JP2011033126A - Three-way selector valve - Google Patents

Three-way selector valve Download PDF

Info

Publication number
JP2011033126A
JP2011033126A JP2009180004A JP2009180004A JP2011033126A JP 2011033126 A JP2011033126 A JP 2011033126A JP 2009180004 A JP2009180004 A JP 2009180004A JP 2009180004 A JP2009180004 A JP 2009180004A JP 2011033126 A JP2011033126 A JP 2011033126A
Authority
JP
Japan
Prior art keywords
valve
passage
mounting hole
differential pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009180004A
Other languages
Japanese (ja)
Other versions
JP5560002B2 (en
Inventor
Daisuke Watari
大介 渡利
Takashi Mogi
隆 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikoki Corp
Original Assignee
Fujikoki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikoki Corp filed Critical Fujikoki Corp
Priority to JP2009180004A priority Critical patent/JP5560002B2/en
Publication of JP2011033126A publication Critical patent/JP2011033126A/en
Application granted granted Critical
Publication of JP5560002B2 publication Critical patent/JP5560002B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetically Actuated Valves (AREA)
  • Valve Housings (AREA)
  • Fluid-Driven Valves (AREA)
  • Safety Valves (AREA)
  • Multiple-Way Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To lower the manufacturing cost and achieve compactness in a three-way selector valve, which is provided in a refrigerating cycle including a hot gas cycle, and adapted to select a high pressure passage for guiding refrigerant gas discharged by a compressor to a condenser or a by-pass passage for guiding the same to an evaporator by detouring around the condenser for switching between them. <P>SOLUTION: This three-way selector valve 1 includes: a solenoid valve 3 for opening and closing a by-pass passage between the compressor of the refrigerating cycle and the evaporator; and a differential pressure regulating valve 4 for closing the high pressure passage from the compressor to the condenser in the open state of the solenoid valve and opening the high pressure passage in the close state of the solenoid valve. Since the solenoid valve is disposed in the by-pass passage, large driving force is not required, so that a coil 35 can be reduced in size. A valve body 2 has a valve mounting hole 10 formed extending inward from one end, and the solenoid valve and the differential pressure regulating valve are inserted and mounted in series in the valve mounting hole. The valve mounting hole is sealed with one O-ring 32 disposed at the opening end side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、ホットガスサイクルを備えた冷凍サイクルに装備され、圧縮機が吐出する冷媒ガスを、コンデンサに導く高圧流路又はコンデンサを迂回してエバポレータに導くバイパス流路のいずれかに選択的に切り換える三方切換弁に関する。   The present invention is provided in a refrigeration cycle having a hot gas cycle, and selectively selects a refrigerant gas discharged from a compressor as either a high-pressure channel that leads to a condenser or a bypass channel that bypasses a condenser and leads to an evaporator. The present invention relates to a three-way switching valve for switching.

寒冷地の冬季においては、車内空調で早期に暖房運転が立ち上がることが求められる。従来の車両の空調暖房は、エンジンが発生させた余熱を利用するものであり、温気が車内に吹き出すまでに時間を要するものであった。しかも、最近のエンジンの熱効率の向上によって、暖房に利用可能な余熱をエンジンで得にくくなっている。そこで、従来、冷房のために備わっている冷凍サイクルの圧縮機が生成した高温高圧の冷媒ガス(ホットガス)を直接にエバポレータに導入することにより、空調初期の暖房立ち上がり能力を向上させることが行われている。このようなホットガスサイクルを備えた冷凍サイクルでは、圧縮機が吐出する冷媒ガスを、コンデンサに導く流路又はコンデンサを迂回してエバポレータに導く流路のいずれかに選択的に切り換える三方切換弁が設けられている。   In the winter season in cold regions, it is required that the heating operation is started up early with the air conditioning inside the vehicle. Conventional air conditioning and heating of a vehicle uses residual heat generated by an engine, and it takes time for the warm air to blow out into the vehicle. Moreover, recent improvements in engine thermal efficiency make it difficult for the engine to obtain residual heat that can be used for heating. In view of this, the heating start-up capability in the initial stage of air conditioning is improved by directly introducing high-temperature and high-pressure refrigerant gas (hot gas) generated by the compressor of the refrigeration cycle provided for cooling into the evaporator. It has been broken. In a refrigeration cycle having such a hot gas cycle, a three-way switching valve that selectively switches the refrigerant gas discharged from the compressor to either a flow path that leads to a condenser or a flow path that bypasses the condenser and leads to an evaporator. Is provided.

