JP2011025673A - Structure containing metal particle and nonmetal inorganic particle - Google Patents

Structure containing metal particle and nonmetal inorganic particle Download PDF

Info

Publication number
JP2011025673A
JP2011025673A JP2010127601A JP2010127601A JP2011025673A JP 2011025673 A JP2011025673 A JP 2011025673A JP 2010127601 A JP2010127601 A JP 2010127601A JP 2010127601 A JP2010127601 A JP 2010127601A JP 2011025673 A JP2011025673 A JP 2011025673A
Authority
JP
Japan
Prior art keywords
particles
average particle
metal particles
particle diameter
inorganic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010127601A
Other languages
Japanese (ja)
Inventor
Makiko Hara
万紀子 原
Takumi Shibuta
匠 渋田
Taiichi Sakatani
泰一 阪谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2010127601A priority Critical patent/JP2011025673A/en
Publication of JP2011025673A publication Critical patent/JP2011025673A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure containing metal particles and inorganic particles other than the metal particles and having a practical strength. <P>SOLUTION: The structure includes metal particles 1 having an average particle diameter of 1 nm to 3,000 nm, and nonmetal inorganic particles 2 having an average particle diameter of 1 nm to 3,000 nm. The average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetal inorganic particles satisfy the expression: 0.001<Da/Db<0.5. The average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetal inorganic particles satisfy the expression: 0.5≤Da/Db≤2. The volume percentage Va of the metal particles and the volume percentage Vb of the nonmetal inorganic particles satisfy the expression: 0<Va/Vb≤0.3. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、特定の金属粒子と特定の非金属無機粒子を含む構造体に関する。   The present invention relates to a structure including specific metal particles and specific non-metallic inorganic particles.

微細な金属粒子の特徴を生かした金属粒子含有組成物および構造体が種々提案されている。例えば、特許文献1には、金属ナノ粒子を用いた紫外線遮断材料およびこれを用いた画像表示装置が記載され、有機物溶液やエマルションによるバインダを用いて金属粒子を含有する構造体を得ることが記載されている。
一方、有機物溶液などのバインダを用いるのではなく、金属粒子以外のナノオーダーの粒子をバインダとして用いて、金属粒子含有構造体を得ることは、知られていなかった。
Various metal particle-containing compositions and structures utilizing the characteristics of fine metal particles have been proposed. For example, Patent Document 1 describes an ultraviolet blocking material using metal nanoparticles and an image display device using the same, and describes that a structure containing metal particles is obtained using a binder made of an organic solution or emulsion. Has been.
On the other hand, it has not been known to obtain a metal particle-containing structure by using nano-order particles other than metal particles as a binder instead of using a binder such as an organic solution.

特開2008−174745号明細書Japanese Patent Application Laid-Open No. 2008-174745

本発明は、金属粒子と、金属粒子以外の無機粒子とを含む構造体であって、実用上の強度を有する構造体を得ることを目的とする。   An object of the present invention is to obtain a structure including metal particles and inorganic particles other than metal particles and having practical strength.

上記の課題を解決するために、ナノオーダーの粒子バインダについて研究を重ねた結果、特定の粒径の非金属無機粒子をバインダとすることにより、実用上の強度を有する構造体が得られることを見出し、本発明に至った。さらに、金属粒子と非金属無機粒子のそれぞれの平均粒径や体積分率を調整したり、特定の非金属無機粒子を用いることにより、本発明の構造体は、種々の性質を示すことを見出した。
すなわち、本発明は、平均粒径が1nm〜3000nmである金属粒子と、平均粒径が1nm〜3000nmである非金属無機粒子を含む構造体である。
In order to solve the above problems, as a result of repeated research on nano-order particle binders, a structure having practical strength can be obtained by using non-metallic inorganic particles having a specific particle size as a binder. The headline, the present invention has been reached. Furthermore, it has been found that the structure of the present invention exhibits various properties by adjusting the average particle size and volume fraction of each of the metal particles and the nonmetallic inorganic particles, or by using specific nonmetallic inorganic particles. It was.
That is, the present invention is a structure including metal particles having an average particle diameter of 1 nm to 3000 nm and nonmetallic inorganic particles having an average particle diameter of 1 nm to 3000 nm.

本発明の第一の態様は、金属粒子の平均粒径Daおよび非金属無機粒子の平均粒径Dbが、0.001<Da/Db<0.5を満たす前記構造体である。   The first aspect of the present invention is the structure according to which the average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetallic inorganic particles satisfy 0.001 <Da / Db <0.5.

本発明の第二の態様は、金属粒子の平均粒径Daおよび非金属無機粒子の平均粒径Dbが、0.5≦Da/Db≦2を満たし、金属粒子の体積分率Vaおよび非金属無機粒子の体積分率Vbが、0<Va/Vb≦0.3を満たす前記構造体である。   In the second aspect of the present invention, the average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetallic inorganic particles satisfy 0.5 ≦ Da / Db ≦ 2, and the volume fraction Va of the metal particles and the nonmetal In the structure, the volume fraction Vb of the inorganic particles satisfies 0 <Va / Vb ≦ 0.3.

本発明の第三の態様は、非金属無機粒子が無機層状化合物である前記構造体である。   The third aspect of the present invention is the structure according to which the nonmetallic inorganic particles are inorganic layered compounds.

本発明によれば、金属粒子表面をできるだけ保ちつつ、実用上の強度を有する構造体を得ることができる。さらに、本発明によれば、光を吸収しやすくした実用上の強度を有する構造体、可視光線の透明性を高めた実用上の強度を有する構造体、および、物質透過性を高めた実用上の強度を有する構造体を得ることができる。   According to the present invention, it is possible to obtain a structure having practical strength while keeping the surface of the metal particles as much as possible. Furthermore, according to the present invention, a structure having practical strength that facilitates light absorption, a structure having practical strength that enhances the transparency of visible light, and a practical structure that enhances material permeability. A structure having the following strength can be obtained.

本発明の第一の態様に係る構造体の微視的な模式図である。It is a microscopic schematic diagram of the structure concerning the 1st mode of the present invention. 本発明の第二の態様に係る構造体の微視的な模式図である。It is a microscopic schematic diagram of the structure concerning the 2nd mode of the present invention. 本発明の第三の態様に係る構造体の微視的な表面模式図である。It is a microscopic surface schematic diagram of the structure which concerns on the 3rd aspect of this invention. 本発明の第三の態様に係る構造体の微視的な断面模式図である。It is a microscopic cross-sectional schematic diagram of the structure which concerns on the 3rd aspect of this invention. 本発明の実施例1に係る構造体の表面観察写真である。It is a surface observation photograph of the structure concerning Example 1 of the present invention. 本発明の実施例2に係る構造体の表面観察写真である。It is a surface observation photograph of the structure concerning Example 2 of the present invention. 本発明の実施例3に係る構造体の表面観察写真である。It is a surface observation photograph of the structure concerning Example 3 of the present invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の構造体は平均粒径が1〜3000nmである金属粒子と、平均粒径が1〜3000nmである非金属無機粒子を含む。金属粒子の種類および非金属無機粒子の種類は、1種類のみでも、複数の種類の粒子を組み合わせても良い。平均粒径の異なる粒子を組み合わせて構造体を形成することも可能である。   The structure of the present invention includes metal particles having an average particle diameter of 1 to 3000 nm and nonmetallic inorganic particles having an average particle diameter of 1 to 3000 nm. The kind of metal particles and the kind of non-metallic inorganic particles may be one kind or a combination of plural kinds of particles. It is also possible to form a structure by combining particles having different average particle diameters.

