熱交換器での熱交換により暖房運転し、冷房運転時には、輻射部に冷媒を流通させずに室内熱交換器に冷媒を流通させることにより、室内熱交換器での熱交換により冷房運転する。   As described above, the air conditioner according to the present embodiment includes a compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, and a radiant unit that heats the indoor space by the radiant heat of the heat transfer pipe. In the heating operation, the refrigerant is circulated through the radiant section and the indoor heat exchanger, so that the heating operation is performed by exchanging radiant heat from the radiant section and heat in the indoor heat exchanger. During the cooling operation, the refrigerant is circulated through the indoor heat exchanger without causing the refrigerant to circulate through the radiant portion, so that the cooling operation is performed by heat exchange in the indoor heat exchanger.

より具体的には、冷凍サイクルは、四方弁と室内熱交換器との間を分岐することにより第1経路と第2経路とが並列に形成され、冷房運転時には、圧縮機,四方弁,室外熱交換器,減圧装置,室内熱交換器,第1経路,四方弁の順に冷媒が流通し、暖房運転時には、圧縮機,四方弁,輻射部(第2経路),室内熱交換器,減圧装置,室外熱交換器,四方弁,圧縮機の順に冷媒が流通するようにする。   More specifically, in the refrigeration cycle, the first path and the second path are formed in parallel by branching between the four-way valve and the indoor heat exchanger. During the cooling operation, the compressor, the four-way valve, and the outdoor The refrigerant flows in the order of the heat exchanger, the pressure reducing device, the indoor heat exchanger, the first path, and the four-way valve. During the heating operation, the compressor, the four-way valve, the radiation unit (second path), the indoor heat exchanger, and the pressure reducing device , Let the refrigerant flow in the order of the outdoor heat exchanger, four-way valve, and compressor.

このような冷凍サイクルは、例えば、第1経路に室内熱交換器から四方弁方向へのみ冷媒が流通する逆止弁を配置し、第2経路に四方弁から室内熱交換器方向へのみ冷媒が流通する逆止弁を配置することにより構成することができる。   In such a refrigeration cycle, for example, a check valve through which refrigerant flows only in the direction of the four-way valve from the indoor heat exchanger is arranged in the first path, and the refrigerant flows only in the direction of the indoor heat exchanger from the four-way valve in the second path. It can comprise by arrange | positioning the check valve which distribute | circulates.

このように、本実施例においては、暖房運転時には輻射部及び室内熱交換器に冷媒を流通させ、冷房運転時には室内熱交換器に冷媒を流通させて輻射部には冷媒を流通させないようにしたので、冷房運転時であっても輻射部を構成する伝熱管等への凝縮水の付着を防止できるとともに、冷房運転時には対流式による空気調和(冷房)のみを行うので、冷房能力の低下を抑制することができる。   As described above, in this embodiment, the refrigerant is circulated through the radiant unit and the indoor heat exchanger during the heating operation, and the refrigerant is circulated through the indoor heat exchanger during the cooling operation so that the refrigerant is not circulated through the radiant unit. Therefore, it is possible to prevent the condensed water from adhering to the heat transfer tubes that make up the radiant section even during cooling operation, and only convection air conditioning (cooling) is performed during cooling operation, thereby suppressing a decrease in cooling capacity. can do.

尚、本実施例では、図1に記載の第2経路において、暖房運転時の冷媒流れ方向の上流側に伝熱管12を配置し下流側に逆止弁11を配置したが、図2に示すように、暖房運転時の冷媒流れ方向の上流側に逆止弁11を配置し下流側に伝熱管12を配置してもよい。   In this embodiment, in the second path shown in FIG. 1, the heat transfer pipe 12 is arranged on the upstream side in the refrigerant flow direction during heating operation, and the check valve 11 is arranged on the downstream side. As described above, the check valve 11 may be disposed on the upstream side in the refrigerant flow direction during the heating operation, and the heat transfer tube 12 may be disposed on the downstream side.