この種の三方切換弁として、特に、パイロット式の電磁弁と差圧弁とを一体的に設けたものが提案されている(特許文献1参照)。この三方切換弁は、圧縮機とコンデンサとの間の高圧流路を開閉するパイロット式の電磁弁と、圧縮機とエバポレータとの間のバイパス流路を開閉する差圧弁とを1つの弁本体に一体的に組み込んだものである。   As this type of three-way switching valve, in particular, a pilot-type solenoid valve and a differential pressure valve that are integrally provided have been proposed (see Patent Document 1). This three-way switching valve is composed of a pilot-type solenoid valve that opens and closes a high-pressure flow path between a compressor and a condenser, and a differential pressure valve that opens and closes a bypass flow path between the compressor and an evaporator in one valve body. It is integrated.

上記従来の三方切換弁について、図4、図5に基づき説明する。図4において、三方切換弁50の電磁弁71が開弁状態で圧縮機100が運転されると、弁本体51の第1の通路52、弁座53及び第2の通路54を通じて高温高圧のガス冷媒が流れ、該ガス冷媒が高圧流路400(図5参照)を介してコンデンサ200に流れる。この状態において、差圧弁61の両チャンバー62、63にも高圧のガス冷媒の圧力が作用しており、圧縮コイルばね64により第1の弁体65が第1の弁座66に圧接されてエバポレータへの流入口67が閉鎖されている。したがって、圧縮機100から流路68を介してチャンバー62に流入する高圧のガス冷媒はエバポレータ200に供給されない。   The conventional three-way switching valve will be described with reference to FIGS. In FIG. 4, when the compressor 100 is operated with the electromagnetic valve 71 of the three-way switching valve 50 opened, the high-temperature and high-pressure gas is passed through the first passage 52, the valve seat 53, and the second passage 54 of the valve body 51. The refrigerant flows, and the gas refrigerant flows to the capacitor 200 via the high-pressure channel 400 (see FIG. 5). In this state, the pressure of the high-pressure gas refrigerant is also acting on both the chambers 62 and 63 of the differential pressure valve 61, and the first valve body 65 is pressed against the first valve seat 66 by the compression coil spring 64 and the evaporator. The inlet 67 to is closed. Therefore, the high-pressure gas refrigerant flowing from the compressor 100 into the chamber 62 via the flow path 68 is not supplied to the evaporator 200.

この状態で、図示しない制御装置からパイロット電磁弁71の電磁コイル72に通電されると、その電磁気吸引力によりプランジャー73が圧縮コイルばね74を押し下げて吸引子75に引き付けられ、プランジャー73の下端部に取り付けられたパイロット弁体76が弁体77の上部に設けた弁座78に当接する。これにより、弁体77が圧縮コイルばね79の付勢力に抗して下方に移動し、弁体77の下面に固定したパッキン80が弁座53に当接して電磁弁71が閉弁状態となる。パイロット弁体76の下端部と弁座78との当接部、及びパッキン80と弁座53との当接部はそれぞれシールされ、第1の通路52から第2の通路54へ高温高圧のガス冷媒が洩れることがない。これにより、差圧弁61のチャンバー63内の圧力が下がるので、第1の弁体65が開弁方向に移動して第1の弁座66から離れ、エバポレータ300への流入口67が開放されるため、圧縮機100からチャンバー62内に流れ込む高温高圧のガス冷媒がバイパス流路500を介してエバポレータ300に流入するようになる。   In this state, when the electromagnetic coil 72 of the pilot electromagnetic valve 71 is energized from a control device (not shown), the plunger 73 pushes the compression coil spring 74 down by the electromagnetic attractive force and is attracted to the attractor 75. A pilot valve body 76 attached to the lower end abuts on a valve seat 78 provided on the upper portion of the valve body 77. As a result, the valve body 77 moves downward against the urging force of the compression coil spring 79, the packing 80 fixed to the lower surface of the valve body 77 contacts the valve seat 53, and the electromagnetic valve 71 is closed. . The contact portion between the lower end portion of the pilot valve body 76 and the valve seat 78 and the contact portion between the packing 80 and the valve seat 53 are sealed, and the high-temperature and high-pressure gas flows from the first passage 52 to the second passage 54. The refrigerant does not leak. As a result, the pressure in the chamber 63 of the differential pressure valve 61 is lowered, so that the first valve body 65 moves in the valve opening direction to leave the first valve seat 66 and the inlet 67 to the evaporator 300 is opened. Therefore, the high-temperature and high-pressure gas refrigerant flowing from the compressor 100 into the chamber 62 flows into the evaporator 300 through the bypass channel 500.

