JP2011024741A - Tube or axis material subject to minimum thermal effects and having minute form on surface, and method for processing the same - Google Patents

Tube or axis material subject to minimum thermal effects and having minute form on surface, and method for processing the same Download PDF

Info

Publication number
JP2011024741A
JP2011024741A JP2009172626A JP2009172626A JP2011024741A JP 2011024741 A JP2011024741 A JP 2011024741A JP 2009172626 A JP2009172626 A JP 2009172626A JP 2009172626 A JP2009172626 A JP 2009172626A JP 2011024741 A JP2011024741 A JP 2011024741A
Authority
JP
Japan
Prior art keywords
pattern hole
processing
insulating film
electrolytic
laser irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009172626A
Other languages
Japanese (ja)
Other versions
JP5267996B2 (en
Inventor
Tsuneo Kurita
恒雄 栗田
Shinichi Miyazawa
伸一 宮澤
Nozomi Mishima
望 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009172626A priority Critical patent/JP5267996B2/en
Publication of JP2011024741A publication Critical patent/JP2011024741A/en
Application granted granted Critical
Publication of JP5267996B2 publication Critical patent/JP5267996B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stent processing method, where there is no possibility of occurrence of either thermally effected layer or fused coagulant matter through laser irradiation, and the fear of adhesion of blood platelets or damages to vessels or red blood cells is reduced. <P>SOLUTION: The stent processing method includes: an insulating film is formed over the entire external surface of a metallic tube; next, the insulating film for the tube part to form a pattern hole is removed; next, the pattern hole is formed after removing the metal there by electrolytic processing; a passive film is formed over the entire inner surface of the pattern hole while the electrolytic processing continues; when the passive film becomes active as an insulating film, this film is removed from the bottom of pattern hole by laser irradiation; next, metal is removed by electrolytic processing from the bottom of pattern hole where the insulating film has been removed; and thereafter, electrolytic processing and laser irradiation are repeated until the pattern hole completely opens. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、熱影響が極小で微細形状が形成された管、軸材の加工方法に関し、特に、医療用ステントに好適な加工方法に関するものである。   The present invention relates to a processing method for a tube and shaft material in which a heat effect is minimal and a fine shape is formed, and particularly relates to a processing method suitable for a medical stent.

医療用ステントは、例えば、血管などの狭窄部に挿入したのち拡開して狭窄した血管などをひろげる医療器具として従来から知られており、ステントを拡開させるためには管状のステント周壁に微細なパターン孔を形成する加工技術が必要となる。
従来、微細なパターン孔を形成する加工技術としては、例えば、次のようなものが知られている。
A medical stent is conventionally known as a medical device that expands a stenotic blood vessel after being inserted into a stenosis part such as a blood vessel. A processing technique for forming a simple pattern hole is required.
Conventionally, as processing techniques for forming fine pattern holes, for example, the following are known.

特許文献1には、ステントのパターン孔を形成する同一箇所にフェトム秒レーザ(超短パルスレーザ)を繰り返し重畳して照射してパターン孔を形成する加工技術が記載されている。
特許文献2には、ステントの金属製管状部材の外面を感光性レジスト材料で被覆し、感光性レジスト材料で被覆された管状部材の一部分を紫外光に露光し硬化させ、露光した後、管状部材を現像液に浸漬して未硬化のレジストを洗い流し、その後、電気化学的または化学的処理によりレジストに被覆されない部分の金属を除去することによりパターン孔を形成する加工技術が記載されている。
特許文献3には、リードフレームの加工技術であって、金属板の両面に耐電解加工性のレジスト膜を被覆しておき、レーザ光を照射して金属板を貫通する切断溝をリードフレームの形状に従って形成し、続いてレーザ加工後の金属板に電解加工を施し、組織の異なる金属板の地金と加工変質層の界面を選択的に腐食し、最後にレジスト膜を除去してリードフレームのパターン溝を形成する加工技術が記載されている。
Patent Document 1 describes a processing technique in which a femtosecond laser (ultra-short pulse laser) is repeatedly superimposed and irradiated on the same portion where a pattern hole of a stent is formed to form a pattern hole.
In Patent Document 2, the outer surface of a metal tubular member of a stent is coated with a photosensitive resist material, a portion of the tubular member coated with the photosensitive resist material is exposed to ultraviolet light, cured, exposed, and then the tubular member. Describes a processing technique in which a pattern hole is formed by immersing the substrate in a developing solution to wash away an uncured resist and then removing a portion of the metal not covered with the resist by electrochemical or chemical treatment.
Patent Document 3 discloses a lead frame processing technique, in which a metal plate is coated on both sides with an electro-resistive resist film, and a cutting groove penetrating the metal plate by irradiating a laser beam is formed on the lead frame. Formed according to the shape, followed by electrolytic processing on the metal plate after laser processing, selectively corrodes the interface between the metal plate of different structure and the damaged layer, and finally removes the resist film to lead frame A processing technique for forming the pattern grooves is described.