本発明における金属粒子とは、金属原子からなる粒子、または複数の金属元素を含む合金からなる粒子である。具体的に、金属粒子は、白金、金、パラジウム、銀、銅、ニッケル、亜鉛、アルミニウム、鉄、コバルト、ロジウム、ルテニウム、スズ、鉛、ビスマス、タングステン、およびインジウムからなる群より選ばれる1種以上からなる粒子が挙げられる。金属粒子は、平均粒径の比較的揃った、微小サイズの粒子が得やすいという観点から、銀粒子、金粒子、銅粒子、パラジウム粒子、ニッケル粒子、スズ粒子が好ましく、銀粒子がより好ましい。スズの合金であるはんだは、金属の中では融点が非常に低く、加工性に優れるため好ましい。   The metal particles in the present invention are particles made of metal atoms or particles made of an alloy containing a plurality of metal elements. Specifically, the metal particles are selected from the group consisting of platinum, gold, palladium, silver, copper, nickel, zinc, aluminum, iron, cobalt, rhodium, ruthenium, tin, lead, bismuth, tungsten, and indium. The particle | grains which consist of the above are mentioned. The metal particles are preferably silver particles, gold particles, copper particles, palladium particles, nickel particles, and tin particles, and more preferably silver particles, from the viewpoint that fine particles having a relatively uniform average particle diameter can be easily obtained. A solder which is an alloy of tin is preferable because it has a very low melting point among metals and is excellent in workability.

本発明における非金属無機粒子とは、無機物のうち金属の性質を持たない元素および化合物からなる粒子である。具体的には、非金属無機粒子は、酸化ケイ素(シリカ)、酸化チタン、酸化アルミニウム、酸化亜鉛、酸化錫、炭酸カルシウム、硫酸バリウムなどの金属酸化物や、カオリナイトやモンモリロナイトなどの無機層状化合物からなる粒子が挙げられる。本発明の非金属無機粒子は、分散性が良好であることや、粒径分布が小さい粉体の入手が容易であるという観点から、シリカまたは無機層状化合物が好ましい。 The nonmetallic inorganic particles in the present invention are particles composed of elements and compounds having no metallic properties among inorganic substances. Specifically, the non-metallic inorganic particles include metal oxides such as silicon oxide (silica), titanium oxide, aluminum oxide, zinc oxide, tin oxide, calcium carbonate, and barium sulfate, and inorganic layered compounds such as kaolinite and montmorillonite. The particle | grains which consist of are mentioned. The nonmetallic inorganic particles of the present invention are preferably silica or inorganic layered compounds from the viewpoints of good dispersibility and easy availability of powders having a small particle size distribution.

本発明における無機層状化合物とは、単位結晶層が互いに積み重なって層状構造を形成している無機化合物をいう。   The inorganic layered compound in the present invention refers to an inorganic compound in which unit crystal layers are stacked to form a layered structure.

本発明における無機層状化合物とは、単位結晶層が互いに積み重なって層状構造を形成している無機化合物をいう。例としてカオリナイト族、アンチゴライト族、スメクタイト族、バーミキュライト族、マイカ族等を挙げることができる。具体的には、カオリナイト、ディッカイト、ナクライト、ハロイサイト、アンチゴライト、クリソタイル、パイロフィライト、モンモリロナイト、ヘクトライト、テトラシリリックマイカ、ナトリウムテニオライト、白雲母、マーガライト、タルク、バーミキュライト、金雲母、ザンソフィライト、緑泥石等を挙げることができる。   The inorganic layered compound in the present invention refers to an inorganic compound in which unit crystal layers are stacked to form a layered structure. Examples include kaolinite group, antigolite group, smectite group, vermiculite group, mica group and the like. Specifically, kaolinite, dickite, nacrite, halloysite, antigolite, chrysotile, pyrophyllite, montmorillonite, hectorite, tetrasilic mica, sodium teniolite, muscovite, margarite, talc, vermiculite, phlogopite , Xanthophyllite, chlorite and the like.

大きなアスペクト比が容易に得られる点から、溶媒に膨潤・へき開する性質を有する無機層状化合物が好ましく用いられる。   In view of easily obtaining a large aspect ratio, an inorganic layered compound having a property of swelling and cleavage in a solvent is preferably used.

溶媒に膨潤・へき開する無機層状化合物としては、粘土鉱物が特に好ましく用いられる。粘土鉱物は、一般に、シリカの四面体層の上部に、アルミニウムやマグネシウム等を中心金属にした八面体層を有する2層構造を有するタイプと、シリカの四面体層が、アルミニウム、マグネシウム等を中心金属にした八面体層を両側から狭んでなる3層構造を有するタイプに分類される。前者としては、カオリナイト族、アンチゴライト族等を挙げることができ、後者としては、層間カチオンの数によってスメクタイト族、バーミキュライト族、マイカ族等を挙げることができる。具体的には、カオリナイト、ディッカイト、ナクライト、ハロイサイト、アンチゴライト、クリソタイル、パイロフィライト、モンモリロナイト、ヘクトライト、テトラシリリックマイカ、ナトリウムテニオライト、白雲母、マーガライト、タルク、バーミキュライト、金雲母、ザンソフィライト、緑泥石等を挙げることができる。   As an inorganic layered compound that swells and cleaves in a solvent, a clay mineral is particularly preferably used. In general, clay minerals have a two-layer structure in which an octahedral layer having aluminum or magnesium as a central metal is formed on the upper part of a silica tetrahedral layer, and a silica tetrahedral layer mainly composed of aluminum, magnesium, or the like. It is classified into a type having a three-layer structure in which a metal octahedron layer is narrowed from both sides. Examples of the former include kaolinite group and antigolite group, and examples of the latter include smectite group, vermiculite group and mica group depending on the number of interlayer cations. Specifically, kaolinite, dickite, nacrite, halloysite, antigolite, chrysotile, pyrophyllite, montmorillonite, hectorite, tetrasilic mica, sodium teniolite, muscovite, margarite, talc, vermiculite, phlogopite , Xanthophyllite, chlorite and the like.

本発明で用いる金属粒子の形状、および非金属無機粒子の形状は、任意であって、例えば球状、針状、燐片状、繊維状、板状等であってよい。本発明において、これらの粒子の平均粒径は、動的光散乱法、シアーズ法、又はレーザー回折散乱法で測定される平均粒径、または、BET比表面積から計算される球相当径を指す。   The shape of the metal particles used in the present invention and the shape of the non-metallic inorganic particles are arbitrary, and may be, for example, spherical, needle-like, flake-like, fibrous, or plate-like. In the present invention, the average particle diameter of these particles refers to an average particle diameter measured by a dynamic light scattering method, a Sears method, or a laser diffraction scattering method, or a sphere equivalent diameter calculated from a BET specific surface area.