特許第3413385号公報Japanese Patent No. 3413385

上記従来の三方切換弁では、圧縮機100からコンデンサ200へ至る高圧流路400を開閉するために電磁弁71が用いられているが、高圧力に抗して電磁弁71を開閉動作させるために大型の電磁コイル72を必要とし、加えて構造が複雑なパイロット式であるため、コスト高であるとともに占有スペースが大きくなるという問題があった。   In the conventional three-way switching valve, the electromagnetic valve 71 is used to open and close the high-pressure flow path 400 from the compressor 100 to the capacitor 200. However, in order to open and close the electromagnetic valve 71 against high pressure. Since the large electromagnetic coil 72 is required and the structure is a pilot type with a complicated structure, there is a problem that the cost is high and the occupied space is increased.

本発明は上記問題点に鑑みてなされたものであり、構造がシンプルで製造コストが安価であるとともに、コンパクト化を図ることができる三方切換弁を提供することを目的としている。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a three-way switching valve that has a simple structure, is inexpensive to manufacture, and can be made compact.

本発明による三方切換弁は、ホットガスサイクルを備えた冷凍サイクルに装備され、圧縮機が吐出する冷媒ガスを、コンデンサに導く高圧流路又はコンデンサを迂回してエバポレータに導くバイパス流路のいずれかに選択的に切り換える三方切換弁であって、前記バイパス流路を開閉する電磁弁と、該電磁弁が開弁した状態で前記高圧流路を閉じるとともに前記電磁弁が閉弁した状態で前記高圧流路を開くように構成された差圧弁とを備え、前記弁本体は、その一端から内方に向けて形成された弁装着穴を有しており、前記電磁弁と前記差圧弁とを前記弁装着穴に直列状態で挿入装着して成ることを特徴とする。   The three-way switching valve according to the present invention is provided in a refrigeration cycle having a hot gas cycle, and is either a high-pressure flow path that guides refrigerant gas discharged from a compressor to a condenser or a bypass flow path that bypasses the condenser and leads to an evaporator. A three-way selector valve that selectively switches to a solenoid valve that opens and closes the bypass passage, and closes the high-pressure passage when the solenoid valve is open and closes the high-pressure passage when the solenoid valve is closed. A differential pressure valve configured to open a flow path, the valve body has a valve mounting hole formed inwardly from one end thereof, and the electromagnetic valve and the differential pressure valve are It is characterized by being inserted and mounted in series in the valve mounting hole.

この発明による三方切換弁は、以上のように構成されているので、次のような効果を奏することができる。
(1)圧縮機とエバポレータの間のバイパス流路の径は、圧縮機とコンデンサの間の高圧流路の径よりも小さいため、上記バイパス流路に電磁弁を設けると、上記高圧流路に電磁弁を設ける場合と比べてオリフィス径が小さくなるとともに冷媒圧が小さくなるため、駆動用のコイルを小さくすることができる。また、バイパス流路に電磁弁を設ける場合、冷媒圧が低いため直動式のものを採用可能であり、パイロット式のものを採用する場合と比べて構成が簡素となる。よって、製造コストが低減するとともに、サイズを小さくして省スペース化を図ることができる。
(2)電磁弁と差圧弁とを弁本体の一端側から組み付けることができるため、従来例のように電磁弁と差圧弁を弁本体の上面と側面から組み付ける場合よりも組立時の作業性が良好となる。また、冷媒の外部への漏れを防止するシールを設ける箇所を弁装着穴の入口側のみの一カ所で済ませることができるので、気密性が向上するとともに、部品点数と製造工数が低減する。
Since the three-way switching valve according to the present invention is configured as described above, the following effects can be obtained.
(1) Since the diameter of the bypass flow path between the compressor and the evaporator is smaller than the diameter of the high pressure flow path between the compressor and the condenser, if an electromagnetic valve is provided in the bypass flow path, Compared with the case where an electromagnetic valve is provided, the orifice diameter is reduced and the refrigerant pressure is reduced, so that the drive coil can be made smaller. Further, when an electromagnetic valve is provided in the bypass flow path, a direct acting type can be adopted because the refrigerant pressure is low, and the configuration becomes simple compared to a case where a pilot type is adopted. Therefore, the manufacturing cost can be reduced and the size can be reduced to save space.
(2) Since the solenoid valve and the differential pressure valve can be assembled from one end side of the valve body, the workability during assembly is greater than when the solenoid valve and differential pressure valve are assembled from the top and side surfaces of the valve body as in the conventional example. It becomes good. In addition, since a place for providing a seal for preventing the refrigerant from leaking to the outside can be provided at only one place on the inlet side of the valve mounting hole, airtightness is improved, and the number of parts and the number of manufacturing steps are reduced.