特開2005−95610号公報JP 2005-95610 A 特表2002−511779号公報JP-T-2002-511779 特開平8−70073号公報JP-A-8-70073

レーザ加工を用いてパターン孔を形成すると、溶融凝固物、熱影響層が発生し、機能の低下が起こるという問題点がある。溶融凝固物は、例えば、ステントを血管内に挿入した場合、血管や赤血球などを破壊する恐れがある。
電解加工等の電気化学的処理あるいは化学的処理は、電気化学作用あるいは化学作用を用いて材料を除去するために、加工影響が材料に残留しにくい加工法として知られており、実際に上記特許文献3でも、レーザ加工後の溶融凝固物、熱影響層の除去に用いられている。しかし、電解加工は電流の流れた材料を溶解する特性を持つため、加工・非加工領域をコントロールすることが難しく、このため電解加工で微細形状を効率よく形成することができないという問題点がある。
電解加工等の電気化学的処理あるいは化学的処理によりパターン孔を形成すると、加工材料表面は等方的に除去されるため、高アスペクト比の加工ができないという問題点がある。
本発明は、上記問題点を解決し、レーザ加工による熱的影響層が存在せず、かつ、微細なパターン孔形状を精度良く効率的に金属製管に形成できる加工方法を提供することにあり、特に、レーザ加工による熱的影響層が存在せず、血小板の付着量を削減し、血管・赤血球の損壊を低減できる、医療用ステントに好適な加工方法を提供することにある。
When pattern holes are formed using laser processing, there is a problem that a melted solidified product and a heat-affected layer are generated, resulting in a decrease in function. For example, when a stent is inserted into a blood vessel, the molten solidified product may destroy blood vessels or red blood cells.
Electrochemical processing such as electrolytic processing or chemical processing is known as a processing method in which processing influence hardly remains in the material because the material is removed using electrochemical action or chemical action. Also in Document 3, it is used to remove the melted solidified product and the heat-affected layer after laser processing. However, since electrolytic machining has the property of dissolving the material through which the current flows, it is difficult to control the machining / non-machining region, and there is a problem that it is not possible to efficiently form a fine shape by electrolytic machining. .
When pattern holes are formed by electrochemical processing such as electrolytic processing or chemical processing, the surface of the processing material is isotropically removed, and there is a problem that processing with a high aspect ratio cannot be performed.
An object of the present invention is to provide a processing method that solves the above-described problems, does not have a thermally affected layer by laser processing, and can form a fine pattern hole shape accurately and efficiently in a metal pipe. In particular, it is an object of the present invention to provide a processing method suitable for a medical stent that does not have a heat-affected layer by laser processing, can reduce the amount of platelet adhesion, and can reduce blood vessel / red blood cell damage.

本発明のパターン孔を有する金属製管の加工方法は、金属製管の外表面全体に絶縁被膜を形成する第1の工程と、前記絶縁被膜のうち、パターン孔を形成する部分の絶縁被膜を除去する第2の工程と、前記絶縁被膜を除去した部分から電解加工により金属を除去しパターン孔を形成する第3の工程と、前記電解加工を続けているうちにパターン孔内面全体に不動態膜が生成され、それが絶縁被膜として作用するようになった絶縁被膜コート工程である第4の工程と、前記第4の工程でパターン孔内面全体に生成された被膜のうち、パターン孔底面の被膜をレーザ照射により除去する第5の工程と、前記第5の工程でパターン孔底面の被膜が除去された部分から、電解加工により金属を除去する第6の工程と、以下、パターン孔が貫通するまで、上記第4の工程、上記第5の工程、上記第6の工程を繰り返すことを特徴とする。
さらに、本発明のパターン孔を有する金属製管の加工方法は、金属製管は、Fe,Ni,Co,Cr,Ti,Nb,Ta,Alなど、及び、これらを主体とする合金からなることを特徴とする。
さらに、本発明のパターン孔を有する金属製管の加工方法は、パターン孔を有する金属製管が、医療用ステントであることを特徴とする。
また、本発明のパターン孔を有する金属製管は、上記いずれか1つのパターン孔を有する金属製管の加工方法により加工されたことを特徴とする。
The method for processing a metal pipe having a pattern hole according to the present invention includes a first step of forming an insulating film on the entire outer surface of the metal pipe, and an insulating film of a portion of the insulating film where the pattern hole is formed. A second step of removing, a third step of removing the metal from the portion from which the insulating film has been removed by electrolytic processing to form a pattern hole, and the entire inner surface of the pattern hole being passive while continuing the electrolytic processing. A fourth step, which is an insulating film coating process in which a film is generated and acts as an insulating film, and of the film generated on the entire inner surface of the pattern hole in the fourth process, The fifth step of removing the coating film by laser irradiation, the sixth step of removing the metal by electrolytic processing from the portion where the coating on the bottom surface of the pattern hole was removed in the fifth step, and the pattern hole penetrated below. Until The fourth step, the fifth step, and repeating the sixth step.
Furthermore, in the method for processing a metal pipe having a pattern hole according to the present invention, the metal pipe is made of Fe, Ni, Co, Cr, Ti, Nb, Ta, Al, or the like, and an alloy mainly composed of these. It is characterized by.
Furthermore, the method for processing a metal tube having a pattern hole according to the present invention is characterized in that the metal tube having a pattern hole is a medical stent.
Further, the metal pipe having a pattern hole according to the present invention is processed by the method for processing a metal pipe having any one of the above pattern holes.

