JP2011029194A - Lighting system - Google Patents

Lighting system Download PDF

Info

Publication number
JP2011029194A
JP2011029194A JP2010201978A JP2010201978A JP2011029194A JP 2011029194 A JP2011029194 A JP 2011029194A JP 2010201978 A JP2010201978 A JP 2010201978A JP 2010201978 A JP2010201978 A JP 2010201978A JP 2011029194 A JP2011029194 A JP 2011029194A
Authority
JP
Japan
Prior art keywords
light emitting
power
voltage
state light
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010201978A
Other languages
Japanese (ja)
Inventor
Minoru Maehara
稔 前原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2010201978A priority Critical patent/JP2011029194A/en
Publication of JP2011029194A publication Critical patent/JP2011029194A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting system using a plurality of solid light emitting elements connected to one another in series, which supplies a stable electric power to another element even when an element has a short circuit fault. <P>SOLUTION: The lighting system including a plurality of solid light emitting elements 1 connected to one another in series and a DC power supply 2 supplying a DC power to the solid light emitting element 1 by reducing an input voltage and varying an output power includes a power detecting means 5 detecting the DC current and the DC voltage supplied to the solid light emitting element 1 and a power control means 6 receiving the detected DC current and DC voltage and matching the DC current supplied to the solid light emitting element 1 with a predetermined value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は固体発光素子を光源とする照明装置に関する。   The present invention relates to an illumination device using a solid light emitting element as a light source.

近年、薄型の固体発光素子として有機EL素子の研究が盛んである。有機EL素子は、有機化合物から成る薄膜の発光層を電極で挟持した構成で、電極間に電流を供給すると発光する素子である。有機EL素子は薄型かつ軽量の発光素子が構成でき、また駆動電圧が数Vから十数V程度と従来主流の照明手段である放電灯と比べて駆動電圧が低いため、点灯装置を安価に構成でき、薄型かつ軽量の照明器具への応用が期待できる。   In recent years, organic EL devices have been actively studied as thin solid-state light emitting devices. An organic EL device is a device in which a thin light emitting layer made of an organic compound is sandwiched between electrodes and emits light when a current is supplied between the electrodes. The organic EL element can be configured as a thin and lightweight light-emitting element, and the driving voltage is about several V to several tens of V, which is lower than that of a discharge lamp, which is a conventional mainstream lighting means. It can be applied to thin and lightweight lighting fixtures.

従来の有機EL素子を用いた照明装置として特許文献1に記載されたものがある。この従来例では、図4に示すように、有機EL素子10を光源とする照明装置100に、交流入力電源PSから供給される交流電力を直流電力に変換するコンバータ手段20と、コンバータ手段20から供給される直流電流をオン/オフして有機EL素子に対して順方向の電流を間欠的に供給するスイッチング手段30と、交流入力電源PSよりも高いスイッチング周波数でスイッチング手段30のオン/オフを切り換えさせるとともに、スイッチング手段30がオンされる時間とオフされる時間との比を制御する制御手段40とを備えている。これによると、交流入力電源PSから供給される交流電力をコンバータ手段20によって直流電力に変換し、スイッチング手段30及び制御手段40によって、供給された交流電力よりも高い周波数で有機EL素子10を点滅発光させることで輝度のちらつきを防止している。また制御手段40により電流が供給される時間を制御することで有機EL素子10の輝度を可変としている。   There exist some which were described in patent document 1 as an illuminating device using the conventional organic EL element. In this conventional example, as shown in FIG. 4, a converter unit 20 that converts AC power supplied from an AC input power source PS into DC power to a lighting device 100 that uses an organic EL element 10 as a light source. Switching means 30 for intermittently supplying a forward current to the organic EL element by turning on / off the supplied direct current, and turning on / off the switching means 30 at a switching frequency higher than that of the AC input power supply PS. Control means 40 that controls the ratio between the time when the switching means 30 is turned on and the time when the switching means 30 is turned off is provided. According to this, the AC power supplied from the AC input power source PS is converted into DC power by the converter means 20, and the organic EL element 10 is blinked at a frequency higher than the supplied AC power by the switching means 30 and the control means 40. Flickering of luminance is prevented by emitting light. Further, the luminance of the organic EL element 10 is made variable by controlling the time during which current is supplied by the control means 40.

