JP2011023594A - Photoelectric converting element - Google Patents

Photoelectric converting element Download PDF

Info

Publication number
JP2011023594A
JP2011023594A JP2009168026A JP2009168026A JP2011023594A JP 2011023594 A JP2011023594 A JP 2011023594A JP 2009168026 A JP2009168026 A JP 2009168026A JP 2009168026 A JP2009168026 A JP 2009168026A JP 2011023594 A JP2011023594 A JP 2011023594A
Authority
JP
Japan
Prior art keywords
layer
mixed layer
electron
photoelectric conversion
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009168026A
Other languages
Japanese (ja)
Inventor
Tatsushi Maeda
竜志 前田
Masahide Matsuura
正英 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2009168026A priority Critical patent/JP2011023594A/en
Publication of JP2011023594A publication Critical patent/JP2011023594A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric converting element which has high conversion efficiency and suppresses a decrease in conversion efficiency with a lapse of time. <P>SOLUTION: The photoelectric converting element includes an anode and a cathode, and a photoelectric converting layer between the anode and the cathode, and the photoelectric converting layer includes at least a mixture layer containing an electron-donative material (P) and an electron-receptive material (N). The weight mixing ratio (P/N) of the electron-donative material (P) to electron-receptive material (N) of the part of the mixture layer closest to the anode side is greater than 3, and decreases from the anode side to the cathode side. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、光を受けて電気を発生する光電変換層を備えた光電変換素子に関し、特に、P層とN層の間にI層(P材料とN材料の混合層)を挿入した有機薄膜太陽電池に関する。   The present invention relates to a photoelectric conversion element including a photoelectric conversion layer that generates electricity by receiving light, and in particular, an organic thin film in which an I layer (a mixed layer of P material and N material) is inserted between a P layer and an N layer. It relates to solar cells.

光電変換素子は、光信号を電気信号に変換するフォトダイオードや撮像素子、光エネルギーを電気エネルギーに変換する太陽電池に代表されるように、光入力に対して電気出力を示す装置であり、電気入力に対して光出力を示すエレクトロルミネッセンス(EL)素子とは逆の応答を示す装置である。中でも太陽電池は、化石燃料の枯渇問題や地球温暖化問題を背景に、クリーンエネルギー源として近年大変注目されてきており、研究開発が盛んに行なわれるようになってきた。   A photoelectric conversion element is a device that shows an electric output with respect to an optical input, as represented by a photodiode or an imaging element that converts an optical signal into an electric signal, or a solar cell that converts optical energy into electric energy. It is a device that exhibits a response opposite to that of an electroluminescence (EL) element that exhibits optical output with respect to input. In particular, solar cells have attracted a great deal of attention as a clean energy source in recent years against the background of fossil fuel depletion and global warming, and research and development have been actively conducted.

太陽電池として、従来、実用化されてきたのは、単結晶Si、多結晶Si、アモルファスSi等に代表されるシリコン系太陽電池である。しかしながら、高価であることや原料Siの不足問題等が表面化してきた。このような背景の中で、有機太陽電池は、安価で毒性が低く、原材料不足の懸念もないことから、シリコン系太陽電池に次ぐ次世代の太陽電池として大変注目を集めている。   Conventionally, silicon solar cells represented by single crystal Si, polycrystal Si, amorphous Si and the like have been put into practical use as solar cells. However, the high cost and the shortage of raw material Si have been surfaced. Against this background, organic solar cells are attracting much attention as next-generation solar cells next to silicon-based solar cells because they are inexpensive, have low toxicity, and do not have a fear of shortage of raw materials.

有機太陽電池は、基本的には電子を輸送する電子受容性材料から成るN層と、正孔を輸送する電子供与性材料から成るP層からなっており、各層を構成する材料によって大きく2種類に分類される。
具体的に、N層としてチタニア等の無機半導体表面にルテニウム色素等の増感色素を単分子吸着させ、P層として電解質溶液を用いたものは、色素増感太陽電池(所謂グレッツエルセル)と呼ばれ、変換効率の高さから、1991年以降精力的に研究されてきた。しかしながら、溶液を用いるため、長時間の使用に際して液漏れする等の欠点を有していた。
そこで、上記の欠点を克服するため、電解質溶液を固体化して全固体型の色素増感太陽電池を模索する研究も最近なされている。しかしながら、多孔質チタニアの細孔に有機物をしみ込ませる技術は難易度が高く、再現性よく高変換効率が発現できるセルは完成していないのが現状である。
An organic solar cell is basically composed of an N layer made of an electron-accepting material that transports electrons and a P layer made of an electron-donating material that transports holes. There are two types depending on the material constituting each layer. are categorized.
Specifically, a layer in which a sensitizing dye such as ruthenium dye is adsorbed on the surface of an inorganic semiconductor such as titania as the N layer and an electrolyte solution is used as the P layer is called a dye-sensitized solar cell (so-called Gretzell cell). Since 1991, it has been studied energetically because of its high conversion efficiency. However, since the solution is used, it has a drawback such as liquid leakage when used for a long time.
Therefore, in order to overcome the above-described drawbacks, research has been recently conducted to find an all-solid-state dye-sensitized solar cell by solidifying the electrolyte solution. However, the technology for impregnating organic matter into the pores of porous titania has a high degree of difficulty, and a cell capable of expressing high conversion efficiency with high reproducibility has not been completed.

一方、N層とP層がともに有機薄膜からなる有機薄膜太陽電池は、全固体型のため液漏れ等の欠点がなく、作製が容易であり、稀少金属であるルテニウム等を用いないこと等から最近注目を集め、精力的に研究がなされている。
有機薄膜太陽電池は、最初メロシアニン色素等を用いた単層膜で研究が進められてきたが、P層/N層の多層膜にすることで変換効率が向上することが見出されている。
例えば、非特許文献1では、フタロシアニン類やペリレンイミド類の2種の有機物を用いて光吸収を行い、正孔と電子の各キャリア輸送を電子供与層と電子受容層に担わせることで、変換効率がそれまでの単層のものに比べ高効率化することが報告されている。
On the other hand, the organic thin film solar cell in which the N layer and the P layer are both organic thin films has no defects such as liquid leakage because it is an all solid type, is easy to manufacture, and does not use ruthenium, which is a rare metal. Recently, it has attracted attention and has been energetically researched.
Organic thin-film solar cells have been initially studied with a single layer film using a merocyanine dye or the like, but it has been found that conversion efficiency is improved by using a multilayer film of P / N layers.
For example, in Non-Patent Document 1, light absorption is performed using two types of organic substances such as phthalocyanines and perylene imides, and the transport efficiency of holes and electrons is transferred to the electron donor layer and the electron acceptor layer, thereby converting the conversion efficiency. However, it has been reported that the efficiency is higher than that of the conventional single layer.