金属粒子および/または非金属無機粒子がアスペクト比2以下である場合の粒子の平均粒径は、光学顕微鏡、レーザー顕微鏡、走査型電子顕微鏡、透過型電子顕微鏡、原子間力顕微鏡等を用いて観察された画像から求めた平均粒径や、BET法の平均粒径、シアーズ法などにより求められる平均粒径である。シアーズ法とは、Analytical Chemistry,vol.28,p.1981−1983,1956に記載された方法であって、シリカ粒子の平均粒径の測定に適用される分析手法であり、pH=3のコロイダルシリカ分散液をpH=9にするまでに消費されるNaOHの量からシリカ粒子の表面積を求め、求めた表面積から球相当径を算出する方法である。   The average particle diameter of metal particles and / or non-metallic inorganic particles having an aspect ratio of 2 or less is observed using an optical microscope, laser microscope, scanning electron microscope, transmission electron microscope, atomic force microscope, etc. The average particle diameter obtained from the obtained image, the average particle diameter obtained by the BET method, the average particle diameter obtained by the Sears method, or the like. The Sears method is referred to Analytical Chemistry, vol. 28, p. 1981-1983, 1956, which is an analytical technique applied to the measurement of the average particle size of silica particles, and is consumed before the pH = 3 colloidal silica dispersion is brought to pH = 9. In this method, the surface area of silica particles is determined from the amount of NaOH, and the equivalent sphere diameter is calculated from the determined surface area.

本発明の第一の態様を以下に記載する。   The first aspect of the present invention is described below.

本発明の第一の態様は、金属粒子の平均粒径Daおよび非金属無機粒子の平均粒径Dbが、0.001<Da/Db<0.5を満たす構造体である。
金属粒子の平均粒径Daおよび非金属無機粒子の平均粒径Dbを上記範囲とすることにより、本発明の構造体は、非金属無機粒子表面に金属粒子を集合させた構造をとることができる。これにより、金属由来の光反射を抑制し、光を吸収しやすい構造体を得ることができる。
The first aspect of the present invention is a structure in which the average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetallic inorganic particles satisfy 0.001 <Da / Db <0.5.
By setting the average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetallic inorganic particles in the above ranges, the structure of the present invention can have a structure in which the metal particles are aggregated on the surface of the nonmetallic inorganic particles. . Thereby, the light reflection derived from a metal can be suppressed and the structure which can absorb light easily can be obtained.

本発明の第一の態様に係る構造体の微視的な模式図を図1に示す。構造体内で金属粒子1は非金属無機粒子2を囲んで存在しているが、他の金属粒子とほとんど連結することなく存在している。前記状態では金属粒子1の表面プラズモン効果により、構造体は特殊な光学特性を示し、光吸収効果を発現する。   A microscopic schematic view of the structure according to the first aspect of the present invention is shown in FIG. The metal particles 1 are present around the non-metallic inorganic particles 2 in the structure, but are present almost without being connected to other metal particles. In the above state, due to the surface plasmon effect of the metal particles 1, the structure exhibits special optical characteristics and exhibits a light absorption effect.

本発明の第一の態様では、金属粒子の平均粒子径Daおよび非金属無機粒子の平均粒径Dbが0.001<Da/Db<0.5を満たす。Da/Dbが0.001以下であると非金属無機粒子に対する金属粒子の粒径が小さすぎ、構造体における金属粒子の光学特性の発現効果が弱くなる可能性がある。また0.5以上であると金属粒子と非金属無機粒子の粒径が近くなるため、非金属無機粒子の周囲を金属粒子が取り囲む構造を形成しにくくなる。金属粒子の光学特性が効果的に発現すること、構造体における粒子間の形態制御が容易なことから、Da/Dbが、0.05≦Da/Db≦0.25であることが好ましい。   In the first aspect of the present invention, the average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetallic inorganic particles satisfy 0.001 <Da / Db <0.5. When Da / Db is 0.001 or less, the particle size of the metal particles relative to the nonmetallic inorganic particles is too small, and the effect of manifesting optical properties of the metal particles in the structure may be weakened. Moreover, since the particle size of a metal particle and a nonmetallic inorganic particle will become close as it is 0.5 or more, it will become difficult to form the structure which a metal particle surrounds the circumference | surroundings of a nonmetallic inorganic particle. It is preferable that Da / Db is 0.05 ≦ Da / Db ≦ 0.25 because the optical characteristics of the metal particles are effectively expressed and the shape control between the particles in the structure is easy.

金属粒子の平均粒径および非金属無機粒子の平均粒径は、1〜3000nmである。原子間力やファンデルワールス力など粒子間の相互作用力の観点から、金属粒子の平均粒径は1〜500nmが好ましい。非金属無機粒子の平均粒径はアスペクト比が2以下の場合は1〜500nmであることが好ましい。アスペクト比が2より大きい非金属無機粒子の平均粒径は、上述の粒子間の相互作用の観点から1〜1000nmであることが好ましい。 The average particle diameter of the metal particles and the average particle diameter of the nonmetallic inorganic particles are 1 to 3000 nm. From the viewpoint of the interaction force between particles such as atomic force and van der Waals force, the average particle size of the metal particles is preferably 1 to 500 nm. The average particle diameter of the nonmetallic inorganic particles is preferably 1 to 500 nm when the aspect ratio is 2 or less. The average particle diameter of the nonmetallic inorganic particles having an aspect ratio of greater than 2 is preferably 1 to 1000 nm from the viewpoint of the interaction between the above-mentioned particles.

第一の態様における金属粒子と非金属無機粒子の割合は、金属粒子の体積分率をVa、非金属無機粒子の体積分率をVbとすると、0.01≦Va/Vb≦1であることが好ましく、0.05≦Va/Vb≦0.5であることがより好ましい。金属粒子の体積分率Vaおよび非金属無機粒子の体積分率Vbを上記範囲とすることにより、本発明の構造体は、非金属無機粒子の周囲を金属粒子が取り囲む構造を形成しやすくなる。 The ratio of the metal particles to the nonmetallic inorganic particles in the first aspect is 0.01 ≦ Va / Vb ≦ 1, where Va is the volume fraction of the metal particles and Vb is the volume fraction of the nonmetallic inorganic particles. Is preferable, and 0.05 ≦ Va / Vb ≦ 0.5 is more preferable. By setting the volume fraction Va of the metal particles and the volume fraction Vb of the nonmetallic inorganic particles in the above ranges, the structure of the present invention can easily form a structure in which the metal particles surround the nonmetallic inorganic particles.

本発明の第二の態様を以下に説明する。   The second aspect of the present invention will be described below.