特開2005−78828号公報JP 2005-78828 A

ところで、有機EL素子10は大きな照度を出せる素子の製造が現状において困難であるため、照明器具の光源に利用する場合は複数の有機EL素子10を用いることが考えられる。有機EL素子10を複数用いるには、素子同士の接続方法として直列接続、並列接続、或いは直並列接続等が考えられるが、何れの接続方法にも難点がある。   By the way, since it is difficult to manufacture an element capable of producing a large illuminance at present, it is conceivable to use a plurality of organic EL elements 10 when used as a light source of a lighting fixture. In order to use a plurality of organic EL elements 10, a serial connection, a parallel connection, a series-parallel connection, or the like can be considered as a connection method between the elements, but any connection method has a drawback.

並列接続の場合、1つの有機EL素子10が短絡故障すると電源短絡が起こり、電源電圧が降下して他の有機EL素子10に電圧が供給されずに消えてしまう。また電源短絡が起こると、電源から過大な電流が流れて電源故障及び配線の断線等の問題を生じ、更に故障時に全ての有機EL素子10が消えてしまう為、故障した素子の特定が困難であり交換に手間を要するという課題がある。   In the case of parallel connection, when one organic EL element 10 is short-circuited, a power supply short circuit occurs, the power supply voltage drops, and the other organic EL elements 10 disappear without being supplied with voltage. In addition, when a power supply short circuit occurs, an excessive current flows from the power supply, causing problems such as power supply failure and disconnection of wiring, and further, all the organic EL elements 10 disappear at the time of failure, so it is difficult to identify the failed element. There is a problem that it takes time to exchange.

一方、直列接続の場合には、1つの有機EL素子10が短絡故障してもその素子が消えるのみで他の有機EL素子10は発光を維持することができ、したがって並列接続時の課題は解消される。ところが、短絡故障が起こると短絡故障が起こる前と比べて残った有機EL素子10の1個当たりの印加電圧が高くなるために、故障前と比べて大きな電流が流れ、したがって必要以上に発光量が増大し、結果として素子の寿命を早めるという課題がある。直並列接続の場合は、上記並列接続及び直列接続の両方の課題が内在している。   On the other hand, in the case of series connection, even if one organic EL element 10 is short-circuited, only the element disappears, and the other organic EL elements 10 can maintain light emission, thus eliminating the problem of parallel connection. Is done. However, when a short-circuit failure occurs, the applied voltage per remaining organic EL element 10 is higher than before the short-circuit failure occurs, so that a larger current flows than before the failure, and thus the amount of light emission is more than necessary. As a result, there is a problem that the lifetime of the element is shortened. In the case of series-parallel connection, the problems of both the parallel connection and the series connection are inherent.

本発明は上記課題に鑑みて為されたもので、複数の固体発光素子を互いに直列に接続して使用した場合にも、素子の寿命を早めることなく安定して発光させることのできる照明装置を提供することを目的とする。   The present invention has been made in view of the above problems, and an illumination device capable of stably emitting light without shortening the lifetime of the element even when a plurality of solid state light emitting elements are connected in series with each other. The purpose is to provide.

請求項1の発明は、上記目的を達成するために、互いに直列に接続される複数の固体発光素子と、入力電圧を降圧して固体発光素子に直流電力を供給し且つ出力電力を可変とする直流電源とを備えた照明装置であって、固体発光素子に供給される直流電流及び直流電圧を検出する電力検出手段と、検出された直流電流及び直流電圧を受けて固体発光素子に供給される直流電力を所定の値に一致させるように制御する電力制御手段とを設けている。   In order to achieve the above object, the first aspect of the present invention provides a plurality of solid state light emitting devices connected in series with each other, and reduces the input voltage to supply direct current power to the solid state light emitting device and make the output power variable. A lighting device including a DC power source, and a power detection means for detecting a DC current and a DC voltage supplied to the solid state light emitting element, and a DC current and a DC voltage detected to be supplied to the solid state light emitting element. Power control means for controlling the DC power so as to match a predetermined value is provided.