その後、P層とN層の間にI層(P材料とN材料の混合層)を挿入して積層を増やすことにより、変換効率が向上することが見出されている。その後、P/I/N層を直列に積層するタンデムセル構成により、さらに変換効率が向上することが見出されている。
例えば、非特許文献2では、P層とN層の間にI層(P材料とN材料の混合層)を挿入したP/I/N層構成とすることにより、変換効率が向上したことが報告されている。
また、非特許文献3では、P/I/N層構成のうち、I層(P材料とN材料の混合層)を3層に積層した構成(重量混合比P/N値、3/1/0.33)で変換効率を向上できることが報告されている。
Thereafter, it has been found that conversion efficiency is improved by inserting an I layer (mixed layer of P material and N material) between the P layer and the N layer to increase the number of layers. Thereafter, it has been found that the conversion efficiency is further improved by the tandem cell configuration in which the P / I / N layers are stacked in series.
For example, in Non-Patent Document 2, the conversion efficiency is improved by adopting a P / I / N layer configuration in which an I layer (mixed layer of P material and N material) is inserted between the P layer and the N layer. It has been reported.
Further, in Non-Patent Document 3, among P / I / N layer configurations, a configuration in which I layers (mixed layers of P material and N material) are stacked in three layers (weight mixing ratio P / N value, 3/1 / 0.33) has been reported to improve the conversion efficiency.

一方、高分子化合物を用いた有機薄膜太陽電池では、P材料として導電性高分子を用い、N材料としてC60誘導体を用いてそれらを混合し、熱処理することによりミクロ層分離を誘起してヘテロ界面を増やし、変換効率を向上させるという、所謂バルクヘテロ構造の研究が主に行なわれてきた。
上述のように、これまでは有機薄膜太陽電池ではセル構成及びモルフォロジーの検討による変換効率の向上を目指してきた。
On the other hand, in an organic thin-film solar cell using a polymer compound, a conductive polymer is used as a P material, a C 60 derivative is used as an N material, and they are mixed and heat-treated to induce micro layer separation to produce heterogeneity. The research of so-called bulk heterostructures that increase the interface and improve the conversion efficiency has been mainly conducted.
As described above, organic thin-film solar cells have so far aimed at improving conversion efficiency by studying cell configuration and morphology.

ところで、有機薄膜太陽電池は、シリコン等に代表される無機太陽電池に比べ、耐久性が劣っている。有機薄膜太陽電池の実用化には、変換効率の問題以上に、優れた耐久性が必須となっている。従って、有機薄膜太陽電池では高い変換効率の実現と共に、優れた耐久性をもたらすセル構成の開発が必須であり最大の課題となっている。   By the way, the organic thin film solar cell is inferior in durability compared to an inorganic solar cell typified by silicon or the like. For practical use of organic thin film solar cells, superior durability is essential beyond the problem of conversion efficiency. Therefore, in organic thin-film solar cells, it is essential to develop a cell configuration that achieves high conversion efficiency and provides excellent durability, which is the biggest problem.

しかしながら、これまで有機薄膜太陽電池に対して、セル構成の検討により変換効率の向上が報告なされてきたが、耐久性の向上に効果的な素子構成は見出されていないのが現状である。   However, for organic thin-film solar cells, improvement in conversion efficiency has been reported by studying cell configurations, but no element configuration effective for improving durability has been found.

C.W.Tang,Appl.Phys.Lett.48,183(1986).C. W. Tang, Appl. Phys. Lett. 48, 183 (1986). M.Hiramoto,H.Fujiwara,andM.Yokoyama,Appl.Phys.Lett.58,1062(1991).M.M. Hiramoto, H. et al. Fujiwara, andM. Yokoyama, Appl. Phys. Lett. 58, 1062 (1991). P.Sullivan,S.Heutz,S.M.Schultes,andT.S.Jones,Appl.Phys.Lett.84,1210(2004).P. Sullivan, S.M. Heutz, S.M. M.M. Schulttes, and T.M. S. Jones, Appl. Phys. Lett. 84, 1210 (2004).

本発明の目的は、高い変換効率を有すると共に、経時変化による変換効率の低下を低減した光電変換素子を提供することにある。   An object of the present invention is to provide a photoelectric conversion element that has a high conversion efficiency and reduces a decrease in conversion efficiency due to a change with time.

本発明者らは、上記課題を解決するため素子設計から鋭意検討した結果、光電変換層に含まれる、電子供与性材料(P)と電子受容性材料(N)を含有する混合層において、その最も陽極側にある部分の重量混合比(P/N)が3よりも大きく、かつ、P/Nが陽極側から陰極側に向けて小さくなる構成とすることにより、高い変換効率の実現と共に、耐久性が大幅に向上することを見出し、本発明を完成させた。   As a result of intensive studies from element design to solve the above problems, the present inventors have found that in the mixed layer containing the electron donating material (P) and the electron accepting material (N) contained in the photoelectric conversion layer, By realizing a structure in which the weight mixing ratio (P / N) of the portion on the most anode side is larger than 3 and P / N becomes smaller from the anode side toward the cathode side, with the realization of high conversion efficiency, The inventors have found that the durability is greatly improved and have completed the present invention.

本発明によれば、以下の光電変換素子が提供される。
1.陽極と陰極と、前記陽極と陰極の間に光電変換層と、を含み、前記光電変換層が、少なくとも、電子供与性材料(P)と電子受容性材料(N)を含有する混合層を有し、前記混合層の最も陽極側部分の電子供与性材料(P)と電子受容性材料(N)の重量混合比(P/N)が、3よりも大きく、前記混合層のP/Nが、陽極側から陰極側に向かって小さくなっている、光電変換素子。
2.前記光電変換層は、前記陽極と前記混合層の間に、電子供与性材料のみからなる層を有し、前記陰極と前記混合層の間に、電子受容性材料のみからなる層を有する、1記載の光電変換素子。
3.前記混合層の最も陰極側部分のP/Nが、1よりも小さい1又は2記載の光電変換素子。
4.有機太陽電池である1〜3のいずれかに記載の光電変換素子。
5.上記1〜4のいずれかに記載の光電変換素子を有する装置。
According to the present invention, the following photoelectric conversion element is provided.
1. An anode and a cathode, and a photoelectric conversion layer between the anode and the cathode, and the photoelectric conversion layer has a mixed layer containing at least an electron donating material (P) and an electron accepting material (N). And the weight mixing ratio (P / N) of the electron donating material (P) and the electron accepting material (N) in the most anode side portion of the mixed layer is larger than 3, and the P / N of the mixed layer is A photoelectric conversion element that becomes smaller from the anode side toward the cathode side.
2. The photoelectric conversion layer has a layer made of only an electron donating material between the anode and the mixed layer, and has a layer made of only an electron accepting material between the cathode and the mixed layer. The photoelectric conversion element as described.
3. 3. The photoelectric conversion element according to 1 or 2, wherein P / N at the most cathode side portion of the mixed layer is smaller than 1. 3.
4). The photoelectric conversion element according to any one of 1 to 3, which is an organic solar battery.
5. The apparatus which has a photoelectric conversion element in any one of said 1-4.

本発明によれば、高い変換効率を示し、かつ高い耐久性を有する光電変換素子を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the photoelectric conversion element which shows high conversion efficiency and has high durability can be provided.

本発明の光電変換素子の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the photoelectric conversion element of this invention.

