JP2011029932A - Imaging element and imaging apparatus - Google Patents

Imaging element and imaging apparatus Download PDF

Info

Publication number
JP2011029932A
JP2011029932A JP2009173715A JP2009173715A JP2011029932A JP 2011029932 A JP2011029932 A JP 2011029932A JP 2009173715 A JP2009173715 A JP 2009173715A JP 2009173715 A JP2009173715 A JP 2009173715A JP 2011029932 A JP2011029932 A JP 2011029932A
Authority
JP
Japan
Prior art keywords
pixel
light
photoelectric conversion
chip lens
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009173715A
Other languages
Japanese (ja)
Other versions
JP5503209B2 (en
Inventor
Makoto Takamiya
誠 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009173715A priority Critical patent/JP5503209B2/en
Publication of JP2011029932A publication Critical patent/JP2011029932A/en
Application granted granted Critical
Publication of JP5503209B2 publication Critical patent/JP5503209B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To satisfy light reception characteristics required for both pixels of a standard pixel and a pixel obtained by making the center of gravity of sensitivity eccentric, even if on-chip lens shapes are made to be approximately identical. <P>SOLUTION: An imaging element comprises: imaging pixels for generating image generating signals; and focal point detecting pixels discretely disposed among a plurality of imaging pixels for generating phase difference detecting signals. Each imaging pixel includes: a photoelectric conversion part 61 for converting light into charge; an on-chip lens 69 for converging light to the photoelectric conversion part; and an optical waveguide 70 disposed between the photoelectric conversion part and the on-chip lens for guiding light to the photoelectric conversion part. Each focal point detecting pixel includes: a photoelectric conversion part 61 for converting light into charge; an on-chip lens 69 for converging light to the photoelectric conversion part; and a light shielding layer 51 disposed between the photoelectric conversion part and the on-chip lens for light-shielding a part of the photoelectric conversion part. Both the on-chip lens of the imaging pixel and the on-chip lens of the focal point detecting pixel have focus positions at a position of a height where the light shielding layer 51 is approximately disposed. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、撮像を行うための撮像素子から得られる像信号に基づいて撮影レンズの焦点状態を検出する技術に関するものである。   The present invention relates to a technique for detecting a focus state of a photographic lens based on an image signal obtained from an image sensor for performing imaging.

撮影レンズの焦点状態を検出する方式の一つとして、センサの各画素にオンチップレンズが形成された2次元のセンサを用いて瞳分割方式の焦点検出を行う装置が特許文献1に開示されている。特許文献1の装置では、センサを構成する各画素の光電変換部が複数に分割されており、分割された光電変換部がオンチップレンズを介して撮影レンズの瞳の異なる領域を通過した光を受光するように構成されている。   As one of the methods for detecting the focus state of the photographic lens, Patent Document 1 discloses an apparatus that performs pupil division type focus detection using a two-dimensional sensor in which an on-chip lens is formed in each pixel of the sensor. Yes. In the device of Patent Document 1, the photoelectric conversion unit of each pixel constituting the sensor is divided into a plurality of parts, and the divided photoelectric conversion unit transmits light that has passed through different areas of the pupil of the photographing lens via an on-chip lens. It is configured to receive light.

また、特許文献2では、撮像素子の一部の受光素子(画素)において、オンチップマイクロレンズの光軸に対して受光部の感度重心を偏心させることで瞳分割機能を付与している。そしてこれらの画素を焦点検出用画素とし、撮像用画素群の間に所定の間隔で配置することで、位相差式焦点検出を行なう。また、焦点検出用画素が配置された箇所は撮像画素の欠損部に相当するため、周辺の撮像画素情報から補間して画像情報を創生している。   In Patent Document 2, a pupil division function is given by decentering the sensitivity center of gravity of the light receiving unit with respect to the optical axis of the on-chip microlens in some light receiving elements (pixels) of the image sensor. These pixels are used as focus detection pixels, and are arranged at predetermined intervals between the imaging pixel groups, thereby performing phase difference focus detection. In addition, since the location where the focus detection pixels are arranged corresponds to a defective portion of the imaging pixel, image information is created by interpolation from surrounding imaging pixel information.

特開昭58−24105号公報JP-A-58-24105 特開2000−156823号公報JP 2000-156823 A

前述した特許文献2には、受光部の感度重心を偏心させるためにオンチップマイクロレンズの光軸に対して開口を偏らせた開口部を有する遮光層を設けた構成が開示されている。遮光層を配線層と兼ねるようにすれば従来の製造プロセスからの変更がほとんどなく有望な構成と言える。   Patent Document 2 described above discloses a configuration in which a light-shielding layer having an opening whose opening is biased with respect to the optical axis of the on-chip microlens is provided in order to decenter the sensitivity center of gravity of the light receiving portion. If the light shielding layer is also used as the wiring layer, it can be said that it is a promising configuration with almost no change from the conventional manufacturing process.

図16は、遮光層を配線層と兼ねた撮像素子の構成を示す図である。図16において、60はシリコン基板、61は受光領域、69aはオンチップレンズ、51は遮光層を兼ねた配線層、62は層間絶縁膜である。また右側が標準画素の構成を示し、左側が受光部の感度重心を偏心させた画素の構成を示している。また図16は、オンチップレンズの焦点位置が受光領域61の表面部にほぼ一致している。図17は、オンチップレンズの高さを高くした撮像素子の構成を示す図である。このオンチップレンズ69bの焦点位置は遮光層を兼ねた配線層51の配置高さにほぼ一致しておりその他の構成は図16と同一となっている。   FIG. 16 is a diagram illustrating a configuration of an imaging element in which the light shielding layer also serves as a wiring layer. In FIG. 16, 60 is a silicon substrate, 61 is a light receiving region, 69a is an on-chip lens, 51 is a wiring layer that also serves as a light shielding layer, and 62 is an interlayer insulating film. The right side shows the configuration of the standard pixel, and the left side shows the configuration of the pixel in which the sensitivity center of gravity of the light receiving unit is decentered. In FIG. 16, the focal position of the on-chip lens substantially coincides with the surface portion of the light receiving region 61. FIG. 17 is a diagram illustrating a configuration of an image sensor in which the height of the on-chip lens is increased. The focal position of the on-chip lens 69b substantially coincides with the arrangement height of the wiring layer 51 which also serves as a light shielding layer, and other configurations are the same as those in FIG.

以下に、オンチップレンズ高さの違いによる各画素の特性の違いについて説明する。図18は標準画素の斜入射の様子を説明する図である。図18(a)は図16で示した光束が受光領域61表面部にほぼ収束するオンチップレンズ69aの例であり、受光領域61に全光束が照射されている様子がわかる。一方図18(b)は図17で示した光束が配線層51の配置高さにほぼ収束するオンチップレンズ69bの例であり、光束の一部が受光領域61からはみ出ている様子がわかる。図19は感度重心を偏心させた画素の開口を透過する様子を説明する図である。図19(a)は図16で示した光束が受光領域61表面部にほぼ収束するオンチップレンズ69aの例であり、光束の一部が遮光層を兼ねた配線層51により遮られ全光束が受光領域61に到達しない様子がわかる。一方図19(b)は図17で示した光束が配線層51の配置高さにほぼ収束するオンチップレンズ69bの例であり、全光束は配線層51の開口部を透過し、受光領域61に到達する様子がわかる。   Hereinafter, a difference in characteristics of each pixel due to a difference in on-chip lens height will be described. FIG. 18 is a diagram for explaining the oblique incidence of standard pixels. FIG. 18A shows an example of the on-chip lens 69 a in which the light beam shown in FIG. 16 is almost converged on the surface of the light receiving region 61, and it can be seen that the entire light beam is irradiated on the light receiving region 61. On the other hand, FIG. 18B shows an example of the on-chip lens 69 b in which the light beam shown in FIG. 17 converges substantially at the arrangement height of the wiring layer 51, and it can be seen that a part of the light beam protrudes from the light receiving region 61. FIG. 19 is a diagram for explaining a state in which the aperture of a pixel with the sensitivity center of gravity decentered is transmitted. FIG. 19A shows an example of the on-chip lens 69a in which the light beam shown in FIG. 16 is almost converged on the surface of the light receiving region 61. A part of the light beam is blocked by the wiring layer 51 which also serves as a light shielding layer, and the total light beam is blocked. It can be seen that the light receiving area 61 is not reached. On the other hand, FIG. 19B shows an example of the on-chip lens 69 b in which the light beam shown in FIG. 17 is almost converged to the arrangement height of the wiring layer 51, and the total light beam is transmitted through the opening of the wiring layer 51. You can see how it reaches.

図20は標準画素の入射角特性を示した図で、横軸は入射角度、縦軸は受光効率を示す。図20(a)は図16で示した光束が受光領域61の表面部にほぼ収束するオンチップレンズ69aの場合に対応し、図20(b)は図17で示した光束が配線層51の配置高さにほぼ収束するオンチップレンズ69bの場合に対応する。図20から、標準画素においては光束が受光領域61表面部にほぼ収束するオンチップレンズほど、明るい入射角が大きいレンズや像高の高い画素においても光取り込み効率を確保することができることがわかる。   FIG. 20 is a diagram showing the incident angle characteristics of a standard pixel. The horizontal axis represents the incident angle, and the vertical axis represents the light receiving efficiency. 20A corresponds to the case of the on-chip lens 69a in which the light beam shown in FIG. 16 converges almost on the surface of the light receiving region 61, and FIG. 20B shows the light beam shown in FIG. This corresponds to the case of the on-chip lens 69b that almost converges to the arrangement height. From FIG. 20, it can be seen that in the standard pixel, as the on-chip lens in which the light beam almost converges on the surface of the light receiving region 61, the light capturing efficiency can be ensured even in a lens having a bright incident angle and a pixel having a high image height.