本発明によれば、互いに直列に接続された複数の固体発光素子を用いた照明装置において、固体発光素子に供給される電力を所定の値になるように制御するので、固体発光素子の短絡故障時に、残った固体発光素子に過大な電力が供給されないようにすることができ、したがって素子へのストレスの増大や素子の寿命の短命化を防ぐことができる。   According to the present invention, in a lighting device using a plurality of solid state light emitting elements connected in series with each other, the power supplied to the solid state light emitting elements is controlled to be a predetermined value. In some cases, it is possible to prevent excessive power from being supplied to the remaining solid-state light emitting device, and thus it is possible to prevent an increase in stress on the device and a shortening of the lifetime of the device.

本発明の第一の実施形態の回路構成を示す図である。It is a figure which shows the circuit structure of 1st embodiment of this invention. 本発明の第二の実施形態の回路構成を示す図である。It is a figure which shows the circuit structure of 2nd embodiment of this invention. 本発明の直流電源に用いるコンバータ回路の例で、(a)は降圧チョッパ回路、(b)はフォワードコンバータ回路、(c)はフライバックコンバータ回路である。It is an example of the converter circuit used for the direct-current power supply of this invention, (a) is a step-down chopper circuit, (b) is a forward converter circuit, (c) is a flyback converter circuit. 従来の有機EL素子を光源とした照明装置の回路構成を示す図である。It is a figure which shows the circuit structure of the illuminating device which used the conventional organic EL element as the light source.

(実施形態1)
以下、本発明の第一の実施形態について図1を用いて説明する。本実施形態の照明装置は、互いに直列に接続される複数の固体発光素子1と、固体発光素子1に直流電力を供給し出力電力を可変とする直流電源2と、固体発光素子1に供給される直流電流を検出する電流検出手段3と、検出された直流電流を受けて固体発光素子1に供給される直流電流を所定の値に一致させるように制御する電流制御手段4とを備えている。なお図においては固体発光素子の数が4つであるが、素子の数は4つに限定されるものではなく、いくつでもよい。
(Embodiment 1)
Hereinafter, a first embodiment of the present invention will be described with reference to FIG. The lighting device of the present embodiment is supplied to a plurality of solid state light emitting devices 1 connected in series, a direct current power source 2 that supplies direct current power to the solid state light emitting device 1 and makes output power variable, and a solid state light emitting device 1. Current detecting means 3 for detecting the direct current to be detected, and current control means 4 for receiving the detected direct current and controlling the direct current supplied to the solid state light emitting device 1 to match a predetermined value. . In the figure, the number of solid-state light emitting elements is four, but the number of elements is not limited to four and may be any number.

固体発光素子1は、たとえば有機EL素子のように規定の方向に直流電圧が印加されることで発光するもので、ここでは直流電源2から供給される直流電圧により駆動している。また有機EL素子の他に、発光ダイオード等の他の固体発光素子を用いても構わない。   The solid state light emitting device 1 emits light when a direct current voltage is applied in a specified direction like an organic EL device, for example, and is driven by a direct current voltage supplied from a direct current power source 2 here. In addition to the organic EL element, other solid light emitting elements such as a light emitting diode may be used.