本発明の光電変換素子は、陽極と陰極(一対の電極)と、この電極の間に光電変換層とを有する。
図1は、本発明の光電変換素子の一実施形態を示す概略断面図である。
本実施形態の光電変換素子は、陽極10と陰極20の間に、陽極側10から、電子供与性材料からなるP層32、混合層34、及び電子受容性材料からなるN層36を積層した構成の光電変換層30を有する。混合層34は、電子供与性材料(P)と電子受容性材料(N)を含有する層である。
尚、混合層34は、以下の要件を満たしていれば、その構成は限定されない。例えば、単一層で構成しても良いし、複数の層を積層して構成しても良い。
The photoelectric conversion element of this invention has an anode, a cathode (a pair of electrodes), and a photoelectric conversion layer between these electrodes.
FIG. 1 is a schematic cross-sectional view showing one embodiment of the photoelectric conversion element of the present invention.
In the photoelectric conversion element of this embodiment, a P layer 32 made of an electron donating material, a mixed layer 34, and an N layer 36 made of an electron accepting material are laminated between the anode 10 and the cathode 20 from the anode side 10. It has the photoelectric conversion layer 30 of a structure. The mixed layer 34 is a layer containing an electron donating material (P) and an electron accepting material (N).
The configuration of the mixed layer 34 is not limited as long as the following requirements are satisfied. For example, a single layer may be used, or a plurality of layers may be stacked.

本発明においては、混合層は、その最も陽極側部分の電子供与性材料(P)と電子受容性材料(N)の重量混合比(P/N)が、3よりも大きい。例えば、図1に示す光電変換素子の場合、混合層34のP層32と接する部分のP/N)が3よりも大きい。ここで、P層32と接する部分とは、混合層が積層体である場合、P層と接している層のことであり、混合層が単一層である場合、少なくともP層と接している部分(例えば、P層と接している面から少なくとも3nmまでの領域を意味する。)のP/Nが3よりも大きければよい。
混合層の最も陽極側部分のP/Nが、3よりも大きいことにより、混合層34で光吸収が行われて形成される励起子や、電子供与性材料と電子受容性材料の界面で電荷分離により形成される電荷が、一対の電極に移動することによる逆電流を防止できる。P/N>3を満たすことで、高い変換効率と高い耐久性を実現できる。混合層34の最も陽極側部分のP/Nは、特に、4以上であることが好ましい。
In the present invention, the mixed layer has a weight mixing ratio (P / N) of the electron donating material (P) and the electron accepting material (N) in the most anode side portion larger than 3. For example, in the case of the photoelectric conversion element shown in FIG. 1, the P / N of the portion of the mixed layer 34 in contact with the P layer 32 is larger than 3. Here, the part in contact with the P layer 32 is a layer in contact with the P layer when the mixed layer is a laminate, and at least a part in contact with the P layer when the mixed layer is a single layer. The P / N of (for example, a region from the surface in contact with the P layer to at least 3 nm) may be larger than 3.
When the P / N at the most anode side portion of the mixed layer is larger than 3, charges are generated at the interface between excitons formed by light absorption in the mixed layer 34 and the electron donating material and the electron accepting material. It is possible to prevent reverse current due to the charge formed by the separation moving to the pair of electrodes. By satisfying P / N> 3, high conversion efficiency and high durability can be realized. P / N at the most anode side portion of the mixed layer 34 is particularly preferably 4 or more.

また、本発明では混合層34のP/Nが、陽極10側から陰極20側に向かって小さくなっている。これにより、混合層34において正孔輸送を担う電子供与性材料と電子輸送を担う電子受容性材料の重量比が、陽極側から陰極側に向けて段階的に変化するので、電荷輸送に伴う障壁が小さくなる。   In the present invention, the P / N of the mixed layer 34 decreases from the anode 10 side toward the cathode 20 side. Thereby, since the weight ratio of the electron donating material responsible for hole transport and the electron accepting material responsible for electron transport in the mixed layer 34 changes stepwise from the anode side to the cathode side, a barrier associated with charge transport Becomes smaller.

尚、上述した通り、本発明で混合層34は、上記の要件を満たしていれば、その構成は限定されない。例えば、混合層34を2層以上の積層体とし、P/Nを段階的に変化させてもよく、また、P/Nが、陽極側から陰極側に向かって連続的に変化している1つの層からなっていてもよい。   As described above, the configuration of the mixed layer 34 in the present invention is not limited as long as the above requirements are satisfied. For example, the mixed layer 34 may be a laminate of two or more layers, and the P / N may be changed stepwise, and the P / N continuously changes from the anode side to the cathode side 1 It may consist of two layers.

ただし、形成が容易であることから、混合層は2層以上の積層体からなることが好ましい。
また、混合層の積層数を増やすことにより、電子供与性材料と電子受容性材料のP/Nを陽極側から陰極側に向けて滑らかに変化させることができ、電荷輸送に伴う障壁が小さくなるため好ましい。積層数は2〜10が好ましく、特に、2〜5が好ましい。
However, since the formation is easy, the mixed layer is preferably formed of a laminate of two or more layers.
Further, by increasing the number of mixed layers, the P / N of the electron donating material and the electron accepting material can be smoothly changed from the anode side to the cathode side, and the barrier associated with charge transport is reduced. Therefore, it is preferable. The number of stacked layers is preferably 2 to 10, and particularly preferably 2 to 5.

混合層のP/Nは、混合層製膜時において、電子供与性材料と電子受容性材料の比率を調整することにより制御できる。例えば、共蒸着により混合層を製膜する場合は、電子供与性材料と電子受容性材料の蒸着速度を制御することにより、所望のP/Nに設定できる。
混合層のP/Nは、各々の標品を準備し、高速液体クロマトグラフィー(HPLC)を用いて溶出保持時間の異なる成分のピーク比を求めることによりモル成分比、重量混合比として算出できる。
The P / N ratio of the mixed layer can be controlled by adjusting the ratio of the electron donating material and the electron accepting material at the time of forming the mixed layer. For example, when the mixed layer is formed by co-evaporation, the desired P / N can be set by controlling the deposition rates of the electron donating material and the electron accepting material.
The P / N of the mixed layer can be calculated as a molar component ratio and a weight mixing ratio by preparing each sample and calculating the peak ratio of components having different elution retention times using high performance liquid chromatography (HPLC).

尚、図1に示す実施形態のように、P層32及びN層36を形成し、混合層34が、電子供与性材料のみからなる層と電子受容性材料のみからなる層の間に配置された構成とすることが好ましい。混合層34が、陽極10又は陰極20に接していると、混合層34で光吸収により形成される励起子や、電子供与性材料と電子受容性材料の界面で電荷分離により形成される電荷がクエンチ(失活)を起こすため、変換効率が低下する場合がある。混合層が電子供与性材料のみからなる層と、電子受容性材料のみからなる層の間に配置された構成とすることで、変換効率の向上がより顕著に現れる。   As in the embodiment shown in FIG. 1, the P layer 32 and the N layer 36 are formed, and the mixed layer 34 is disposed between the layer made of only the electron donating material and the layer made of only the electron accepting material. It is preferable to adopt a configuration. When the mixed layer 34 is in contact with the anode 10 or the cathode 20, excitons formed by light absorption in the mixed layer 34 and charges formed by charge separation at the interface between the electron donating material and the electron accepting material are present. Since quenching (deactivation) occurs, the conversion efficiency may decrease. By adopting a configuration in which the mixed layer is disposed between the layer made of only the electron-donating material and the layer made of only the electron-accepting material, the improvement in conversion efficiency appears more remarkably.