本発明の第二の態様は、金属粒子の平均粒径Daおよび非金属無機粒子の平均粒径Dbが、0.5≦Da/Db≦2を満たし、金属粒子の体積分率Vaおよび非金属無機粒子の体積分率Vbが、0<Va/Vb≦0.3を満たす構造体である。
金属粒子の平均粒径Daおよび非金属無機粒子の平均粒径Dbを上記範囲とし、金属粒子の体積分率Vaおよび非金属無機粒子の体積分率Vbを上記範囲とすることにより、本発明の構造体は、金属粒子を非金属無機粒子が取り囲んだ構造をとることができる。これにより、可視光線領域で透明性の高い構造体を得ることができる。
In the second aspect of the present invention, the average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetallic inorganic particles satisfy 0.5 ≦ Da / Db ≦ 2, and the volume fraction Va of the metal particles and the nonmetal It is a structure in which the volume fraction Vb of inorganic particles satisfies 0 <Va / Vb ≦ 0.3.
By setting the average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetallic inorganic particles in the above ranges, and setting the volume fraction Va of the metal particles and the volume fraction Vb of the nonmetallic inorganic particles in the above ranges, The structure can have a structure in which metal particles are surrounded by non-metallic inorganic particles. Thereby, a highly transparent structure can be obtained in the visible light region.

本発明の第二の態様に係る構造体の微視的な模式図を図2に示す。構造体内で金属粒子1は非金属無機粒子2に囲まれ、最大でも20nm程度のドメインとして存在しており、他の金属粒子とほとんど連結することなく存在している。このような状態の構造体は、バルク金属のような金属光沢を持たないため、光の散乱を感じない。また構造体内における金属粒子の含有量が比較的少ないため可視光線領域に透明性の高い構造体を得ることができる。   FIG. 2 shows a microscopic schematic diagram of the structure according to the second aspect of the present invention. In the structure, the metal particles 1 are surrounded by non-metallic inorganic particles 2 and exist as a domain of about 20 nm at the maximum, and exist almost without being connected to other metal particles. Since the structure in such a state does not have a metallic luster like a bulk metal, it does not feel light scattering. In addition, since the content of metal particles in the structure is relatively small, a highly transparent structure in the visible light region can be obtained.

本発明の第二の態様では、金属粒子の平均粒径Daおよび非金属無機粒子の平均粒径Dbが0.5≦Da/Db≦2を満たし、金属粒子の体積分率Vaおよび非金属無機粒子の体積分率Vbが、0<Va/Vb≦0.3を満たす。Da/Dbが0.5より小さいと透明性が得られにくい。またDa/Dbが2より大きいと非金属無機粒子の周囲を金属粒子が取り囲む構造をとる可能性がある。その場合金属光沢が発現してしまう可能性がある。さらにVa/Vbが0.3より大きいと構造体における金属の含有量が増え、透明性が損なわれる。高い透明性が得られること、構造体における粒子間の形態制御が容易なことから、Da/Dbは、1≦Da/Db≦2であることが好ましく、Va/Vbは、0.01<Va/Vb≦0.3であることが好ましい。   In the second aspect of the present invention, the average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetallic inorganic particles satisfy 0.5 ≦ Da / Db ≦ 2, and the volume fraction Va of the metal particles and the nonmetallic inorganic particles The volume fraction Vb of the particles satisfies 0 <Va / Vb ≦ 0.3. When Da / Db is less than 0.5, it is difficult to obtain transparency. Further, when Da / Db is larger than 2, there is a possibility that the metal particles surround the nonmetallic inorganic particles. In that case, the metallic luster may be developed. Furthermore, when Va / Vb is larger than 0.3, the metal content in the structure increases, and transparency is impaired. Da / Db is preferably 1 ≦ Da / Db ≦ 2, and Va / Vb is 0.01 <Va because high transparency is obtained and shape control between particles in the structure is easy. It is preferable that /Vb≦0.3.

金属粒子の平均粒径および非金属無機粒子の平均粒径は、1〜3000nmである。原子間力やファンデルワールス力など粒子間の相互作用力の観点から、金属粒子の平均粒径は1〜500nm、非金属無機粒子の平均粒径はアスペクト比が2以下の場合は1〜500nmであることが好ましい。アスペクト比が2より大きい非金属無機粒子の平均粒径は、上述の粒子間の相互作用の観点から1〜1000nmであることが好ましい。 The average particle diameter of the metal particles and the average particle diameter of the nonmetallic inorganic particles are 1 to 3000 nm. From the viewpoint of the interaction force between particles such as atomic force and van der Waals force, the average particle size of metal particles is 1 to 500 nm, and the average particle size of nonmetallic inorganic particles is 1 to 500 nm when the aspect ratio is 2 or less. It is preferable that The average particle diameter of the nonmetallic inorganic particles having an aspect ratio of greater than 2 is preferably 1 to 1000 nm from the viewpoint of the interaction between the above-mentioned particles.

本発明の第三の態様を以下に説明する。   The third aspect of the present invention will be described below.

本発明の第三の態様は、非金属無機粒子が無機層状化合物である構造体である。
非金属無機粒子として、粘土鉱物などの無機層状化合物を用いることにより、本発明の構造体は、金属粒子が無機層状化合物の層間にインターカレートした構造をとることができる。これにより、物質透過性の高い構造体を得ることができる。
The third aspect of the present invention is a structure in which the nonmetallic inorganic particles are inorganic layered compounds.
By using an inorganic layered compound such as clay mineral as the nonmetallic inorganic particles, the structure of the present invention can have a structure in which the metal particles are intercalated between the layers of the inorganic layered compound. Thereby, a structure with high substance permeability can be obtained.

本発明の第三の態様に係る構造体の微視的な表面模式図を図3に示し、微視的な断面模式図を図4に示す。金属粒子1が、無機層状化合物3の層間にインターカレートすることにより、無機層状化合物3の層間に空隙が生じる。その生じた空隙を物質が透過することができるため、構造体は、物質透過性を有する。   A microscopic surface schematic diagram of the structure according to the third aspect of the present invention is shown in FIG. 3, and a microscopic cross-sectional schematic diagram is shown in FIG. When the metal particles 1 intercalate between the layers of the inorganic layered compound 3, voids are generated between the layers of the inorganic layered compound 3. Since the substance can permeate through the generated voids, the structure has substance permeability.

金属粒子の体積分率Vaと無機層状化合物の体積分率Vbが、0<Va/Vb≦0.08である場合、非常に透明性に優れ、金属光沢を抑制した構造体の形成が可能である。また0.08<Va/Vb≦2である場合、構造体は物質透過性に加えハーフミラー状の金属光沢を持つ構造体の形成が可能である。さらに2<Va/Vbである場合、構造体は物質透過性に加え導電性を示す。金属粒子と非金属無機粒子の体積分率を適宜選択することにより、物質透過性のみならず様々な機能を付与することが可能である。   When the volume fraction Va of the metal particles and the volume fraction Vb of the inorganic layered compound are 0 <Va / Vb ≦ 0.08, it is possible to form a structure with excellent transparency and suppressed metallic luster. is there. When 0.08 <Va / Vb ≦ 2, it is possible to form a structure having a half-mirror-like metallic luster in addition to substance permeability. Furthermore, when 2 <Va / Vb, the structure exhibits conductivity in addition to material permeability. By appropriately selecting the volume fraction of the metal particles and the non-metal inorganic particles, it is possible to impart various functions as well as substance permeability.

金属粒子の平均粒径および無機層状化合物の平均粒径は、1〜3000nmである。原子間力やファンデルワールス力など粒子間の相互作用力の観点から、金属粒子の平均粒径は1〜500nm、無機層状化合物の平均粒径は1〜1000nmであることが好ましい。   The average particle diameter of the metal particles and the average particle diameter of the inorganic layered compound are 1 to 3000 nm. From the viewpoint of the interaction force between particles such as atomic force and van der Waals force, the average particle size of the metal particles is preferably 1 to 500 nm, and the average particle size of the inorganic layered compound is preferably 1 to 1000 nm.