直流電源2は整流回路2aとコンバータ回路(ここでは昇圧チョッパ回路)2bとから構成されており、交流電源からの交流電力を全波整流ダイオードブリッジから成る整流回路2aを用いて整流し、整流された直流電力をコンバータ回路2bを用いて所定の大きさの直流電力に変更することができるようになっている。コンバータ回路2bは、MOSFET等のスイッチング素子を制御回路で制御してスイッチング素子のオンデューティー比を変更する、すなわちPWM制御を行うことで所望の大きさの直流電力を固体発光素子1に供給できるようになっている。   The DC power source 2 is composed of a rectifier circuit 2a and a converter circuit (here, a boost chopper circuit) 2b. The AC power from the AC power source is rectified and rectified by using a rectifier circuit 2a including a full-wave rectifier diode bridge. The direct current power can be changed to a predetermined amount of direct current power using the converter circuit 2b. The converter circuit 2b can control a switching element such as a MOSFET with a control circuit to change the on-duty ratio of the switching element, that is, perform PWM control so that a DC power having a desired magnitude can be supplied to the solid state light emitting element 1. It has become.

電流検出手段3は固体発光素子1に流れる電流を検出する検出抵抗3aから成り、電流制御手段4は、図示していないが、オペアンプから成る誤差増幅器と固体発光素子1に流れる電流の基準となる基準電圧源とから成る。検出抵抗3aは固体発光素子1と直列に接続され、一端を誤差増幅器の反転入力端子に、他端を基準電圧源を介して誤差増幅器の非反転入力端子に接続している。   The current detection unit 3 includes a detection resistor 3 a that detects a current flowing through the solid-state light emitting element 1, and the current control unit 4 serves as a reference for an error amplifier including an operational amplifier and a current flowing through the solid-state light emitting element 1 although not illustrated. And a reference voltage source. The detection resistor 3a is connected in series with the solid-state light emitting element 1, and one end is connected to the inverting input terminal of the error amplifier, and the other end is connected to the non-inverting input terminal of the error amplifier via a reference voltage source.

このように構成すると、固体発光素子1を流れる電流が検出抵抗3aの両端の電位差で表され、該電位差と基準電圧源の電圧とを誤差増幅器において比較し、その電圧値の差を増幅して出力する。該出力信号をコンバータ回路2bに備えられた制御回路に入力することで直流電源2の出力を制御し、検出抵抗3aの両端の電位差を基準電圧源の電圧値と一致させることで固体発光素子1に流れる電流が、基準電圧源の電圧値を検出抵抗3aの抵抗値で除して表される電流値で一定になるように制御することができる。なお、定電流制御を行えるものであれば電流検出手段3及び電流制御手段4は他の構成でもよく、ここで挙げた構成に限定されるものではない。   With this configuration, the current flowing through the solid-state light-emitting element 1 is represented by a potential difference between both ends of the detection resistor 3a. The potential difference is compared with the voltage of the reference voltage source in the error amplifier, and the difference between the voltage values is amplified. Output. The output signal is input to a control circuit provided in the converter circuit 2b to control the output of the DC power source 2, and the potential difference between both ends of the detection resistor 3a is made to coincide with the voltage value of the reference voltage source 1 Can be controlled to be constant at a current value expressed by dividing the voltage value of the reference voltage source by the resistance value of the detection resistor 3a. As long as constant current control can be performed, the current detection means 3 and the current control means 4 may have other configurations, and are not limited to the configurations described here.

本実施形態によれば、固体発光素子1の一つが短絡故障した場合でも、固体発光素子1を流れる電流を検出抵抗3aによって検出し、この検出結果と基準値とを比較して固体発光素子1に流れる電流が一定の値になるようにフィードバック制御するので、固体発光素子1に過大な電流が流れることによる素子へのストレスの増大や短寿命化を防ぐことができ、安定した固体発光素子1の発光が望める。   According to the present embodiment, even when one of the solid state light emitting elements 1 is short-circuited, the current flowing through the solid state light emitting element 1 is detected by the detection resistor 3a, and the detection result is compared with the reference value to compare the solid state light emitting element 1. Since the feedback control is performed so that the current flowing in the light source becomes a constant value, it is possible to prevent an increase in stress on the device due to an excessive current flowing in the solid state light emitting device 1 and a shortening of the lifetime, and a stable solid state light emitting device 1. Can be expected.