また、本発明では混合層に、P/Nが1よりも小さい部分があることが好ましい。例えば、混合層が積層体である場合、最も陰極側に積層される混合層のP/Nが1未満であることが好ましく、特に、0.5以下であることが好ましい。これにより、混合層34において電子輸送を担う電子受容性材料の重量比が、陰極側に向けて大きくなるため、電子輸送に伴う障壁が小さくなる。
尚、混合層の重量混合比P/Nが、限りなく0に近づくと電子受容性材料(N)のみの層と同様となり、本発明の効果は期待できない。しかしながら、少なくとも混合層において、P/Nが0.001以上であれば、本発明の効果が得られることを確認している。
In the present invention, the mixed layer preferably has a portion where P / N is smaller than 1. For example, when the mixed layer is a laminate, the P / N of the mixed layer laminated on the most cathode side is preferably less than 1, and particularly preferably 0.5 or less. Thereby, since the weight ratio of the electron-accepting material responsible for electron transport in the mixed layer 34 increases toward the cathode side, the barrier associated with electron transport decreases.
When the weight mixing ratio P / N of the mixed layer is as close to 0 as possible, it becomes the same as the layer of only the electron-accepting material (N), and the effect of the present invention cannot be expected. However, it has been confirmed that the effect of the present invention can be obtained if P / N is 0.001 or more in at least the mixed layer.

本発明の光電変換素子は、一対の電極の間に上記要件を満たす混合層を含有する構造であればよく、その他の構造は特に限定されない。例えば、必要に応じて、電極と有機層の間にバッファー層を設けてもよい。具体的には、安定な絶縁性基板上に下記の構成を有する構造が挙げられる。   The photoelectric conversion element of this invention should just be a structure containing the mixed layer which satisfy | fills the said requirements between a pair of electrodes, and another structure is not specifically limited. For example, a buffer layer may be provided between the electrode and the organic layer as necessary. Specifically, a structure having the following configuration on a stable insulating substrate can be given.

(1)下部電極/混合層/上部電極
(2)下部電極/P層/混合層/上部電極
(3)下部電極/バッファー層/混合層/上部電極
(4)下部電極/バッファー層/P層/混合層/上部電極
(5)下部電極/混合層/N層/上部電極
(6)下部電極/混合層/バッファー層/上部電極
(7)下部電極/混合層/N層/バッファー層/上部電極
(8)下部電極/P層/混合層/N層/上部電極(図1)
(9)下部電極/バッファー層/P層/混合層/N層/上部電極
(10)下部電極/P層/混合層/N層/バッファー層/上部電極
(11)下部電極/バッファー層/P層/混合層/N層/バッファー層/上部電極
尚、上記の構成例では下部電極が陽極に、上部電極が陰極に相当する。
(1) Lower electrode / mixed layer / upper electrode (2) Lower electrode / P layer / mixed layer / upper electrode (3) Lower electrode / buffer layer / mixed layer / upper electrode (4) Lower electrode / buffer layer / P layer / Mixed layer / Upper electrode (5) Lower electrode / Mixed layer / N layer / Upper electrode (6) Lower electrode / Mixed layer / Buffer layer / Upper electrode (7) Lower electrode / Mixed layer / N layer / Buffer layer / Upper Electrode (8) Lower electrode / P layer / mixed layer / N layer / upper electrode (FIG. 1)
(9) Lower electrode / buffer layer / P layer / mixed layer / N layer / upper electrode (10) Lower electrode / P layer / mixed layer / N layer / buffer layer / upper electrode (11) Lower electrode / buffer layer / P Layer / mixed layer / N layer / buffer layer / upper electrode In the above configuration example, the lower electrode corresponds to the anode and the upper electrode corresponds to the cathode.

本発明の光電変換素子の部材や材料については、例えば、有機薄膜太陽電池で使用される公知のものを使用することができる。以下、各構成部材について簡単に説明する。   About the member and material of the photoelectric conversion element of this invention, the well-known thing used with an organic thin-film solar cell can be used, for example. Hereinafter, each component will be briefly described.

1.電極(陽極及び陰極)
電極の材料は特に制限はなく、公知の導電性材料を使用できる。例えば、陽極としては、錫ドープ酸化インジウム(ITO)、フッ素ドープ酸化錫(FTO)、金(Au)、オスミウム(Os),パラジウム(Pd)等の金属が使用できる。
一方、陰極としては、銀(Ag)、アルミニウム(Al)、インジウム(IN),カルシウム(Ca),白金(Pt)リチウム(Li)等の金属やMg:Ag、Mg:INやAl:Li等の二成分金属系,さらには、上述した陽極の例示材料が使用できる。
1. Electrodes (anode and cathode)
The material for the electrode is not particularly limited, and a known conductive material can be used. For example, a metal such as tin-doped indium oxide (ITO), fluorine-doped tin oxide (FTO), gold (Au), osmium (Os), palladium (Pd) can be used as the anode.
On the other hand, as the cathode, metals such as silver (Ag), aluminum (Al), indium (IN), calcium (Ca), platinum (Pt) lithium (Li), Mg: Ag, Mg: IN, Al: Li, etc. In addition, the above-described examples of anode materials can be used.

尚、高効率の光電変換特性を得るためには、光電変換素子の少なくとも一方の面は太陽光スペクトルにおいて充分透明にすることが望ましい。透明電極は、公知の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保するように形成する。受光面の電極の光透過率は10%以上とすることが望ましい。一対の電極構成の好ましい構成では、電極部の一方が仕事関数の大きな金属を含み、他方は仕事関数の小さな金属を含む。   In order to obtain highly efficient photoelectric conversion characteristics, it is desirable that at least one surface of the photoelectric conversion element be sufficiently transparent in the sunlight spectrum. The transparent electrode is formed using a known conductive material so as to ensure predetermined translucency by a method such as vapor deposition or sputtering. The light transmittance of the electrode on the light receiving surface is preferably 10% or more. In a preferred configuration of the pair of electrode configurations, one of the electrode portions includes a metal having a high work function, and the other includes a metal having a low work function.

2.電子供与性材料(P)
電子供与性材料は、P層及び混合層で使用される。正孔受容体としての機能を有する化合物であり、正孔移動度が高い材料、具体的には、10−6(cm/V・s)以上(測定条件:陽極/電子供与性材料/陰極のサンドイッチ型構造によるTime−of−Flight(TOF)法)が好ましい。
2. Electron donating material (P)
The electron donating material is used in the P layer and the mixed layer. A compound having a function as a hole acceptor and having a high hole mobility, specifically, 10 −6 (cm 2 / V · s) or more (measurement conditions: anode / electron donating material / cathode) (Time-of-Flight (TOF) method) having a sandwich type structure is preferred.