本発明による三方切換弁の一実施例を示す正面断面図である。It is front sectional drawing which shows one Example of the three-way selector valve by this invention. 図1に示す三方切換弁の要部の側面断面図である。It is side surface sectional drawing of the principal part of the three-way selector valve shown in FIG. 図1及び図2に示した三方切換弁の底面図である。FIG. 3 is a bottom view of the three-way switching valve shown in FIGS. 1 and 2. 従来の三方切換弁の一例を示す正面断面図である。It is front sectional drawing which shows an example of the conventional three-way switching valve. ホットガスサイクルを備えた冷凍サイクルの説明図である。It is explanatory drawing of the refrigerating cycle provided with the hot gas cycle.

本発明による三方切換弁の実施例を、図面を参照して説明する。図1〜図3に示すように、本発明による三方切換弁1は、一つの弁本体2に、電磁弁3と差圧弁4とを組み込んで構成されている。この例では、電磁弁3は直動式のものが採用されている。弁本体2は、圧縮機に接続される第1の通路5と、コンデンサ(凝縮器)に接続される第2の通路6とを備えている。この例では、第1の通路5と第2の通路6とは、弁本体2の同じ側面に開口するように互いに平行に設けられているが、互いに異なる側面に開口するように設けても良い。第1の通路5と第2の通路6は、縦方向に延びる接続通路7によって連通接続されている。   An embodiment of a three-way switching valve according to the present invention will be described with reference to the drawings. As shown in FIGS. 1 to 3, a three-way switching valve 1 according to the present invention is configured by incorporating a solenoid valve 3 and a differential pressure valve 4 in one valve body 2. In this example, the solenoid valve 3 is a direct acting type. The valve body 2 includes a first passage 5 connected to the compressor and a second passage 6 connected to a condenser (condenser). In this example, the first passage 5 and the second passage 6 are provided in parallel to each other so as to open on the same side surface of the valve body 2, but may be provided so as to open on different side surfaces. . The first passage 5 and the second passage 6 are connected in communication by a connection passage 7 extending in the vertical direction.

弁本体2には、接続通路7と同軸状に一つの弁装着穴10が形成されている。弁装着穴10は、弁本体2の上面側から下方に向けて順次縮径するように形成された多段状のもので、上側から順に、電磁弁3を収容する第1収容部11(電磁弁収容部)と、差圧弁4を収容する第2収容部12(差圧弁収容部)とを有している。第1収容部11と第2収容部12は接続通路7と同軸状で、直列に形成されている。第2収容部12は、上側で第1収容部11、下側で接続通路7にそれぞれ連通するとともに、第1の通路5と交差している。このように、弁装着穴10を接続通路7と同軸状に形成することで、加工が容易となり、生産性が向上する。   A single valve mounting hole 10 is formed in the valve body 2 coaxially with the connection passage 7. The valve mounting hole 10 is a multi-stage one formed so as to be sequentially reduced in diameter from the upper surface side to the lower side of the valve body 2, and in order from the upper side, a first storage portion 11 (electromagnetic valve) that stores the electromagnetic valve 3. And a second accommodating portion 12 (differential pressure valve accommodating portion) for accommodating the differential pressure valve 4. The 1st accommodating part 11 and the 2nd accommodating part 12 are coaxial with the connection channel | path 7, and are formed in series. The second accommodating portion 12 communicates with the first accommodating portion 11 on the upper side and the connecting passage 7 on the lower side, and intersects the first passage 5. Thus, by forming the valve mounting hole 10 coaxially with the connection passage 7, processing becomes easy and productivity is improved.