本発明の構造体の形状は、膜状、繊維状、粒子状などの形状をとることができるが、発現しうる光学特性、物質透過性、導電性などを有効に利用する観点から、膜状であることが好ましい。この場合、膜のフレキシビリティを保つ観点から、構造体の厚みは10μm以下であることが好ましい。   The shape of the structure of the present invention can be a film shape, a fiber shape, a particle shape, etc., but from the viewpoint of effectively utilizing optical characteristics, substance permeability, conductivity, etc. that can be expressed, it is a film shape. It is preferable that In this case, from the viewpoint of maintaining the flexibility of the film, the thickness of the structure is preferably 10 μm or less.

本発明の構造体の製造方法について、膜状の形態をとる構造体を例にとり、以下に説明する。本発明の構造体は、液体分散媒を利用することにより効率的に製造することができる。
工程1:金属粒子と非金属無機粒子と液体分散媒とを含有する分散液を調製する工程
工程2:該分散液を支持体上に塗工して塗工膜を得る工程
工程3:該塗工膜から液体分散媒を除去する工程
The structure manufacturing method of the present invention will be described below by taking a structure in the form of a film as an example. The structure of the present invention can be efficiently produced by using a liquid dispersion medium.
Step 1: Step of preparing a dispersion containing metal particles, non-metallic inorganic particles and a liquid dispersion medium Step 2: Step of coating the dispersion on a support to obtain a coating film Step 3: Step of coating The process of removing the liquid dispersion medium from the film

本発明で用いる分散液は、典型的には、例えば下記[1]〜[4]のいずれかの方法により調製することができるが、分散液の調製法はこれらの方法に限定されるものではない。
[1]用いる金属粒子および非金属無機粒子を全て同時に共通の液体分散媒中に添加し、分散させる方法。
[2]金属粒子を液体分散媒中に分散させて金属粒子分散液を調製し、別途、非金属無機粒子を液体分散媒中に分散させて非金属無機粒子分散液を調製し、次いでそれぞれの分散液を混合する方法。
[3]金属粒子を液体分散媒中に分散させて金属粒子分散液を調製し、次いで該金属粒子分散液に非金属無機粒子を添加し、分散させる方法。
[4]液体分散媒中で粒成長させて金属粒子を含有する金属粒子分散液を調製し、別途、液体分散媒中で粒成長させて非金属無機粒子を含有する非金属無機粒子分散液を調製し、という手順でそれぞれの分散液を調製し、次いで全ての分散液を混合する方法。
Typically, the dispersion used in the present invention can be prepared, for example, by any of the following methods [1] to [4]. However, the method for preparing the dispersion is not limited to these methods. Absent.
[1] A method in which all of the metal particles and non-metallic inorganic particles to be used are simultaneously added and dispersed in a common liquid dispersion medium.
[2] A metal particle dispersion is prepared by dispersing metal particles in a liquid dispersion medium, and a nonmetal inorganic particle dispersion is prepared by separately dispersing nonmetal inorganic particles in a liquid dispersion medium. A method of mixing the dispersion.
[3] A method of preparing a metal particle dispersion by dispersing metal particles in a liquid dispersion medium, and then adding and dispersing non-metallic inorganic particles in the metal particle dispersion.
[4] A metal particle dispersion containing metal particles is prepared by grain growth in a liquid dispersion medium. Separately, a nonmetal inorganic particle dispersion containing nonmetal inorganic particles by grain growth in a liquid dispersion medium is prepared. A method of preparing each dispersion by the procedure of preparing and then mixing all the dispersions.

より均一な分散を達成するために、分散液は超音波分散、超高圧分散等の強分散手法を適用し、分散液中において、粒子を特に均一に分散させることが出来る。
また分散液の調製に使用する非金属無機粒子、金属粒子の分散液はコロイド状態であることが好ましく、最終的に得られる分散液中で粒子はコロイド状態であることが好ましい。
また、前記[1]の方法においても、非金属無機粒子の少なくとも一種がアルミナであって、分散液がコロイド状態である場合には、該混合粒子分散液に塩素イオン、硫酸イオン、酢酸イオンなどの陰イオンを添加することが好ましい。
In order to achieve more uniform dispersion, the dispersion can apply a strong dispersion technique such as ultrasonic dispersion or ultrahigh pressure dispersion to disperse the particles particularly uniformly in the dispersion.
The non-metallic inorganic particles and the dispersion of metal particles used for preparing the dispersion are preferably in a colloidal state, and the particles are preferably in a colloidal state in the finally obtained dispersion.
Also in the method [1], when at least one of the non-metallic inorganic particles is alumina and the dispersion is in a colloidal state, the mixed particle dispersion contains chlorine ions, sulfate ions, acetate ions, etc. It is preferable to add the anion.

前記[2]、[3]または[4]の方法において、非金属無機粒子分散液のうちの少なくとも一つががコロイダルシリカである場合には、陰性に帯電するシリカ粒子を安定化させるため、コロイダルシリカ中にアンモニウムイオン、アルカリ金属イオン、アルカリ土類金属イオンなどの陽イオンを対カチオンとして添加することが好ましい。コロイダルシリカのpHは特に限定されるものではないが、分散液の安定性の観点からpH8〜11であることが好ましい。
また、前記[1]の方法においても、非金属無機粒子のうちの少なくとも一つがシリカであって、分散液がコロイド状態である場合には、該分散液にアンモニウムイオン、アルカリ金属イオン、アルカリ土類金属イオンなどの陽イオンを添加することが好ましい。
In the method [2], [3] or [4], when at least one of the non-metallic inorganic particle dispersions is colloidal silica, the colloidal silica is stabilized in order to stabilize negatively charged silica particles. It is preferable to add a cation such as ammonium ion, alkali metal ion, or alkaline earth metal ion as a counter cation in silica. The pH of the colloidal silica is not particularly limited, but is preferably pH 8 to 11 from the viewpoint of the stability of the dispersion.
In the method [1], when at least one of the nonmetallic inorganic particles is silica and the dispersion is in a colloidal state, ammonium ion, alkali metal ion, alkaline earth is added to the dispersion. It is preferable to add a cation such as a metal ion.

前記[2]、[3]または[4]の方法において、金属粒子分散液を調製する場合、金属粒子を溶液中で安定化させるために、金属粒子表面修飾基を形成すること、安定剤を添加することが可能である。金属コロイド溶液のpHは特に限定されるものではないが、たとえば銀粒子分散液においては、安定性の観点からpH8〜11であることが好ましい。   In the method of [2], [3] or [4], when preparing a metal particle dispersion, in order to stabilize the metal particles in the solution, a metal particle surface modifying group is formed, and a stabilizer is added. It is possible to add. The pH of the metal colloid solution is not particularly limited. For example, in a silver particle dispersion, the pH is preferably 8 to 11 from the viewpoint of stability.