本発明の加工方法によれば、レーザ照射は、パターン孔底部の不動態膜(絶縁被膜)の除去のために照射されるものであり、レーザ照射により金属の除去を行うものではないから、レーザ照射による熱的影響層や溶融凝固物が発生せず、特に、ステントにおいては、血小板の付着量を削減し、血管・赤血球の損壊を低減できる。
また、電解加工時に、パターン孔の全内面には、次第に不動態膜が生成され、該不動態膜が絶縁被膜として作用するが、レーザ照射によりパターン孔底面の不動態膜だけを除去し、さらに電解加工を続行するから、パターン孔周面に生成された不動態膜は絶縁被膜として作用するので高アスペクト比のパターン孔が高精度で効率良く形成できる。さらに、電解加工の電解生成物が発生しパターン孔内に堆積することがあるが、パターン孔底面の不動態膜をレーザ照射により除去する際に、パターン孔内に堆積した電解生成物も一緒に除去され、効率良くパターン孔が形成できる。
According to the processing method of the present invention, laser irradiation is performed to remove the passive film (insulating film) at the bottom of the pattern hole, and metal is not removed by laser irradiation. Thermally affected layers and melted coagulated materials are not generated by irradiation, and in particular, stents can reduce the adhesion amount of platelets and damage of blood vessels and erythrocytes.
Further, during the electrolytic processing, a passive film is gradually formed on the entire inner surface of the pattern hole, and the passive film acts as an insulating film, but only the passive film on the bottom surface of the pattern hole is removed by laser irradiation. Since the electrolytic processing is continued, the passive film generated on the peripheral surface of the pattern hole acts as an insulating film, so that a pattern hole with a high aspect ratio can be formed with high accuracy and efficiency. In addition, electrolytic products of electrolytic processing may be generated and deposited in the pattern hole. When removing the passive film on the bottom of the pattern hole by laser irradiation, the electrolytic product deposited in the pattern hole is also included. It is removed and the pattern hole can be formed efficiently.

図1は、本発明の加工方法を説明する説明図である。FIG. 1 is an explanatory view for explaining the processing method of the present invention. 図2は、本発明の加工方法を実施するための加工装置の一例を示した図である。FIG. 2 is a diagram showing an example of a processing apparatus for carrying out the processing method of the present invention. 図3は、本発明の加工方法を実施するための加工装置の他の例を示した図である。FIG. 3 is a diagram showing another example of a processing apparatus for carrying out the processing method of the present invention.

本発明では、レーザ照射を用いるのは、パターン孔底部の不動態膜(絶縁被膜)の除去のために用い、金属の除去には専ら電解加工を用いることにより、レーザ加工による熱的影響層や溶融凝固物が発生しない微細なパターン孔を高アスペクト比で形成する加工方法を実現した。   In the present invention, the laser irradiation is used for removing the passive film (insulating film) at the bottom of the pattern hole, and the metal removal is exclusively performed by electrolytic processing, so that the heat affected layer by laser processing or We realized a processing method to form fine pattern holes with high aspect ratio that do not generate molten solidified material.