電磁弁3は、弁本体30と、弁座部31aを有する弁座部材31と、駆動用の電気信号により励磁状態と非励磁状態とに切り換えられるコイル35と、該コイル35の励磁状態と非励磁状態とに応じて、上下方向に移動して弁座部31aに離接する弁体36とを備えている。弁座部材31は上下に延びる通路を有しており、弁体36が弁座部31aに離接することで、この通路が開閉される。   The electromagnetic valve 3 includes a valve body 30, a valve seat member 31 having a valve seat portion 31a, a coil 35 that is switched between an excited state and a non-excited state by an electric signal for driving, and an excited state and a non-excited state of the coil 35. A valve body 36 that moves in the vertical direction according to the excitation state and moves away from and in contact with the valve seat portion 31a is provided. The valve seat member 31 has a passage extending vertically, and the passage is opened and closed by the valve body 36 being separated from and contacting the valve seat portion 31a.

弁装着穴10の第1収容部11は、弁本体2の上面に開口する大径収容部分11aと、この大径収容部分11aと同軸状かつ大径収容部分11aから下方に向けて形成された小径収容部分11bとを備えている。大径収容部分11aは、電磁弁3の弁本体30を収容するためのもので、その上部の内周面には雌ねじ部が形成されている。この雌ねじ部と、弁本体30の外周に形成された雄ねじ部とにより、電磁弁3を弁本体30に固定するためのねじ係合部13が構成される。弁本体30における雄ねじ部の下方の周面には周溝が形成されており、この周溝にシール部材としてのOリング32が嵌着されている。Oリング32は、大径収容部分11aの筒状内面と係合して弁本体2内部を流れる冷媒が外部に漏れ出さないようにシールをしている。   The first housing portion 11 of the valve mounting hole 10 is formed with a large-diameter housing portion 11a that opens on the upper surface of the valve body 2, and is coaxial with the large-diameter housing portion 11a and downward from the large-diameter housing portion 11a. And a small-diameter accommodating portion 11b. The large-diameter accommodating portion 11a is for accommodating the valve main body 30 of the electromagnetic valve 3, and an internal thread portion is formed on the inner peripheral surface of the upper portion thereof. The female thread portion and the male thread portion formed on the outer periphery of the valve main body 30 constitute a screw engaging portion 13 for fixing the electromagnetic valve 3 to the valve main body 30. A circumferential groove is formed on the lower peripheral surface of the male threaded portion of the valve body 30, and an O-ring 32 as a seal member is fitted into the circumferential groove. The O-ring 32 is engaged with the cylindrical inner surface of the large-diameter accommodating portion 11a so as to prevent the refrigerant flowing inside the valve body 2 from leaking outside.

小径収容部分11bに収容される電磁弁3の弁座部材31は概して有底筒状の形状を有しており、その外周面はOリング33によって小径収容部分11bの筒状内面にシール係合している。弁座部材31には径方向に貫通する複数の貫通孔34が形成されており、エバポレータに通じる冷媒圧力が弁座部材31内部に作用している。弁座部材31の上側で弁体36の周囲のスペース37には、第1の通路5から通路14、大径収容部分11a及び弁座部材31上端の溝31bを通じて圧縮機からの冷媒圧力が作用している。また、弁座部材31の内部には、第3の通路9(図2参照)、貫通孔34を通じてエバポレータからの冷媒圧力が作用している。   The valve seat member 31 of the electromagnetic valve 3 accommodated in the small diameter accommodating portion 11b has a generally bottomed cylindrical shape, and its outer peripheral surface is sealed and engaged with the cylindrical inner surface of the small diameter accommodating portion 11b by an O-ring 33. is doing. The valve seat member 31 is formed with a plurality of through holes 34 penetrating in the radial direction, and the refrigerant pressure communicating with the evaporator acts on the inside of the valve seat member 31. The refrigerant pressure from the compressor acts on the space 37 around the valve body 36 above the valve seat member 31 through the first passage 5 to the passage 14, the large-diameter accommodating portion 11a, and the groove 31b at the upper end of the valve seat member 31. is doing. Further, the refrigerant pressure from the evaporator acts on the inside of the valve seat member 31 through the third passage 9 (see FIG. 2) and the through hole 34.