図21は感度重心を偏心させた画素の入射角特性を示した図で、横軸は入射角度、縦軸は受光効率を示す。図21(a)は図16で示した光束が受光領域61表面部にほぼ収束するオンチップレンズ69aの場合に対応し、図21(b)は図17で示した光束が配線層51の配置高さにほぼ収束するオンチップレンズ69bの場合に対応する。図21から、感度重心を偏心させた画素においては光束が配線層51の配置高さにほぼ収束するオンチップレンズほど偏心した瞳強度分布の特性が先鋭となる。つまりは位相差式焦点検出を行なう上で良好な画像信号が得られることがわかる。   FIG. 21 is a diagram showing the incident angle characteristics of a pixel in which the sensitivity center of gravity is decentered. The horizontal axis indicates the incident angle, and the vertical axis indicates the light receiving efficiency. 21A corresponds to the case of the on-chip lens 69a in which the light flux shown in FIG. 16 converges almost on the surface of the light receiving region 61, and FIG. 21B shows the arrangement of the wiring layer 51 in which the light flux shown in FIG. This corresponds to the case of the on-chip lens 69b that almost converges to the height. From FIG. 21, in the pixel in which the sensitivity center of gravity is decentered, the characteristic of the pupil intensity distribution that is decentered becomes sharper as the on-chip lens in which the light beam converges substantially on the arrangement height of the wiring layer 51. That is, it can be seen that a good image signal can be obtained when performing phase difference focus detection.

すなわち、標準画素の最適なオンチップレンズ形状と感度重心を偏心させた画素での最適なオンチップレンズ形状とは一致せず、同一のオンチップレンズ製造プロセスではどちらかの画素に適したオンチップレンズ形状を選択する必要があった。   In other words, the optimal on-chip lens shape of the standard pixel does not match the optimal on-chip lens shape of the pixel whose sensitivity center of gravity is decentered, and an on-chip suitable for either pixel in the same on-chip lens manufacturing process. It was necessary to select the lens shape.

本発明は上述した課題に鑑みてなされたものであり、その目的は、オンチップレンズ形状をほぼ同じにしても、標準画素と感度重心を偏心させた画素の双方で必要な受光特性を満足できるようにすることである。   The present invention has been made in view of the above-described problems. The object of the present invention is to satisfy the required light receiving characteristics in both the standard pixel and the pixel whose sensitivity center of gravity is decentered even when the on-chip lens shape is substantially the same. Is to do so.

上述した課題を解決し、目的を達成するために、本発明に係わる撮像素子は、撮影レンズにより結像される被写体像を光電変換して画像生成用の信号を生成する撮像用画素と、複数の前記撮像用画素の間に離散的に配置され、前記撮影レンズの瞳領域を分割して、分割された瞳領域からの被写体像を光電変換して位相差検出用の信号を生成する焦点検出用画素とを備え、前記撮像用画素は、光を電荷に変換する光電変換部と、該光電変換部に光を集光するオンチップレンズと、前記光電変換部と前記オンチップレンズの間に配置され前記光電変換部に光を導くための光導波路とを有し、前記焦点検出用画素は、光を電荷に変換する光電変換部と、該光電変換部に光を集光するオンチップレンズと、前記光電変換部と前記オンチップレンズの間に配置され前記光電変換部の一部を遮光するための遮光層とを有し、前記撮像用画素のオンチップレンズと前記焦点検出用画素のオンチップレンズとは、ともに、ほぼ前記遮光層が配置されている高さの位置に焦点位置を有することを特徴とする。   In order to solve the above-described problems and achieve the object, an imaging device according to the present invention includes an imaging pixel that photoelectrically converts a subject image formed by a photographic lens to generate an image generation signal, and a plurality of imaging pixels. Focus detection that is discretely arranged between the imaging pixels, divides a pupil region of the photographing lens, and photoelectrically converts a subject image from the divided pupil region to generate a phase difference detection signal The imaging pixel includes a photoelectric conversion unit that converts light into an electric charge, an on-chip lens that collects light on the photoelectric conversion unit, and a gap between the photoelectric conversion unit and the on-chip lens. An optical waveguide for guiding light to the photoelectric conversion unit, and the focus detection pixel includes a photoelectric conversion unit that converts light into electric charge, and an on-chip lens that condenses light on the photoelectric conversion unit And between the photoelectric conversion unit and the on-chip lens And a light shielding layer for shielding a part of the photoelectric conversion unit, and the on-chip lens of the imaging pixel and the on-chip lens of the focus detection pixel are both substantially disposed of the light shielding layer. It is characterized by having a focal position at a height position.

本発明によれば、オンチップレンズ形状をほぼ同じにしても、標準画素と感度重心を偏心させた画素の双方で必要な受光特性を満足することが可能となる。   According to the present invention, even if the on-chip lens shapes are substantially the same, it is possible to satisfy the required light receiving characteristics in both the standard pixel and the pixel whose sensitivity center of gravity is decentered.

本発明の第1の実施形態に係わる撮像装置であるカメラの構成図である。It is a block diagram of the camera which is an imaging device concerning the 1st Embodiment of this invention. 撮像素子の概略的回路構成を示した図である。It is the figure which showed the schematic circuit structure of the image pick-up element. 撮像素子の画素配線部の断面図である。It is sectional drawing of the pixel wiring part of an image pick-up element. 撮像素子の動作を示すタイミングチャートである。It is a timing chart which shows operation of an image sensor. 撮像素子の一部平面図である。It is a partial top view of an image sensor. 焦点検出用画素α、βとその隣接画素の水平断面図である。It is a horizontal sectional view of focus detection pixels α and β and their adjacent pixels. 標準画素の斜入射の様子を説明する図である。It is a figure explaining the mode of the oblique incidence of a standard pixel. 焦点検出用画素の開口を光が透過する様子を説明する図である。It is a figure explaining a mode that light permeate | transmits the opening of the pixel for focus detection. 標準画素の受光分布の説明図である。It is explanatory drawing of the light reception distribution of a standard pixel. 焦点検出用画素の受光分布の説明図である。It is explanatory drawing of the light reception distribution of the pixel for focus detection. デフォーカス検出の動作を示すフローチャートである。It is a flowchart which shows the operation | movement of a defocus detection. 第2の実施形態における焦点検出用画素α、βとその隣接画素の水平断面図である。It is a horizontal sectional view of focus detection pixels α and β and their adjacent pixels in the second embodiment. 第2の実施形態における画素の受光分布の説明図である。It is explanatory drawing of the light reception distribution of the pixel in 2nd Embodiment. 第3の実施形態における焦点検出用画素α、βとその隣接画素の水平断面図である。FIG. 10 is a horizontal sectional view of focus detection pixels α and β and their adjacent pixels in a third embodiment. 第3の実施形態における画素の受光分布の説明図である。It is explanatory drawing of the light reception distribution of the pixel in 3rd Embodiment. 従来の撮像素子の画素の詳細構造説明図である。It is a detailed structure explanatory drawing of the pixel of the conventional image sensor. 従来の撮像素子の画素の詳細構造説明図である。It is a detailed structure explanatory drawing of the pixel of the conventional image sensor. 標準画素の斜入射の様子を説明する図である。It is a figure explaining the mode of the oblique incidence of a standard pixel. 感度重心を偏心させた画素の開口を光が透過する様子を説明する図である。It is a figure explaining a mode that light permeate | transmits the opening of the pixel which made the sensitivity gravity center eccentric. オンチップレンズの高さの違いによる標準画素の受光分布説明図である。It is a light-receiving distribution explanatory drawing of a standard pixel by the difference in the height of an on-chip lens. オンチップレンズの高さの違いによる焦点検出用画素の受光分布説明図である。It is light reception distribution explanatory drawing of the pixel for focus detection by the difference in the height of an on-chip lens.

(第1の実施形態)
図1は本発明の第1の実施形態に係わる撮像装置であるカメラ200の構成図で、撮像素子を有したカメラ本体と、被写体像を結像させるための撮影レンズ100が一体となった電子カメラを示している。図1において、101は撮影レンズ100の先端に配置された第1レンズ群で、光軸方向に進退可能に保持される。102は絞り兼用シャッタで、その開口径を調節することで撮影時の光量調節を行なうほか、静止画撮影時には露光秒時調節用シャッタとして機能する。103は第2レンズ群である。そして、絞り兼用シャッタ102及び第2レンズ群103は一体となって光軸方向に進退し、第1レンズ群101の進退動作との連動により、変倍作用(ズーム機能)をなす。105は第3レンズ群で、光軸方向の進退により、焦点調節を行なう。106は光学的ローパスフィルタで、撮影画像の偽色やモアレを軽減するための光学素子である。107はC−MOSセンサとその周辺回路で構成された撮像素子である。撮像素子は、横方向m画素、縦方向n画素の複数の各受光ピクセル上に、それぞれ1つの光電変換素子が配置されている。
(First embodiment)
FIG. 1 is a configuration diagram of a camera 200 that is an image pickup apparatus according to the first embodiment of the present invention. An electronic device in which a camera body having an image pickup element and a photographing lens 100 for forming a subject image are integrated. Shows the camera. In FIG. 1, reference numeral 101 denotes a first lens group disposed at the tip of the taking lens 100, which is held so as to be able to advance and retreat in the optical axis direction. Reference numeral 102 denotes an aperture / shutter that adjusts the light amount at the time of shooting by adjusting the aperture diameter, and also functions as an exposure time adjustment shutter at the time of still image shooting. Reference numeral 103 denotes a second lens group. The aperture / shutter 102 and the second lens group 103 integrally move forward and backward in the optical axis direction, and perform a zooming function (zoom function) in conjunction with the forward and backward movement of the first lens group 101. Reference numeral 105 denotes a third lens group that performs focus adjustment by advancing and retracting in the optical axis direction. Reference numeral 106 denotes an optical low-pass filter, which is an optical element for reducing false colors and moire in a captured image. Reference numeral 107 denotes an image sensor composed of a C-MOS sensor and its peripheral circuits. In the imaging element, one photoelectric conversion element is arranged on each of a plurality of light receiving pixels of m pixels in the horizontal direction and n pixels in the vertical direction.