図1は、本発明の加工方法を説明する図であって、加工工程を、工程順に示した図である。
図1において、1の工程は、金属製管の外表面全体に絶縁被膜を形成する絶縁被膜コート工程である。絶縁被膜の形成法としては、例えば、塗布、スパッタリング、蒸着などを用いることができ、また、絶縁被膜の材料としては、例えば、ポリイミド樹脂、フォトレジスト樹脂、エナメル樹脂、パレリン樹脂、エポキシ樹脂などの樹脂、アルミナ、窒化珪素などのセラミックを用いることができる。さらには、電解加工により生成される不動態膜を絶縁被膜として利用することもできる。
2の工程は、1の工程でコートした絶縁被膜のうち、パターン孔を形成する部分の絶縁被膜を除去する絶縁被膜除去工程である。2の工程における絶縁被膜の除去は、パターン孔を形成する部分の絶縁被膜にレーザ照射して除去しても良く、また、絶縁被膜の材料としてフォトレジスト樹脂を採用した場合には、露光・現像のフォトレジスト法によって除去しても良い。
3の工程は、2で絶縁被膜を除去した部分から電解加工により金属を除去しある程度の深さのパターン孔を形成する電気化学的除去工程である。
4の工程は、3の電解加工により電気化学的除去工程を続けているうちにパターン孔内面全体に不動態膜が生成されてそれが絶縁被膜として作用するようになった絶縁被膜コート2工程である。電解加工中に表面に不動態膜を生成するものとしては、Fe,Ni,Co,Cr,Ti,Nb,Ta,Alなど、及び、これらを主体とする合金がある。ステントとして用いる場合には、ステンレス、ナイチノール(NiTi合金)などの合金が代表的なものである。
5の工程は、4でパターン孔内面全体に生成された不動態膜による絶縁被膜のうち、パターン孔底面の絶縁被膜をレーザ照射により除去する絶縁被膜除去2工程である。このとき、パターン孔内底部に堆積していた電解加工の電解生成物があれば、前記レーザ照射によって電解生成物も同時に除去されるので、その後の電解加工が支障なく行え、また、電解生成物除去の工程を別途設ける必要がない。なお、レーザ照射によりパターン孔内に堆積した電解生成物のみを除去するにとどめた場合であっても、次の工程で電解加工を行うことによりパターン孔をさらに深く形成することができる。
5の工程の後、パターン孔が貫通するまで3〜5の工程を繰り返す。すなわち、再び3に戻って、5でパターン孔底面の絶縁被膜が除去された部分から、電解加工により金属を除去する。このとき、パターン孔周面は絶縁被膜で覆われたままであるので、アスペクト比の高い孔の形成が可能となる。電解加工を続けていると、再び4のように、パターン孔内面全体に不動態膜が生成されてそれが絶縁被膜として作用するようになる。そこで、再び5のように、パターン孔底面の絶縁被膜をレーザ照射により除去し、電解加工を行い、パターン孔が貫通するまで繰り返す。
FIG. 1 is a diagram for explaining the processing method of the present invention, and shows the processing steps in the order of the steps.
In FIG. 1, step 1 is an insulating coating coating step for forming an insulating coating on the entire outer surface of a metal pipe. As a method for forming the insulating film, for example, coating, sputtering, vapor deposition, or the like can be used. As a material for the insulating film, for example, polyimide resin, photoresist resin, enamel resin, parylene resin, epoxy resin, or the like can be used. Ceramics such as resin, alumina, and silicon nitride can be used. Furthermore, a passive film generated by electrolytic processing can be used as an insulating film.
The process 2 is an insulating film removing process for removing the insulating film in the portion where the pattern hole is to be formed in the insulating film coated in the first process. The insulating film in step 2 may be removed by irradiating the insulating film in the portion where the pattern hole is formed with laser irradiation. In addition, when a photoresist resin is used as the material of the insulating film, exposure and development are performed. It may be removed by the photoresist method.
Step 3 is an electrochemical removal step in which the metal is removed from the portion from which the insulating film has been removed in step 2 by electrolytic processing to form a pattern hole having a certain depth.
The process 4 is an insulating film coating 2 process in which a passive film is formed on the entire inner surface of the pattern hole while the electrochemical removal process is continued by the electrolytic processing of 3, and this acts as an insulating film. is there. Examples of materials that generate a passive film on the surface during electrolytic processing include Fe, Ni, Co, Cr, Ti, Nb, Ta, and Al, and alloys based on these. When used as a stent, alloys such as stainless steel and nitinol (NiTi alloy) are typical.
Process 5 is an insulating film removal 2 process in which the insulating film on the bottom surface of the pattern hole is removed by laser irradiation among the insulating film formed of the passive film formed on the entire inner surface of the pattern hole in 4. At this time, if there is an electrolytic product of electrolytic processing deposited on the bottom of the pattern hole, the electrolytic product is also removed simultaneously by the laser irradiation, so that subsequent electrolytic processing can be performed without any trouble. There is no need to provide a separate removal step. Even when only the electrolytic product deposited in the pattern hole by laser irradiation is removed, the pattern hole can be formed deeper by performing electrolytic processing in the next step.
After the step 5, the steps 3 to 5 are repeated until the pattern hole penetrates. That is, returning to 3 again, the metal is removed by electrolytic processing from the portion where the insulating film on the bottom surface of the pattern hole has been removed in 5. At this time, since the peripheral surface of the pattern hole is still covered with the insulating film, a hole with a high aspect ratio can be formed. If the electrolytic processing is continued, a passive film is generated on the entire inner surface of the pattern hole as shown in 4 again, and it acts as an insulating film. Therefore, as in 5 again, the insulating film on the bottom surface of the pattern hole is removed by laser irradiation, electrolytic processing is performed, and the process is repeated until the pattern hole penetrates.

図2は、本発明の加工方法を実施するための加工装置の一例を示した図であって、金属製管にパターン孔を形成する場合に適用したものである。
図において、加工物である金属製管の外表面全体には、既に前記1の工程で絶縁被膜が形成されているものを用いる。金属製管は、電解槽の電解液中に一部浸漬した状態で、図中の矢印の向きに回転されて順次各工程ステージを繰り返しおこなえるように、管軸を回転軸として、管軸を水平な状態で回転支持されている。電解槽中には電極が設けられ、該電極(負極)と金属製管(陽極)とに、電解加工のための電圧を印加する電源を備えている。
レーザ照射ステージには、レーザ照射装置が設けられており、レーザ照射装置はパターン孔形成位置に沿って移動して、前記2の工程の絶縁被膜除去、及び、前記5の工程のパターン孔底面の絶縁被膜をレーザ照射により除去する絶縁被膜除去2工程を実施する。このとき、パターン孔内底部に堆積していた電解加工の電解生成物があれば、前記レーザ照射によって電解生成物も同時に除去されるので、その後の電解加工が支障なく行え、また、レーザ照射によりパターン孔内に堆積した電解生成物のみを除去するにとどめた場合であっても、次の工程で電解加工を行うことによりパターン孔をさらに深く形成することができる。なお、レーザ照射ステージには、レーザ照射位置に酸化防止のために不活性ガス等のガス供給2を吹き付けるノズルを備えている。また、電解液中から回転上昇してきた金属製管の表面に付着している電解液を吹き飛ばし乾燥するためのガス供給1を吹き付けるノズルが設けられている。
FIG. 2 is a view showing an example of a processing apparatus for carrying out the processing method of the present invention, which is applied when forming a pattern hole in a metal pipe.
In the figure, the entire outer surface of a metal pipe, which is a workpiece, is used in which an insulating film has already been formed in the first step. The metal pipe is horizontally immersed in the electrolytic solution in the electrolytic cell, and is rotated horizontally in the direction of the arrow in the figure so that each process stage can be repeated sequentially. It is supported in a rotating state. An electrode is provided in the electrolytic cell, and a power source for applying a voltage for electrolytic processing to the electrode (negative electrode) and the metal tube (anode) is provided.
The laser irradiation stage is provided with a laser irradiation device. The laser irradiation device moves along the pattern hole forming position, removes the insulating film in the second step, and removes the bottom surface of the pattern hole in the fifth step. Two insulating film removal steps are performed in which the insulating film is removed by laser irradiation. At this time, if there is an electrolytic product of electrolytic processing deposited on the bottom of the pattern hole, the electrolytic product is also removed by the laser irradiation at the same time, so that subsequent electrolytic processing can be performed without any problem. Even when only the electrolytic product deposited in the pattern hole is removed, the pattern hole can be formed deeper by performing electrolytic processing in the next step. The laser irradiation stage includes a nozzle that blows a gas supply 2 such as an inert gas at the laser irradiation position to prevent oxidation. In addition, a nozzle is provided for blowing a gas supply 1 for blowing off and drying the electrolytic solution adhering to the surface of the metal pipe that has been rotated up from the electrolytic solution.

上記の装置を用いて本発明の加工方法を実施するには、まず、前記1の工程を別途実施して、金属製管の外表面全体に絶縁被膜を形成しておく。外表面全体に絶縁被膜が形成された金属製管を、上記装置に装着する。なお、電解加工により生成される不動態膜を絶縁被膜として利用する場合には、電解槽で電解加工を施して生成された不導体膜を絶縁被膜として利用する。
次に、レーザ照射ステージにおいて、レーザ照射装置をパターン孔形成位置に沿って移動して、前記2の工程の絶縁被膜除去を行う。このとき、レーザ照射位置に、不活性ガスなどのガス供給2のガスをノズルで吹き付け、酸化防止をはかる。なお、絶縁被膜としてフォトレジスト樹脂を用いる場合には、露光・現像のフォトレジスト法によって予めパターン孔形成部分の絶縁被膜は除去しておくので、前記2の工程までが別途既に実施されている。
次に、金属製管を回転移動し、前記2の工程が実施された部分を電解液中に浸漬して電解加工を行い、電解液中で、前記3の工程及び4の工程を行う。電解加工により不動態膜が生成され、生成された不動態膜が絶縁被膜として機能するようになったら、金属製管を回転し、ガス供給1のガスをノズルから吹き付けて電解液を吹き飛ばし乾燥させる。
次に、レーザ照射ステージにおいて、レーザ照射装置をパターン孔形成位置に沿って移動して、前記5の工程のパターン孔底部の絶縁被膜除去2を行う。なお、酸化防止のために不活性ガス等のガス供給2を、レーザ照射位置に吹き付ける。
次に、金属製管を回転移動し、前記5の工程が実施された部分を電解液中に浸漬して電解加工を行い、電解液中で、前記3の工程及び4の工程を行う。電解加工により不動態膜が生成され、生成された不動態膜が絶縁被膜として機能するようになったら、前記5の工程→前記3の工程→前記4の工程を繰り返し実施して、パターン孔が貫通するまで行う。
In order to carry out the processing method of the present invention using the above-mentioned apparatus, first, the above-mentioned step 1 is performed separately, and an insulating film is formed on the entire outer surface of the metal pipe. A metal tube having an insulating coating formed on the entire outer surface is attached to the apparatus. In addition, when utilizing the passive film produced | generated by electrolytic processing as an insulating film, the non-conductive film produced | generated by performing electrolytic processing in an electrolytic cell is utilized as an insulating film.
Next, in the laser irradiation stage, the laser irradiation apparatus is moved along the pattern hole forming position, and the insulating film is removed in the second step. At this time, gas from the gas supply 2 such as an inert gas is blown to the laser irradiation position with a nozzle to prevent oxidation. When a photoresist resin is used as the insulating film, the insulating film in the pattern hole forming portion is removed in advance by a photoresist method for exposure and development.
Next, the metal pipe is rotated and moved, and the portion where the step 2 is performed is immersed in an electrolytic solution to perform electrolytic processing, and the steps 3 and 4 are performed in the electrolytic solution. When a passive film is generated by electrolytic processing and the generated passive film functions as an insulating film, the metal pipe is rotated, the gas of gas supply 1 is blown from the nozzle, and the electrolytic solution is blown off and dried. .
Next, in the laser irradiation stage, the laser irradiation apparatus is moved along the pattern hole forming position, and the insulating film removal 2 at the bottom of the pattern hole in the step 5 is performed. In order to prevent oxidation, a gas supply 2 such as an inert gas is blown to the laser irradiation position.
Next, the metal pipe is rotated and moved, and the portion where the step 5 is performed is immersed in an electrolytic solution to perform electrolytic processing, and the steps 3 and 4 are performed in the electrolytic solution. When a passive film is generated by electrolytic processing, and the generated passive film functions as an insulating film, the process of 5 → the process of 3 → the process of 4 is repeated to form pattern holes. Repeat until it penetrates.

なお、本発明の加工方法の説明は、ステントのパターン孔を形成することを前提に説明したが、ステントの加工に限らず、電解加工により不動態膜が形成される金属材料であれば、孔(非貫通孔及び貫通孔)を形成する加工方法として、適用可能であり、また、形状についても、管以外の形状であっても適用可能である。
また、レーザ照射に代えて、イオンビーム照射を採用してもよい。
The description of the processing method of the present invention is based on the premise that the pattern hole of the stent is formed. However, the present invention is not limited to the processing of the stent. It can be applied as a processing method for forming (non-through hole and through hole), and can be applied to shapes other than tubes.
Further, ion beam irradiation may be employed instead of laser irradiation.

図3は、本発明の加工方法を実施するための加工装置の他の例を示した図である。図3の装置で、図2と異なる主な点は、加工物である金属製管は、管軸を回転軸として、管軸を垂直な状態で回転支持されており、レーザ照射装置は、電解槽の壁に設けた窓を通して、電解液中に浸漬している部分にレーザ照射を行うよう配置されている点が異なっている。また、2の工程、3の工程、4の工程、5の工程は、電解液中で行われるので、ガス供給1及びガス供給2のためのノズルは無い。   FIG. 3 is a diagram showing another example of a processing apparatus for carrying out the processing method of the present invention. In the apparatus of FIG. 3, the main difference from FIG. 2 is that a metal pipe as a workpiece is rotatably supported with the tube axis as a rotation axis and the tube axis is vertical, and the laser irradiation apparatus is an electrolytic The difference is that laser irradiation is performed on a portion immersed in the electrolytic solution through a window provided on the wall of the tank. Further, since the second step, the third step, the fourth step, the fifth step, and the fifth step are performed in the electrolytic solution, there is no nozzle for the gas supply 1 and the gas supply 2.

図3の装置を用いて本発明の加工方法を実施するには、図2の装置と同様に、まず、上記1の工程を別途実施して、金属製管の外表面全体に絶縁被膜を形成しておき、外表面全体に絶縁被膜が形成された金属製管を、図3の装置に装着する。
次に、レーザ照射ステージにおいて、電解槽の槽壁に設けた窓から電解液中を通して、レーザをパターン孔形成位置に沿って照射して、上記2の工程の絶縁被膜除去を行う。
次に、金属製管を回転移動し、上記2の工程が実施された部分を電極に対向させて電解加工を行い、電解液中で、上記3の工程及び4の工程を行う。
次に、電解加工により不動態膜が生成され、生成された不動態膜が絶縁被膜として機能するようになったら、金属製管を回転し、レーザ照射ステージにおいて、レーザ照射装置をパターン孔形成位置に沿って移動して、上記5の工程のパターン孔底部の絶縁被膜除去2を行う。このとき、パターン孔内底部に堆積していた電解加工の電解生成物があれば、前記レーザ照射によって電解生成物も同時に除去されるので、その後の電解加工が支障なく行え、また、レーザ照射によりパターン孔内に堆積した電解生成物のみを除去するにとどめた場合であっても、次の工程で電解加工を行うことによりパターン孔をさらに深く形成することができる。
次に、金属製管を回転移動し、上記5の工程が実施された部分を電極に対向させて電解加工を行い、上記3の工程及び4の工程を行う。電解加工により不動態膜が生成され、生成された不動態膜が絶縁被膜として機能するようになったら、前記5の工程→前記3の工程→前記4の工程を繰り返し実施して、パターン孔が貫通するまで行う。
なお、上記図2の装置と同様に、1の工程の絶縁被膜として、電解加工により生成される不動態膜を絶縁被膜として利用することもできるし、また、絶縁被膜としてフォトレジスト樹脂を用いる場合には、露光・現像のフォトレジスト法によって予めパターン孔形成部分の絶縁被膜は除去しておくこともできる。
In order to carry out the processing method of the present invention using the apparatus of FIG. 3, as in the apparatus of FIG. 2, first, the above step 1 is performed separately to form an insulating coating on the entire outer surface of the metal pipe. In addition, a metal pipe having an insulating film formed on the entire outer surface is attached to the apparatus shown in FIG.
Next, in the laser irradiation stage, the laser is irradiated along the pattern hole forming position through the electrolytic solution from the window provided on the tank wall of the electrolytic cell, and the insulating film removal in the above-mentioned two steps is performed.
Next, the metal pipe is rotated and moved, the portion where the above-described step 2 is performed is made to face the electrode, and electrolytic processing is performed, and the above-described steps 3 and 4 are performed in the electrolytic solution.
Next, when a passive film is generated by electrolytic processing and the generated passive film functions as an insulating film, the metal tube is rotated, and the laser irradiation device is moved to the pattern hole formation position on the laser irradiation stage. The insulating film removal 2 at the bottom of the pattern hole in the above step 5 is performed. At this time, if there is an electrolytic product of electrolytic processing deposited on the bottom of the pattern hole, the electrolytic product is also removed by the laser irradiation at the same time, so that subsequent electrolytic processing can be performed without any problem. Even when only the electrolytic product deposited in the pattern hole is removed, the pattern hole can be formed deeper by performing electrolytic processing in the next step.
Next, the metal tube is rotated and moved, the portion where the above-described step 5 is performed is made to face the electrode, and electrolytic processing is performed. When a passive film is generated by electrolytic processing, and the generated passive film functions as an insulating film, the process of 5 → the process of 3 → the process of 4 is repeated to form pattern holes. Repeat until it penetrates.
As in the case of the apparatus shown in FIG. 2, a passive film produced by electrolytic processing can be used as an insulating film as the insulating film in one step, and a photoresist resin is used as the insulating film. Alternatively, the insulating film at the pattern hole forming portion can be removed in advance by a photoresist method of exposure / development.

本発明の加工方法により、レーザ加工による熱的影響層や溶融凝固物が発生しない微細なパターン孔を形成する加工方法を実現でき、血小板の付着量を削減し、血管・赤血球の損壊を低減したステントの加工方法として好適であるが、ステント以外にも、電解加工により不動態膜が形成される金属材料であれば、孔(非貫通孔及び貫通孔)を形成する加工方法として、適用可能であり、また、管以外の形状であっても適用可能である。   By the processing method of the present invention, it is possible to realize a processing method for forming a fine pattern hole that does not generate a thermally affected layer or melted coagulated substance by laser processing, reducing the amount of platelet adhesion, and reducing the damage of blood vessels and erythrocytes. Although it is suitable as a processing method for a stent, it can be applied as a processing method for forming holes (non-through holes and through holes) as long as it is a metal material in which a passive film is formed by electrolytic processing in addition to a stent. Yes, it is also applicable to shapes other than tubes.

Claims (4)

金属製管の外表面全体に絶縁被膜を形成する第1の工程と、
前記絶縁被膜のうち、パターン孔を形成する部分の絶縁被膜を除去する第2の工程と、
前記絶縁被膜を除去した部分から電解加工により金属を除去しパターン孔を形成する第3の工程と、
前記電解加工を続けているうちにパターン孔内面全体に不動態膜が生成され、それが絶縁被膜として作用するようになった絶縁被膜コート工程である第4の工程と、
前記第4の工程でパターン孔内面全体に生成された被膜のうち、パターン孔底面の被膜をレーザ照射により除去する第5の工程と、
前記第5の工程でパターン孔底面の被膜が除去された部分から、電解加工により金属を除去する第6の工程と、
以下、パターン孔が貫通するまで、上記第4の工程、上記第5の工程、上記第6の工程を繰り返すことを特徴とするパターン孔を有する金属製管の加工方法。
A first step of forming an insulating coating on the entire outer surface of the metal tube;
A second step of removing a portion of the insulating coating that forms a pattern hole;
A third step of removing the metal by electrolytic processing from the portion from which the insulating film has been removed to form a pattern hole;
A fourth step, which is an insulating film coating step in which a passive film is generated on the entire inner surface of the pattern hole while continuing the electrolytic processing, and which has acted as an insulating film;
Of the coatings generated on the entire inner surface of the pattern hole in the fourth step, the fifth step of removing the coating on the bottom surface of the pattern hole by laser irradiation;
A sixth step of removing the metal by electrolytic processing from the portion where the coating on the bottom surface of the pattern hole has been removed in the fifth step;
Thereafter, the fourth step, the fifth step, and the sixth step are repeated until the pattern hole penetrates, and the method for processing the metal pipe having the pattern hole.
上記金属製管は、Fe,Ni,Co,Cr,Ti,Nb,Ta,Alなど、及び、これらを主体とする合金からなることを特徴とする請求項1記載のパターン孔を有する金属製管の加工方法。   2. The metal pipe having a pattern hole according to claim 1, wherein the metal pipe is made of Fe, Ni, Co, Cr, Ti, Nb, Ta, Al, or an alloy mainly composed of these. Processing method. 上記パターン孔を有する金属製管は、医療用ステントであることを特徴とする請求項1又は2記載のパターン孔を有する金属製管の加工方法。   The metal pipe having a pattern hole according to claim 1 or 2, wherein the metal pipe having the pattern hole is a medical stent. 請求項1ないし3のいずれか1項記載のパターン孔を有する金属製管の加工方法により加工されたことを特徴とするパターン孔を有する金属製管。   A metal pipe having a pattern hole, which is processed by the method for processing a metal pipe having a pattern hole according to any one of claims 1 to 3.
JP2009172626A 2009-07-24 2009-07-24 Tubing, shaft material with minimal heat effect and formed with fine shape, and processing method thereof Active JP5267996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009172626A JP5267996B2 (en) 2009-07-24 2009-07-24 Tubing, shaft material with minimal heat effect and formed with fine shape, and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009172626A JP5267996B2 (en) 2009-07-24 2009-07-24 Tubing, shaft material with minimal heat effect and formed with fine shape, and processing method thereof

Publications (2)

Publication Number Publication Date
JP2011024741A true JP2011024741A (en) 2011-02-10
JP5267996B2 JP5267996B2 (en) 2013-08-21

Family

ID=43634210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009172626A Active JP5267996B2 (en) 2009-07-24 2009-07-24 Tubing, shaft material with minimal heat effect and formed with fine shape, and processing method thereof

Country Status (1)

Country Link
JP (1) JP5267996B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081488A (en) * 2015-08-20 2015-11-25 南京航空航天大学 Quick controllable manufacturing method of large-area micron/nanometer texture on metal material surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156626A (en) * 1996-11-26 1998-06-16 Fuji Xerox Co Ltd Fine cutting method and fine cutting device
JP2000084746A (en) * 1998-09-07 2000-03-28 Fuji Xerox Co Ltd Minute cutting method and minute cutting device
JP2000204356A (en) * 1999-01-12 2000-07-25 Toshiba Corp Processing fluid and processing fluid for removal processing, or combined electropolishing, and production of mold, or production of superconducting accelerating cavity
JP2004345065A (en) * 2003-05-26 2004-12-09 National Institute Of Advanced Industrial & Technology Cutting tool using electrolytic action, and manufacturing method thereof
JP2006055933A (en) * 2004-08-19 2006-03-02 Sodick Co Ltd Electrolytic solution jet machining method
JP2006513775A (en) * 2003-02-27 2006-04-27 メドトロニック ヴァスキュラー インコーポレイテッド Method for manufacturing an intravascular support device using a tumbling process to round the end of a stent

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10156626A (en) * 1996-11-26 1998-06-16 Fuji Xerox Co Ltd Fine cutting method and fine cutting device
JP2000084746A (en) * 1998-09-07 2000-03-28 Fuji Xerox Co Ltd Minute cutting method and minute cutting device
JP2000204356A (en) * 1999-01-12 2000-07-25 Toshiba Corp Processing fluid and processing fluid for removal processing, or combined electropolishing, and production of mold, or production of superconducting accelerating cavity
JP2006513775A (en) * 2003-02-27 2006-04-27 メドトロニック ヴァスキュラー インコーポレイテッド Method for manufacturing an intravascular support device using a tumbling process to round the end of a stent
JP2004345065A (en) * 2003-05-26 2004-12-09 National Institute Of Advanced Industrial & Technology Cutting tool using electrolytic action, and manufacturing method thereof
JP2006055933A (en) * 2004-08-19 2006-03-02 Sodick Co Ltd Electrolytic solution jet machining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105081488A (en) * 2015-08-20 2015-11-25 南京航空航天大学 Quick controllable manufacturing method of large-area micron/nanometer texture on metal material surface

Also Published As

Publication number Publication date
JP5267996B2 (en) 2013-08-21

Similar Documents

Publication Publication Date Title
CN107208256B (en) Printing of three-dimensional metal structures using sacrificial supports
US8728563B2 (en) Endoluminal implantable surfaces, stents, and grafts and method of making same
EP2004881B1 (en) Process for the fabrication of liga-uv multilayer metallic structures, the layers being adjacent and not completely superimposed, and structure therefrom.
JP4925670B2 (en) Method for manufacturing titanium metal products
CN109712879A (en) A kind of metal mask forming method for wafer dry etch process
US8338311B2 (en) Method for the production of structured layers of titanium and nickel
JP2021181593A (en) Vapor deposition mask, manufacturing method of vapor deposition mask, vapor deposition method, manufacturing method of organic semiconductor device, and manufacturing method of organic el display device
JP5267996B2 (en) Tubing, shaft material with minimal heat effect and formed with fine shape, and processing method thereof
JP5283124B2 (en) Electrolytic and laser combined processing method and apparatus
JP2000328289A (en) Formation of electrodeposited film, formation of electrode and electrodeposited film forming device
Tanabe et al. Electroforming of Ni mold for imprint lithography using high-aspect-ratio PMMA microstructures fabricated by proton beam writing
Chung et al. Ablation drilling of invar alloy using ultrashort pulsed laser
JP2018053345A (en) Method of manufacturing metal mask
Gupta et al. Nitinol thin film three-dimensional devices: fabrication and applications
JP2007204809A (en) Method of manufacturing three-dimensional microstructure
KR20110035294A (en) Metal manufacture method and apparatus using laser masking and electrochemical etching
JP2010005629A (en) LASER BEAM MACHINING METHOD OF Si SUBSTRATE
JP6090758B2 (en) Perforated metal plate and manufacturing method thereof
JP4783900B2 (en) Method of forming film on substrate and device manufacturing method
Datta Microfabrication by high rate anodic dissolution: fundamentals and applications
JP2005209817A (en) Method of forming metal interconnection and metal interconnection formation apparatus
Jin et al. Laser-LIGA for Serpentine Ni Microstructure
Williams et al. The patterning of fine-pitch electrical interconnections on non-planar substrates: a comparison between methods utilising laser ablation and electro-deposited photoresist
JPH10183382A (en) Partial peeling method for plating film and production of stem for semiconductor device
US8597872B2 (en) Method for production of a medical marker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

R150 Certificate of patent or registration of utility model

Ref document number: 5267996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250