差圧弁4は、弁本体41と、その上端にカシメによって固定された有底筒状のばねガイド43と、このばねガイド43に案内されるコイルばね44とを備えている。コイルばね44はばねガイド43を介して弁本体41を下方に付勢している。   The differential pressure valve 4 includes a valve main body 41, a bottomed cylindrical spring guide 43 fixed to the upper end thereof by caulking, and a coil spring 44 guided by the spring guide 43. The coil spring 44 urges the valve body 41 downward via the spring guide 43.

弁装着穴10の第2収容部12は、第1収容部11よりも小径であるが、接続通路7よりも大径に形成されており、弁本体41がスライド可能に収容されている。第1の通路5と接続通路7とが交差する位置には、弁本体41の最下部に設けられている弁部分42が着座可能な弁座8が設けられている。   The second housing portion 12 of the valve mounting hole 10 has a smaller diameter than the first housing portion 11 but is formed to have a larger diameter than the connection passage 7, and the valve main body 41 is slidably accommodated therein. At the position where the first passage 5 and the connection passage 7 intersect, a valve seat 8 on which a valve portion 42 provided at the lowermost part of the valve body 41 can be seated is provided.

電磁弁3が開くと、圧縮機からの冷媒が弁座部材31内に流入し、貫通孔34及び第3の通路9を介してエバポレータに供給される。また、弁本体41の上下の差圧が無くなるため、弁本体41はコイルばね44によって押し下げられて弁部分42が弁座8に着座し、圧縮機からコンデンサへの冷媒の流れが遮断される。一方、電磁弁3が閉じると、圧縮機からの冷媒が弁座部材31内に流入しなくなり、エバポレータに供給されなくなる。また、弁本体41の上下の差圧が次第に大きくなってゆき、当該差圧が一定以上になれば、弁本体体41が開方向に移動して弁座8から離れ、圧縮機からの冷媒が接続通路7及び第2の通路6を通じてコンデンサに流れるようになる。   When the electromagnetic valve 3 is opened, the refrigerant from the compressor flows into the valve seat member 31 and is supplied to the evaporator through the through hole 34 and the third passage 9. Further, since the pressure difference between the upper and lower portions of the valve body 41 is eliminated, the valve body 41 is pushed down by the coil spring 44, the valve portion 42 is seated on the valve seat 8, and the refrigerant flow from the compressor to the condenser is blocked. On the other hand, when the electromagnetic valve 3 is closed, the refrigerant from the compressor does not flow into the valve seat member 31 and is not supplied to the evaporator. Further, when the pressure difference between the top and bottom of the valve body 41 gradually increases and the pressure difference becomes a certain level or more, the valve body 41 moves in the opening direction and moves away from the valve seat 8 so that the refrigerant from the compressor flows. It flows to the capacitor through the connection passage 7 and the second passage 6.

上記したように、弁装着穴10は弁本体2の上側から順に径が小さくなっていく多段状の穴に形成されており、差圧弁4及び電磁弁3は弁本体2の上側から弁装着穴10内に順次組み付けられる。このように、差圧弁4及び電磁弁3を一方向から組み付けることができるので、組立性は良好となる。或いは、差圧弁4及び電磁弁3を予めユニットとして組み立てておいて、一度に弁本体2に組み付けることもできる。よって、従来に比べ、組立性を大幅に改善することができる。また、弁装着穴10が一つであるため、一つのOリング32によって冷媒の漏出を防止することができるので、部品点数が低減するとともにシール性を向上することができる。   As described above, the valve mounting hole 10 is formed in a multi-stage hole whose diameter decreases from the upper side of the valve body 2, and the differential pressure valve 4 and the electromagnetic valve 3 are valve mounting holes from the upper side of the valve body 2. 10 are sequentially assembled. Thus, since the differential pressure valve 4 and the electromagnetic valve 3 can be assembled from one direction, the assemblability is good. Alternatively, the differential pressure valve 4 and the electromagnetic valve 3 can be assembled in advance as a unit and assembled to the valve body 2 at a time. Therefore, the assemblability can be greatly improved as compared with the conventional case. Further, since there is one valve mounting hole 10, leakage of the refrigerant can be prevented by one O-ring 32, so that the number of parts can be reduced and the sealing performance can be improved.