また、図1又は図2に記載の逆止弁10,11の少なくとも一方を流量調整弁13,14としてもよい。逆止弁10を流量調整弁13とした場合、冷房運転時には流量調整弁13を略全開にし、暖房運転時には流量調整弁13を略全閉にする。逆止弁11を流量調整弁14にした場合、冷房運転時には流量調整弁14を略全閉にし、暖房運転時には流量調整弁14を略全開にする。   Further, at least one of the check valves 10 and 11 described in FIG. 1 or 2 may be used as the flow rate adjusting valves 13 and 14. When the check valve 10 is a flow rate adjustment valve 13, the flow rate adjustment valve 13 is substantially fully opened during cooling operation, and the flow rate adjustment valve 13 is substantially fully closed during heating operation. When the check valve 11 is the flow rate adjustment valve 14, the flow rate adjustment valve 14 is substantially fully closed during the cooling operation, and the flow rate adjustment valve 14 is substantially fully opened during the heating operation.

ここで、図3は逆止弁10,11の両方を流量調整弁13,14とした場合の冷凍サイクル構成図である。逆止弁10,11の両方を流量調整弁13,14とした場合、冷房運転時には流量調整弁13を略全開にするとともに流量調整弁14を略全閉にし、暖房運転時には流量調整弁13を略全閉にするとともに流量調整弁14を略全開にする。   Here, FIG. 3 is a refrigeration cycle configuration diagram in the case where both the check valves 10 and 11 are flow rate adjusting valves 13 and 14. When both the check valves 10 and 11 are the flow rate adjusting valves 13 and 14, the flow rate adjusting valve 13 is substantially fully opened and the flow rate adjusting valve 14 is substantially fully closed during the cooling operation, and the flow rate adjusting valve 13 is opened during the heating operation. The flow rate adjustment valve 14 is substantially fully opened while being substantially fully closed.

尚、本実施例に流量調整弁を加えることにより、輻射式空気調和と対流式空気調和を切り替えることもできる。例えば、図示しないが、室内熱交換器6,伝熱管12のそれぞれに対し冷媒配管22を並列に接続し、室内熱交換器6,伝熱管12に流量調整弁を直列に接続して、流量調整弁を調整する。   In addition, a radiation type air conditioning and a convection type air conditioning can also be switched by adding a flow regulating valve to this embodiment. For example, although not shown, the refrigerant pipe 22 is connected in parallel to each of the indoor heat exchanger 6 and the heat transfer pipe 12, and the flow rate adjustment valve is connected in series to the indoor heat exchanger 6 and the heat transfer pipe 12, thereby adjusting the flow rate. Adjust the valve.

さらに、本実施例においては、輻射部は伝熱管12及び輻射パネル17から構成されるとしたが、輻射パネル17を備えずに伝熱管12のみで構成しても同様の効果を奏することができる。   Further, in the present embodiment, the radiating section is configured by the heat transfer tube 12 and the radiant panel 17, but the same effect can be achieved even if the radiating portion is not provided with the radiant panel 17 but only the heat transfer tube 12. .

以下、本発明に係る第2の実施例を図4−図7に基づいて説明する。図4−図6は本実施例の冷凍サイクル構成図であり、図7は本実施例の室内機の側面断面図である。本実施例に係る空気調和機の基本的構成は第1の実施例と同様であるため詳細な説明は省略し、相違点についてのみ説明する。   A second embodiment according to the present invention will be described below with reference to FIGS. 4 to 6 are refrigeration cycle configuration diagrams of the present embodiment, and FIG. 7 is a side cross-sectional view of the indoor unit of the present embodiment. Since the basic configuration of the air conditioner according to the present embodiment is the same as that of the first embodiment, detailed description thereof will be omitted, and only differences will be described.

図4は本実施例の冷凍サイクル構成図である。図4に示すように、室内熱交換器1は、圧縮機4,四方弁5,室内熱交換器6,両方向流れの絞り制御及び全開状態が可能な減圧装置7,室外熱交換器8,圧縮機への液戻りを防止するアキュムレータ9,三方弁15,及び室内機に配置された伝熱管12を、冷媒配管で接続して冷媒を循環させる冷凍サイクルを備える。   FIG. 4 is a configuration diagram of the refrigeration cycle of the present embodiment. As shown in FIG. 4, the indoor heat exchanger 1 includes a compressor 4, a four-way valve 5, an indoor heat exchanger 6, a pressure reducing device 7 that can control the flow in both directions and a fully open state, an outdoor heat exchanger 8, a compression The accumulator 9 that prevents the liquid from returning to the machine, the three-way valve 15, and the heat transfer pipe 12 arranged in the indoor unit are connected by a refrigerant pipe so as to circulate the refrigerant.