111はズームアクチュエータで、不図示のカム筒を回動することで、第1レンズ群111乃至第3レンズ群103を光軸方向に進退駆動し、変倍操作を行なう。112は絞りシャッタアクチュエータで、絞り兼用シャッタ102の開口径を制御して撮影光量を調節すると共に、静止画撮影時の露光時間制御を行なう。114はフォーカスアクチュエータで、第3レンズ群105を光軸方向に進退駆動して焦点調節を行なう。115は撮影時の被写体照明用の電子フラッシュで、キセノン管を用いた閃光照明装置が好適であるが、連続発光するLEDを備えた照明装置を用いても良い。   Reference numeral 111 denotes a zoom actuator, which rotates a cam cylinder (not shown) to drive the first lens group 111 to the third lens group 103 forward and backward in the optical axis direction, thereby performing a zooming operation. Reference numeral 112 denotes an aperture shutter actuator that controls the aperture diameter of the aperture / shutter 102 to adjust the amount of photographing light, and controls the exposure time during still image photographing. Reference numeral 114 denotes a focus actuator, which performs focus adjustment by driving the third lens group 105 back and forth in the optical axis direction. Reference numeral 115 denotes an electronic flash for illuminating a subject at the time of photographing, and a flash illumination device using a xenon tube is suitable, but an illumination device including an LED that emits light continuously may be used.

121は、カメラ本体の種々の制御を司るカメラ内CPUで、演算部、ROM、RAM、A/Dコンバータ、D/Aコンバータ、通信インターフェイス回路等を有し、ROMに記憶された所定のプログラムに基づいて、カメラが有する各種回路を駆動する。そして、AF、撮影、画像処理、記録等の一連の動作を実行する。またCPU121は、撮影レンズ100の焦点状態を検出する焦点検出手段及び、焦点ずれ量演算手段としての機能も有する。   Reference numeral 121 denotes an in-camera CPU that controls various controls of the camera body, and includes a calculation unit, ROM, RAM, A / D converter, D / A converter, communication interface circuit, and the like, and a predetermined program stored in the ROM Based on this, various circuits of the camera are driven. Then, a series of operations such as AF, shooting, image processing, and recording are executed. The CPU 121 also has functions as a focus detection unit that detects the focus state of the photographing lens 100 and a defocus amount calculation unit.

122は電子フラッシュ制御回路で、撮影動作に同期して電子フラッシュ115を点灯制御する。124は撮像素子駆動回路で、撮像素子107の撮像動作を制御するとともに、取得した画像信号をA/D変換してCPU121に送信する。125は画像処理回路で、撮像素子107が取得した画像のγ変換、カラー補間、JPEG圧縮等の処理を行なう。126はフォーカス駆動回路で、焦点検出結果に基づいてフォーカスアクチュエータ114を駆動制御し、第3レンズ群105を光軸方向に進退駆動して焦点調節を行なう。128は絞りシャッタ駆動回路で、絞りシャッタアクチュエータ112を駆動制御して絞り兼用シャッタ102の開口を制御する。129はズーム駆動回路で、撮影者のズーム操作に応じてズームアクチュエータ111を駆動する。   An electronic flash control circuit 122 controls lighting of the electronic flash 115 in synchronization with the photographing operation. An image sensor driving circuit 124 controls the image capturing operation of the image sensor 107 and A / D converts the acquired image signal and transmits the image signal to the CPU 121. An image processing circuit 125 performs processes such as γ conversion, color interpolation, and JPEG compression of the image acquired by the image sensor 107. A focus drive circuit 126 controls the focus actuator 114 based on the focus detection result, and adjusts the focus by driving the third lens group 105 back and forth in the optical axis direction. Reference numeral 128 denotes an aperture shutter drive circuit which controls the aperture shutter actuator 112 to control the aperture of the aperture / shutter 102. Reference numeral 129 denotes a zoom drive circuit that drives the zoom actuator 111 in accordance with the zoom operation of the photographer.

131はLCD等の表示器で、カメラの撮影モードに関する情報、撮影前のプレビュー画像と撮影後の確認用画像、焦点検出時の合焦状態表示画像等を表示する。132は操作スイッチ群で、電源スイッチ、レリーズ(撮影トリガ)スイッチ、ズーム操作スイッチ、撮影モード選択スイッチ等で構成される。133は着脱可能なフラッシュメモリで、撮影済み画像を記録する。   Reference numeral 131 denotes a display device such as an LCD, which displays information related to the shooting mode of the camera, a preview image before shooting and a confirmation image after shooting, a focus state display image when focus is detected, and the like. An operation switch group 132 includes a power switch, a release (shooting trigger) switch, a zoom operation switch, a shooting mode selection switch, and the like. Reference numeral 133 denotes a detachable flash memory that records a photographed image.

図2は、本発明の第1の実施形態における撮像素子の概略的回路構成を示した図で、本願出願人による特開平09−046596号公報等に開示された技術が好適である。図2は2次元C−MOSエリアセンサの2列×4行の光電変換部の範囲を示したものであり、8画素分の回路構成となる。   FIG. 2 is a diagram showing a schematic circuit configuration of the image sensor according to the first embodiment of the present invention, and a technique disclosed in Japanese Patent Application Laid-Open No. 09-046596 by the applicant of the present application is suitable. FIG. 2 shows the range of a photoelectric conversion unit of 2 columns × 4 rows of a two-dimensional C-MOS area sensor, and has a circuit configuration for 8 pixels.

図2において、1はMOSトランジスタゲートとゲート下の空乏層からなる光電変換部、2はフォトゲート、3は転送スイッチMOSトランジスタ、4はリセット用MOSトランジスタ、5はソースフォロワアンプMOSトランジスタである。6は水平選択スイッチMOSトランジスタ、7はソースフォロワの負荷MOSトランジスタ、8は暗出力転送MOSトランジスタ、9は明出力転送MOSトランジスタ、10は暗出力蓄積容量CTN、11は明出力蓄積容量CTSである。12は水平転送MOSトランジスタ、13は水平出力線リセットMOSトランジスタ、14は差動出力アンプ、15は水平走査回路、16は垂直走査回路である。   In FIG. 2, 1 is a photoelectric conversion unit comprising a MOS transistor gate and a depletion layer under the gate, 2 is a photogate, 3 is a transfer switch MOS transistor, 4 is a reset MOS transistor, and 5 is a source follower amplifier MOS transistor. 6 is a horizontal selection switch MOS transistor, 7 is a load MOS transistor of the source follower, 8 is a dark output transfer MOS transistor, 9 is a light output transfer MOS transistor, 10 is a dark output storage capacitor CTN, and 11 is a light output storage capacitor CTS. . 12 is a horizontal transfer MOS transistor, 13 is a horizontal output line reset MOS transistor, 14 is a differential output amplifier, 15 is a horizontal scanning circuit, and 16 is a vertical scanning circuit.

図3に画素配線部の断面図を示す。図3において、17はP型ウェル、18はゲート酸化膜、19は一層目ポリSi、20は二層目ポリSi、21はn+フローティングディフュージョン部(FD部)である。FD部21は別の転送MOSトランジスタを介して別の光電変換部と接続される。図3において、2つの転送MOSトランジスタ3のドレインとFD部21を共通化して微細化とFD部21の容量低減による感度向上を図っているが、Al配線でFD部21を接続しても良い。   FIG. 3 shows a cross-sectional view of the pixel wiring portion. In FIG. 3, 17 is a P-type well, 18 is a gate oxide film, 19 is a first-layer poly-Si, 20 is a second-layer poly-Si, and 21 is an n + floating diffusion portion (FD portion). The FD unit 21 is connected to another photoelectric conversion unit via another transfer MOS transistor. In FIG. 3, the drain of the two transfer MOS transistors 3 and the FD portion 21 are made common to improve the sensitivity by miniaturization and the capacity reduction of the FD portion 21, but the FD portion 21 may be connected by an Al wiring. .

次に、図4のタイミングチャートを用いて撮像素子の動作について説明する。このタイミングチャートは全画素独立出力の場合である。まず垂直走査回路16からのタイミング出力によって、制御パルスφLをハイとして垂直出力線をリセットする。また制御パルスφR0,φPG00,φPGe0をハイとし、リセット用MOSトランジスタ4をオンとし、フォトゲート2の一層目ポリSi19をハイとしておく。時刻T0において、制御パルスφS0をハイとし、選択スイッチMOSトランジスタ6をオンさせ、第1、第2ラインの画素部を選択する。次に制御パルスφR0をローとし、FD部21のリセットを止め、FD部21をフローティング状態とし、ソースフォロワアンプMOSトランジスタ5のゲート・ソース間をスルーとした後、時刻T1において制御パルスφTNをハイとする。そして、FD部21の暗電圧をソースフォロワ動作で蓄積容量CTN10に出力させる。   Next, the operation of the image sensor will be described using the timing chart of FIG. This timing chart is for the case of all pixel independent output. First, according to the timing output from the vertical scanning circuit 16, the control pulse φL is set to high to reset the vertical output line. Further, the control pulses φR0, φPG00, and φPGe0 are set high, the reset MOS transistor 4 is turned on, and the first-layer poly Si 19 of the photogate 2 is set high. At time T0, the control pulse φS0 is set high, the selection switch MOS transistor 6 is turned on, and the pixel portions of the first and second lines are selected. Next, the control pulse φR0 is set to low, the reset of the FD unit 21 is stopped, the FD unit 21 is set in a floating state, the source-follower amplifier MOS transistor 5 is set to the through state, and the control pulse φTN is set high at time T1. And Then, the dark voltage of the FD unit 21 is output to the storage capacitor CTN10 by the source follower operation.