電子供与性材料としては、例えば、N,N’−ビス(3−トリル)−N,N’−ジフェニルベンジジン(mTPD)、N,N’−ジナフチル−N,N’−ジフェニルベンジジン(NPD)、4,4’,4’’−トリス(フェニル−3−トリルアミノ)トリフェニルアミン(MTDATA)等に代表されるアミン化合物、フタロシアニン(Pc)、銅フタロシアニン(CuPc)、亜鉛フタロシアニン(ZnPc)、チタニルフタロシアニン(TiOPc)等のフタロシアニン類、オクタエチルポルフィリン(OEP)、白金オクタエチルポルフィリン(PtOEP)、亜鉛テトラフェニルポルフィリン(ZNTPP)等に代表されるポルフィリン類が挙げられる。
また、溶液による塗布プロセスを用いる高分子化合物であれば、メトキシエチルヘキシロキシフェニレンビニレン(MEHPPV)、ポリヘキシルチオフェン(P3HT)、シクロペンタジチオフェン‐ベンゾチアジアゾール(PCPDTBT)等の主鎖型共役高分子類、ポリビニルカルバゾール等に代表される側鎖型高分子類等が挙げられる。
Examples of the electron donating material include N, N′-bis (3-tolyl) -N, N′-diphenylbenzidine (mTPD), N, N′-dinaphthyl-N, N′-diphenylbenzidine (NPD), Amine compounds represented by 4,4 ′, 4 ″ -tris (phenyl-3-tolylamino) triphenylamine (MTDATA), etc., phthalocyanine (Pc), copper phthalocyanine (CuPc), zinc phthalocyanine (ZnPc), titanyl phthalocyanine Examples include phthalocyanines such as (TiOPc), porphyrins represented by octaethylporphyrin (OEP), platinum octaethylporphyrin (PtOEP), zinc tetraphenylporphyrin (ZNTPP), and the like.
Moreover, if it is a high molecular compound using the application | coating process by a solution, main chain type conjugated polymers, such as methoxyethyl hexyloxy phenylene vinylene (MEHPPV), polyhexyl thiophene (P3HT), cyclopentadithiophene-benzothiadiazole (PCPDTBT) And side chain polymers represented by polyvinylcarbazole and the like.

3.電子受容性材料(N)
電子受容性材料は、N層及び混合層で使用される。正孔供与体としての機能を有する化合物であり、電子移動度が高い材料、具体的には、10−6(cm/V・s)以上(測定条件:陽極/電子受容性材料/陰極のサンドイッチ型構造によるTime−of−Flight(TOF)法)が好ましい。
3. Electron-accepting material (N)
The electron accepting material is used in the N layer and the mixed layer. A compound having a function as a hole donor and having a high electron mobility, specifically, 10 −6 (cm 2 / V · s) or more (measurement conditions: anode / electron-accepting material / cathode The Time-of-Flight (TOF) method) having a sandwich structure is preferable.

電子受容性材料として、例えば、有機化合物であれば、C60、C70等のフラーレン誘導体、カーボンナノチューブ、ペリレン誘導体、多環キノン、キナクリドン等、高分子系ではCN−ポリ(フェニレン−ビニレン)、MEH−CN−PPV、−CN基又はCF基含有ポリマー、ポリ(フルオレン)誘導体等を挙げることができる。尚、電子親和力が小さい材料が好ましい。電子親和力の小さい材料をN層として組み合わせることで充分な開放端電圧を実現することができる。 As the electron accepting material, for example, as long as it is an organic compound, fullerene derivatives such as C 60, C 70, carbon nanotube, perylene derivatives, polycyclic quinone, quinacridone, the polymeric CN- poly (phenylene - vinylene), MEH-CN-PPV, -CN group or CF 3 group-containing polymers, mention may be made of poly (fluorene) derivatives. A material having a low electron affinity is preferred. A sufficient open-circuit voltage can be realized by combining materials having a low electron affinity as the N layer.

また、無機化合物であれば、N型特性の無機半導体化合物を挙げることができる。具体的には、N−Si、GaAs、CdS、PbS、CdSe、INP、Nb,WO,Fe等のドーピング半導体及び化合物半導体、又、二酸化チタン(TiO)、一酸化チタン(TiO)、三酸化二チタン(Ti)等の酸化チタン、酸化亜鉛(ZNO)、酸化スズ(SNO)等の導電性酸化物が挙げられ、これらのうちの1種又は2種以上を組み合わせて用いてもよい。好ましくは、酸化チタン、特に好ましくは、二酸化チタンを用いる。 In addition, as long as it is an inorganic compound, an inorganic semiconductor compound having N-type characteristics can be given. Specifically, doping semiconductors and compound semiconductors such as N—Si, GaAs, CdS, PbS, CdSe, INP, Nb 2 O 5 , WO 3 , Fe 2 O 3 , titanium dioxide (TiO 2 ), monoxide Examples thereof include titanium oxide such as titanium (TiO) and dititanium trioxide (Ti 2 O 3 ), and conductive oxides such as zinc oxide (ZNO) and tin oxide (SNO 2 ). You may use combining more than a seed. Preference is given to using titanium oxide, particularly preferably titanium dioxide.

本発明の混合層は、上記電子供与性材料(P)と電子受容性材料(N)の組み合わせによって構成される。材料は特に限定されず、上記例示化合物のいずれも用いることができる。
尚、P層で使用する電子供与性材料と、混合層で使用する電子供与性材料は、同じであっても、また、異なっていてもよい。同様に、N層で使用する電子受容性材料と、混合層で使用する電子受容性材料は、同じであっても、また、異なっていてもよい。
The mixed layer of the present invention is composed of a combination of the electron donating material (P) and the electron accepting material (N). The material is not particularly limited, and any of the above exemplary compounds can be used.
The electron donating material used in the P layer and the electron donating material used in the mixed layer may be the same or different. Similarly, the electron-accepting material used in the N layer and the electron-accepting material used in the mixed layer may be the same or different.

4.バッファー層
一般に、光電変換素子は総膜厚が薄いことが多く、そのため上部電極と下部電極が短絡し、素子の歩留まりが低下することが多い。このような場合には、バッファー層を積層することが好ましい。また、発生した電流を効率よく外部に取り出すためにもバッファー層を設けた方が好ましい。
4). Buffer layer In general, the total thickness of a photoelectric conversion element is often small. Therefore, the upper electrode and the lower electrode are short-circuited, and the yield of the element is often lowered. In such a case, it is preferable to stack a buffer layer. In addition, it is preferable to provide a buffer layer in order to efficiently extract the generated current to the outside.