(実施形態2)
以下、本発明の第二の実施形態について図2を用いて説明する。本実施形態の照明装置は第一の実施形態における電流検出手段3及び電流制御手段4の代わりに、固体発光素子1に供給される直流電流及び直流電圧を検出する電力検出手段5と、検出された直流電流及び直流電圧を受けて固体発光素子1に供給される直流電力を所定の値に一致させるように制御する電力制御手段6とを備えており、他の構成は第一の実施形態と同様である。
(Embodiment 2)
Hereinafter, a second embodiment of the present invention will be described with reference to FIG. The illuminating device of this embodiment is detected by a power detection means 5 for detecting a direct current and a direct current voltage supplied to the solid state light emitting element 1 instead of the current detection means 3 and the current control means 4 in the first embodiment. Power control means 6 that receives the direct current and direct current voltage and controls the direct current power supplied to the solid state light emitting device 1 to coincide with a predetermined value, and the other configuration is the same as that of the first embodiment. It is the same.

電力検出手段5は、固体発光素子1を流れる電流を検出するための検出抵抗5aと、固体発光素子1に印加される電圧を分圧して検出するための分圧抵抗5b、5cと、図示していないが、検出抵抗5aで検出される固体発光素子1に流れる電流に対応した電圧値と分圧抵抗5b、5cで検出される固体発光素子1に印加される電圧の分圧値とを乗算して電圧信号として出力する乗算器とで構成される。検出抵抗5aは固体発光素子1と直列に接続され、一端が乗算器の入力端子に接続されている。分圧抵抗5b、5cは直列に接続されたものが固体発光素子1と並列に接続されており、分圧抵抗5b、5cに挟まれた点が乗算器の入力端子と接続している。また電力制御手段6は、図示していないが、オペアンプから成る誤差増幅器と固体発光素子1に供給される電力の基準となる基準電圧源とを備えており、誤差増幅器の反転入力端子は乗算器の出力端子と接続され、非反転入力端子は基準電圧源と接続されている。   The power detection means 5 is illustrated with a detection resistor 5a for detecting a current flowing through the solid-state light-emitting element 1, and voltage-dividing resistors 5b and 5c for dividing and detecting a voltage applied to the solid-state light-emitting element 1. Although not shown, the voltage value corresponding to the current flowing through the solid-state light-emitting element 1 detected by the detection resistor 5a is multiplied by the voltage-divided value of the voltage applied to the solid-state light-emitting element 1 detected by the voltage-dividing resistors 5b and 5c. And a multiplier that outputs the voltage signal. The detection resistor 5a is connected in series with the solid state light emitting device 1, and one end is connected to the input terminal of the multiplier. The voltage dividing resistors 5b and 5c connected in series are connected in parallel to the solid state light emitting device 1, and the point between the voltage dividing resistors 5b and 5c is connected to the input terminal of the multiplier. Although not shown, the power control means 6 includes an error amplifier composed of an operational amplifier and a reference voltage source serving as a reference for power supplied to the solid state light emitting device 1, and an inverting input terminal of the error amplifier is a multiplier. The non-inverting input terminal is connected to a reference voltage source.

このように構成すると、電力検出手段5の検出抵抗5aの両端の電位差と、電力検出手段5の分圧抵抗5b、5cに挟まれた点での固体発光素子1に印加される電圧の分圧とを乗算器において乗算することで固体発光素子1に供給される電力に対応した出力電圧が得られる。該出力電圧と基準電圧源の電圧とを誤差増幅器によって比較し、その電圧値の差を増幅して出力する。該出力信号をコンバータ回路2bに備えられた制御回路に入力することで直流電源2の出力を制御し、乗算した電圧値を基準電圧源の電圧値と一致させることで固体発光素子1に供給される電力が一定になるように制御することができる。なお、定電力制御を行えるものであれば電力検出手段5及び電力制御手段6は他の構成でもよく、ここで挙げた構成に限定されるものではない。   If comprised in this way, the potential difference of the both ends of the detection resistance 5a of the electric power detection means 5 and the voltage division of the voltage applied to the solid light emitting element 1 in the point pinched | interposed into the voltage dividing resistors 5b and 5c of the electric power detection means 5 Is multiplied by a multiplier to obtain an output voltage corresponding to the power supplied to the solid state light emitting device 1. The output voltage and the voltage of the reference voltage source are compared by an error amplifier, and the difference between the voltage values is amplified and output. The output signal is input to the control circuit provided in the converter circuit 2b to control the output of the DC power supply 2, and the multiplied voltage value is made to coincide with the voltage value of the reference voltage source to be supplied to the solid state light emitting device 1. It is possible to control the power to be constant. As long as constant power control can be performed, the power detection means 5 and the power control means 6 may have other configurations, and are not limited to the configurations described here.