本発明の液体分散媒は、粒子を分散させる機能を有するものであればよく、水や揮発性の有機溶剤を用いることができるが、取り扱いが容易であることから水が好ましい。また、金属粒子および/または非金属無機粒子は、上記溶媒への分散性を改良するため、粒子に表面処理を施しても良いし、分散媒電解質や分散助剤を添加しても良い。   The liquid dispersion medium of the present invention only needs to have a function of dispersing particles, and water or a volatile organic solvent can be used, but water is preferable because it is easy to handle. Moreover, in order to improve the dispersibility in the solvent, the metal particles and / or non-metallic inorganic particles may be subjected to a surface treatment, or a dispersion medium electrolyte or a dispersion aid may be added.

上記工程1において金属粒子および/または非金属無機粒子をコロイド状に分散させる場合には、必要に応じてpH調整を行うことや電解質、分散剤を添加することができる。
また、非金属無機粒子を均一に分散させるために、必要に応じてスターラーによる攪拌、超音波分散、超高圧分散(超高圧ホモジナイザー)等の手法を適用してもよい。粒子分散液の濃度は特に限定されないが、粒子の溶液内での安定性を保つため、1〜50重量%であることが望ましい。
When the metal particles and / or the non-metallic inorganic particles are dispersed in the colloidal form in Step 1 above, pH adjustment, an electrolyte, and a dispersant can be added as necessary.
Moreover, in order to disperse | distribute nonmetallic inorganic particles uniformly, you may apply methods, such as stirring by a stirrer, ultrasonic dispersion | distribution, and an ultrahigh pressure dispersion (ultrahigh pressure homogenizer) as needed. The concentration of the particle dispersion is not particularly limited, but is preferably 1 to 50% by weight in order to maintain the stability of the particles in the solution.

上記工程1において、必要に応じて分散液を得る際に凝集剤を添加することができる。
凝集剤を添加することで2次的、3次的に構造制御された複合構造体を得ることができる。
In Step 1 above, a flocculant can be added when obtaining a dispersion as necessary.
By adding a flocculant, a composite structure whose structure is controlled secondarily and thirdarily can be obtained.

凝集剤の例としては塩酸などの酸性物質またはその水溶液、水酸化ナトリウムなどのアルカリ性物質またはその水溶液、イソプロピルアルコール、イオン液体などが挙げられる。   Examples of the flocculant include acidic substances such as hydrochloric acid or an aqueous solution thereof, alkaline substances such as sodium hydroxide or an aqueous solution thereof, isopropyl alcohol, and ionic liquid.

上記工程2において、該分散液を支持体上に塗工する方法としては特に限定されず、例えば、グラビアコーティング、リバースコーティング、刷毛ロールコーティング、スプレーコーティング、キスコーティング、ダイコーティング、ディッピング、バーコーティングなどの公知の方法で塗布することができる。   In the step 2, the method for coating the dispersion on the support is not particularly limited. For example, gravure coating, reverse coating, brush roll coating, spray coating, kiss coating, die coating, dipping, bar coating, etc. It can apply | coat by the well-known method of these.

上記工程3において、該塗工膜から液体分散媒を除去する工程では、除去時の圧力や温度は使用する非金属無機粒子、金属粒子および液体分散媒により適宜選択できる。たとえば液体分散媒が水である場合は、常圧下、25℃〜60℃で液体分散媒の除去が可能である。   In the step 3, in the step of removing the liquid dispersion medium from the coating film, the pressure and temperature at the time of removal can be appropriately selected depending on the nonmetallic inorganic particles, metal particles, and liquid dispersion medium to be used. For example, when the liquid dispersion medium is water, the liquid dispersion medium can be removed at 25 ° C. to 60 ° C. under normal pressure.

本発明の構造体は、二次加工を施すことができる。二次加工の方法としては、構造体を加熱して、金属粒子を軟化・融解することにより構造体空隙を充填したり、構造体を圧縮して、金属粒子の延性により構造体空隙を充填したり、加熱および圧縮の併用により構造体空隙を充填することが挙げられる。   The structure of the present invention can be subjected to secondary processing. As a secondary processing method, the structure is heated to soften and melt the metal particles to fill the structure voids, or the structure is compressed to fill the structure voids by the ductility of the metal particles. Or filling the structure voids by a combination of heating and compression.

以下、本件を実施例によってさらに具体的に説明するが、本発明はこれら実施例に限られない。   Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

使用した主な材料は以下のとおりである。
[金属粒子]
銀粒子(石原産業株式会社製の銀コロイド「MG−101」;平均粒径10nm;固形分濃度50wt%))
[非金属無機粒子]
(1)シリカ粒子(日産化学工業株式会社製のコロイダルシリカ「スノーテックスST−ZL」;平均粒径70〜100nm;コロイダルシリカの固形分濃度40重量%)
(2)シリカ粒子(日産化学工業株式会社製のコロイダルシリカ「スノーテックスST−XS」;平均粒径4〜6nm;コロイダルシリカの固形分濃度20重量%)
(3)モンモリロナイト粒子(クニミネ工業株式会社製の無機層状化合物「クニピアG」;平均粒径300nm)
[支持体]
ポリエチレンナフタレートフィルム(帝人デュポン株式会社製のポリエチレンナフタレートフィルム「テオネックス」(登録商標);厚み125μm;酸素透過度3.0cc/m/Day(23℃、相対湿度0%))
The main materials used are as follows.
[Metal particles]
Silver particles (silver colloid “MG-101” manufactured by Ishihara Sangyo Co., Ltd .; average particle size 10 nm; solid content concentration 50 wt%))
[Non-metallic inorganic particles]
(1) Silica particles (colloidal silica “Snowtex ST-ZL” manufactured by Nissan Chemical Industries, Ltd .; average particle size 70-100 nm; solid content concentration of colloidal silica 40% by weight)
(2) Silica particles (colloidal silica “Snowtex ST-XS” manufactured by Nissan Chemical Industries, Ltd .; average particle size 4 to 6 nm; solid content concentration of colloidal silica 20% by weight)
(3) Montmorillonite particles (inorganic layered compound “Kunipia G” manufactured by Kunimine Kogyo Co., Ltd .; average particle size 300 nm)
[Support]
Polyethylene naphthalate film (polyethylene naphthalate film “Teonex” (registered trademark) manufactured by Teijin DuPont Co., Ltd .; thickness 125 μm; oxygen permeability 3.0 cc / m 2 / Day (23 ° C., relative humidity 0%))

実施例の評価は次の方法で実施した。
[透明性]
可視紫外線分光光度計(島津製作所UV−3150)にて光線透過率を測定した
[物質透過性]
物質透過性の指標として、酸素透過度を用いた。MOCON社製OXTRANにて酸素透過度を測定した。
The evaluation of the examples was carried out by the following method.
[transparency]
The light transmittance was measured with a visible ultraviolet spectrophotometer (Shimadzu Corporation UV-3150).
[Material permeability]
Oxygen permeability was used as an index of material permeability. Oxygen permeability was measured with OXTRAN manufactured by MOCON.