以上の実施例の説明においては、電磁弁3が直動式のものである場合について説明したが、それに代えて、従来例に示したようなパイロット式の電磁弁を用いてもよいことは明らかである。
また、その他にも、本発明の要旨を逸脱しない範囲で上記実施例に種々の改変を施すことができる。
In the above description of the embodiment, the case where the electromagnetic valve 3 is a direct acting type has been described, but it is obvious that a pilot type electromagnetic valve as shown in the conventional example may be used instead. It is.
In addition, various modifications can be made to the above embodiment without departing from the scope of the present invention.

1 三方切換弁 2 弁本体
3 電磁弁 4 差圧弁
5 第1の通路 6 第2の通路
7 接続通路 8 弁座
9 第3の通路 10 弁装着穴
11 第1収容部(電磁弁収容部) 12 第2収容部(差圧弁収容部)
32 Oリング 35 コイル
DESCRIPTION OF SYMBOLS 1 Three-way selector valve 2 Valve body 3 Electromagnetic valve 4 Differential pressure valve 5 1st channel | path 6 2nd channel | path 7 Connection channel | path 8 Valve seat 9 3rd channel | path 10 Valve mounting hole 11 1st accommodating part (electromagnetic valve accommodating part) 12 Second housing part (differential pressure valve housing part)
32 O-ring 35 coil

Claims (4)

ホットガスサイクルを備えた冷凍サイクルに装備され、圧縮機が吐出する冷媒ガスを、コンデンサに導く高圧流路又はコンデンサを迂回してエバポレータに導くバイパス流路のいずれかに選択的に切り換える三方切換弁であって、前記バイパス流路を開閉する電磁弁と、前記電磁弁が開弁した状態で前記高圧流路を閉じるとともに前記電磁弁が閉弁した状態で前記高圧流路を開くように構成された差圧弁とを備え、前記弁本体は、その一端から内方に向けて形成された弁装着穴を有しており、前記電磁弁と前記差圧弁とを直列状態で前記弁装着穴に挿入装着して成ることを特徴とする三方切換弁。   A three-way selector valve that is installed in a refrigeration cycle with a hot gas cycle and selectively switches the refrigerant gas discharged from the compressor to either a high-pressure channel that leads to the condenser or a bypass channel that bypasses the condenser and leads to the evaporator An electromagnetic valve that opens and closes the bypass flow path, and is configured to close the high pressure flow path with the electromagnetic valve open and open the high pressure flow path with the electromagnetic valve closed. The valve body has a valve mounting hole formed inwardly from one end thereof, and the solenoid valve and the differential pressure valve are inserted in series into the valve mounting hole. A three-way switching valve characterized by being mounted. 前記弁本体は、前記圧縮機に接続される第1の通路、前記コンデンサに接続される第2の通路、及び前記第1の通路と前記第2の通路とを接続する接続通路とを備え、前記弁装着穴は、内方に向けて順次縮径する多段状のもので、前記第1の通路と前記接続通路との交差部分において前記接続通路と同軸状且つ前記接続通路よりも大径の差圧弁収容部が形成され、該差圧弁収容部よりも開口側において前記差圧弁収容部と同軸状且つ前記差圧弁収容部よりも大径の電磁弁収容部が形成されていることを特徴とする請求項1記載の三方切換弁。   The valve body includes a first passage connected to the compressor, a second passage connected to the capacitor, and a connection passage connecting the first passage and the second passage, The valve mounting hole has a multi-stage shape that gradually decreases in diameter toward the inside, and is coaxial with the connection passage at the intersection of the first passage and the connection passage and has a diameter larger than that of the connection passage. A differential pressure valve housing portion is formed, and an electromagnetic valve housing portion coaxial with the differential pressure valve housing portion and having a larger diameter than the differential pressure valve housing portion is formed on the opening side of the differential pressure valve housing portion. The three-way switching valve according to claim 1. 前記弁装着穴は、その開口端側に配設された一つのOリングによりシールされていることを特徴とする請求項1又は2記載の三方切換弁。   The three-way switching valve according to claim 1 or 2, wherein the valve mounting hole is sealed by one O-ring disposed on the opening end side thereof. 前記電磁弁は、直動式のものであること特徴とする請求項1乃至3のいずれかに記載の三方切換弁。   The three-way switching valve according to any one of claims 1 to 3, wherein the solenoid valve is a direct acting type.
JP2009180004A 2009-07-31 2009-07-31 Three-way switching valve for hot gas cycle Expired - Fee Related JP5560002B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009180004A JP5560002B2 (en) 2009-07-31 2009-07-31 Three-way switching valve for hot gas cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009180004A JP5560002B2 (en) 2009-07-31 2009-07-31 Three-way switching valve for hot gas cycle