バッファー層に好ましい化合物としては、膜厚を厚くしても短絡電流が低下しないようにキャリア移動度が充分に高い化合物が好ましい。例えば、低分子化合物であれば下記に示すNTCDAに代表される芳香族環状酸無水物等が挙げられ、高分子化合物であればポリ(3,4−エチレンジオキシ)チオフェン:ポリスチレンスルホネート(PEDOT:PSS)、ポリアニリン:カンファースルホン酸(PANI:CSA)等に代表される公知の導電性高分子等が挙げられる。

Figure 2011023594
As a preferable compound for the buffer layer, a compound having sufficiently high carrier mobility is preferable so that the short-circuit current does not decrease even when the film thickness is increased. For example, if it is a low molecular compound, the aromatic cyclic acid anhydride represented by NTCDA shown below etc. will be mentioned, and if it is a high molecular compound, poly (3,4-ethylenedioxy) thiophene: polystyrene sulfonate (PEDOT: PSS), polyaniline: camphorsulfonic acid (PANI: CSA), and other known conductive polymers.
Figure 2011023594

バッファー層には、励起子が電極まで拡散して失活してしまうのを防止する役割を持たせることも可能である。このように励起子阻止層としてバッファー層を挿入することは、高効率化のために有効である。励起子阻止層は陽極側、陰極側のいずれにも挿入することができ、両方同時に挿入することも可能である。
励起子阻止層として好ましい材料としては、例えば、有機EL素子用途で公知な正孔障壁層用材料又は電子障壁層用材料等が挙げられる。正孔障壁層として好ましい材料は、イオン化ポテンシャルが充分に大きい化合物であり、電子障壁層として好ましい材料は、電子親和力が充分に小さい化合物である。具体的には有機EL用途で公知な材料であるバソクプロイン(BCP)、バソフェナントロリン(BPheN)等が陰極側の正孔障壁層材料として挙げられる。

Figure 2011023594
The buffer layer can also have a role of preventing excitons from diffusing to the electrode and being deactivated. Inserting a buffer layer as an exciton blocking layer in this way is effective for increasing efficiency. The exciton blocking layer can be inserted on either the anode side or the cathode side, or both can be inserted simultaneously.
As a preferable material for the exciton blocking layer, for example, a well-known material for a hole barrier layer or a material for an electron barrier layer for use in an organic EL device can be used. A preferable material for the hole blocking layer is a compound having a sufficiently large ionization potential, and a preferable material for the electron blocking layer is a compound having a sufficiently small electron affinity. Specifically, bathocuproin (BCP), bathophenanthroline (BPheN), and the like, which are well-known materials for organic EL applications, can be used as the cathode-side hole barrier layer material.
Figure 2011023594

さらに、バッファー層には、上記N層材料として例示した無機半導体化合物を用いてもよい。又、P型無機半導体化合物としてはCdTe、P−Si、SiC、GaAs、WO等を用いることができる。 Furthermore, you may use the inorganic semiconductor compound illustrated as said N layer material for a buffer layer. As the P-type inorganic semiconductor compounds may be used CdTe, P-Si, SiC, GaAs, and WO 3 or the like.

5.基板
基板は、機械的、熱的強度を有し、透明性を有するものが好ましい。例えば、ガラス基板及び透明性樹脂フィルムがある。透明性樹脂フィルムとしては、ポリエチレン、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアクリレート、ポリ塩化ビニル、ポリビニルアルコール、ポリビニルブチラール、ナイロン、ポリエーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テトラフルオロエチレン−エチレン共重合体、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、ポリクロロトリフルオロエチレン、ポリビニリデンフルオライド、ポリエステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド等が挙げられる。
5. Substrate The substrate preferably has mechanical and thermal strength and transparency. For example, there are a glass substrate and a transparent resin film. Transparent resin films include polyethylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate, polyvinyl chloride, polyvinyl alcohol, polyvinyl butyral, nylon, polyether ether ketone. , Polysulfone, polyethersulfone, tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer, polyvinyl fluoride, tetrafluoroethylene-ethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, polychlorotrifluoroethylene, Polyvinylidene fluoride, polyester, polycarbonate, polyurethane, polyimide, polyetherimide and the like can be mentioned.

本発明の光電変換素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法や、スピンコーティング、ディップコート、キャスティング、ロールコート、フローコーティング、インクジェット等の湿式成膜法を適用することができる。上記いずれの成膜プロセス、あるいは組み合わせを適用することができるが、有機薄膜は水分・酸素の影響を受けるため、より好ましくは、成膜プロセスが統一されていることが望ましい。   Each layer of the photoelectric conversion element of the present invention is formed by a dry film formation method such as vacuum deposition, sputtering, plasma, or ion plating, or a wet film formation such as spin coating, dip coating, casting, roll coating, flow coating, or inkjet. The law can be applied. Any of the above-described film formation processes or combinations can be applied. However, since the organic thin film is affected by moisture and oxygen, it is more preferable that the film formation process is unified.

各層の膜厚は特に限定されず、適切な膜厚に設定する。一般に有機薄膜の励起子拡散長は短いことが知られているため、膜厚が厚すぎると励起子がヘテロ界面に到達する前に失活してしまうため光電変換効率が低くなる。膜厚が薄すぎるとピンホール等が発生してしまうため、充分なダイオード特性が得られないため、変換効率が低下する。通常の膜厚は1nmから10μmの範囲が適しているが、5nmから0.2μmの範囲が好ましい。   The film thickness of each layer is not particularly limited, and is set to an appropriate film thickness. Since it is generally known that the exciton diffusion length of an organic thin film is short, if the film thickness is too thick, the exciton is deactivated before reaching the heterointerface, resulting in low photoelectric conversion efficiency. If the film thickness is too thin, pinholes and the like are generated, so that sufficient diode characteristics cannot be obtained, resulting in a decrease in conversion efficiency. The normal film thickness is suitably in the range of 1 nm to 10 μm, but is preferably in the range of 5 nm to 0.2 μm.

乾式成膜法の場合、公知の抵抗加熱法が好ましく、混合層の形成には、例えば、複数の蒸発源からの同時蒸着による成膜方法が好ましい。さらに好ましくは、成膜時に基板温度を制御する。   In the case of the dry film forming method, a known resistance heating method is preferable, and for forming the mixed layer, for example, a film forming method by simultaneous vapor deposition from a plurality of evaporation sources is preferable. More preferably, the substrate temperature is controlled during film formation.

湿式成膜法の場合、各層を形成する材料を、適切な溶媒に溶解又は分散させて有機溶液を調製し、薄膜を形成するが、任意の溶媒を使用できる。例えば、ジクロロメタン、ジクロロエタン、クロロホルム、四塩化炭素、テトラクロロエタン、トリクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン等のハロゲン系炭化水素系溶媒や、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソール等のエーテル系溶媒、メタノールやエタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール等のアルコール系溶媒、ベンゼン、トルエン、キシレン、エチルベンゼン、ヘキサン、オクタン、デカン、テトラリン等の炭化水素系溶媒、酢酸エチル、酢酸ブチル、酢酸アミル等のエステル系溶媒等が挙げられる。なかでも、炭化水素系溶媒又はエーテル系溶媒が好ましい。また、これらの溶媒は単独で使用しても複数混合して用いてもよい。尚、使用可能な溶媒は、これらに限定されるものではない。
また、湿式成膜により形成した薄膜中の溶媒除去のために、適切な温度で加熱してもよい。
In the case of a wet film forming method, a material for forming each layer is dissolved or dispersed in an appropriate solvent to prepare an organic solution to form a thin film, and any solvent can be used. For example, halogenated hydrocarbon solvents such as dichloromethane, dichloroethane, chloroform, carbon tetrachloride, tetrachloroethane, trichloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, anisole, methanol, Alcohol solvents such as ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, ethyl cellosolve, ethylene glycol, hydrocarbon solvents such as benzene, toluene, xylene, ethylbenzene, hexane, octane, decane, tetralin, Examples include ester solvents such as ethyl acetate, butyl acetate, and amyl acetate. Of these, hydrocarbon solvents or ether solvents are preferable. These solvents may be used alone or in combination. In addition, the solvent which can be used is not limited to these.
Moreover, you may heat at appropriate temperature for the solvent removal in the thin film formed by wet film-forming.