[実施例1](第一の態様)
スノーテックスST−ZL2gに純水6g、MG−101を2g混合し、分散液を得た。
金属粒子の体積分率Vaおよび非金属無機粒子の体積分率Vbを表1に示す。支持体上にバーコーターを用いて該分散液を塗布後、液体分散媒を23℃で乾燥し膜状の構造体を製造した。構造体の推定厚みは0.13μmである。AFMで構造体表面の粒子形態を観察したところ、非金属無機粒子の周囲を金属粒子が取り囲む構造となっていることを確認した(図5参照)。この構造体の外観は黒色であり、550nmにおける透過率は1.7%であった。構造体を支持体ごと屈曲させても、構造体に割れ、はがれはみられず強度にも優れていた。
[Example 1] (First embodiment)
6 g of pure water and 2 g of MG-101 were mixed with 2 g of Snowtex ST-ZL to obtain a dispersion.
Table 1 shows the volume fraction Va of the metal particles and the volume fraction Vb of the nonmetallic inorganic particles. The dispersion was applied onto a support using a bar coater, and then the liquid dispersion medium was dried at 23 ° C. to produce a film-like structure. The estimated thickness of the structure is 0.13 μm. When the particle form on the surface of the structure was observed with AFM, it was confirmed that the metal particles surround the nonmetallic inorganic particles (see FIG. 5). The appearance of this structure was black, and the transmittance at 550 nm was 1.7%. Even when the structure was bent together with the support, the structure was not cracked and peeled, and the strength was excellent.

[実施例2](第二の態様)
スノーテックスST−XS4gに純水4g、MG−101を2g混合し、分散液を得た。
金属粒子の体積分率Vaおよび非金属無機粒子の体積分率Vbを表1に示す。支持体上にバーコーターを用いて該分散液を塗布後、液体分散媒を23℃で乾燥し膜状の構造体を製造した。構造体の推定厚みは0.13μmである。AFMで構造体表面の粒子形態を観察したところ、金属粒子と非金属無機粒子が均一に分散した構造となっていることを確認した(図6参照)。この構造体の外観は透明であり、550nmにおける透過率は60%であった。構造体を支持体ごと屈曲させても、構造体に割れ、はがれはみられず強度にも優れていた。
[Example 2] (Second embodiment)
A dispersion was obtained by mixing 4 g of pure water and 2 g of MG-101 with 4 g of Snowtex ST-XS.
Table 1 shows the volume fraction Va of the metal particles and the volume fraction Vb of the nonmetallic inorganic particles. The dispersion was applied onto a support using a bar coater, and then the liquid dispersion medium was dried at 23 ° C. to produce a film-like structure. The estimated thickness of the structure is 0.13 μm. When the particle form on the surface of the structure was observed with AFM, it was confirmed that the metal particles and the nonmetallic inorganic particles were uniformly dispersed (see FIG. 6). The appearance of this structure was transparent, and the transmittance at 550 nm was 60%. Even when the structure was bent together with the support, the structure was not cracked and peeled, and the strength was excellent.

[実施例3](第三の態様)
クニピアGの3重量%水溶液12gにMG−101を3.6g混合し、分散液を得た。金属粒子の体積分率Vaおよび非金属無機粒子の体積分率Vbを表1に示す。支持体上にバーコーターを用いて該分散液を塗布後、液体分散媒を23℃で乾燥し膜状の構造体を製造した。構造体の推定厚みは0.05μmである。AFMで構造体表面の粒子形態を観察したところ、非金属無機粒子の淵に金属粒子が点在する構造となっていることを確認した(図7参照)。この粒子膜の酸素透過度は3.0cc/m/Day(23℃、相対湿度0%)で支持体と同等であり、酸素透過性を確認した。構造体を支持体ごと屈曲させても、構造体に割れ、はがれはみられず強度にも優れていた。
[Example 3] (Third embodiment)
3.6 g of MG-101 was mixed with 12 g of a 3% by weight aqueous solution of Kunipia G to obtain a dispersion. Table 1 shows the volume fraction Va of the metal particles and the volume fraction Vb of the nonmetallic inorganic particles. The dispersion was applied onto a support using a bar coater, and then the liquid dispersion medium was dried at 23 ° C. to produce a film-like structure. The estimated thickness of the structure is 0.05 μm. When the particle form on the surface of the structure was observed with AFM, it was confirmed that the structure was such that metal particles were scattered on the ridges of the nonmetallic inorganic particles (see FIG. 7). The oxygen permeability of this particle film was 3.0 cc / m 2 / Day (23 ° C., relative humidity 0%), which was equivalent to the support, and the oxygen permeability was confirmed. Even when the structure was bent together with the support, the structure was not cracked and peeled, and the strength was excellent.

表1

Figure 2011025673
Table 1
Figure 2011025673

本発明の構造体は、フィルム状支持体に形成されるかあるいはフィルム状に形成された場合、帯電防止フィルム、導電フィルム、透明導電フィルム、磁性フィルム、反射フィルム、紫外線遮断フィルム、光拡散フィルム、反射防止フィルム、防眩フィルム、ハードコートフィルム、偏光フィルム、位相差フィルム、光拡散フィルム、フラットパネルディスプレイの前面板、携帯用ディスプレイ(携帯電話など)の窓、フレキシブル透明基板用フィルム、熱伝導フィルム、放熱性フィルム、抗菌フィルム、触媒担体フィルム、キャパシター電極膜、二次電池の電極膜、燃料電池の電極膜、などに適用の可能性がある。 When the structure of the present invention is formed on a film-like support or formed into a film, an antistatic film, a conductive film, a transparent conductive film, a magnetic film, a reflective film, an ultraviolet blocking film, a light diffusion film, Antireflection film, antiglare film, hard coat film, polarizing film, retardation film, light diffusion film, front panel of flat panel display, window for portable display (cell phone etc.), film for flexible transparent substrate, heat conduction film There is a possibility of application to heat dissipation films, antibacterial films, catalyst carrier films, capacitor electrode films, secondary battery electrode films, fuel cell electrode films, and the like.

1・・・金属粒子
2・・・非金属無機粒子
3・・・無機層状化合物
DESCRIPTION OF SYMBOLS 1 ... Metal particle 2 ... Non-metallic inorganic particle 3 ... Inorganic layered compound

Claims (11)

平均粒径が1nm〜3000nmである金属粒子と、平均粒径が1nm〜3000nmである非金属無機粒子とを含む構造体。 A structure comprising metal particles having an average particle diameter of 1 nm to 3000 nm and nonmetallic inorganic particles having an average particle diameter of 1 nm to 3000 nm. 金属粒子の平均粒径Daおよび非金属無機粒子の平均粒径Dbが、0.001<Da/Db<0.5を満たす、請求項1に記載の構造体。 The structure according to claim 1, wherein the average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetallic inorganic particles satisfy 0.001 <Da / Db <0.5. 金属粒子の平均粒径Daおよび非金属無機粒子の平均粒径Dbが、0.5≦Da/Db≦2を満たし、金属粒子の体積分率Vaおよび非金属無機粒子の体積分率Vbが、0<Va/Vb≦0.3を満たす、請求項1に記載の構造体。 The average particle diameter Da of the metal particles and the average particle diameter Db of the nonmetallic inorganic particles satisfy 0.5 ≦ Da / Db ≦ 2, and the volume fraction Va of the metal particles and the volume fraction Vb of the nonmetallic inorganic particles are The structure according to claim 1, wherein 0 <Va / Vb ≦ 0.3. 非金属無機粒子が無機層状化合物である請求項1に記載の構造体。 The structure according to claim 1, wherein the nonmetallic inorganic particles are inorganic layered compounds. 無機層状化合物が、スメクタイト、カオリナイト、ディッカイト、ナクライト、ハロイサイト、アンチゴライト、クリソタイル、パイロフィライト、モンモリロナイト、ヘクトライト、テトラシリリックマイカ、ナトリウムテニオライト、白雲母、マーガライト、タルク、バーミキュライト、金雲母およびザンソフィライトからなる群より選ばれる1種以上である請求項4に記載の構造体。 Smectite, kaolinite, dickite, nacrite, halloysite, antigolite, chrysotile, pyrophyllite, montmorillonite, hectorite, tetrasilic mica, sodium teniolite, muscovite, margarite, talc, vermiculite, The structure according to claim 4, wherein the structure is one or more selected from the group consisting of phlogopite and xanthophyllite. 非金属無機粒子がシリカである、請求項1〜3のいずれかに記載の構造体。 The structure according to any one of claims 1 to 3, wherein the nonmetallic inorganic particles are silica. 金属粒子が、白金、金、パラジウム、銀、銅、ニッケル、亜鉛、アルミニウム、鉄、コバルト、ロジウム、ルテニウム、スズ、鉛、ビスマス、タングステン、およびインジウムからなる群より選ばれる1種以上の金属からなる、請求項1〜6のいずれかに記載の構造体。 The metal particles are made of one or more metals selected from the group consisting of platinum, gold, palladium, silver, copper, nickel, zinc, aluminum, iron, cobalt, rhodium, ruthenium, tin, lead, bismuth, tungsten, and indium. The structure according to any one of claims 1 to 6. 膜状である請求項1〜7のいずれかに記載の構造体。   It is a film | membrane form, The structure in any one of Claims 1-7. 以下の工程1〜3により得られる、請求項8に記載の構造体の製造方法。
工程1:金属粒子と非金属無機粒子と液体分散媒とを含有する分散液を調製する工程
工程2:該分散液を支持体上に塗工して塗工膜を得る工程
工程3:該塗工膜から液体分散媒を除去する工程
The manufacturing method of the structure of Claim 8 obtained by the following processes 1-3.
Step 1: Step of preparing a dispersion containing metal particles, non-metallic inorganic particles and a liquid dispersion medium Step 2: Step of coating the dispersion on a support to obtain a coating film Step 3: Step of coating The process of removing the liquid dispersion medium from the film
前記工程1で、凝集剤を添加して分散液を調製することを特徴とする、請求項9に記載の構造体の製造方法。 The method for producing a structure according to claim 9, wherein in step 1, a flocculant is added to prepare a dispersion. 前記凝集剤が、アルカリ性物質、アルカリ性水溶液およびアルコールからなる群から選択される1種以上である請求項9に記載の構造体の製造方法。 The method for producing a structure according to claim 9, wherein the flocculant is at least one selected from the group consisting of an alkaline substance, an alkaline aqueous solution, and an alcohol.
JP2010127601A 2009-06-05 2010-06-03 Structure containing metal particle and nonmetal inorganic particle Pending JP2011025673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127601A JP2011025673A (en) 2009-06-05 2010-06-03 Structure containing metal particle and nonmetal inorganic particle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009135912 2009-06-05
JP2010127601A JP2011025673A (en) 2009-06-05 2010-06-03 Structure containing metal particle and nonmetal inorganic particle

Publications (1)

Publication Number Publication Date
JP2011025673A true JP2011025673A (en) 2011-02-10

Family

ID=43634979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127601A Pending JP2011025673A (en) 2009-06-05 2010-06-03 Structure containing metal particle and nonmetal inorganic particle

Country Status (1)

Country Link
JP (1) JP2011025673A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163862A (en) * 2012-01-10 2013-08-22 Kawamura Institute Of Chemical Research Metal nanoparticle dispersion, metal nanoparticle/layered mineral composite, and method for producing them
WO2016158104A1 (en) * 2015-03-27 2016-10-06 富士フイルム株式会社 Base material having antibacterial layer, and display film
JP2017134094A (en) * 2016-01-25 2017-08-03 旭硝子株式会社 Antiglare film-covered substrate, film-forming coating liquid, and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013163862A (en) * 2012-01-10 2013-08-22 Kawamura Institute Of Chemical Research Metal nanoparticle dispersion, metal nanoparticle/layered mineral composite, and method for producing them
WO2016158104A1 (en) * 2015-03-27 2016-10-06 富士フイルム株式会社 Base material having antibacterial layer, and display film
JP2017134094A (en) * 2016-01-25 2017-08-03 旭硝子株式会社 Antiglare film-covered substrate, film-forming coating liquid, and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5789919B2 (en) Method for producing inorganic particle composite
JP6366140B2 (en) Metal fine particle-containing structure
Zeng et al. Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties
Du et al. Preparation and electromagnetic properties characterization of reduced graphene oxide/strontium hexaferrite nanocomposites
JP2011025673A (en) Structure containing metal particle and nonmetal inorganic particle
TWI461727B (en) Method for manufacturing laminated body
Xie et al. Improved impedance matching by multi-componential metal-hybridized rGO toward high performance of microwave absorption
Wang et al. Fabrication of core–shell structural SiO2@ DNA–LDH nanocomposite with low infrared emissivity
JP2019183109A (en) Redispersible composition containing cellulose fiber and non-cellulose granulated material
JP5168790B2 (en) Paint, method for producing the same, coating film using the same, and method for producing the coating film
Hong et al. ITO nanoparticles reused from ITO scraps and their applications to sputtering target for transparent conductive electrode layer
Hu et al. Engineering asymmetric multifunctional phase change composites for improved electromagnetic interference shielding and wireless personal thermal therapy
WO2019198429A1 (en) Redispersible composition containing cellulose fibers and non-cellulose powder granules
Gholipur Synthesis and characterization of novel PVA/MF-PC/RGO nanocomposites
Fukuda et al. Direct synthesis of carbon–molybdenum carbide nanosheet composites via a pseudotopotactic solid-state reaction
WO2014115792A1 (en) Dispersion liquid for formation of transparent conductive thin film and substrate equipped with transparent conductive thin film
Wang et al. Coassembly of exfoliated Ni–In LDHs nanosheets with DNA and infrared emissivity study
TWI410330B (en) Method for producing antireflective layered material
Ashayer et al. Synthesis of palladium nanoshell using a layer-by-layer technique
Cho et al. Low diffuse reflection of silver nanowire/ruthenium oxide nanosheet hybrid films for high-performance transparent flexible electrodes
JP2005330163A (en) Electroconductive tin oxide powder, manufacturing method thereof, and electroconductive-paste and -paint
JP4251448B2 (en) Aluminum-substituted tin-containing indium oxide particles and method for producing the same, and conductive paint, conductive coating film and conductive sheet using the particles
JP4424582B2 (en) Tin-containing indium oxide particles, method for producing the same, and conductive coating film and conductive sheet
JP5046267B2 (en) Transparent conductive film, coating liquid for forming transparent conductive film, and method for producing transparent conductive film
JP4573266B2 (en) Transparent conductive sheet