次に、第1ラインの画素の光電変換出力を行うため、第1ラインの制御パルスφTX00をハイとして転送スイッチMOSトランジスタ3を導通した後、時刻T2において制御パルスφPG00をローとして下げる。この時フォトゲート2の下に拡がっていたポテンシャル井戸を上げて、光発生キャリアをFD部21に完全転送させるような電圧関係が好ましい。従って完全転送が可能であれば制御パルスφTXはパルスではなくある固定電位でもかまわない。時刻T2でフォトダイオードの光電変換部1からの電荷がFD部21に転送されることにより、FD部21の電位が光に応じて変化することになる。この時ソースフォロワアンプMOSトランジスタ5がフローティング状態であるので、FD部21の電位を時刻T3において制御パルスφTsをハイとして蓄積容量CTS11に出力する。この時点で第1ラインの画素の暗出力と光出力はそれぞれ蓄積容量CTN10とCTS11に蓄積されおり、時刻T4の制御パルスφHCを一時ハイとして水平出力線リセットMOSトランジスタ13を導通して水平出力線をリセットする。そして、水平転送期間において水平走査回路15の走査タイミング信号により水平出力線に画素の暗出力と光出力を出力させる。この時、蓄積容量CTN10とCTS11に対して、差動増幅器14によって、差動出力VOUTを取れば、画素のランダムノイズ、固定パターンノイズを除去したS/Nの良い信号が得られる。また画素30−12、30−22の光電荷は画素30−11、30−21と同時に夫々の蓄積容量CTN10とCTS11に蓄積されるが、その読み出しは水平走査回路15からのタイミングパルスを1画素分遅らして水平出力線に読み出して差動増幅器14から出力される。本実施形態では、差動出力VOUTをチップ内で行う構成を示しているが、チップ内に含めず、外部で従来のCDS(Correlated Double Sampling:相関二重サンプリング)回路を用いても同様の効果が得られる。   Next, in order to perform photoelectric conversion output of the pixels of the first line, the control pulse φTX00 of the first line is set high, the transfer switch MOS transistor 3 is turned on, and then the control pulse φPG00 is lowered low at time T2. At this time, a voltage relationship is preferable in which the potential well that has spread under the photogate 2 is raised so that photogenerated carriers are completely transferred to the FD portion 21. Therefore, if complete transfer is possible, the control pulse φTX may be a fixed potential instead of a pulse. The electric charge from the photoelectric conversion unit 1 of the photodiode is transferred to the FD unit 21 at time T2, so that the potential of the FD unit 21 changes according to light. At this time, since the source follower amplifier MOS transistor 5 is in a floating state, the potential of the FD portion 21 is output to the storage capacitor CTS11 with the control pulse φTs being high at time T3. At this time, the dark output and the light output of the pixels of the first line are stored in the storage capacitors CTN10 and CTS11, respectively, and the horizontal output line reset MOS transistor 13 is turned on by setting the control pulse φHC at time T4 to be temporarily high. To reset. In the horizontal transfer period, the dark output and light output of the pixel are output to the horizontal output line by the scanning timing signal of the horizontal scanning circuit 15. At this time, if the differential output VOUT is obtained by the differential amplifier 14 with respect to the storage capacitors CTN10 and CTS11, a signal with good S / N from which random noise and fixed pattern noise of the pixel are removed can be obtained. The photoelectric charges of the pixels 30-12 and 30-22 are accumulated in the respective storage capacitors CTN10 and CTS11 simultaneously with the pixels 30-11 and 30-21, but the timing is read from the horizontal scanning circuit 15 by one pixel. The data is read out to the horizontal output line after being delayed and output from the differential amplifier 14. In the present embodiment, a configuration in which the differential output VOUT is performed in the chip is shown, but the same effect can be obtained even if a conventional CDS (Correlated Double Sampling) circuit is used outside without being included in the chip. Is obtained.

蓄積容量CTS11に明出力を出力した後、制御パルスφR0をハイとしてリセット用MOSトランジスタ4を導通しFD部21を電源VDDにリセットする。第1ラインの水平転送が終了した後、第2ラインの読み出しを行う。第2ラインの読み出しは、制御パルスφTXe0、制御パルスφPGe0を同様に駆動させ、制御パルスφTN、φTSに夫々ハイパルスを供給して、蓄積容量CTN10とCTS11に夫々光電荷を蓄積し、暗出力及び明出力を取り出す。以上の駆動により、第1、第2ラインの読み出しが夫々独立に行える。この後、垂直走査回路を走査させ、同様に第2n+1ライン、第2n+2ライン(n=1,2,…)の読み出しを行えば全画素独立出力が行える。即ち、n=1の場合は、まず制御パルスφS1をハイとし、次にφR1をローとし、続いて制御パルスφTN、φTX01をハイとし、制御パルスφPG01をロー、制御パルスφTSをハイ、制御パルスφHCを一時ハイとして画素30−31,30−32の画素信号を読み出す。続いて、制御パルスφTXe1,φPGe1及び上記と同様に制御パルスを印加して、画素30−41,30−42の画素信号を読み出す。   After a bright output is output to the storage capacitor CTS11, the control pulse φR0 is set high to turn on the reset MOS transistor 4 and reset the FD portion 21 to the power supply VDD. After the horizontal transfer of the first line is completed, the second line is read. In reading the second line, the control pulse φTXe0 and the control pulse φPGe0 are driven in the same manner, and high pulses are supplied to the control pulses φTN and φTS, respectively, and photocharges are accumulated in the storage capacitors CTN10 and CTS11, respectively. Take the output. With the above driving, the first and second lines can be read independently. Thereafter, by scanning the vertical scanning circuit and reading out the 2n + 1 line and the 2n + 2 line (n = 1, 2,...) In the same manner, all pixels can be independently output. That is, when n = 1, first, the control pulse φS1 is set high, then φR1 is set low, then the control pulses φTN and φTX01 are set high, the control pulse φPG01 is set low, the control pulse φTS is set high, and the control pulse φHC Is temporarily high to read out pixel signals of the pixels 30-31 and 30-32. Subsequently, the control pulses φTXe1, φPGe1 and the control pulse are applied in the same manner as described above, and the pixel signals of the pixels 30-41 and 30-42 are read out.

図5は、撮像素子であるC−MOSセンサの一部平面図である。図5において、51,52は電極である。電極(配線層)51及び52で区切られた領域が1画素を示しており、1画素中に書かれた「R」「G」「B」の文字は各画素のカラーフィルタの色相を表している。「R」の文字の書かれた画素は赤の成分の光を透過し、「G」の文字の書かれた画素は緑の成分の光を透過し、「B」の文字の書かれた画素は青の成分の光を透過する。また、「R」、「G」、「B」の文字が書かれた各画素は、撮影レンズ100の全瞳領域を通過した光を受光するように構成された画像生成用の画素である。   FIG. 5 is a partial plan view of a C-MOS sensor which is an image sensor. In FIG. 5, 51 and 52 are electrodes. A region separated by the electrodes (wiring layers) 51 and 52 represents one pixel, and the letters “R”, “G”, and “B” written in one pixel represent the hue of the color filter of each pixel. Yes. Pixels with the letter “R” transmit red component light, pixels with the letter “G” transmit green component light, and pixels with the letter “B” written Transmits blue component light. In addition, each pixel on which the characters “R”, “G”, and “B” are written is an image generation pixel configured to receive light that has passed through the entire pupil region of the photographing lens 100.

カラーフィルタの配列がベイヤ配列の場合、1絵素は「R」、「B」の画素と2つの「G」の画素から構成される。これに対し、本実施形態の撮像素子は「R」あるいは「B」であるべき画素の一部に、撮影レンズ100の一部の瞳領域を通過した光を受光する焦点検出用画素が割り当てられている。図中、α、βは撮影レンズ100の焦点状態を検出するための焦点検出用画素で、電極51で水平方向の開口が制限されている。焦点検出用画素は、複数の撮像用画素の間に離散的に配置され、撮影レンズ100の瞳領域を分割して、分割された瞳領域からの被写体像を光電変換して位相差検出用の信号を生成する。   When the color filter array is a Bayer array, one picture element is composed of “R” and “B” pixels and two “G” pixels. On the other hand, in the imaging device of this embodiment, focus detection pixels that receive light that has passed through a part of the pupil region of the photographing lens 100 are assigned to some of the pixels that should be “R” or “B”. ing. In the figure, α and β are focus detection pixels for detecting the focus state of the photographic lens 100, and the opening in the horizontal direction is restricted by the electrode 51. The focus detection pixels are discretely arranged between the plurality of imaging pixels, divide the pupil region of the photographing lens 100, photoelectrically convert the subject image from the divided pupil region, and detect the phase difference. Generate a signal.

本実施形態の撮像素子107の一部に配設される焦点検出用の画素は、電極51にて制限される開口の水平方向の開口中心位置が画素中心に対して異なる2種類が設定されている。例えば、電極51−1αと電極51−2αとで決まる開口が画素中心に対して水平左方向に偏位した焦点検出用画素αに対して、水平方向及び垂直方向に4画素隣接した位置に同様の電極開口を有する焦点検出用画素が配設されている。また、焦点検出用画素αに対して斜めに隣接する位置に、電極51−3βと電極51−4βとで決まる開口が水平右方向に偏位した焦点検出用画素βが配設されている。さらに、焦点検出用画素βに対して、水平方向及び垂直方向に4画素隣接した位置に同様の電極開口を有する焦点検出用画素が配設されている。   Two types of focus detection pixels arranged in a part of the image sensor 107 of the present embodiment are set such that the aperture center position of the aperture limited by the electrode 51 is different from the pixel center. Yes. For example, an aperture determined by the electrode 51-1α and the electrode 51-2α is the same at a position adjacent to four pixels in the horizontal direction and the vertical direction with respect to the focus detection pixel α in which the opening is deviated in the horizontal left direction with respect to the pixel center. The focus detection pixels having the electrode openings are arranged. In addition, a focus detection pixel β in which an opening determined by the electrodes 51-3β and 51-4β is displaced in the horizontal right direction is disposed at a position obliquely adjacent to the focus detection pixel α. Further, focus detection pixels having similar electrode openings are disposed at positions adjacent to the focus detection pixel β in four horizontal and vertical directions.

図6は、図5の撮像素子107の焦点検出用画素α、βとその隣接画素の水平断面図を示し、図6(a)は図5のC―C矢視断面図で、図6(b)は図5のD―D矢視断面図である。   6 is a horizontal sectional view of the focus detection pixels α and β and the adjacent pixels of the image sensor 107 in FIG. 5, and FIG. 6A is a sectional view taken along the line CC in FIG. b) is a cross-sectional view taken along the line DD in FIG.

図6(a)の左側の画素は、焦点検出用画素αを示し、右側の画素は撮影レンズ100の全瞳領域を受光可能な画素(撮像用画素)を示している。撮像素子107は、シリコン基板60の内部に光電変換部61が形成されている。光電変換部61で発生した信号電荷は、不図示のフローティングディフュージョン部、第1の電極51及び不図示の第2の電極52を介して外部に出力される。光電変換部61と電極51との間には層間絶縁膜62が形成され、電極51と電極52との間には層間絶縁膜63が形成されている。層間絶縁膜63の光入射側には、カラーフィルタ層67、平坦化層64、オンチップレンズ69が形成されている。ここで、オンチップレンズ69のパワーは、撮影レンズ100の瞳と電極51が略共役になるように設定されている。言い換えれば、オンチップレンズ69は、オンチップレンズ69に入射した光束を電極51の配置高さにほぼ収束させるように、ほぼ電極51の配置高さに焦点位置を有している。また、撮像素子107の中央に位置する画素ではオンチップレンズ69は画素の中心に配設され、周辺に位置する画素では、撮影レンズ100の光軸側に偏位して配設される。70は、電極51より下に形成されたエアギャップ層であり、エアギャップ層70に照射された光束を全反射条件を満たす角度において反射する導波路の機能を有する。   The left pixel in FIG. 6A indicates the focus detection pixel α, and the right pixel indicates a pixel (imaging pixel) that can receive the entire pupil region of the photographic lens 100. In the image sensor 107, the photoelectric conversion unit 61 is formed inside the silicon substrate 60. The signal charges generated in the photoelectric conversion unit 61 are output to the outside through a floating diffusion unit (not shown), the first electrode 51, and the second electrode 52 (not shown). An interlayer insulating film 62 is formed between the photoelectric conversion unit 61 and the electrode 51, and an interlayer insulating film 63 is formed between the electrode 51 and the electrode 52. On the light incident side of the interlayer insulating film 63, a color filter layer 67, a planarizing layer 64, and an on-chip lens 69 are formed. Here, the power of the on-chip lens 69 is set so that the pupil of the photographing lens 100 and the electrode 51 are substantially conjugate. In other words, the on-chip lens 69 has a focal position substantially at the arrangement height of the electrode 51 so that the light beam incident on the on-chip lens 69 is substantially converged to the arrangement height of the electrode 51. In the pixel located at the center of the image sensor 107, the on-chip lens 69 is arranged at the center of the pixel, and at the pixels located at the periphery, the on-chip lens 69 is arranged deviated toward the optical axis side of the photographing lens 100. Reference numeral 70 denotes an air gap layer formed below the electrode 51, and has a waveguide function of reflecting the light beam irradiated on the air gap layer 70 at an angle satisfying the total reflection condition.

撮影レンズ100を透過した被写体光は撮像素子107近傍に集光される。さらに撮像素子107の各画素に到達した光は、オンチップレンズ69で屈折され電極51の位置に集光される。通常の撮像に使う図中右側の画素では、入射する光を遮光しないように第1の電極51及び第2の電極52が配設されている。   The subject light transmitted through the photographing lens 100 is collected near the image sensor 107. Further, the light reaching each pixel of the image sensor 107 is refracted by the on-chip lens 69 and collected at the position of the electrode 51. In the pixel on the right side in the drawing used for normal imaging, a first electrode 51 and a second electrode 52 are provided so as not to block incident light.

一方、図中左側の撮影レンズ100の焦点検出を行う画素では、電極51の一部が光電変換部61を覆うように構成されている。その結果図中左側の焦点検出用画素は、撮影レンズ100の瞳の一部を透過する光束を受光可能となっている。また、電極51が入射光束の一部を遮光していることにより光電変換部61の出力が小さくなることを防ぐため、焦点検出用の画素のカラーフィルタ層67Wは光を吸収しない透過率の高い樹脂で形成されている。   On the other hand, in the pixel that performs focus detection of the photographic lens 100 on the left side in the drawing, a part of the electrode 51 is configured to cover the photoelectric conversion unit 61. As a result, the focus detection pixel on the left side in the drawing can receive a light beam that passes through a part of the pupil of the photographing lens 100. Further, in order to prevent the output of the photoelectric conversion unit 61 from becoming small because the electrode 51 blocks a part of the incident light beam, the color filter layer 67W of the focus detection pixel does not absorb light and has high transmittance. It is made of resin.

同様に、図6(b)の右側の画素は、焦点検出用画素βを示し、左側の画素は撮影レンズ100の全瞳領域を受光可能な画素(撮像用画素)を示している。図6からわかるように、焦点検出用画素αとβとはほとんど左右対称形状となっており、オンチップレンズ69の位置と電極51の開口中心の相対位置を異ならせることによって、撮影レンズ100の受光分布を異ならせるように構成している。   Similarly, the pixel on the right side of FIG. 6B indicates the focus detection pixel β, and the pixel on the left side indicates a pixel (imaging pixel) that can receive the entire pupil region of the photographic lens 100. As can be seen from FIG. 6, the focus detection pixels α and β are almost bilaterally symmetric, and the relative positions of the on-chip lens 69 and the center of the opening of the electrode 51 are made different from each other. The received light distribution is different.

図7は標準画素の斜入射の様子を説明する図である。図7に示すようにオンチップレンズ69により光束が遮光層を兼ねた配線層(電極)51の配置高さにほぼ収束しているが、エアギャップ層70による全反射構成になっているために全光束が受光領域61に照射される様子がわかる。   FIG. 7 is a diagram for explaining the oblique incidence of standard pixels. As shown in FIG. 7, the on-chip lens 69 causes the light flux to almost converge to the arrangement height of the wiring layer (electrode) 51 that also serves as a light shielding layer, but because of the total reflection configuration by the air gap layer 70. It can be seen that the entire light beam is irradiated onto the light receiving region 61.

図8は感度重心を偏心させた画素(焦点検出用画素)の開口を透過する様子を説明する図である。図8に示すようにオンチップレンズ69により光束が電極51の配置高さにほぼ収束しており、全光束は電極51の開口部を透過し、受光領域61に到達する様子がわかる。この際、エアギャップ層70は導波路としてはあまり機能しないため、エアギャップ層70は無くてもよい。ここでは標準画素と同一工程で作製可能とするために、また特に弊害はないため、エアギャップ層70を設けた例を示している。   FIG. 8 is a diagram for explaining a state of passing through the opening of a pixel (focus detection pixel) in which the sensitivity center of gravity is decentered. As shown in FIG. 8, it can be seen that the on-chip lens 69 causes the light beam to substantially converge at the arrangement height of the electrode 51, and that the total light beam passes through the opening of the electrode 51 and reaches the light receiving region 61. At this time, since the air gap layer 70 does not function as a waveguide, the air gap layer 70 may be omitted. Here, an example in which the air gap layer 70 is provided is shown in order to make it possible to manufacture in the same process as the standard pixel and because there is no particular problem.

図9は第1の実施形態の標準画素の入射角特性を示した図で、横軸は入射角度、縦軸は受光効率を示す。図9より、図20で示した光束が受光領域61の表面部にほぼ収束するオンチップレンズでの特性とほぼ同等の特性となることがわかる。   FIG. 9 is a diagram illustrating the incident angle characteristics of the standard pixel according to the first embodiment. The horizontal axis represents the incident angle, and the vertical axis represents the light receiving efficiency. From FIG. 9, it can be seen that the luminous flux shown in FIG.

図10は感度重心を偏心させた画素(焦点検出用画素)の入射角特性を示した図で、横軸は入射角度、縦軸は受光効率を示す。図10(a)は開口が右側に偏心した画素の入射角特性、図10(b)は開口が左側に偏心した画素の入射角特性となる。   FIG. 10 is a diagram showing the incident angle characteristics of a pixel (focus detection pixel) whose sensitivity center of gravity is decentered. The horizontal axis represents the incident angle, and the vertical axis represents the light receiving efficiency. FIG. 10A shows the incident angle characteristic of a pixel whose opening is decentered to the right side, and FIG. 10B shows the incident angle characteristic of a pixel whose opening is decentered to the left side.

図9、図10からわかるように、本実施形態により、同一のオンチップレンズ高さにおいても、標準画素(撮像用画素)と感度重心を偏心させた画素(焦点検出用画素)に対して、最適となる構成を実現することができる。   As can be seen from FIGS. 9 and 10, according to the present embodiment, even with the same on-chip lens height, the standard pixel (imaging pixel) and the pixel (sensitivity detection pixel) in which the sensitivity centroid is decentered can be used. An optimal configuration can be realized.

撮影レンズ100の焦点状態を検出する焦点検出手段としての機能を有するCPU121は、焦点検出用画素αと同じ電極開口を有する焦点検出用画素群から第1の焦点検出用画像を生成する。同様に、焦点検出用画素βと同じ電極開口を有する焦点検出用画素群から第2の焦点検出用画像を生成する。さらに焦点ずれ量演算手段としての機能を有するCPU121は、第1の焦点検出用画像と第2の焦点検出用画像に基づいて相関演算を行うことにより、焦点検出用画素αとβが位置する領域での撮影レンズ100の焦点状態を検出する。通常の画像の撮像時は、画素の電極開口が制限されている焦点検出用画素は欠陥画素として取り扱われ、焦点検出用画素の周辺に位置する画素から補間処理を行って画像信号が生成される。   The CPU 121 having a function as focus detection means for detecting the focus state of the photographic lens 100 generates a first focus detection image from the focus detection pixel group having the same electrode opening as the focus detection pixel α. Similarly, a second focus detection image is generated from a focus detection pixel group having the same electrode opening as that of the focus detection pixel β. Further, the CPU 121 having a function as a defocus amount calculation means performs an area calculation based on the first focus detection image and the second focus detection image, thereby positioning the focus detection pixels α and β. The focus state of the taking lens 100 at is detected. During normal image capturing, the focus detection pixels whose pixel electrode openings are limited are treated as defective pixels, and an image signal is generated by performing interpolation processing from pixels located around the focus detection pixels. .

図11は、オートフォーカスの一部である本実施形態の焦点ずれ量(デフォーカス量)検出に関わるフローチャートを示す図である。メインフローは、一般的なカメラのフローと同一なので省略する。   FIG. 11 is a diagram illustrating a flowchart relating to detection of a defocus amount (defocus amount) according to the present embodiment, which is a part of autofocus. The main flow is the same as a general camera flow, and is therefore omitted.

オートフォーカス機能が選択された場合は、焦点検出を行うためにまずステップS1の撮像用画素と焦点検出用画素の読み出しが行われる。ステップS2では2種類の焦点検出用画素群より、位相差方向に形成される2種類のパターン像を創生する。図11は、2本の巾の異なるバーチャートでのパターン像の例になる。次に、ステップS3においては、対の焦点検出画素群α、βの像について相関演算する。   When the autofocus function is selected, first, in order to perform focus detection, reading of the imaging pixels and focus detection pixels in step S1 is performed. In step S2, two types of pattern images formed in the phase difference direction are created from the two types of focus detection pixel groups. FIG. 11 shows an example of a pattern image on two bar charts having different widths. Next, in step S3, a correlation calculation is performed on the pair of focus detection pixel groups α and β.

次にステップS4で、ステップS3の相関演算結果の信頼性を判定する。ここで信頼性とは、対の像の一致度や像のコントラストなどを評価しており、対の像の一致度が良い場合は一般的に焦点検出結果の信頼性が高く、またコントラストが高い場合は測距対象として得意なものと判断できる。ここで信頼性が低いと判断された場合は、焦点検出信号自身の信頼性が低いと判断され、ステップS1に戻って画像の読み出しからやり直す。ステップS4で、信頼性OKと判断された場合は、最終的にステップS5で像の相関値をデフォーカス量に換算して、デフォーカス量を算出する。   Next, in step S4, the reliability of the correlation calculation result in step S3 is determined. Here, the reliability refers to the degree of coincidence of the paired images and the contrast of the images. When the degree of coincidence of the paired images is good, the reliability of the focus detection result is generally high and the contrast is high. In this case, it can be determined that the subject is good at ranging. If it is determined that the reliability is low, the reliability of the focus detection signal itself is determined to be low, and the process returns to step S1 and starts again from the image reading. If it is determined in step S4 that the reliability is OK, the image correlation value is finally converted into a defocus amount in step S5, and the defocus amount is calculated.

ステップS6では、ステップS5で計算した焦点ずれ量が許容値以下か否かを判断する。そして焦点ずれ量が許容値より大きい場合は、非合焦と判断し、ステップS7で、ステップS5で算出したデフォーカス量を補正するようにフォーカスレンズを駆動し、その後ステップS1乃至ステップS7を繰り返し実行する。そしてステップS6にて合焦状態に達したと判定されると、ステップS8にて合焦表示を行ない、オートフォーカスサブルーチンから抜ける。   In step S6, it is determined whether or not the defocus amount calculated in step S5 is less than or equal to an allowable value. If the defocus amount is larger than the allowable value, it is determined that the subject is out of focus, and in step S7, the focus lens is driven so as to correct the defocus amount calculated in step S5, and then steps S1 to S7 are repeated. Execute. If it is determined in step S6 that the in-focus state has been reached, in-focus display is performed in step S8, and the process exits from the autofocus subroutine.

以上のように第1の実施形態では、各画素にエアギャップ層を形成して導波路機能を持たせることにより、同一のオンチップレンズ高さにおいても、撮像用画素と焦点検出用画素で受光光量が低下することを防止できる。   As described above, in the first embodiment, an air gap layer is formed in each pixel to provide a waveguide function, so that light is received by the imaging pixel and the focus detection pixel even at the same on-chip lens height. It is possible to prevent the amount of light from decreasing.

(第2の実施形態)
この第2の実施形態では、撮像装置の構成は図1〜図5で示した第1の実施形態と同じであり、撮像素子の内部構造が異なっている。図12は、図5の撮像素子107の焦点検出用画素α、βとその隣接画素の水平断面図を示し、図12(a)は図5のC―C矢視断面図で、図12(b)は図5のD―D矢視断面図である。
(Second Embodiment)
In the second embodiment, the configuration of the imaging device is the same as that of the first embodiment shown in FIGS. 1 to 5, and the internal structure of the imaging device is different. 12 is a horizontal sectional view of the focus detection pixels α and β and the adjacent pixels of the image sensor 107 in FIG. 5, and FIG. 12A is a sectional view taken along the line CC in FIG. b) is a cross-sectional view taken along the line DD in FIG.

図12(a)の左側の画素は、焦点検出用画素αを示し、右側の画素は撮影レンズ100の全瞳領域を受光可能な画素(撮像用画素)を示している。図12において、図6と同一の構成のものは同一符号を付している。   The left pixel in FIG. 12A indicates the focus detection pixel α, and the right pixel indicates a pixel (imaging pixel) that can receive the entire pupil region of the photographic lens 100. In FIG. 12, the same components as those in FIG.

71は、電極51より下に形成した金属反射部材(例えばアルミ材)である。ここではまずエアギャップ層を形成し、そのあと金属反射部材を埋め込むことにより、図6で示したエアギャップ層70と同一の形状の反射膜を構成している。またシリコン層60や配線層52との間に不図示のストッパ膜を構成したり、3次元的にオーバーラップしない配置工夫を行うことによって電気的に接続しないようにしている。金属反射部材71に照射された光束は金属反射を起こし導波路の機能を果たす。   Reference numeral 71 denotes a metal reflecting member (for example, an aluminum material) formed below the electrode 51. Here, an air gap layer is formed first, and then a metal reflecting member is embedded to form a reflective film having the same shape as the air gap layer 70 shown in FIG. In addition, a stopper film (not shown) is formed between the silicon layer 60 and the wiring layer 52, or an electrical connection is prevented by arranging arrangements that do not overlap three-dimensionally. The light beam applied to the metal reflecting member 71 causes metal reflection and functions as a waveguide.

同様に、図12(b)の右側の画素は、焦点検出用画素βを示し、左側の画素は撮影レンズ100の全瞳領域を受光可能な画素(撮像用画素)を示している。図12からわかるように、焦点検出用画素αとβとはほとんど左右対称形状となっており、オンチップレンズ69の位置と電極51の開口中心の相対位置を異ならせることによって、撮影レンズ100の受光分布を異ならせるように構成している。   Similarly, the pixel on the right side of FIG. 12B indicates the focus detection pixel β, and the pixel on the left side indicates a pixel (imaging pixel) that can receive the entire pupil region of the photographing lens 100. As can be seen from FIG. 12, the focus detection pixels α and β are almost bilaterally symmetric, and the relative positions of the on-chip lens 69 and the center of the opening of the electrode 51 are made different from each other. The received light distribution is different.

図13は第2の実施形態の入射角特性を示した図で、横軸は入射角度、縦軸は受光効率を示す。図13(a)は標準画素の入射角特性、図13(b)は開口が右側に偏心した画素の入射角特性、図13(c)は開口が左側に偏心した画素の入射角特性となる。図13からわかるように、本実施形態により、同一のオンチップレンズ高さにおいても、標準画素と感度重心を偏心させた画素に対して、最適となる構成を実現することができる。   FIG. 13 shows the incident angle characteristics of the second embodiment, where the horizontal axis represents the incident angle and the vertical axis represents the light receiving efficiency. 13A shows the incident angle characteristic of the standard pixel, FIG. 13B shows the incident angle characteristic of the pixel whose opening is decentered to the right side, and FIG. 13C shows the incident angle characteristic of the pixel whose opening is decentered to the left side. . As can be seen from FIG. 13, according to this embodiment, it is possible to realize an optimum configuration for the standard pixel and the pixel whose sensitivity centroid is decentered even at the same on-chip lens height.

以上のように第2の実施形態では、各画素のエアギャップ層に反射部材を埋め込むことにより導波路機能を持たせ、同一のオンチップレンズ高さにおいても、撮像用画素と焦点検出用画素で受光光量が低下することを防止している。   As described above, in the second embodiment, a reflection member is embedded in the air gap layer of each pixel to provide a waveguide function, and even at the same on-chip lens height, the imaging pixel and the focus detection pixel can be used. It prevents the amount of received light from decreasing.

(第3の実施形態)
この第3の実施形態では、撮像装置の構成は図1〜図5で示した第1の実施形態と同じであり、撮像素子の内部構造が異なっている。図14は、図5の撮像素子107の焦点検出用画素α、βとその隣接画素の水平断面図を示し、図14(a)は図5のC―C矢視断面図で、図14(b)は図5のD―D矢視断面図である。
(Third embodiment)
In the third embodiment, the configuration of the imaging device is the same as that of the first embodiment shown in FIGS. 1 to 5, and the internal structure of the imaging device is different. FIG. 14 is a horizontal sectional view of the focus detection pixels α and β and the adjacent pixels of the image sensor 107 in FIG. 5, and FIG. 14A is a sectional view taken along the line CC in FIG. b) is a cross-sectional view taken along the line DD in FIG.

図14(a)の左側の画素は、焦点検出用画素αを示し、右側の画素は撮影レンズ100の全瞳領域を受光可能な画素(撮像用画素)を示している。図14において、図6と同一の構成のものは同一符号を付している。   The left pixel in FIG. 14A indicates the focus detection pixel α, and the right pixel indicates a pixel (imaging pixel) that can receive the entire pupil region of the photographic lens 100. 14, the same components as those in FIG. 6 are denoted by the same reference numerals.

72は、電極51より下に形成した高屈折率材例えばSiNにより構成されている導波路である。ここではまず高屈折率材埋め込み部をフォトリソ工程を用いて、プラズマエッチングを行い、高屈折率材埋め込み層を形成する。そのあと高密度プラズマCVDにより、HDP−SiN(高密度プラズマSiN)を埋め込む。以上により、図14に示す導波路形状の高屈折率材72を形成する。SiNは屈折率が2程度と絶縁部材SiOの屈折率1.43に対して大きいため、高屈折率材72側面ではある角度以上で全反射条件を満たし、導波路の機能を果たす。   Reference numeral 72 denotes a waveguide made of a high refractive index material, for example, SiN, formed below the electrode 51. Here, first, plasma etching is performed on the high refractive index material embedded portion using a photolithography process to form a high refractive index material embedded layer. Thereafter, HDP-SiN (high density plasma SiN) is embedded by high density plasma CVD. Thus, the waveguide-shaped high refractive index material 72 shown in FIG. 14 is formed. Since SiN has a refractive index of about 2 and higher than the refractive index of 1.43 of the insulating member SiO, the side surface of the high refractive index material 72 satisfies the total reflection condition at a certain angle or more, and functions as a waveguide.

同様に、図14(b)の右側の画素は、焦点検出用画素βを示し、左側の画素は撮影レンズ100の全瞳領域を受光可能な画素(撮像用画素)を示している。図14からわかるように、焦点検出用画素αとβとはほとんど左右対称形状となっており、オンチップレンズ69の位置と電極51の開口中心の相対位置を異ならせることによって、撮影レンズ100の受光分布を異ならせるように構成している。   Similarly, the pixel on the right side of FIG. 14B indicates the focus detection pixel β, and the pixel on the left side indicates a pixel (imaging pixel) that can receive the entire pupil region of the photographic lens 100. As can be seen from FIG. 14, the focus detection pixels α and β are almost bilaterally symmetric, and the relative position of the on-chip lens 69 and the center of the opening of the electrode 51 is made different from each other. The received light distribution is different.

図15は本実施形態の入射角特性を示した図で、横軸は入射角度、縦軸は受光効率を示す。図15(a)は標準画素の入射角特性、図15(b)は開口が右側に偏心した画素の入射角特性、図15(c)は開口が左側に偏心した画素の入射角特性となる。図15からわかるように、本実施形態により、同一のオンチップレンズ高さにおいても、標準画素と感度重心を偏心させた画素に対して、最適となる構成を実現することができる。   FIG. 15 is a diagram showing the incident angle characteristics of the present embodiment, where the horizontal axis indicates the incident angle and the vertical axis indicates the light receiving efficiency. 15A shows the incident angle characteristics of a standard pixel, FIG. 15B shows the incident angle characteristics of a pixel whose opening is decentered to the right, and FIG. 15C shows the incident angle characteristics of a pixel whose opening is decentered to the left. . As can be seen from FIG. 15, according to the present embodiment, it is possible to realize an optimum configuration for the standard pixel and the pixel whose sensitivity centroid is decentered even at the same on-chip lens height.

以上のように第3の実施形態では、高屈折率材72を配線層51下に配置することにより導波路機能を持たせ、同一のオンチップレンズ高さにおいても、撮像用画素と焦点検出用画素で受光光量が低下することを防止している。   As described above, in the third embodiment, the high refractive index material 72 is disposed under the wiring layer 51 to provide a waveguide function, and the imaging pixels and the focus detection pixels can be used even at the same on-chip lens height. The amount of received light is prevented from decreasing at the pixel.

以上の第1乃至第3の実施形態では、光遮光部材を兼ねた電極(配線層)について説明したが、光遮光部材としては電極だけでなく、カラーフィルタ部に光を吸収する遮光フィルタを配置してもよい。また以上の実施形態では、光導波路を光遮光部材と同一の積層位置と光電変換部との間に配置する構成について説明したが、光導波路を光遮光部材よりオンチップレンズ方向に伸ばした構成をとってもよい。   In the first to third embodiments described above, the electrode (wiring layer) that also serves as the light shielding member has been described. However, as the light shielding member, not only the electrode but also a light shielding filter that absorbs light is disposed in the color filter portion. May be. In the above embodiment, the configuration in which the optical waveguide is arranged between the same stack position as the light shielding member and the photoelectric conversion unit has been described. However, the configuration in which the optical waveguide is extended in the on-chip lens direction from the light shielding member. It may be taken.

Claims (5)

撮影レンズにより結像される被写体像を光電変換して画像生成用の信号を生成する撮像用画素と、
複数の前記撮像用画素の間に離散的に配置され、前記撮影レンズの瞳領域を分割して、分割された瞳領域からの被写体像を光電変換して位相差検出用の信号を生成する焦点検出用画素とを備え、
前記撮像用画素は、光を電荷に変換する光電変換部と、該光電変換部に光を集光するオンチップレンズと、前記光電変換部と前記オンチップレンズの間に配置され前記光電変換部に光を導くための光導波路とを有し、
前記焦点検出用画素は、光を電荷に変換する光電変換部と、該光電変換部に光を集光するオンチップレンズと、前記光電変換部と前記オンチップレンズの間に配置され前記光電変換部の一部を遮光するための遮光層とを有し、
前記撮像用画素のオンチップレンズと前記焦点検出用画素のオンチップレンズとは、ともに、ほぼ前記遮光層が配置されている高さの位置に焦点位置を有することを特徴とする撮像素子。
An imaging pixel that photoelectrically converts an object image formed by the photographic lens to generate an image generation signal;
A focus that is discretely arranged between the plurality of imaging pixels, divides a pupil region of the photographing lens, and photoelectrically converts a subject image from the divided pupil region to generate a phase difference detection signal. A detection pixel,
The imaging pixel includes a photoelectric conversion unit that converts light into electric charge, an on-chip lens that collects light on the photoelectric conversion unit, and the photoelectric conversion unit that is disposed between the photoelectric conversion unit and the on-chip lens. And an optical waveguide for guiding light to
The focus detection pixel is disposed between the photoelectric conversion unit and the on-chip lens, a photoelectric conversion unit that converts light into electric charge, an on-chip lens that collects light on the photoelectric conversion unit, and the photoelectric conversion A light shielding layer for shielding a part of the part,
The on-chip lens of the imaging pixel and the on-chip lens of the focus detection pixel both have a focal position at a height position where the light shielding layer is disposed.
前記光導波路は、エアギャップから構成されていることを特徴とする請求項1に記載の撮像素子。   The image pickup device according to claim 1, wherein the optical waveguide includes an air gap. 前記光導波路は、反射部材から構成されていることを特徴とする請求項1に記載の撮像素子。   The imaging device according to claim 1, wherein the optical waveguide is formed of a reflective member. 前記光導波路は、高屈折率材から構成されていることを特徴とする請求項1に記載の撮像素子。   The imaging device according to claim 1, wherein the optical waveguide is made of a high refractive index material. 被写体像を結像する撮影レンズと、
請求項1乃至4のいずれか1項に記載の撮像素子と、
を備えることを特徴とする撮像装置。
A taking lens that forms a subject image;
The imaging device according to any one of claims 1 to 4,
An imaging apparatus comprising:
JP2009173715A 2009-07-24 2009-07-24 Imaging device and imaging apparatus Expired - Fee Related JP5503209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009173715A JP5503209B2 (en) 2009-07-24 2009-07-24 Imaging device and imaging apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009173715A JP5503209B2 (en) 2009-07-24 2009-07-24 Imaging device and imaging apparatus

Publications (2)

Publication Number Publication Date
JP2011029932A true JP2011029932A (en) 2011-02-10
JP5503209B2 JP5503209B2 (en) 2014-05-28

Family

ID=43638146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009173715A Expired - Fee Related JP5503209B2 (en) 2009-07-24 2009-07-24 Imaging device and imaging apparatus

Country Status (1)