本発明においては、光電変換素子のいずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用してもよい。使用の可能な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリウレタン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース等の絶縁性樹脂及びそれらの共重合体、ポリ−N−ビニルカルバゾール、ポリシラン等の光導電性樹脂、ポリチオフェン、ポリピロール等の導電性樹脂を挙げられる。   In the present invention, in any organic thin film layer of the photoelectric conversion element, an appropriate resin or additive may be used for improving the film formability and preventing pinholes in the film. Usable resins include polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose and other insulating resins and copolymers thereof, poly-N-vinyl. Examples thereof include photoconductive resins such as carbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.

また、有機薄膜層は必要により、酸化防止剤、紫外線吸収剤、可塑剤等の添加剤を含有してもよい。   Moreover, the organic thin film layer may contain additives such as an antioxidant, an ultraviolet absorber, and a plasticizer as necessary.

実施例1
25mm×75mm×0.7mm厚のITO透明電極付きガラス基板をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間実施した。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着した。
下部電極である透明電極ラインが形成されている側の面上に、透明電極を覆うようにして電子供与性であるP型材料ZnPcを1Å/s、電子受容性であるN型材料C60を0.25Å/sで共蒸着し、25nmの第1の混合層(I層:重量混合比P/N=4)を形成した。
続けて、I層上にZnPcを0.25Å/s、C60を1Å/sで共蒸着し25nmの第2の混合層(I層:重量混合比P/N=0.25)を形成した。
以上により、P/Nの異なる2層からなる混合層(50nm厚)を形成した。
混合層の上にバッファー層として、10nmのバソクプロイン(BCP)を抵抗加熱蒸着により1Å/sで成膜した。最後に、連続して対向電極として金属Alを膜厚80nm蒸着させ、有機薄膜太陽電池を形成した。素子面積は0.5cmであった。

Figure 2011023594
Example 1
A glass substrate with an ITO transparent electrode having a thickness of 25 mm × 75 mm × 0.7 mm was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes. The glass substrate with a transparent electrode line after washing was mounted on a substrate holder of a vacuum deposition apparatus.
On the surface of the lower electrode on which the transparent electrode line is formed, an electron donating P-type material ZnPc is 1 覆 う / s and an electron accepting N-type material C 60 is formed so as to cover the transparent electrode. Co-evaporation was performed at 0.25 L / s to form a 25 nm first mixed layer (I 1 layer: weight mixing ratio P / N = 4).
Subsequently, 0.25 Å / s to ZnPc one layer on I, the second mixed layer of 25nm were co-evaporated C 60 at 1 Å / s: the (I 2 layers weight mixing ratio P / N = 0.25) Formed.
Thus, a mixed layer (50 nm thickness) composed of two layers having different P / N was formed.
On the mixed layer, 10 nm bathocuproine (BCP) was deposited at 1 Å / s by resistance heating vapor deposition as a buffer layer. Finally, metal Al was deposited in a thickness of 80 nm continuously as a counter electrode to form an organic thin film solar cell. The element area was 0.5 cm 2 .
Figure 2011023594

実施例2
実施例1と同様に洗浄したITO透明電極付きガラス基板を使用し、下部電極である透明電極ラインが形成されている側の面上に、透明電極を覆うようにしてZnPcを抵抗加熱蒸着により1Å/sで成膜しP層とした(膜厚15nm)。
続けて、ZnPc層上に、ZnPcを1Å/s、C60を0.25Å/sで共蒸着し7.5nmのI層(重量混合比P/N=4)を形成した。続けて、I層上にZnPcを0.25Å/s、C60を1Å/sで共蒸着し7.5nmのI層(重量混合比P/N=0.25)を形成した。以上により、P/Nの異なる2層からなる混合層(15nm厚)を形成した。
混合層の上に、C60を抵抗加熱蒸着により1Å/sで成膜し、N層とした(膜厚45nm)。
以下、実施例1と同様にして、バッファー層及び対向電極を形成し、有機薄膜太陽電池を形成した。素子面積は0.5cmであった。
Example 2
Using a glass substrate with an ITO transparent electrode cleaned in the same manner as in Example 1, ZnPc was coated on the surface on the side where the transparent electrode line as the lower electrode was formed by resistance heating vapor deposition so as to cover the transparent electrode. / S was formed into a P layer (film thickness 15 nm).
Subsequently, on the ZnPc layer was formed by co-evaporation ZnPc 1 Å / s, the C 60 at 0.25 Å / s I 1 layer of 7.5nm (weight mixing ratio P / N = 4). Subsequently, to form I 2 layers of 7.5nm were co-evaporated ZnPc one layer on I 0.25 Å / s, the C 60 at 1 Å / s (weight mixing ratio P / N = 0.25). In this way, a mixed layer (15 nm thickness) composed of two layers having different P / N was formed.
On the mixed layer, deposited by 1 Å / s by resistance heating deposition C 60, and an N layer (thickness 45 nm).
Thereafter, the buffer layer and the counter electrode were formed in the same manner as in Example 1 to form an organic thin film solar cell. The element area was 0.5 cm 2 .

実施例3
混合層を以下のように形成した他は、実施例2と同様にして有機薄膜太陽電池を形成した。
混合層を、P/Nの異なる3層からなる構成とした。具体的に、ZnPcを1Å/s、C60を0.25Å/sで共蒸着し5nmのI層(重量混合比P/N=4)を形成した。次に、I層上にZnPcを1Å/s、C60を1Å/sで共蒸着し5nmのI層(重量混合比P/N=1)を形成した。さらに、I層上にZnPcを0.25Å/s、C60を1Å/sで共蒸着し5nmのI層(重量混合比P/N=0.25)を形成した。
以上により、計15nm厚の混合層を形成した。
Example 3
An organic thin film solar cell was formed in the same manner as in Example 2 except that the mixed layer was formed as follows.
The mixed layer was composed of three layers having different P / N. Specifically, to form ZnPc a 1 Å / s, I 1 layer of co-deposited to 5nm to C 60 in 0.25 Å / s (weight mixing ratio P / N = 4). Was then formed 1 Å / s to ZnPc one layer on I, I 2 layers of co-deposited to 5nm to C 60 with 1 Å / s (weight mixing ratio P / N = 1). Further, on the I 2 layer, ZnPc was co-evaporated at 0.25 Å / s and C 60 was 1 Å / s to form a 5 nm I 3 layer (weight mixing ratio P / N = 0.25).
As a result, a mixed layer having a total thickness of 15 nm was formed.