本実施形態によれば、固体発光素子1の一つが短絡故障した場合でも、固体発光素子1に流れる電流並びに印加電圧をそれぞれ検出抵抗5a、分圧抵抗5b、5cにより検出し、これらを乗算器によって乗算した結果と基準値とを比較して、固体発光素子1に供給される電力が一定の値になるようにフィードバック制御するので、固体発光素子1全体の発光量が故障の前後で変化せずほぼ一定となり、安定した発光が望める。   According to this embodiment, even when one of the solid state light emitting devices 1 is short-circuited, the current flowing through the solid state light emitting device 1 and the applied voltage are detected by the detection resistors 5a and the voltage dividing resistors 5b and 5c, respectively, and these are multiplied. Is compared with the reference value, and feedback control is performed so that the power supplied to the solid state light emitting device 1 becomes a constant value. Therefore, the light emission amount of the entire solid state light emitting device 1 is changed before and after the failure. Stable light emission can be expected.

ところで、直流電源2で用いられるコンバータ回路2bは、上述の昇圧チョッパ回路に限らず図3に示す回路でも構わない。図3の(a)、(b)、(c)はそれぞれ降圧チョッパ回路、フォワード・コンバータ回路、フライバック・コンバータ回路であり、それぞれの回路構成及びその動作については周知の技術であるため、ここでは説明を省略する。   Incidentally, the converter circuit 2b used in the DC power supply 2 is not limited to the above-described boost chopper circuit, and may be a circuit shown in FIG. (A), (b), and (c) in FIG. 3 are a step-down chopper circuit, a forward converter circuit, and a flyback converter circuit, respectively. Then, explanation is omitted.

1 固体発光素子
2 直流電源
3 電流検出手段
3a 検出抵抗
4 電流制御手段
DESCRIPTION OF SYMBOLS 1 Solid light emitting element 2 DC power supply 3 Current detection means 3a Detection resistance 4 Current control means

Claims (1)

互いに直列に接続される複数の固体発光素子と、入力電圧を降圧して固体発光素子に直流電力を供給し且つ出力電力を可変とする直流電源とを備えた照明装置であって、固体発光素子に供給される直流電流及び直流電圧を検出する電力検出手段と、検出された直流電流及び直流電圧を受けて固体発光素子に供給される直流電力を所定の値に一致させるように制御する電力制御手段とを設けたことを特徴とする照明装置。   A lighting device comprising a plurality of solid state light emitting devices connected in series to each other and a direct current power source that steps down an input voltage to supply direct current power to the solid state light emitting device and makes output power variable. Power detection means for detecting a direct current and a direct current voltage supplied to the power supply, and a power control for controlling the direct current power supplied to the solid state light emitting element to match a predetermined value upon receiving the detected direct current and direct current voltage And a lighting device.
JP2010201978A 2010-09-09 2010-09-09 Lighting system Pending JP2011029194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010201978A JP2011029194A (en) 2010-09-09 2010-09-09 Lighting system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010201978A JP2011029194A (en) 2010-09-09 2010-09-09 Lighting system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005187259A Division JP2007005259A (en) 2005-06-27 2005-06-27 Lighting system