Country Link
JP (1) JP5503209B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128390A1 (en) * 2011-03-24 2012-09-27 Canon Kabushiki Kaisha Image sensor and imaging device
JP2013157442A (en) * 2012-01-30 2013-08-15 Nikon Corp Image pickup element and focal point detection device
WO2014049941A1 (en) * 2012-09-28 2014-04-03 パナソニック株式会社 Solid-state image pickup device and image pickup device
JP2014082310A (en) * 2012-10-16 2014-05-08 Canon Inc Solid state image pickup device, method for manufacturing solid state image pickup divide, and image pickup system
JP2015050331A (en) * 2013-09-02 2015-03-16 ソニー株式会社 Solid state image pickup element, manufacturing method of the same and electronic apparatus
JPWO2013136820A1 (en) * 2012-03-16 2015-08-03 株式会社ニコン Imaging device and imaging apparatus
KR20150135229A (en) 2013-03-29 2015-12-02 소니 주식회사 Imaging element and imaging apparatus
WO2016002575A1 (en) * 2014-07-03 2016-01-07 ソニー株式会社 Solid-state imaging device and electronic device
JP2016100597A (en) * 2014-11-24 2016-05-30 ハイマックス テクノロジーズ リミテッド Image sensing module and method of manufacturing the same, and camera device
JP2016225658A (en) * 2011-03-24 2016-12-28 キヤノン株式会社 Imaging element and imaging apparatus
CN106899790A (en) * 2015-12-17 2017-06-27 佳能株式会社 Camera head and camera
US9986184B2 (en) 2014-08-04 2018-05-29 Lg Innotek Co., Ltd. Image sensor including phase difference detection pixels having auto focus accuracy based on phase difference, and image pick-up apparatus including the same
WO2020195180A1 (en) * 2019-03-27 2020-10-01 ソニーセミコンダクタソリューションズ株式会社 Imaging element and imaging device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224398A (en) * 1993-01-27 1994-08-12 Sharp Corp Slid-state image sensor and manufacture thereof
JPH1187674A (en) * 1997-07-11 1999-03-30 Sony Corp Solid-state image sensor and its manufacture and image-sensing apparatus
JP2005209676A (en) * 2004-01-20 2005-08-04 Sony Corp Solid-state image sensing device and its manufacturing method
JP2005333131A (en) * 2004-05-17 2005-12-02 Samsung Electronics Co Ltd Cmos image sensor and its manufacturing method
JP2006040948A (en) * 2004-07-22 2006-02-09 Canon Inc Imaging apparatus
JP2007155929A (en) * 2005-12-01 2007-06-21 Nikon Corp Solid-state imaging element and imaging apparatus using the same
JP2007155930A (en) * 2005-12-01 2007-06-21 Nikon Corp Solid-state imaging element and imaging apparatus using the same
JP2008218650A (en) * 2007-03-02 2008-09-18 Fujifilm Corp Solid photographing element
JP2008235689A (en) * 2007-03-22 2008-10-02 Sharp Corp Solid-state image sensor and method of manufacturing the same, and electronic information apparatus
JP2009158800A (en) * 2007-12-27 2009-07-16 Nikon Corp Solid-state imaging element, and imaging device using it

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06224398A (en) * 1993-01-27 1994-08-12 Sharp Corp Slid-state image sensor and manufacture thereof
JPH1187674A (en) * 1997-07-11 1999-03-30 Sony Corp Solid-state image sensor and its manufacture and image-sensing apparatus
JP2005209676A (en) * 2004-01-20 2005-08-04 Sony Corp Solid-state image sensing device and its manufacturing method
JP2005333131A (en) * 2004-05-17 2005-12-02 Samsung Electronics Co Ltd Cmos image sensor and its manufacturing method
JP2006040948A (en) * 2004-07-22 2006-02-09 Canon Inc Imaging apparatus
JP2007155929A (en) * 2005-12-01 2007-06-21 Nikon Corp Solid-state imaging element and imaging apparatus using the same
JP2007155930A (en) * 2005-12-01 2007-06-21 Nikon Corp Solid-state imaging element and imaging apparatus using the same
JP2008218650A (en) * 2007-03-02 2008-09-18 Fujifilm Corp Solid photographing element
JP2008235689A (en) * 2007-03-22 2008-10-02 Sharp Corp Solid-state image sensor and method of manufacturing the same, and electronic information apparatus
JP2009158800A (en) * 2007-12-27 2009-07-16 Nikon Corp Solid-state imaging element, and imaging device using it

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012128390A1 (en) * 2011-03-24 2012-09-27 Canon Kabushiki Kaisha Image sensor and imaging device
JP2012212878A (en) * 2011-03-24 2012-11-01 Canon Inc Imaging element and imaging apparatus
USRE48548E1 (en) 2011-03-24 2021-05-11 Canon Kabushiki Kaisha Image sensor and imaging device
RU2554292C2 (en) * 2011-03-24 2015-06-27 Кэнон Кабусики Кайся Image sensor and imager
JP2016225658A (en) * 2011-03-24 2016-12-28 キヤノン株式会社 Imaging element and imaging apparatus
US9231009B2 (en) 2011-03-24 2016-01-05 Canon Kabushiki Kaisha Image sensor and imaging device
JP2013157442A (en) * 2012-01-30 2013-08-15 Nikon Corp Image pickup element and focal point detection device
JPWO2013136820A1 (en) * 2012-03-16 2015-08-03 株式会社ニコン Imaging device and imaging apparatus
WO2014049941A1 (en) * 2012-09-28 2014-04-03 パナソニック株式会社 Solid-state image pickup device and image pickup device
JP2014082310A (en) * 2012-10-16 2014-05-08 Canon Inc Solid state image pickup device, method for manufacturing solid state image pickup divide, and image pickup system
US9450005B2 (en) 2013-03-29 2016-09-20 Sony Corporation Image pickup device and image pickup apparatus
KR20150135229A (en) 2013-03-29 2015-12-02 소니 주식회사 Imaging element and imaging apparatus
KR20210013333A (en) 2013-03-29 2021-02-03 소니 주식회사 Imaging element and imaging apparatus
JP2015050331A (en) * 2013-09-02 2015-03-16 ソニー株式会社 Solid state image pickup element, manufacturing method of the same and electronic apparatus
KR20220066188A (en) * 2013-09-02 2022-05-23 소니그룹주식회사 Solid-state imaging element, production method thereof, and electronic device
KR102568441B1 (en) 2013-09-02 2023-08-21 소니그룹주식회사 Solid-state imaging element, production method thereof, and electronic device
KR102398120B1 (en) 2013-09-02 2022-05-16 소니그룹주식회사 Solid-state imaging element, production method thereof, and electronic device
US9882154B2 (en) 2013-09-02 2018-01-30 Sony Corporation Solid-state imaging element, production method thereof, and electronic device
KR20210135651A (en) * 2013-09-02 2021-11-15 소니그룹주식회사 Solid-state imaging element, production method thereof, and electronic device
US10566557B2 (en) 2013-09-02 2020-02-18 Sony Corporation Solid-state imaging element, production method thereof, and electronic device
US11839094B2 (en) 2013-09-02 2023-12-05 Sony Group Corporation Solid-state imaging element, production method thereof, and electronic device
US9571721B2 (en) 2014-07-03 2017-02-14 Sony Corporation Solid-state imaging device and electronic apparatus
WO2016002575A1 (en) * 2014-07-03 2016-01-07 ソニー株式会社 Solid-state imaging device and electronic device
US9986184B2 (en) 2014-08-04 2018-05-29 Lg Innotek Co., Ltd. Image sensor including phase difference detection pixels having auto focus accuracy based on phase difference, and image pick-up apparatus including the same
JP2016100597A (en) * 2014-11-24 2016-05-30 ハイマックス テクノロジーズ リミテッド Image sensing module and method of manufacturing the same, and camera device
CN106899790A (en) * 2015-12-17 2017-06-27 佳能株式会社 Camera head and camera
WO2020195180A1 (en) * 2019-03-27 2020-10-01 ソニーセミコンダクタソリューションズ株式会社 Imaging element and imaging device

Also Published As

Publication number Publication date
JP5503209B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5503209B2 (en) Imaging device and imaging apparatus
KR102523203B1 (en) Solid state image sensor, method of manufacturing the same, and electronic device
JP5455397B2 (en) Optical equipment
JP6721511B2 (en) Solid-state image sensor, manufacturing method thereof, and electronic device
JP5276374B2 (en) Focus detection device
JP5552214B2 (en) Focus detection device
JP5746496B2 (en) Imaging device
JP5956718B2 (en) Imaging device and imaging apparatus
JP2010117679A (en) Focus detection device and method, and image pickup device
JP2010286826A (en) Focus detection apparatus
JP2016139988A (en) Solid-state image pickup device
JP2009157198A (en) Solid-state imaging element and imaging apparatus using it
JP2023067935A (en) Imaging device
JP2011171749A (en) Backside-irradiation-type image sensor and image pickup apparatus
JP5434121B2 (en) Back-illuminated image sensor and imaging apparatus
JP2012220790A (en) Imaging apparatus
JP6393293B2 (en) Imaging device and imaging apparatus
JP2011227388A (en) Imaging device
JP5735784B2 (en) Imaging device and control method thereof, lens device and control method thereof
JP2010192604A (en) Backside illumination image sensor, manufacturing method thereof and image-capturing device
JP6090360B2 (en) Imaging device and imaging apparatus
JP2018160912A (en) Imaging element and imaging device
JP7383876B2 (en) Imaging element and imaging device
JP5664742B2 (en) Imaging device and imaging apparatus
JP2015057862A (en) Imaging device and imaging apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120718

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140314

LAPS Cancellation because of no payment of annual fees