Publications (2)

Publication Number Publication Date
JP2011033126A true JP2011033126A (en) 2011-02-17
JP5560002B2 JP5560002B2 (en) 2014-07-23

Family

ID=43762393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009180004A Expired - Fee Related JP5560002B2 (en) 2009-07-31 2009-07-31 Three-way switching valve for hot gas cycle

Country Status (1)

Country Link
JP (1) JP5560002B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853794A1 (en) * 2013-09-25 2015-04-01 TGK CO., Ltd. Electromagnetic valve

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086325U (en) * 1973-12-11 1975-07-23
JPH11287354A (en) * 1998-04-03 1999-10-19 Tgk Co Ltd Three-way selector solenoid valve for pilot operation
JP2004340560A (en) * 2003-04-24 2004-12-02 Fuji Koki Corp Composite valve
JP2006017200A (en) * 2004-06-30 2006-01-19 Fuji Koki Corp Four-way valve
JP2006161713A (en) * 2004-12-08 2006-06-22 Fuji Koki Corp Selector valve and compressor equipped with same
JP2006242291A (en) * 2005-03-03 2006-09-14 Fuji Koki Corp Three-way valve

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5086325U (en) * 1973-12-11 1975-07-23
JPH11287354A (en) * 1998-04-03 1999-10-19 Tgk Co Ltd Three-way selector solenoid valve for pilot operation
JP2004340560A (en) * 2003-04-24 2004-12-02 Fuji Koki Corp Composite valve
JP2006017200A (en) * 2004-06-30 2006-01-19 Fuji Koki Corp Four-way valve
JP2006161713A (en) * 2004-12-08 2006-06-22 Fuji Koki Corp Selector valve and compressor equipped with same
JP2006242291A (en) * 2005-03-03 2006-09-14 Fuji Koki Corp Three-way valve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2853794A1 (en) * 2013-09-25 2015-04-01 TGK CO., Ltd. Electromagnetic valve
US9523441B2 (en) 2013-09-25 2016-12-20 Tgk Co., Ltd. Electromagnetic valve

Also Published As

Publication number Publication date
JP5560002B2 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
KR102486591B1 (en) Control valve for variable displacement compressor
CN108071824B (en) Control valve for variable displacement compressor
JP2018040385A (en) solenoid valve
JP4283069B2 (en) Compound valve
US7117895B2 (en) Switching valve
KR101955038B1 (en) Control valve
JP6281046B2 (en) Control valve for variable capacity compressor
JP6085763B2 (en) solenoid valve
JP6218023B2 (en) solenoid valve
KR20170056447A (en) Solenoid valve
JP2011032916A (en) Control valve
KR20140049478A (en) Control valve for variable displacement compressor
JP4848548B2 (en) Expansion valve with solenoid valve
US9285046B2 (en) Control valve
JP6368897B2 (en) Control valve
KR102178579B1 (en) Variable displacement compressor and mounting structure of flow sensor
JP6700974B2 (en) Electric expansion valve
JP5560002B2 (en) Three-way switching valve for hot gas cycle
JP2011038630A (en) Solenoid valve
JP6040371B2 (en) Control valve
JP6040372B2 (en) Control valve for variable capacity compressor
JP2020101242A (en) Control valve
JP2010196794A (en) Solenoid valve
JP2004340267A (en) Four-way selector valve
JP6040343B2 (en) solenoid valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140310

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R150 Certificate of patent or registration of utility model

Ref document number: 5560002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees