JP2011024423A - Particulate cell carrier and cell-introducing system containing the same and cell culture system - Google Patents

Particulate cell carrier and cell-introducing system containing the same and cell culture system Download PDF

Info

Publication number
JP2011024423A
JP2011024423A JP2008147231A JP2008147231A JP2011024423A JP 2011024423 A JP2011024423 A JP 2011024423A JP 2008147231 A JP2008147231 A JP 2008147231A JP 2008147231 A JP2008147231 A JP 2008147231A JP 2011024423 A JP2011024423 A JP 2011024423A
Authority
JP
Japan
Prior art keywords
cell
cells
carrier
stem cells
particulate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008147231A
Other languages
Japanese (ja)
Inventor
Masayuki Ishihara
雅之 石原
Satoko Kishimoto
聡子 岸本
Shingo Nakamura
伸吾 中村
Hidemi Hattori
秀美 服部
Yasuhiro Kanetani
泰宏 金谷
Masaki Nanbu
正樹 南部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008147231A priority Critical patent/JP2011024423A/en
Priority to PCT/JP2008/003432 priority patent/WO2009066468A1/en
Publication of JP2011024423A publication Critical patent/JP2011024423A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cell carrier which has a proper size not clogging an injector or a catheter, even when injected through the injector or the catheter, and can stably hold various cells in a living state. <P>SOLUTION: There is provided a particulate cell carrier comprising fine particles comprising low molecular heparin and protamine. The particulate cell carrier easily forms cell aggregates having suitable sizes together with various adhesive cells, and the cell aggregates can be injected into a body with an injector or the like. The particulate cell carrier can be used as a carrier for cell transplantation in regenerative medical treatments. Various cells, especially CD-34 positive hematopoietic system stem cells or mesenchymal stem cells which have been hardly obtained in a sufficient yield with a conventional technique, can be cultured in a serum-free state or in a low concentration serum state (about 1 to 2%) on a substrate coated with the fine particles. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、低分子ヘパリンとプロタミンとから構成される微粒子(マイクロパーティクル)の微粒子細胞担体(細胞マイクロキャリア)及び被覆材としての使用に関する。さらに本発明は、前記微粒子細胞担体を用いた有効な細胞導入法、並びに当該微粒子で被覆した培養基材を用いた低血清培地での有効な細胞増殖法に関する。   The present invention relates to the use of microparticles composed of low molecular weight heparin and protamine as microparticle cell carriers (cell microcarriers) and coating materials. Furthermore, the present invention relates to an effective cell introduction method using the fine particle cell carrier and an effective cell growth method in a low serum medium using a culture substrate coated with the fine particles.

近年、盛んに研究されている再生医療としての細胞導入療法は、導入細胞自身の生着及び導入細胞が生成する因子を目的部位に注入して生着・増殖させ組織再生を誘発することを狙う方法である。血管新生療法には血管内皮増殖因子(vascular endothelial growth factor: VEGF)の遺伝子や血管内皮前駆細胞(endothelial progenitor cell: EPC)などが用いられているが、有効な方法として研究成果は挙がっているものの、安全性に対する懸念や費用対効果の問題があり、実用化には至っていない。また骨髄移植において、骨髄バンクの発足以来大きな進展があるものの、骨髄移植の症例は伸び悩み、造血系幹細胞の増殖や生着の高度化による効率的で有効な骨髄移植技術の研究・開発が求められている。   In recent years, cell transfer therapy as regenerative medicine, which has been actively studied, aims to induce tissue regeneration by engrafting and proliferating the implanted cells themselves and the factors generated by the introduced cells into the target site. Is the method. Angiogenesis therapy uses vascular endothelial growth factor (VEGF) gene and endothelial progenitor cells (EPC), but research results are available as effective methods. There are concerns about safety and cost-effectiveness, and it has not been put into practical use. In addition, bone marrow transplantation has made great progress since the establishment of the bone marrow bank, but bone marrow transplant cases have been slow to grow, and research and development of efficient and effective bone marrow transplantation technology has been demanded through the proliferation of hematopoietic stem cells and the advancement of engraftment. ing.

ところで骨髄や脂肪組織を含んだ多くの組織が、組織の維持や修復のため多分化能を保持した前駆体細胞を含んでいることが知られている。特に骨髄細胞は造血系幹細胞や間葉系幹細胞を含み、各種血液細胞のみならず、皮膚、骨、軟骨、血管、筋肉の細胞に分化しそれぞれの組織再生を促進する。同様に、脂肪組織由来間葉系幹細胞も皮膚、骨、軟骨、血管、筋肉の細胞に分化することが知られており、人において豊富な幹細胞資源となる脂肪に大きな注目が集まっている。   By the way, it is known that many tissues including bone marrow and adipose tissue contain precursor cells that retain pluripotency for tissue maintenance and repair. In particular, bone marrow cells include hematopoietic stem cells and mesenchymal stem cells and differentiate into not only various blood cells but also skin, bone, cartilage, blood vessel, and muscle cells to promote the regeneration of each tissue. Similarly, adipose tissue-derived mesenchymal stem cells are also known to differentiate into skin, bone, cartilage, blood vessel, and muscle cells, and a great deal of attention has been focused on fat, which is an abundant stem cell resource in humans.

しかし、各種幹細胞の収率は低く、増殖させるには高濃度の動物血清を必要とするなどの問題があり、効率的に低濃度の血清入り培地で増殖させる培養法が求められている。さらに細胞移植において、その生着性及び増殖性を高める細胞担体を併用する必要がある。   However, the yield of various stem cells is low, and there is a problem that a high concentration of animal serum is required for growth, and a culture method for efficiently growing in a medium containing a low concentration of serum is required. Furthermore, in cell transplantation, it is necessary to use a cell carrier that enhances engraftment and proliferation.

本発明者等は、光硬化性キトサンハイドロゲル(特許文献1)や6-O-位脱硫酸化ヘパリンの複合ハイドロゲル(特許文献2)が塩基性線維芽細胞増殖因子(FGF-2)などの様々な成長因子の活性を保護し、それを徐放する担体として有効であることを報告してきた。上記ハイドロゲル内で保護され活性を保持したFGF-2が、ハイドロゲルの生分解に伴い周辺部位へ徐放され、生体内での血管新生や肉芽形成の促進に寄与することが実証されている。
WO03/090765号パンフレット WO2005/025538号パンフレット
The present inventors have proposed that photocurable chitosan hydrogel (Patent Document 1) or 6-O-position desulfated heparin composite hydrogel (Patent Document 2) is a basic fibroblast growth factor (FGF-2) or the like. It has been reported that it protects the activity of various growth factors and is effective as a carrier for sustained release. It has been demonstrated that FGF-2, which is protected in the hydrogel and retains its activity, is gradually released to the surrounding sites as the hydrogel biodegrades, contributing to the promotion of angiogenesis and granulation in vivo. .
WO03 / 090765 pamphlet WO2005 / 025538 pamphlet

しかし、これらのハイドロゲルは、例えば皮膚潰瘍などの外傷部位に適用することを意図したものであり、液だれ等を防止するため高い粘性を有するように設計されていた。従って、注射器やカテーテルを通して投与した場合に、目詰まりを頻繁に引き起こす場合があった。また、単にキトサン等の濃度を下げて粘度を低下させたのでは、担持させることのできる薬物量が限定され、所望の効果が得られない可能性があった。特に、これらのハイドロゲルは、各種接着性細胞をゲル内に保持、生存させることはできなかった。   However, these hydrogels are intended to be applied to an injury site such as a skin ulcer, and are designed to have high viscosity to prevent dripping. Therefore, when administered through a syringe or catheter, clogging may occur frequently. Moreover, if the viscosity is lowered by simply lowering the concentration of chitosan or the like, the amount of drug that can be carried is limited, and the desired effect may not be obtained. In particular, these hydrogels could not hold and survive various adhesive cells in the gel.

本発明者等は、低分子ヘパリンとプロタミンとの組み合わせを用いることにより、簡便に平均粒径10μm未満、ひいては1μm以下の微粒子を作成でき、得られた微粒子が各種細胞と適度な大きさの凝集体を形成でき、注入可能な細胞担体として使用しうることを見出した。また、当該微粒子がガラスやプラスチック表面を簡便に被覆(コーティング)でき、得られた基板上で各種細胞の増殖が促進されることを見出し、本発明をなすに至った。
即ち、本発明は、低分子ヘパリンとプロタミンとから構成される粒径が5μm未満の微粒子からなる微粒子細胞担体および当該微粒子を含んでなる被覆材を提供する。
By using a combination of low molecular weight heparin and protamine, the present inventors can easily create microparticles having an average particle size of less than 10 μm and eventually 1 μm or less. It has been found that aggregates can be formed and used as injectable cell carriers. Further, the present inventors have found that the fine particles can easily coat (coat) the glass or plastic surface and promote the growth of various cells on the obtained substrate, and have made the present invention.
That is, the present invention provides a fine particle cell carrier comprising fine particles having a particle size of less than 5 μm composed of low molecular weight heparin and protamine, and a coating material comprising the fine particles.

本発明の微粒子細胞担体は、例えば骨髄或いは脂肪組織由来の間葉系幹細胞、毛細血管内皮細胞、線維芽細胞等の細胞表面に接合し、細胞凝集体(スフェロイド)の形成を促進させ、細胞の生存性や生着性を高めることができる。本発明の微粒子細胞担体は平均粒径が10μm未満、あるいは1μm以下であるため、形成される細胞凝集体のサイズも容易に制御でき、細針を装着したシリンジでも注入可能な細胞凝集体が得られ、取扱い性及び操作性に優れている。本発明で使用するダルテパリンなどの低分子ヘパリンやプロタミンは医薬品として市販されている材料であり、それらの安全性は確保されている。また、本発明の微粒子細胞担体は生体内で細胞を保護しその生存性を高めるとともに生分解されるため、スフェロイドを体内に注入すると、その生分解や細胞の遊走に伴ってスフェロイドは消失するため、細胞移植の担体として特に優れている。   The particulate cell carrier of the present invention is bonded to the surface of cells such as bone marrow or adipose tissue-derived mesenchymal stem cells, capillary endothelial cells, fibroblasts, etc., and promotes the formation of cell aggregates (spheroids). Viability and engraftment can be improved. Since the fine particle cell carrier of the present invention has an average particle size of less than 10 μm or 1 μm or less, the size of the formed cell aggregate can be easily controlled, and a cell aggregate that can be injected even with a syringe equipped with a fine needle is obtained. It is excellent in handling and operability. Low molecular weight heparins such as dalteparin and protamine used in the present invention are commercially available materials, and their safety is ensured. In addition, since the particulate cell carrier of the present invention protects cells in vivo and enhances their viability and biodegrades, when spheroids are injected into the body, spheroids disappear due to their biodegradation and cell migration. It is particularly excellent as a carrier for cell transplantation.

一方、本発明の微粒子で被覆されたガラスやプラスチックプレートには、高濃度にFGF-2等のヘパリン‐結合性増殖因子やサイトカインが効率的に吸着され、それらの効率的な活性発現により各種細胞の被覆プレートへの接着性や増殖性が高められる。   On the other hand, glass or plastic plates coated with the microparticles of the present invention are efficiently adsorbed with heparin-binding growth factors such as FGF-2 and cytokines at high concentrations, and various cells are expressed by their efficient activity expression. Adhesiveness to the coated plate and proliferation are improved.

上記したように、本発明の微粒子細胞担体および被覆材は、低分子ヘパリンとプロタミンとから構成される微粒子を用いており、その平均粒径は10μm未満、好ましくは5μm以下、より好ましくは1μm以下、およそ0.5μm程度である。粒径の下限は特に限定されないが、一般には約0.01μm以上とされる。   As described above, the fine particle cell carrier and the coating material of the present invention use fine particles composed of low molecular weight heparin and protamine, and the average particle size is less than 10 μm, preferably 5 μm or less, more preferably 1 μm or less. About 0.5 μm. The lower limit of the particle size is not particularly limited, but is generally about 0.01 μm or more.

本発明の微粒子細胞担体および被覆材を構成する低分子ヘパリン(Low Molecular Weight Heparin)は、一般に天然ヘパリン(分子量15,000~20,000程度)を解重合して得られる低分子量のヘパリンである。その分子量範囲は、プロタミンと混合することにより微粒子状の細胞担体(平均粒径:1~0.5 μm)を形成できる程度のものであればよく、一般的には約10,000未満、好ましくは約8,000未満、さらに好ましくは約6,000未満の平均分子量を有するものが用いられる。   The low molecular weight heparin constituting the particulate cell carrier and coating material of the present invention is generally a low molecular weight heparin obtained by depolymerizing natural heparin (molecular weight of about 15,000 to 20,000). The molecular weight range is not limited so long as it can form a particulate cell carrier (average particle size: 1 to 0.5 μm) by mixing with protamine, generally less than about 10,000, preferably less than about 8,000. More preferably, those having an average molecular weight of less than about 6,000 are used.

例えば、ブタの小腸粘膜由来のヘパリンを亜硝酸分解して得られる解重合ヘパリン(ダルテパリン)は、フラグミン(商品名)として市販されており、約3,000~5,000の平均分子量を有する。同様に、ブタの小腸粘膜由来のヘパリンを亜硝酸分解して得られる解重合ヘパリン(レビパリン)はローモリン(商品名)として、ウシ又はブタ小腸粘膜由来のヘパリンを過酸化水素と酢酸第二銅により分解して得られる解重合ヘパリン(パルナパリン)はローへパ(商品名)として市販されており、これらは何れも本発明における低分子ヘパリンとして使用できる。   For example, depolymerized heparin (dalteparin) obtained by nitrous acid decomposition of heparin derived from porcine small intestinal mucosa is commercially available as Fragmin (trade name) and has an average molecular weight of about 3,000 to 5,000. Similarly, depolymerized heparin (reviparin) obtained by nitrous acid decomposition of heparin derived from porcine small intestinal mucosa is expressed as lomorin (trade name), heparin derived from bovine or porcine small intestinal mucosa by hydrogen peroxide and cupric acetate. Depolymerized heparin (parnaparin) obtained by decomposition is commercially available as Rhohepa (trade name), and any of these can be used as the low molecular weight heparin in the present invention.

ヘパリンは単独では抗凝固作用を持たず、血漿中のATIIIと結合することによってその作用を発揮し、第IIa因子、第XIIa因子、第XIa因子、第Xa因子、第IXa因子などの凝固系酵素を阻害、不活化する。一方、本発明で使用する低分子ヘパリンは抗第XIIa、抗第Xa因子活性を持つものの、第IIa、第XIa、第IXa因子に対する阻害活性は軽微であることが医薬品として明らかにされているので、創傷部位に注入しても当該部位における出血傾向を助長させることなく使用できる。   Heparin alone does not have an anticoagulant effect and exerts its effect by binding to plasma ATIII, and coagulation enzymes such as factor IIa, factor XIIa, factor XIa, factor Xa, factor IXa Inhibits and inactivates. On the other hand, although low molecular weight heparin used in the present invention has anti-factor XIIa and anti-factor Xa activities, it has been clarified as a pharmaceutical that its inhibitory activity against factor IIa, XIa and factor IXa is slight. Even if it is injected into a wound site, it can be used without promoting the bleeding tendency at the site.

本発明の低分子ヘパリンは上記市販されているものを使用してもよいが、例えば過ヨウ素酸酸化・還元により低分子化したヘパリン、あるいは特異的脱硫酸化ヘパリン等も使用することができる。本発明の低分子ヘパリンは、一般的には約10,000未満、好ましくは10,000~7,000未満、より好ましくは3,000~5,000程度の分子量を有する。このような低分子量のヘパリンを使用することにより、プロタミンと混合した際に微粒子状の細胞担体を得ることができる。   The commercially available low molecular weight heparin of the present invention may be used. For example, heparin reduced in molecular weight by periodate oxidation / reduction or specific desulfated heparin can also be used. The low molecular weight heparin of the present invention generally has a molecular weight of less than about 10,000, preferably less than 10,000 to 7,000, more preferably about 3,000 to 5,000. By using such low molecular weight heparin, a particulate cell carrier can be obtained when mixed with protamine.

一方、本発明の微粒子細胞担体および被覆材を構成するプロタミンは、動物の精子の核中でDNAと結合して存在する塩基性の高いたんぱく質として知られている。一般的には、27~65残基からなる低分子量たんぱく質であり、アミノ酸の40~70%をアルギニンが占めると言われている。プロタミンも医薬品として市販されており、本発明では市販のプロタミンをそのまま使用することができる。低分子ヘパリンとプロタミンの重量比は特に限定されないが、プロタミンに対する低分子ヘパリンの重量を等量あるいはやや過剰にした方が得られる微粒子の収率が向上する傾向がある。   On the other hand, protamine that constitutes the particulate cell carrier and coating material of the present invention is known as a highly basic protein that exists by binding to DNA in the nucleus of animal sperm. Generally, it is a low molecular weight protein consisting of 27 to 65 residues, and arginine accounts for 40 to 70% of amino acids. Protamine is also commercially available as a pharmaceutical. In the present invention, commercially available protamine can be used as it is. The weight ratio between the low molecular weight heparin and protamine is not particularly limited, but the yield of fine particles obtained tends to be improved when the weight of the low molecular weight heparin with respect to protamine is equal or slightly excessive.

低分子ヘパリンに代えて、高分子量ヘパリン、ヒアルロン酸、又はコンドロイチン硫酸を用いた場合は、本発明で得られたような微粒子を得ることはできない。低分子ヘパリンとプロタミンという独特の組み合わせを採用することにより、10μm未満さらには1μm以下の平均粒径を有する微粒子を得ることができる。   When high molecular weight heparin, hyaluronic acid, or chondroitin sulfate is used instead of low molecular weight heparin, it is not possible to obtain fine particles as obtained in the present invention. By employing a unique combination of low molecular weight heparin and protamine, it is possible to obtain fine particles having an average particle size of less than 10 μm and further 1 μm or less.

本発明の第一の態様は、前記の微粒子からなる微粒子細胞担体である。
本発明の微粒子細胞担体は、各種接着細胞と容易に結合する性質を有している。従って、接着細胞とインキュベーションすることにより、数個から数十個の細胞よりなる各種接着細胞凝集体(スフェロイド)が浮遊状態で容易に形成される。しかも、1〜5時間程度のインキュベーションで形成される細胞凝集体の平均粒径は50〜100μm程度であり、注射器やカテーテルなどを目詰まりさせることもないため、それらを介して体内に注入する細胞組成物として使用するのに適している。また、その組成物に各種細胞の維持・増殖・分化に関わるヘパリン結合性増殖因子やサイトカイン等を同時添加することで、付加的な細胞維持、増殖、分化誘導、及び生着効果が期待できる。
The first aspect of the present invention is a fine particle cell carrier comprising the fine particles.
The particulate cell carrier of the present invention has a property of easily binding to various adherent cells. Therefore, by incubating with adherent cells, various adherent cell aggregates (spheroids) composed of several to several tens of cells are easily formed in a floating state. Moreover, the average particle size of cell aggregates formed by incubation for about 1 to 5 hours is about 50 to 100 μm, and does not clog syringes and catheters. Suitable for use as a composition. Furthermore, additional cell maintenance, proliferation, differentiation induction, and engraftment effects can be expected by simultaneously adding to the composition a heparin-binding growth factor or cytokine involved in the maintenance, proliferation, and differentiation of various cells.

よって本発明は、前記の微粒子細胞担体と接着細胞とからなる細胞凝集体を提供する。この細胞凝集体においては、凝集体を形成する細胞が安定して生存できる。そして、本発明の細胞凝集体は、体内に注入するのに適したサイズとすることができるので、体内の目的部に注入して生着させることにより、従来は困難であった細胞移植を可能にする。   Therefore, the present invention provides a cell aggregate comprising the fine particle cell carrier and adherent cells. In this cell aggregate, cells forming the aggregate can stably survive. And since the cell aggregate of the present invention can be sized to be injected into the body, it can be transplanted into a target part of the body and allowed to engraft, which enables cell transplantation that has been difficult in the past. To.

前記細胞凝集体は、注入可能な微小サイズであり、媒体中に浮遊状態で分散させることができるため、種々の医薬品として応用が可能である。例えば、本発明の微粒子細胞担体と脂肪組織由来間葉系幹細胞とからなる細胞凝集体の分散液を体内の目的部位に注入することにより、当該目的部位に細胞が生着する。その結果、目的部位における血管新生を促進させることができる。さらに、細胞の増殖に適した各種生理活性分子を共存させることにより、目的部位における細胞増殖が更に促進され、当該細胞の機能を発揮させることが可能になる。   The cell aggregate has a micro size that can be injected and can be dispersed in a suspended state in a medium, and thus can be applied as various pharmaceuticals. For example, cells are engrafted at the target site by injecting into the target site a dispersion of cell aggregates comprising the particulate cell carrier of the present invention and adipose tissue-derived mesenchymal stem cells. As a result, angiogenesis at the target site can be promoted. Furthermore, by allowing various physiologically active molecules suitable for cell growth to coexist, cell growth at the target site is further promoted, and the function of the cell can be exhibited.

よって本発明は本発明の細胞凝集体と、必要に応じて適当な生理活性物質とを含有する医薬組成物を提供する。
本発明の医薬組成物に用いられる細胞凝集体を構成する細胞としては、特に限られないが、例えば、細胞導入を伴う再生医療の際に用いられる脂肪組織或いは骨髄由来間葉系幹細胞、CD34陽性造血系幹細胞、血管内皮細胞及びその前駆体細胞、肝細胞及びその前駆体細胞、皮膚線維芽細胞、軟骨細胞及びその前駆体細胞、骨細胞及びその前駆体細胞、その他再生医療に用いられる万能細胞(iPS細胞)、胚性幹細胞(ES細胞)、細胞株等が挙げられる。
Therefore, the present invention provides a pharmaceutical composition containing the cell aggregate of the present invention and, if necessary, an appropriate physiologically active substance.
The cell constituting the cell aggregate used in the pharmaceutical composition of the present invention is not particularly limited. For example, adipose tissue or bone marrow-derived mesenchymal stem cells used in regenerative medicine involving cell introduction, CD34 positive Hematopoietic stem cells, vascular endothelial cells and their precursor cells, hepatocytes and their precursor cells, dermal fibroblasts, chondrocytes and their precursor cells, bone cells and their precursor cells, and other universal cells used in regenerative medicine (IPS cells), embryonic stem cells (ES cells), cell lines and the like.

本発明の医薬組成物に任意に添加される生理活性物質としては、低分子ヘパリン又はプロタミンとの親和性が高く微粒子に担持されやすい物が好ましい。特に線維芽細胞増殖因子(FGF)、肝増殖因子(HGF)、血管内皮増殖因子(VEGF)などの増殖因子や幹細胞因子(SCF)、トロンボポエチン(Tpo)、インターロイキン−3(IL-3), 顆粒球−マクロファージコロニー刺激因子GM-CSF)等ヘパリン結合性蛋白質が好ましい。   The physiologically active substance optionally added to the pharmaceutical composition of the present invention is preferably a substance that has a high affinity with low molecular weight heparin or protamine and is easily carried on fine particles. Especially growth factors such as fibroblast growth factor (FGF), liver growth factor (HGF), vascular endothelial growth factor (VEGF), stem cell factor (SCF), thrombopoietin (Tpo), interleukin-3 (IL-3), A heparin-binding protein such as granulocyte-macrophage colony-stimulating factor (GM-CSF) is preferred.

本発明の第二の態様は、前記微粒子を含んでなる被覆材である。
本微粒子は水溶液中に良好に分散され、それをガラス或いはプラスチック等の基板プレート上に添加して数時間静置するだけで微粒子被覆基板を得ることができる。この基板表面には、各種増殖因子やサイトカイン等、細胞増殖に必要なタンパク質などが吸着されやすい。そして、この基板を用いると、低濃度のヘパリン−結合性増殖因子やサイトカインを添加するだけで、各種細胞を低濃度血清培養(1~2%程度)することが可能となる。特に、造血系サイトカイン(SCF: stem cell factor, Tpo: thrombopoietin, Flt-3: Flt-3 ligand)は、本発明の微粒子で被覆した基板によく吸着し、その基板を用いれば、従来は十分な収率が得られなかったCD34−陽性造血系幹細胞や間葉系幹細胞を低(無)血清培地で増殖させることができる。
The second aspect of the present invention is a coating material comprising the fine particles.
The fine particles are well dispersed in an aqueous solution, and a fine particle-coated substrate can be obtained by simply adding the fine particles onto a glass or plastic substrate plate and allowing to stand for several hours. Proteins necessary for cell growth such as various growth factors and cytokines are easily adsorbed on the surface of the substrate. When this substrate is used, various cells can be cultured in low-concentration serum (about 1 to 2%) simply by adding a low-concentration heparin-binding growth factor or cytokine. In particular, hematopoietic cytokines (SCF: stem cell factor, Tpo: thrombopoietin, Flt-3: Flt-3 ligand) are well adsorbed on the substrate coated with the microparticles of the present invention. CD34-positive hematopoietic stem cells and mesenchymal stem cells whose yield was not obtained can be grown in a low (no) serum medium.

よって本発明は、本発明の微粒子被覆材で表面を被覆した基板からなる細胞培養基材を提供する。本発明の細胞培養基材には、細胞培養に先立って、各種増殖因子やサイトカイン等の生理活性物質を吸着させておいてもよい。また、これらの生理活性物質は、細胞培養する際の培地中に共存させてもよい。
例えば、本発明者等は、本発明の細胞培養基材を用いた場合、CD34陽性−造血系幹細胞の増殖率が、低濃度の造血系サイトカイン(SCF; 5 ng/ml、Tpo; 10 ng/ml、Flt-3; 10 ng/ml)を含んだ無血清培地で有意に向上したことを確認している。
Therefore, the present invention provides a cell culture substrate comprising a substrate whose surface is coated with the fine particle coating material of the present invention. Prior to cell culture, physiologically active substances such as various growth factors and cytokines may be adsorbed on the cell culture substrate of the present invention. Further, these physiologically active substances may coexist in a medium for cell culture.
For example, when using the cell culture substrate of the present invention, the present inventors have found that the proliferation rate of CD34 positive-hematopoietic stem cells has a low concentration of hematopoietic cytokines (SCF; 5 ng / ml, Tpo; 10 ng / It was confirmed that the serum-free medium containing ml, Flt-3; 10 ng / ml) was significantly improved.

本発明の細胞培養基材で培養される細胞は特に限られないが、再生医療の際に用いられる、脂肪組織或いは骨髄由来間葉系幹細胞、CD34陽性造血系幹細胞、血管内皮細胞及びその前駆体細胞、肝細胞及びその前駆体細胞、皮膚線維芽細胞、軟骨細胞及びその前駆体細胞、骨細胞及びその前駆体細胞、その他再生医療に用いられる万能細胞(iPS細胞)、胚性幹細胞(ES細胞)、細胞株等が含まれる。また同時投与する生理活性物質としては、低分子ヘパリン又はプロタミンとの親和性が高く微粒子に担持されやすい物が好ましい。特に線維芽細胞増殖因子(FGF)、肝増殖因子(HGF)、血管内皮増殖因子(VEGF)などの増殖因子や幹細胞因子(SCF)、トロンボポエチン(Tpo)、インターロイキン−3 (IL-3), 顆粒球−マクロファージコロニー刺激因子(GM-CSF)等のヘパリン結合性蛋白質が好ましい。   Cells to be cultured on the cell culture substrate of the present invention are not particularly limited, but are used in regenerative medicine, adipose tissue or bone marrow-derived mesenchymal stem cells, CD34 positive hematopoietic stem cells, vascular endothelial cells and precursors thereof Cells, hepatocytes and their precursor cells, dermal fibroblasts, chondrocytes and their precursor cells, bone cells and their precursor cells, other universal cells (iPS cells) used in regenerative medicine, embryonic stem cells (ES cells) ), Cell lines and the like. The physiologically active substance to be administered simultaneously is preferably a substance that has a high affinity with low molecular weight heparin or protamine and is easily carried on fine particles. Especially growth factors such as fibroblast growth factor (FGF), liver growth factor (HGF), vascular endothelial growth factor (VEGF), stem cell factor (SCF), thrombopoietin (Tpo), interleukin-3 (IL-3), Heparin-binding proteins such as granulocyte-macrophage colony stimulating factor (GM-CSF) are preferred.

以下、実施例を参照して本発明を更に詳細に説明するが、これらの実施例は本発明を限定するものではない。
(実施例1)本発明の微粒子細胞担体による浮遊細胞の凝集化促進と細胞生存性の向上
低分子ヘパリンとして、市販のダルテパリンであるフラグミン(商品名)(6.4 mg/ml, 1,000 IU/ml, キッセイ薬品工業株式会社)を使用し、同様に市販のプロタミン(10 mg/ml, 持田製薬株式会社)を容積比7:3となる割合で混合し微粒子分散液を得た。このときの1 mlの微粒子分散液あたりの乾燥微粒子収量は約7mgであった。
EXAMPLES Hereinafter, although this invention is demonstrated further in detail with reference to an Example, these Examples do not limit this invention.
Example 1 Promotion of Aggregation of Suspended Cells and Improvement of Cell Viability by the Fine Particle Cell Carrier of the Present Invention As low molecular weight heparin, commercially available dalteparin, Fragmin (trade name) (6.4 mg / ml, 1,000 IU / ml, Similarly, commercially available protamine (10 mg / ml, Mochida Pharmaceutical Co., Ltd.) was mixed at a volume ratio of 7: 3 to obtain a fine particle dispersion. The dry fine particle yield per 1 ml of the fine particle dispersion at this time was about 7 mg.

上記微粒子分散液を、ヒト毛細血管内皮細胞、ヒト皮膚線維芽細胞、マウス脂肪組織由来間葉系幹細胞とともに約1時間インキュベーションした。その結果、図1に示すように、本微粒子はヒト毛細血管内皮細胞(A)、ヒト皮膚線維芽細胞(B)、及びマウス脂肪組織由来間葉系幹細胞(C)の表面に接合し、1時間以内の培養で細胞凝集体(スフェロイド)を形成した。   The fine particle dispersion was incubated with human capillary endothelial cells, human dermal fibroblasts, and mouse adipose tissue-derived mesenchymal stem cells for about 1 hour. As a result, as shown in FIG. 1, the microparticles are bonded to the surface of human capillary endothelial cells (A), human skin fibroblasts (B), and mouse adipose tissue-derived mesenchymal stem cells (C). Cell aggregates (spheroids) were formed by culturing within the time.

この細胞凝集体を、10%ウシ胎児血清及び1.4 mg/ml 微粒子を含んだ培地を用いて浮遊培養し、セルカウンティングキット(同仁化学研究所)を用いて生存細胞を定量した。その結果、ヒト皮膚線維芽細胞及びマウス脂肪組織由来間葉系幹細胞は1.4 mg/ml 微粒子の存在下、毛細血管内皮細胞は1.4 mg/ml 微粒子と5 ng/ml FGF-2の存在下で、少なくとも3日以上の細胞生存性の延長を認めた(図2)。   This cell aggregate was suspended in culture using a medium containing 10% fetal bovine serum and 1.4 mg / ml microparticles, and viable cells were quantified using a cell counting kit (Dojindo Laboratories). As a result, human skin fibroblasts and mouse adipose tissue-derived mesenchymal stem cells were present in the presence of 1.4 mg / ml microparticles, and capillary endothelial cells were present in the presence of 1.4 mg / ml microparticles and 5 ng / ml FGF-2. Prolonged cell viability was observed for at least 3 days (FIG. 2).

(実施例2)本発明の微粒子被覆基板表面への各種増殖因子・サイトカインの吸着
各種増殖因子・サイトカイン(FGF-1、FGF-2、HGF、IL-3、GM-CSF、SCF、Tpo、Flt-3)についてプロタミン/フラグミン微粒子コーティング−プラスチックプレートへの吸着性についてELISA法を用いて測定した。1.4 mg/ml 微粒子(図3A)を含んだ燐酸バッファー(PBS)で細胞培養プレートを4℃で24時間静置した後、PBS溶液を除き、乾燥させることでコーティングを行った(図3B)。さらに蛍光標識(Texas Red-X Protein Labeling Kit;Invitrogen Japan K. K., Tokyo, Japan)したプロタミンを用いて同様に微粒子を調製し、コーティングを行った(図3C)。この微粒子は乾燥によりペースト状に変化し、プラスチック等の表面に安定的にコーティングされることがわかった。
(Example 2) Adsorption of various growth factors and cytokines on the surface of the fine particle-coated substrate of the present invention Various growth factors and cytokines (FGF-1, FGF-2, HGF, IL-3, GM-CSF, SCF, Tpo, Flt 3) Protamine / Fragmin fine particle coating-Adsorbability to plastic plate was measured using ELISA method. The cell culture plate was allowed to stand at 4 ° C. for 24 hours with a phosphate buffer (PBS) containing 1.4 mg / ml microparticles (FIG. 3A), and then the PBS solution was removed and the coating was performed by drying (FIG. 3B). Further, microparticles were similarly prepared using fluorescently labeled protamine (Texas Red-X Protein Labeling Kit; Invitrogen Japan KK, Tokyo, Japan) and coated (FIG. 3C). It was found that the fine particles changed to a paste form upon drying and were stably coated on the surface of plastic or the like.

この48ウェル‐コーティング−プラスチックプレートにそれぞれの8、4、2 ng/mlの増殖因子(FGF-1、FGF-2、HGF、IL-3、GM-CSF、SCF)を含んだ2%FBS含有培地を200μl或いは20、10、5 ng/mlのサイトカイン(Tpo, Flt-3)を含んだ造血系幹細胞培地(HPGM: Hematopoietic Progenitor Growth Medium)を200μl加え、2時間室温で静置することによって各サイトカインを吸着させた。次に使用済み各溶液(200μl)を別のコーティング‐ウェルに入れ2度目の吸着量を定量した(図4)。1度目の吸着量から2度目(使用済溶液)の吸着量を減ずることにより、室温で2時間のインキュベーションにより48ウェル-プレート(ウェル面積:0.78 cm2)当りに吸着される各増殖因子及びサイトカイン量を見積もった。 This 48-well-coated-plastic plate contains 2% FBS containing 8, 4, 2 ng / ml growth factors (FGF-1, FGF-2, HGF, IL-3, GM-CSF, SCF). Add 200 μl of medium or 200 μl of hematopoietic progenitor growth medium (HPGM) containing 20, 10, 5 ng / ml of cytokine (Tpo, Flt-3) and let stand for 2 hours at room temperature. Cytokines were adsorbed. Next, each used solution (200 μl) was placed in another coating-well, and the second adsorption amount was quantified (FIG. 4). Each growth factor and cytokine adsorbed per 48-well plate (well area: 0.78 cm 2 ) by incubation at room temperature for 2 hours by reducing the amount of adsorption from the first adsorption to the second (used solution) Estimated amount.

ELISA法は、各増殖因子及びサイトカインを吸着させたプレートにそれぞれの一次抗体を反応させ、さらに洗浄後2次抗体を反応させた。最後にパーオキシダーゼ基質(バイオ・ラッド製)を用いて定量した。200μlの各種増殖因子・サイトカイン(4 ng/ml)溶液をコーティング‐ウェルに加えて室温で2時間インキュベートした時の吸着量は(FGF-1:0.42 ng、FGF-2:0.36 ng、HGF:0.32 ng/ml、IL-3:0.36 ng/ml、GM-CSF:0.36 ng/ml、SCF:0.34 ng/ml、Tpo:0.27 ng/ml、Flt-3:0.32 ng/ml)と見積もられた。   In the ELISA method, each primary antibody was reacted with a plate on which each growth factor and cytokine were adsorbed, and after washing, a secondary antibody was reacted. Finally, it was quantified using a peroxidase substrate (Bio-Rad). When 200 μl of various growth factors and cytokines (4 ng / ml) solution was added to the coating-well and incubated at room temperature for 2 hours, the adsorbed amounts were (FGF-1: 0.42 ng, FGF-2: 0.36 ng, HGF: 0.32) ng / ml, IL-3: 0.36 ng / ml, GM-CSF: 0.36 ng / ml, SCF: 0.34 ng / ml, Tpo: 0.27 ng / ml, Flt-3: 0.32 ng / ml) .

(実施例3) 本発明の微粒子被覆基板及び5 ng/ml FGF-2含有2%血清培地を用いたヒト骨髄及びマウス脂肪組織由来間葉系幹細胞の増殖促進
微粒子コーティング48ウェル組織培養プレートにヒト骨髄及びマウス脂肪組織由来間葉系幹細胞を播種し、5ng/ml FGF-2含有2%血清DMEM培地で5日間培養し、その増殖率をコーティングしない48ウェル組織培養プレートのコントロールと比較した(図5)。
(Example 3) Growth promotion of human bone marrow and mouse adipose tissue-derived mesenchymal stem cells using the microparticle-coated substrate of the present invention and 2% serum medium containing 5 ng / ml FGF-2. Bone marrow and mouse adipose tissue-derived mesenchymal stem cells were seeded, cultured in 2% serum DMEM medium containing 5 ng / ml FGF-2 for 5 days, and compared with the control of a 48-well tissue culture plate without coating the growth rate (Fig. 5).

明らかに微粒子コーティングはFGF-2の存在下、1%の低血清で骨髄及び脂肪組織由来間葉系幹細胞両者の増殖性を大きく促進させた。またデータは示さないが本条件で培養・増殖させた両者の間葉系幹細胞は脂肪細胞、骨芽細胞、軟骨細胞等に分化誘導されることが確認された。したがって、本微粒子コーティングプレートを用いた間葉系幹細胞の増殖法は、用いる培地の血清低濃度化と増殖促進を可能にする有効な培養法である。   Apparently, the microparticle coating greatly promoted the proliferation of both bone marrow and adipose tissue-derived mesenchymal stem cells with 1% low serum in the presence of FGF-2. Although not shown, it was confirmed that both mesenchymal stem cells cultured and expanded under these conditions were induced to differentiate into adipocytes, osteoblasts, chondrocytes and the like. Therefore, the method for growing mesenchymal stem cells using the present fine particle-coated plate is an effective culture method that enables serum concentration reduction and growth promotion of the medium to be used.

(実施例4)本発明の微粒子被覆基板及びIL-3とGM-CSF含有1%血清培地を用いたTF-1細胞株の増殖促進
ヒトTF-1細胞株は通常浮遊培養で増殖するために、5%以上のウシ胎児血清とIL-3及びGM-CSF等の造血系サイトカインを要求する。微粒子コーティング48ウェル組織培養プレートにTF-1細胞株を播種し、5 ng/ml IL-3及び5 ng/mlGM-CSF含有1%血清DMEM培地で5日間浮遊培養し、その増殖率をコーティングしない48ウェル組織培養プレートのコントロールと比較した(図6)。
(Example 4) Growth promotion of TF-1 cell line using microparticle-coated substrate of the present invention and 1% serum medium containing IL-3 and GM-CSF Since human TF-1 cell line normally grows in suspension culture Require more than 5% fetal bovine serum and hematopoietic cytokines such as IL-3 and GM-CSF. TF-1 cell line is seeded in a 48-well tissue culture plate coated with fine particles, suspended in 1% serum DMEM medium containing 5 ng / ml IL-3 and 5 ng / ml GM-CSF for 5 days, and its growth rate is not coated Compared to the control of a 48-well tissue culture plate (FIG. 6).

明らかに微粒子コーティングはIL-3及びGM-CSFの存在下、1%の低血清でTF-1 細胞の増殖性を大きく促進させた。また、5 ng/ml IL-3及び5 ng/mlGM-CSF含有2%血清DMEM培地でサイトカインを事前に4℃で18 h吸着させた微粒子コーティング48ウェル組織培養プレート上でTF-1細胞は良好な増殖を示し(図7)、微粒子コーティングプレートに吸着したサイトカインは活性型を保っていることが明らかになった。   Apparently, the microparticle coating greatly promoted the proliferation of TF-1 cells with 1% low serum in the presence of IL-3 and GM-CSF. Also, TF-1 cells are good on microparticle-coated 48-well tissue culture plates in which cytokines are pre-adsorbed at 4 ° C for 18 h in 2% serum DMEM medium containing 5 ng / ml IL-3 and 5 ng / ml GM-CSF It was revealed that the cytokine adsorbed on the fine particle coating plate maintained the active form (FIG. 7).

(実施例5)本発明の微粒子被覆基板及び低濃度サイトカイン(SCF (5 ng/ml)、Tpo (10 ng/ml), Flt-3 (10 ng/ml))含有無血清培地を用いたヒトCD 34-陽性造血系幹細胞の増殖促進
ヒトCD 34-陽性造血系幹細胞は通常浮遊培養で増殖するために、高濃度のサイトカイン(20 ng/ml SCF、40 ng/ml IL-3、40 ng/ml Flt-3)を含んだ造血系幹細胞培地(HPGM)で培養することが必要である。微粒子コーティング24ウェル組織培養プレートにCD 34-陽性造血系幹細胞を播種し、低濃度(SCF (5 ng/ml)、Tpo (10 ng/ml), Flt-3 (10 ng/ml))含有無血清HPGM培地で6日間浮遊培養し、その増殖率をコーティングしない24ウェル組織培養プレートのコントロールと比較した(図8)。
(Example 5) Human using the microparticle-coated substrate of the present invention and a serum-free medium containing low concentration cytokines (SCF (5 ng / ml), Tpo (10 ng / ml), Flt-3 (10 ng / ml)) Promotion of proliferation of CD 34-positive hematopoietic stem cells Human CD 34-positive hematopoietic stem cells are usually grown in suspension culture, so high concentrations of cytokines (20 ng / ml SCF, 40 ng / ml IL-3, 40 ng / It is necessary to culture in hematopoietic stem cell medium (HPGM) containing ml Flt-3). Seed CD 34-positive hematopoietic stem cells in a 24-well tissue culture plate coated with microparticles and contain no low concentrations (SCF (5 ng / ml), Tpo (10 ng / ml), Flt-3 (10 ng / ml)) The suspension was cultured in serum HPGM medium for 6 days, and the growth rate was compared with a control of a 24-well tissue culture plate without coating (FIG. 8).

明らかに微粒子コーティングは低濃度サイトカインの存在下、CD 34-陽性造血系幹細胞の増殖性を大きく促進した。さらに、フローサイトメトリーによるCD 34-陽性細胞率の測定の結果を含めて、本微粒子コーティング−プラスチックプレート及び低濃度(SCF (5 ng/ml)、Tpo (10 ng/ml), Flt-3 (10 ng/ml))含有無血清培地を用いたヒトCD 34-陽性造血系幹細胞は、7日間で10倍以上に増殖させることができた。   Clearly, the microparticle coating greatly promoted the proliferation of CD 34-positive hematopoietic stem cells in the presence of low concentrations of cytokines. In addition, including the results of measurement of the CD 34-positive cell rate by flow cytometry, this microparticle coating-plastic plate and low concentrations (SCF (5 ng / ml), Tpo (10 ng / ml), Flt-3 ( Human CD 34-positive hematopoietic stem cells using a serum-free medium containing 10 ng / ml)) were able to grow more than 10 times in 7 days.

(実施例6)本発明の微粒子細胞担体及び脂肪組織由来間葉系幹細胞の凝集体投与による細胞生着及び血管新生促進
GFP(Green Fluorescent Protein)マウスより採取した脂肪組織由来間葉系幹細胞を増殖させ、500万個の細胞と微粒子(3.5 mg)を1 mlの培地に浮遊させ、1h室温で凝集塊浮遊培養した後、ヌードマウス背部にその200 μlを皮下注射した。そして3、7、10日後に注射部位の蛍光を蛍光顕微鏡により観察したこところ、10日目以降では微粒子を伴う凝集塊溶液を投与した群のみに蛍光が観察され、投与細胞の生存と生着が確認された(図9)。
(Example 6) Cell engraftment and angiogenesis promotion by administration of aggregates of particulate cell carrier of the present invention and adipose tissue-derived mesenchymal stem cells
After proliferating adipose tissue-derived mesenchymal stem cells collected from GFP (Green Fluorescent Protein) mice, suspend 5 million cells and microparticles (3.5 mg) in 1 ml of medium, and then float suspension culture at room temperature for 1 h 200 μl of the nude mouse was injected subcutaneously into the back of the nude mouse. The fluorescence at the injection site was observed with a fluorescence microscope after 3, 7 and 10 days. From the 10th day onward, the fluorescence was observed only in the group to which the aggregate solution with fine particles was administered, and the survival and engraftment of the administered cells were observed. Was confirmed (FIG. 9).

また注射部位の組織の病理写真を基に顕微鏡視野あたりの新生毛細血管数を測定したところ、7日目以降14日にわたって、他の群に比して有意に顕微鏡視野あたりの新生毛細血管数が高いことが明らかになった(図10)。このように本微粒子細胞担体及び脂肪組織由来間葉系幹細胞の凝集体投与による細胞生着及び血管新生促進は他のコントロール群に比して微粒子を伴う凝集塊溶液を投与した群のみが有意に高く、脂肪組織由来間葉系幹細胞導入による血管新生療法において本発明の微粒子細胞担体の有効性が確認された。   Moreover, when the number of new capillaries per microscopic field was measured based on the pathological photograph of the tissue at the injection site, the number of new capillaries per microscopic field was significantly greater than the other groups over the 14th day from the seventh day. It became clear that it was high (FIG. 10). Thus, cell engraftment and angiogenesis promotion by administration of aggregates of this microparticle cell carrier and adipose tissue-derived mesenchymal stem cells are significant only in the group administered with an aggregate solution with microparticles compared to other control groups. The effectiveness of the particulate cell carrier of the present invention in angiogenesis therapy by introducing adipose tissue-derived mesenchymal stem cells was confirmed.

(実施例7)本発明の微粒子細胞担体及び骨髄組織由来細胞の凝集塊の大腿骨移植による血液再生促進
マウス(C57BL/6J; 日本エスエルシー(株)、静岡)に致死量である10G の放射線(放射線照射装置MBR-1505R2 日立メディコ(株))を用いて被爆させ、2時間後骨髄細胞50万個のみ(コントロール群)、等量の骨髄細胞+350μgの微粒子(微粒子群)、及び等量の骨髄細胞+350μgの微粒子+サイトカイン(SCF:3.125 ng、Tpo:6.25 ng、Flt-3:6.25 ng)(微粒子+サイトカイン群)を含む培地溶液25μlを大腿骨内注射により投与した。本条件で、3群すべてのマウスを骨髄死から救命できた。そして投与後1,2、3、4週間後末梢血の白血球、ヘモグロビン、および血小板の変化を調べ血液再生の評価を行った。
(Example 7) Blood regeneration promotion by femur transplantation of aggregates of microparticle cell carrier and bone marrow tissue-derived cells of the present invention 10G radiation that is lethal to mice (C57BL / 6J; Nippon SLC Co., Ltd., Shizuoka) (Radiation irradiation device MBR-1505R2 Hitachi Medical Co., Ltd.), 2 hours later, only 500,000 bone marrow cells (control group), equal amount of bone marrow cells + 350 μg of microparticles (particle group), and equal amount 25 μl of a medium solution containing bone marrow cells + 350 μg microparticles + cytokine (SCF: 3.125 ng, Tpo: 6.25 ng, Flt-3: 6.25 ng) (microparticle + cytokine group) was administered by intrafemoral injection. Under this condition, all three groups of mice could be saved from bone marrow death. Then, 1, 2, 3 and 4 weeks after administration, the blood regeneration was evaluated by examining changes in white blood cells, hemoglobin, and platelets in peripheral blood.

図11に示すように、微粒子群及び微粒子+サイトカイン群はコントロール群と同様に、1週間後では白血球等大きく減少するが、2週間後では白血球等の再生促進が観察された。しかし、サイトカインによる付加的な促進活性は認められなかった。この結果は、サイトカインの直接効果というよりも本発明の微粒子細胞担体による浮遊細胞の凝集化促進、細胞生存性の向上、及び細胞生着性の促進によるものと考えられる。   As shown in FIG. 11, in the fine particle group and the fine particle + cytokine group, as in the control group, leukocytes and the like greatly decreased after 1 week, but regeneration of leukocytes and the like was observed after 2 weeks. However, no additional promoting activity by cytokines was observed. This result is thought to be due to promotion of aggregation of floating cells, improvement of cell viability, and promotion of cell engraftment by the particulate cell carrier of the present invention rather than direct effects of cytokines.

本発明の微粒子細胞担体による浮遊ヒト毛細血管内皮細胞の凝集体(A)、ヒト皮膚線維芽細胞の凝集体(B)、脂肪組織由来間葉系幹細胞の凝集体(C)の顕微鏡写真である。FIG. 2 is a photomicrograph of aggregates of floating human capillary endothelial cells (A), aggregates of human skin fibroblasts (B), and aggregates of adipose tissue-derived mesenchymal stem cells (C) using the particulate cell carrier of the present invention. . 本発明の微粒子細胞担体とヒト毛細血管内皮細胞(A)、ヒト皮膚線維芽細胞(B)又は脂肪組織由来間葉系幹細胞(C)との細胞凝集体の生存期間を示すグラフである。ヒト毛細血管内皮細胞の凝集体はFGF-2含有10% FBS 含有DMEMで、浮遊培養で3日間生存することができた(A)。微粒子とヒト皮膚線維芽細胞の凝集体(B)および脂肪組織由来間葉系幹細胞の凝集体(C)は10% FBS 含有DMEMで(FGF-2非存在下)、浮遊培養で3日間生存することができた。It is a graph which shows the lifetime of the cell aggregate of the microparticle cell carrier of this invention, and a human capillary endothelial cell (A), a human skin fibroblast (B), or an adipose tissue origin mesenchymal stem cell (C). Aggregates of human capillary endothelial cells were FGF-2-containing 10% FBS-containing DMEM and were able to survive for 3 days in suspension culture (A). Aggregates of microparticles and human skin fibroblasts (B) and adipose tissue-derived mesenchymal stem cells are aggregated in 10% FBS-containing DMEM (in the absence of FGF-2) and survived in suspension culture for 3 days. I was able to. 本発明の微粒子(A)、プラスチックプレートにコーティングした外観(B)及び蛍光標識(Texas Red-X Protein Labeling Kit)した微粒子をコーティングした外観(C)の顕微鏡写真である。It is the microscope picture of the external appearance (C) which coat | covered the microparticles | fine-particles (A) of this invention, the external appearance (B) coated on the plastic plate, and the fluorescent-labeled (Texas Red-X Protein Labeling Kit) microparticles | fine-particles. 各々の1度目の吸着量(○)から2度目の吸着量(□)を減ずることにより、室温で2時間のインキュベーションにより48ウェル-プレート(ウェル面積:0.78 cm2)当りに吸着される各サイトカイン量を見積もったグラフである。微粒子をコーティングしないコントロールプレートへの吸着量は(△)で示した。Each cytokine adsorbed per 48-well plate (well area: 0.78 cm 2 ) by incubation at room temperature for 2 hours by subtracting the second adsorption amount (□) from the first adsorption amount (O). It is the graph which estimated quantity. The amount adsorbed on the control plate not coated with fine particles is indicated by (Δ). 微粒子コーティングプレート(●)及びコーティングしないコントロールプレート(○)上でヒト骨髄間葉系幹細胞(A)及びマウス脂肪組織由来間葉系幹細胞(B)を2%FBS及び5 ng/ml FGF-2を含んだDMEMで培養したときの増殖率を示すグラフである。Human bone marrow mesenchymal stem cells (A) and mouse adipose tissue-derived mesenchymal stem cells (B) on a fine particle coated plate (●) and an uncoated control plate (◯) with 2% FBS and 5 ng / ml FGF-2 It is a graph which shows the growth rate when it culture | cultivates with the included DMEM. 微粒子コーティングプレート(●)及びコーティングしないコントロールプレート(○)上でヒトTF-1細胞株を1%FBS、5 ng/ml IL-3及びGM-CSFを含んだDMEMで培養したときの増殖率を示すグラフである。Growth rate when the human TF-1 cell line was cultured in DMEM containing 1% FBS, 5 ng / ml IL-3 and GM-CSF on the fine particle coated plate (●) and uncoated control plate (○) It is a graph to show. 微粒子コーティングプレート(●)及びコーティングしないコントロールプレート(○)をそれぞれの濃度のIL-3及びGM-CSFを4℃、18時間静置で吸着させ、そのプレートを培地で3度洗浄し、その洗浄プレート上でヒトTF-1細胞株を1%FBSのみを含んだDMEMで5日間培養したときの増殖率を示すグラフである。Fine particle coating plate (●) and uncoated control plate (○) were allowed to adsorb IL-3 and GM-CSF at 4 ° C for 18 hours, and the plate was washed 3 times with medium. It is a graph which shows the growth rate when the human TF-1 cell line is cultured on DMEM containing only 1% FBS for 5 days. 微粒子コーティングプレート(●)及びコーティングしないコントロールプレート(○)上でヒトCD34-陽性造血系幹細胞を5 ng/ml SCF, 10 ng/ml Tpo, 10ng/ml Flt-3を含んだ無血清HPGMで培養したときの増殖率を示すグラフである。Culture human CD34-positive hematopoietic stem cells on serum-free HPGM containing 5 ng / ml SCF, 10 ng / ml Tpo, and 10 ng / ml Flt-3 on microparticle-coated plates (●) and uncoated control plates (○) It is a graph which shows the proliferation rate when doing. 微粒子を含まない脂肪組織由来間葉系GFP発光細胞単独投与群(上段)と微粒子を含んだ脂肪組織由来間葉系GFP発光細胞スフェロイド投与群(下段)をヌードマウスの背部に皮下注射した際の、経時的な蛍光実体顕微鏡写真である。Adipose tissue-derived mesenchymal GFP luminescent cell alone administration group (upper) and adipose tissue-derived mesenchymal GFP luminescent cell spheroid administration group (lower) containing fine particles were injected subcutaneously into the back of nude mice. It is a fluorescent stereomicrograph with time. 微粒子と脂肪組織由来間葉系GFP発光細胞のスフェロイド注射群、脂肪組織由来間葉系GFP発光細胞単独注射群、及び微粒子のみ注射群の注射部位の毛細血管数の経時的変化を示すグラフである。注射部位の病理組織像(H&E染色)を撮影し、その写真から視野当りの毛細血管数をカウントしたデータである。It is a graph which shows the time-dependent change of the number of capillaries of the injection site of the spheroid injection group of microparticles and adipose tissue-derived mesenchymal GFP luminescent cells, the adipose tissue-derived mesenchymal GFP luminescent cell alone injection group, and the microparticle-only injection group . This is data obtained by taking a histopathological image (H & E staining) at the injection site and counting the number of capillaries per field of view from the photograph. マウスに致死量である10Gの放射線を照射して被爆させ、2時間後骨髄細胞50万個のみ(コントロール群;白棒)、等量の骨髄細胞+350μgの微粒子(微粒子群;黒棒)(B)、及び等量の骨髄細胞+350μgの微粒子+サイトカイン(SCF:3.125 ng、Tpo:6.25 ng、Flt-3:6.25 ng)(微粒子+サイトカイン群;黒棒)、等量の骨髄細胞++サイトカイン(SCF:3.125 ng、Tpo:6.25 ng、Flt-3:6.25 ng)(サイトカイン(+)コントロール群;白棒)(A)を含む培地溶液25μlを大腿骨内注射により投与した場合の白血球(WBC)、ヘモグロビン(Hb)及び血小板(PLT)の変化を示すグラフである。投与後1,2、3、4週間後末梢血の白血球、ヘモグロビン、および血小板の変化を調べ血液再生の評価を行った結果である。Mice were exposed to a lethal dose of 10G radiation, and after 2 hours, only 500,000 bone marrow cells (control group; white bar), equal amount of bone marrow cells + 350 μg microparticles (microparticle group; black bar) (B ), And equal amounts of bone marrow cells + 350 μg of microparticles + cytokines (SCF: 3.125 ng, Tpo: 6.25 ng, Flt-3: 6.25 ng) (microparticles + cytokine group; black bars), equivalent amounts of bone marrow cells + cytokines (SCF : 3.125 ng, Tpo: 6.25 ng, Flt-3: 6.25 ng) (cytokine (+) control group; white bar) White blood cells (WBC) when 25 μl of medium solution containing (A) was administered by intrafemoral injection, It is a graph which shows the change of hemoglobin (Hb) and platelets (PLT). 1, 2, 3, and 4 weeks after administration, the results of blood regeneration were evaluated by examining changes in white blood cells, hemoglobin, and platelets in peripheral blood.

Claims (5)

低分子ヘパリンとプロタミンとから構成される粒径が10μm未満の微粒子からなる微粒子細胞担体。 A fine particle cell carrier comprising fine particles having a particle size of less than 10 μm composed of low molecular weight heparin and protamine. 請求項1に記載の微粒子細胞担体と接着細胞とからなる細胞凝集体。 A cell aggregate comprising the particulate cell carrier according to claim 1 and adherent cells. 請求項2に記載の細胞凝集体及び任意に生理活性物質を含有する医薬組成物。 A pharmaceutical composition comprising the cell aggregate according to claim 2 and optionally a physiologically active substance. 低分子ヘパリンとプロタミンとから構成される粒径が10μm未満の微粒子を含んでなる被覆材。 A coating material comprising fine particles having a particle size of less than 10 μm composed of low molecular weight heparin and protamine. 請求項4に記載の被覆材で基板を被覆してなる細胞培養基材。 A cell culture substrate obtained by coating a substrate with the coating material according to claim 4.
JP2008147231A 2007-11-21 2008-06-04 Particulate cell carrier and cell-introducing system containing the same and cell culture system Pending JP2011024423A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008147231A JP2011024423A (en) 2008-06-04 2008-06-04 Particulate cell carrier and cell-introducing system containing the same and cell culture system
PCT/JP2008/003432 WO2009066468A1 (en) 2007-11-21 2008-11-21 Particulate medical material and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008147231A JP2011024423A (en) 2008-06-04 2008-06-04 Particulate cell carrier and cell-introducing system containing the same and cell culture system

Publications (1)

Publication Number Publication Date
JP2011024423A true JP2011024423A (en) 2011-02-10

Family

ID=43633940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008147231A Pending JP2011024423A (en) 2007-11-21 2008-06-04 Particulate cell carrier and cell-introducing system containing the same and cell culture system

Country Status (1)

Country Link
JP (1) JP2011024423A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012205599A (en) * 2012-08-01 2012-10-25 Technical Research & Development Institute Ministry Of Defence Three-dimensional cell culturing method, and composition for cell transplantation
WO2014017513A1 (en) * 2012-07-24 2014-01-30 日産化学工業株式会社 Culture medium composition, and method for culturing cell or tissue using said composition
WO2014171486A1 (en) * 2013-04-17 2014-10-23 日産化学工業株式会社 Medium composition and method for producing red blood cells using same
US9664671B2 (en) 2012-07-24 2017-05-30 Nissan Chemical Industries, Ltd. Culture medium composition and method of culturing cell or tissue using thereof
US10017805B2 (en) 2012-08-23 2018-07-10 Nissan Chemical Industries, Ltd. Enhancing ingredients for protein production from various cells

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9664671B2 (en) 2012-07-24 2017-05-30 Nissan Chemical Industries, Ltd. Culture medium composition and method of culturing cell or tissue using thereof
AU2013294057B2 (en) * 2012-07-24 2019-07-04 Kyoto University Culture medium composition, and method for culturing cell or tissue using said composition
JP7113466B2 (en) 2012-07-24 2022-08-05 日産化学株式会社 Medium composition and method for culturing cells or tissues using the composition
JP5629893B2 (en) * 2012-07-24 2014-11-26 日産化学工業株式会社 Medium composition and cell or tissue culture method using the composition
JP2014223087A (en) * 2012-07-24 2014-12-04 日産化学工業株式会社 Medium composition and method for culturing cells or tissues using the composition concerned
JPWO2014017513A1 (en) * 2012-07-24 2016-07-11 日産化学工業株式会社 Medium composition and cell or tissue culture method using the composition
WO2014017513A1 (en) * 2012-07-24 2014-01-30 日産化学工業株式会社 Culture medium composition, and method for culturing cell or tissue using said composition
US11371013B2 (en) 2012-07-24 2022-06-28 Nissan Chemical Industries, Ltd. Culture medium composition and method of culturing cell or tissue using thereof
US10590380B2 (en) 2012-07-24 2020-03-17 Nissan Chemical Industries, Ltd. Culture medium composition and method of culturing cell or tissue using thereof
CN108796028A (en) * 2012-07-24 2018-11-13 日产化学工业株式会社 Culture media composition and the method for using the composition culture cell or tissue
JP2018042571A (en) * 2012-07-24 2018-03-22 日産化学工業株式会社 Culture medium composition and culturing method of cells or tissue using said composition
JP2019150064A (en) * 2012-07-24 2019-09-12 日産化学株式会社 Culture medium composition and culturing method of cells or tissue using said composition
JP2012205599A (en) * 2012-08-01 2012-10-25 Technical Research & Development Institute Ministry Of Defence Three-dimensional cell culturing method, and composition for cell transplantation
US10017805B2 (en) 2012-08-23 2018-07-10 Nissan Chemical Industries, Ltd. Enhancing ingredients for protein production from various cells
WO2014171486A1 (en) * 2013-04-17 2014-10-23 日産化学工業株式会社 Medium composition and method for producing red blood cells using same

Similar Documents

Publication Publication Date Title
Rennert et al. Stem cell recruitment after injury: lessons for regenerative medicine
Zahorec et al. Mesenchymal stem cells for chronic wounds therapy
Brown et al. Rethinking regenerative medicine: a macrophage-centered approach
Linsley et al. The effect of fibrinogen, collagen type I, and fibronectin on mesenchymal stem cell growth and differentiation into osteoblasts
Burlacu et al. Factors secreted by mesenchymal stem cells and endothelial progenitor cells have complementary effects on angiogenesis in vitro
Ansari et al. Alginate/hyaluronic acid hydrogel delivery system characteristics regulate the differentiation of periodontal ligament stem cells toward chondrogenic lineage
Das et al. The role of hypoxia in bone marrow–derived mesenchymal stem cells: considerations for regenerative medicine approaches
Wang et al. Delivery of mesenchymal stem cells in chitosan/collagen microbeads for orthopedic tissue repair
Chen et al. Conditioned medium-electrospun fiber biomaterials for skin regeneration
Wang et al. The combination of stem cells and tissue engineering: an advanced strategy for blood vessels regeneration and vascular disease treatment
RU2756561C2 (en) Colony formation medium and its application
Li et al. Nanoscaled bionic periosteum orchestrating the osteogenic microenvironment for sequential bone regeneration
TW200817019A (en) De novo formation and regeneration of vascularized tissue from tissue progenitor cells and vascular progenitor cells
Liu et al. Spheroid formation and enhanced cardiomyogenic potential of adipose-derived stem cells grown on chitosan
US20100035327A1 (en) Use of rice-derived products in a universal cell culture medium
Sordi et al. Three-dimensional bioactive hydrogel-based scaffolds for bone regeneration in implant dentistry
Jiang et al. Research progress on stem cell therapies for articular cartilage regeneration
Bicer et al. Impact of 3D cell culture on bone regeneration potential of mesenchymal stromal cells
Shou et al. Induction of mesenchymal stem cell differentiation in the absence of soluble inducer for cutaneous wound regeneration by a chitin nanofiber‐based hydrogel
Huang et al. Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration
Yeum et al. Quantification of MSCs involved in wound healing: use of SIS to transfer MSCs to wound site and quantification of MSCs involved in skin wound healing
WO2011059112A1 (en) Particle-containing cell aggregate
Wang et al. A new scaffold containing small intestinal submucosa and mesenchymal stem cells improves pancreatic islet function and survival in vitro and in vivo
Hoveizi et al. Therapeutic potential of human mesenchymal stem cells derived beta cell precursors on a nanofibrous scaffold: an approach to treat diabetes mellitus
JP2011024423A (en) Particulate cell carrier and cell-introducing system containing the same and cell culture system