冷房運転時には、減圧装置7を適切に絞り、三方弁15の点cから点dへ向かう方向の弁を略全閉、点cから点eへ向かう方向の弁を略全開にすることにより、圧縮機4,四方弁5,室外熱交換器8,減圧装置7,室内熱交換器6,三方弁15,四方弁5,アキュムレータ9の順で冷媒が流れる。三方弁15の点cから点dへ向かう方向の弁を略全閉にするので、圧力差により点eから伝熱管12方向へは冷媒が流れない。   During the cooling operation, the decompression device 7 is appropriately throttled, the valve in the direction from the point c to the point d of the three-way valve 15 is substantially fully closed, and the valve in the direction from the point c to the point e is substantially fully opened. The refrigerant flows in the order of the machine 4, the four-way valve 5, the outdoor heat exchanger 8, the decompression device 7, the indoor heat exchanger 6, the three-way valve 15, the four-way valve 5, and the accumulator 9. Since the valve in the direction from the point c to the point d of the three-way valve 15 is substantially fully closed, the refrigerant does not flow from the point e toward the heat transfer tube 12 due to the pressure difference.

暖房運転時には、減圧装置7を適切に絞り、三方弁15の点cから点dへ向かう方向の弁を略全開、点cから点eへ向かう方向の弁を略全閉にすることにより、圧縮機4,四方弁5,伝熱管12,三方弁15,室内熱交換器6,減圧装置7,室外熱交換器8,四方弁5,アキュムレータ9の順で冷媒が流れる。   During heating operation, the decompression device 7 is appropriately throttled, the valve in the direction from the point c to the point d of the three-way valve 15 is substantially fully opened, and the valve in the direction from the point c to the point e is substantially fully closed. The refrigerant flows in the order of the machine 4, the four-way valve 5, the heat transfer tube 12, the three-way valve 15, the indoor heat exchanger 6, the pressure reducing device 7, the outdoor heat exchanger 8, the four-way valve 5, and the accumulator 9.

このように、本実施例に係る空気調和機は、暖房運転時には、輻射部及び室内熱交換器に冷媒を流通することにより、輻射部による輻射熱と、室内熱交換器での熱交換により暖房運転し、冷房運転時には、輻射部には冷媒を流通させずに室内熱交換器に冷媒を流通させることにより、室内熱交換器での熱交換により冷房運転するものであって、暖房運転時には、圧縮機,四方弁,輻射部,室内熱交換器,減圧装置,室外熱交換器,四方弁,圧縮機の順に冷媒が流通し、冷房運転時には、圧縮機,四方弁,室外熱交換器,減圧装置,室内熱交換器,四方弁,圧縮機の順に冷媒が流通する。ここで、四方弁と室内熱交換器との間を、四方弁側の点g(第1分岐点)及び室内熱交換器側の点c(第2分岐点)で分岐することにより第1経路と第2経路とが並列に形成され、この第2分岐点(点c)は三方弁により分岐される。暖房運転時には輻射部及び室内熱交換器に冷媒を流通させ、冷房運転時には室内熱交換器に冷媒を流通させて輻射部には冷媒を流通させないようにしたので、冷房運転時であっても輻射部を構成する伝熱管等への凝縮水の付着を防止できるとともに、冷房運転時には対流式による空気調和(冷房)のみを行うので、冷房能力の低下を抑制することができる。   As described above, the air conditioner according to the present embodiment, during the heating operation, distributes the refrigerant to the radiant unit and the indoor heat exchanger, thereby performing the heating operation by radiant heat from the radiant unit and heat exchange in the indoor heat exchanger. In the cooling operation, the refrigerant is circulated in the indoor heat exchanger without circulating the refrigerant in the radiant section, so that the cooling operation is performed by the heat exchange in the indoor heat exchanger. Refrigerant flows in the order of compressor, four-way valve, radiant section, indoor heat exchanger, pressure reducing device, outdoor heat exchanger, four-way valve, compressor, and compressor, four-way valve, outdoor heat exchanger, pressure reducing device during cooling operation , Refrigerant flows in the order of indoor heat exchanger, four-way valve, and compressor. Here, the first path is branched between the four-way valve and the indoor heat exchanger at a point g (first branch point) on the four-way valve side and a point c (second branch point) on the indoor heat exchanger side. And the second path are formed in parallel, and this second branch point (point c) is branched by a three-way valve. The refrigerant is circulated through the radiant section and the indoor heat exchanger during the heating operation, and the refrigerant is circulated through the indoor heat exchanger during the cooling operation so that the refrigerant is not circulated through the radiant section. It is possible to prevent the condensed water from adhering to the heat transfer tubes and the like constituting the section, and to perform only air conditioning (cooling) by convection at the time of cooling operation, so that it is possible to suppress a decrease in cooling capacity.

尚、本実施例においては、三方弁15が点c(第2分岐点)に配置された冷媒サイクルについて説明したが、図5に示すように、三方弁15を点g(第1分岐点)に配置してもよい。この場合、冷房運転時には、三方弁15の点gから点fへ向かう方向の弁を略全閉、点gから点hへ向かう方向の弁を略全開にする。また暖房運転時には、三方弁15の点gから点fへ向かう方向の弁を略全開、点gから点hへ向かう方向の弁を略全閉にする。   In the present embodiment, the refrigerant cycle in which the three-way valve 15 is arranged at the point c (second branch point) has been described. However, as shown in FIG. 5, the three-way valve 15 is moved to the point g (first branch point). You may arrange in. In this case, during the cooling operation, the valve in the direction from the point g to the point f of the three-way valve 15 is substantially fully closed, and the valve in the direction from the point g to the point h is substantially fully opened. During the heating operation, the valve in the direction from the point g to the point f of the three-way valve 15 is substantially fully opened, and the valve in the direction from the point g to the point h is substantially fully closed.

さらに、図6に示すように、三方弁を点c(第2分岐点)及び点g(第1分岐点)の両方に配置してもよい。この場合、冷房運転時には、三方弁15の点cから点dへ向かう方向の弁を略全閉、点cから点eへ向かう方向の弁を略全開にし、三方弁16の点gから点fへ向かう方向の弁を略全閉、点gから点hへ向かう方向の弁を略全開にする。また暖房運転時には、三方弁15の点cから点dへ向かう方向の弁を略全開、点cから点eへ向かう方向の弁を略全閉にし、三方弁16の点gから点fへ向かう方向の弁を略全開、点gから点hへ向かう方向の弁を略全閉にする。   Furthermore, as shown in FIG. 6, you may arrange | position a three-way valve in both the point c (2nd branch point) and the point g (1st branch point). In this case, during the cooling operation, the valve in the direction from the point c to the point d of the three-way valve 15 is substantially fully closed, the valve in the direction from the point c to the point e is substantially fully opened, and from the point g to the point f of the three-way valve 16 The valve in the direction toward is substantially fully closed, and the valve in the direction from point g to point h is substantially fully opened. During heating operation, the valve in the direction from the point c to the point d of the three-way valve 15 is substantially fully opened, the valve in the direction from the point c to the point e is substantially fully closed, and the point from the point g to the point f of the three-way valve 16 is directed. The valve in the direction is substantially fully opened, and the valve in the direction from point g to point h is substantially fully closed.

1 空気調和機
2 室内機
3 室外機
4 圧縮機
5 四方弁
6 室内熱交換器
7 減圧装置
8 室外熱交換器
9 アキュムレータ
10,11 逆止弁
12 伝熱管
13,14 流量調整弁
15,16 三方弁
17 輻射パネル
18 本体ケーシング
19 貫流ファン
20 吸込口
21 吹出口
22 冷媒配管
DESCRIPTION OF SYMBOLS 1 Air conditioner 2 Indoor unit 3 Outdoor unit 4 Compressor 5 Four-way valve 6 Indoor heat exchanger 7 Pressure reducing device 8 Outdoor heat exchanger 9 Accumulator 10, 11 Check valve 12 Heat transfer pipes 13, 14 Flow control valves 15, 16 Three-way Valve 17 Radiation panel 18 Body casing 19 Cross-flow fan 20 Suction port 21 Blowout port 22 Refrigerant piping

Claims (10)

圧縮機,四方弁,室外熱交換器,減圧装置,室内熱交換器、及び伝熱管の輻射熱により室内空間を暖房する輻射部を、冷媒配管により接続して冷媒を循環させる冷凍サイクルを備え、
暖房運転時には、前記輻射部及び前記室内熱交換器に冷媒を流通させることにより、前記輻射部による輻射熱と、前記室内熱交換器での熱交換により暖房運転し、
冷房運転時には、前記輻射部には冷媒を流通させずに前記室内熱交換器に冷媒を流通させることにより、前記室内熱交換器での熱交換により冷房運転する空気調和機。
A compressor, a four-way valve, an outdoor heat exchanger, a pressure reducing device, an indoor heat exchanger, and a refrigeration cycle that connects a radiant section that heats an indoor space by radiant heat of a heat transfer pipe and circulates the refrigerant by connecting refrigerant pipes;
During the heating operation, the refrigerant is circulated through the radiant unit and the indoor heat exchanger, so that the radiant heat by the radiant unit and the heat exchange in the indoor heat exchanger are used for heating operation.
An air conditioner that performs cooling operation by heat exchange in the indoor heat exchanger by circulating refrigerant in the indoor heat exchanger without circulating refrigerant in the radiating unit during cooling operation.
請求項1において、暖房運転時には、前記圧縮機,前記四方弁,前記輻射部,前記室内熱交換器,前記減圧装置,前記室外熱交換器,前記四方弁,前記圧縮機の順に冷媒が流通し、
冷房運転時には、前記圧縮機,前記四方弁,前記室外熱交換器,前記減圧装置,前記室内熱交換器,前記四方弁,前記圧縮機の順に冷媒が流通する空気調和機。
In claim 1, during the heating operation, the refrigerant flows in the order of the compressor, the four-way valve, the radiant part, the indoor heat exchanger, the pressure reducing device, the outdoor heat exchanger, the four-way valve, and the compressor. ,
An air conditioner in which refrigerant flows in the order of the compressor, the four-way valve, the outdoor heat exchanger, the pressure reducing device, the indoor heat exchanger, the four-way valve, and the compressor during cooling operation.
請求項2において、前記冷凍サイクルは、前記四方弁と前記室内熱交換器との間を分岐することにより第1経路と第2経路とが並列に形成され、
前記第2経路には前記輻射部が配置され、
暖房運転時には、前記圧縮機,前記四方弁,前記輻射部が配置された前記第2経路,前記室内熱交換器,前記減圧装置,前記室外熱交換器,前記四方弁,前記圧縮機の順に冷媒が流通し、
冷房運転時には、前記圧縮機,前記四方弁,前記室外熱交換器,前記減圧装置,前記室内熱交換器,前記第1経路,前記四方弁,前記圧縮機の順に冷媒が流通する空気調和機。
In claim 2, in the refrigeration cycle, a first path and a second path are formed in parallel by branching between the four-way valve and the indoor heat exchanger,
The radiation part is disposed in the second path,
At the time of heating operation, the compressor, the four-way valve, the second path in which the radiating unit is arranged, the indoor heat exchanger, the pressure reducing device, the outdoor heat exchanger, the four-way valve, and the compressor in this order. Circulates,
An air conditioner in which refrigerant flows in the order of the compressor, the four-way valve, the outdoor heat exchanger, the pressure reducing device, the indoor heat exchanger, the first path, the four-way valve, and the compressor during cooling operation.
請求項3において、前記第1経路に前記室内熱交換器から前記四方弁方向へのみ冷媒が流通する逆止弁を有し、前記第2経路に前記四方弁から前記室内熱交換器方向へのみ冷媒が流通する逆止弁を有する空気調和機。   In Claim 3, It has a non-return valve which a refrigerant | coolant distribute | circulates only from the said indoor heat exchanger to the said four-way valve direction in the said 1st path | route, and only to the said indoor heat exchanger direction from the said 4-way valve to the said 2nd path | route. An air conditioner having a check valve through which refrigerant flows. 請求項3において、前記第1経路に第1流量調整弁、前記第2経路に第2流量調整弁を有し、
暖房運転時には、前記第1流量調整弁を略全閉にするとともに、前記第2流量調整弁を略全開にし、
冷房運転時には、前記第1流量調整弁を略全開にするとともに、前記第2流量調整弁を略全閉にする空気調和機。
In Claim 3, it has the 1st flow control valve in the 1st above-mentioned path, and the 2nd flow control valve in the 2nd above-mentioned path,
During the heating operation, the first flow rate adjustment valve is substantially fully closed and the second flow rate adjustment valve is substantially fully open.
An air conditioner that substantially fully opens the first flow rate adjustment valve and substantially fully closes the second flow rate adjustment valve during a cooling operation.
請求項3において、前記冷凍サイクルは、前記四方弁と前記室内熱交換器との間を、前記四方弁側の第1分岐点及び前記室内熱交換器側の第2分岐点で分岐することにより前記第1経路と前記第2経路とが並列に形成され、
前記第2分岐点は三方弁により分岐された空気調和機。
4. The refrigeration cycle according to claim 3, wherein the refrigeration cycle is branched between the four-way valve and the indoor heat exchanger at a first branch point on the four-way valve side and a second branch point on the indoor heat exchanger side. The first path and the second path are formed in parallel;
The second branch point is an air conditioner branched by a three-way valve.
請求項3において、前記冷凍サイクルは、前記四方弁と前記室内熱交換器との間を、前記四方弁側の第1分岐点及び前記室内熱交換器側の第2分岐点で分岐することにより前記第1経路と前記第2経路とが並列に形成され、
前記第1分岐点は三方弁により分岐された空気調和機。
4. The refrigeration cycle according to claim 3, wherein the refrigeration cycle is branched between the four-way valve and the indoor heat exchanger at a first branch point on the four-way valve side and a second branch point on the indoor heat exchanger side. The first path and the second path are formed in parallel;
The first branch point is an air conditioner branched by a three-way valve.
請求項3において、前記冷凍サイクルは、前記四方弁と前記室内熱交換器との間を、前記四方弁側の第1分岐点及び前記室内熱交換器側の第2分岐点で分岐することにより前記第1経路と前記第2経路とが並列に形成され、
前記第1分岐点及び前記第2分岐点は三方弁により分岐された空気調和機。
4. The refrigeration cycle according to claim 3, wherein the refrigeration cycle is branched between the four-way valve and the indoor heat exchanger at a first branch point on the four-way valve side and a second branch point on the indoor heat exchanger side. The first path and the second path are formed in parallel;
The air conditioner in which the first branch point and the second branch point are branched by a three-way valve.
請求項1乃至8の何れかにおいて、前記輻射部は前記伝熱管及び輻射パネルから構成された空気調和機。   9. The air conditioner according to claim 1, wherein the radiating section includes the heat transfer tube and a radiating panel. 請求項9において、前記伝熱管の少なくとも前面又は後面に前記輻射パネルが配置された空気調和機。   The air conditioner according to claim 9, wherein the radiation panel is disposed on at least a front surface or a rear surface of the heat transfer tube.
JP2009177197A 2009-07-30 2009-07-30 Air conditioner Withdrawn JP2011033216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009177197A JP2011033216A (en) 2009-07-30 2009-07-30 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009177197A JP2011033216A (en) 2009-07-30 2009-07-30 Air conditioner