Publications (1)

Publication Number Publication Date
JP2011029194A true JP2011029194A (en) 2011-02-10

Family

ID=43637658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010201978A Pending JP2011029194A (en) 2010-09-09 2010-09-09 Lighting system

Country Status (1)

Country Link
JP (1) JP2011029194A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018860B2 (en) 2012-09-12 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. LED lighting device
US10178742B2 (en) 2016-01-13 2019-01-08 Samsung Electronics Co., Ltd. LED driving apparatus and lighting apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313423A (en) * 2000-04-28 2001-11-09 Toshiba Lighting & Technology Corp Light-emitting diode drive device
JP2002008409A (en) * 2000-06-19 2002-01-11 Toshiba Lighting & Technology Corp Led light source device
JP2003187614A (en) * 2001-12-19 2003-07-04 Toyoda Gosei Co Ltd Rear combination lamp device for vehicle
JP2003332085A (en) * 2002-05-07 2003-11-21 Endo Lighting Corp Power source device for inorganic electroluminescence
JP2005033853A (en) * 2003-07-07 2005-02-03 Rohm Co Ltd Loading driver and portable apparatus
JP2005142137A (en) * 2003-10-15 2005-06-02 Matsushita Electric Works Ltd Led lighting device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001313423A (en) * 2000-04-28 2001-11-09 Toshiba Lighting & Technology Corp Light-emitting diode drive device
JP2002008409A (en) * 2000-06-19 2002-01-11 Toshiba Lighting & Technology Corp Led light source device
JP2003187614A (en) * 2001-12-19 2003-07-04 Toyoda Gosei Co Ltd Rear combination lamp device for vehicle
JP2003332085A (en) * 2002-05-07 2003-11-21 Endo Lighting Corp Power source device for inorganic electroluminescence
JP2005033853A (en) * 2003-07-07 2005-02-03 Rohm Co Ltd Loading driver and portable apparatus
JP2005142137A (en) * 2003-10-15 2005-06-02 Matsushita Electric Works Ltd Led lighting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9018860B2 (en) 2012-09-12 2015-04-28 Panasonic Intellectual Property Management Co., Ltd. LED lighting device
US10178742B2 (en) 2016-01-13 2019-01-08 Samsung Electronics Co., Ltd. LED driving apparatus and lighting apparatus

Similar Documents

Publication Publication Date Title
JP5537286B2 (en) LED lighting device
CN102651938B (en) Lighting device and luminaire
JP4975083B2 (en) Light source lighting device and lighting device
JP2007005259A (en) Lighting system
JP5043176B2 (en) Light source lighting device and lighting fixture
JP5383872B2 (en) Light source lighting device and lighting fixture
JP2012529124A (en) Apparatus, method, and system for supplying AC line power to a lighting device
JP2011258517A (en) Led power supply and led illumination fixture
EP2482615A1 (en) Lighting device and luminaire with failure protection
JP6167400B2 (en) Lighting device, lighting fixture, lighting device design method, and lighting device manufacturing method
US9210756B2 (en) Power supply device and luminaire
JP2013229234A (en) Power supply device and illuminating device
JP2010153566A (en) Led driving method
US20120187864A1 (en) Lighting device and luminaire
JP2011029194A (en) Lighting system
JP2016051525A (en) Lighting device, lighting fixture using the lighting device, and illumination system using the lighting fixture
KR101472824B1 (en) Power supply unit for led lighting fixtures
JP6840997B2 (en) Lighting equipment and lighting equipment
JP3177245U (en) LED lamp drive system for use in series-connected double tube rapid start ballast
JP5379560B2 (en) Lighting device and lighting apparatus and lighting system using the same
JP6357790B2 (en) Lighting device and lighting apparatus
JP7463844B2 (en) Lighting devices and luminaires
JP2013134844A (en) Light source lighting device and luminaire
JP2015061472A (en) Power-supply circuit and lighting device
JP6176568B2 (en) Lighting device and lighting apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130806