Publications (1)

Publication Number Publication Date
JP2011033216A true JP2011033216A (en) 2011-02-17

Family

ID=43762470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177197A Withdrawn JP2011033216A (en) 2009-07-30 2009-07-30 Air conditioner

Country Status (1)

Country Link
JP (1) JP2011033216A (en)

Similar Documents

Publication Publication Date Title
JP6685409B2 (en) Air conditioner
JP6644154B2 (en) Air conditioner
KR100970876B1 (en) Heat pump type heating and cooling apparatus
WO2012000323A1 (en) Multi-split air conditioner capable of refrigerating and heating simultaneously
JP2020041797A (en) Compressor unit, heat source unit and air conditioning device
JP2008157557A (en) Air-conditioning system
JP2015049008A (en) Air conditioner, and heat exchanger for air conditioner
JP2009180492A (en) Dehumidifying unit and air conditioner
US20200300513A1 (en) Refrigeration cycle apparatus
JP2015004482A (en) Hot water supply and air conditioning system
KR101988034B1 (en) Air conditioner
JP5624443B2 (en) Air conditioner
JP5484587B2 (en) Heat medium converter and air conditioner equipped with the same
JP2015021680A (en) Air conditioner
JP6310077B2 (en) Heat source system
JP6805693B2 (en) Air conditioner
JP6747920B2 (en) Air conditioning system
KR101392856B1 (en) an air conditioner with water-cooled heat exchange without an outside-equipment
JP2011033216A (en) Air conditioner
JP6039871B2 (en) Air conditioner
JP2018115809A (en) Air conditioner
CN207936356U (en) A kind of dehumidifier
KR20140089796A (en) Air conditioner
JP4581897B2 (en) Heat pump type hot air heater
KR101580796B1 (en) Refrigeration and Heating Ventilation and Air-conditioning system for ice rink using seawater

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121002