実施例4
混合層を以下のように形成した他は、実施例2と同様にして有機薄膜太陽電池を形成した。
混合層を、P/Nの異なる4層からなる構成とした。具体的に、ZnPcを1Å/s、C60を0.25Å/sで共蒸着し3.75nmのI層(重量混合比P/N=4)を形成した。続けて、I層上にZnPcを1Å/s、C60を0.5Å/sで共蒸着し3.75nmのI層(重量混合比P/N=2)を形成した。続けて、このI層上にZnPcを0.5Å/s、C60を1Å/sで共蒸着し3.75nmのI層(重量混合比P/N=0.5)を形成した。続けて、このI層上にZnPcを0.25Å/s、C60を1Å/sで共蒸着し3.75nmのI層(重量混合比P/N=0.25)を形成した。
以上により、計15nm厚の混合層を形成した。
Example 4
An organic thin film solar cell was formed in the same manner as in Example 2 except that the mixed layer was formed as follows.
The mixed layer was constituted by four layers having different P / N. Specifically, to form by co-evaporation ZnPc 1 Å / s, the C 60 at 0.25 Å / s I 1 layer of 3.75nm (weight mixing ratio P / N = 4). Subsequently, to form the I 2 layer of 3.75nm were co-evaporated ZnPc one layer on I 1 Å / s, the C 60 at 0.5 Å / s (weight mixing ratio P / N = 2). Subsequently, ZnPc was co-evaporated at 0.5 Å / s and C60 was 1 Å / s on this I 2 layer to form an I 3 layer (weight mixing ratio P / N = 0.5) of 3.75 nm. Subsequently, to form the I 4 layers of 3.75nm were co-evaporated ZnPc this I 3 layers on 0.25 Å / s, the C 60 at 1 Å / s (weight mixing ratio P / N = 0.25).
As a result, a mixed layer having a total thickness of 15 nm was formed.

実施例5
混合層を以下のように形成した他は、実施例2と同様にして有機薄膜太陽電池を形成した。
混合層を、P/Nの異なる5層からなる構成とした。具体的に、ZnPcを1Å/s、C60を0.25Å/sで共蒸着し3nmのI層(重量混合比P/N=4)を形成した。続けて、I層上にZnPcを1Å/s、C60を0.5Å/sで共蒸着し3nmのI層(重量混合比P/N=2)を形成した。続けて、このI層上にZnPcを1Å/s、C60を1Å/sで共蒸着し3nmのI層(重量混合比P/N=1)を形成した。続けて、このI層上にZnPcを0.5Å/s、C60を1Å/sで共蒸着し3nmのI層(重量混合比P/N=0.5)を形成した。続けて、このI層上にZnPcを0.25Å/s、C60を1Å/sで共蒸着し3nmのI層(重量混合比P/N=0.25)を形成した。
以上により、計15nm厚の混合層を形成した。
Example 5
An organic thin film solar cell was formed in the same manner as in Example 2 except that the mixed layer was formed as follows.
The mixed layer was composed of five layers having different P / N. Specifically, to form ZnPc a 1 Å / s, I 1 layer of co-deposited to 3nm to C 60 in 0.25 Å / s (weight mixing ratio P / N = 4). Subsequently, to form the I 2 layer of 3nm were co-evaporated ZnPc one layer on I 1 Å / s, the C 60 at 0.5 Å / s (weight mixing ratio P / N = 2). Subsequently, the formation of the a ZnPc the I 2 layer on 1Å / s, 3nm I 3 layer by co-evaporation C 60 at 1 Å / s (weight mixing ratio P / N = 1). Subsequently, the formation of the I 3 and ZnPc on layer 0.5Å / s, 3nm I 4 layer by co-evaporation C 60 at 1 Å / s (weight mixing ratio P / N = 0.5). Subsequently, the formation of the I 4 a ZnPc on layer 0.25 Å / s, I 5 layers of co-deposited to 3nm to C 60 with 1 Å / s (weight mixing ratio P / N = 0.25).
As a result, a mixed layer having a total thickness of 15 nm was formed.

比較例1
混合層を以下のように形成した他は、実施例1と同様にして有機薄膜太陽電池を形成した。
混合層を、1層からなる構成とした。具体的に、ZnPcを1Å/s、C60を1Å/sで共蒸着して形成した(50nm厚:重量混合比P/N=1)。
Comparative Example 1
An organic thin film solar cell was formed in the same manner as in Example 1 except that the mixed layer was formed as follows.
The mixed layer has a structure composed of one layer. Specifically, it was formed by co-evaporation of ZnPc 1 Å / s, the C 60 at 1 Å / s (50 nm thick: mixing ratio by weight P / N = 1).

比較例2
混合層を以下のように形成した他は、実施例2と同様にして有機薄膜太陽電池を形成した。
混合層を、1層からなる構成とした。具体的に、ZnPcを1Å/s、C60を1Å/sで共蒸着して形成した(15nm厚:重量混合比P/N=1)。
Comparative Example 2
An organic thin film solar cell was formed in the same manner as in Example 2 except that the mixed layer was formed as follows.
The mixed layer has a structure composed of one layer. Specifically, it was formed by co-evaporation of ZnPc 1 Å / s, the C 60 at 1 Å / s (15 nm thick: mixing ratio by weight P / N = 1).

比較例3
混合層を以下のように形成した他は、実施例2と同様にして有機薄膜太陽電池を形成した。
混合層を、以下の3層からなる構成とした。具体的に、ZnPcを1Å/s、C60を1Å/sで共蒸着し5nmのI層(重量混合比P/N=1)を形成した。続けて、このI層上にZnPcを1Å/s、C60を0.5Å/sで共蒸着し5nmのI層(重量混合比P/N=2)を形成した。続けて、このI層上にZnPcを1.5Å/s、C60を0.5Å/sで共蒸着し5nmのI層(重量混合比P/N=3)を形成した。
以上により、計15nm厚の混合層を形成した。
Comparative Example 3
An organic thin film solar cell was formed in the same manner as in Example 2 except that the mixed layer was formed as follows.
The mixed layer was composed of the following three layers. Specifically, to form ZnPc a 1 Å / s, I 1 layer of co-deposited to 5nm to C 60 with 1 Å / s (weight mixing ratio P / N = 1). Subsequently, the formation of the I 1 a ZnPc on layer 1 Å / s, I 2 layers of co-deposited to 5nm to C 60 with 0.5 Å / s (weight mixing ratio P / N = 2). Subsequently, the formation of the a ZnPc the I 2 layer on 1.5Å / s, 5nm I 3 layer by co-evaporation C 60 at 0.5 Å / s (weight mixing ratio P / N = 3).
As a result, a mixed layer having a total thickness of 15 nm was formed.

比較例4
混合層を以下のように形成した他は、実施例2と同様にして有機薄膜太陽電池を形成した。
混合層を、以下の2層からなる構成とした。具体的に、ZnPcを1.5Å/s、C60を0.5Å/sで共蒸着し7.5nmのI層(重量混合比P/N=3)を形成した。続けて、このI層上にZnPcを1Å/s、C60を1Å/sで共蒸着し7.5nmのI層(重量混合比P/N=1)を形成した。
以上により、計15nm厚の混合層を形成した。
Comparative Example 4
An organic thin film solar cell was formed in the same manner as in Example 2 except that the mixed layer was formed as follows.
The mixed layer was composed of the following two layers. Specifically, to form by co-evaporation ZnPc 1.5 Å / s, the C 60 at 0.5 Å / s I 1 layer of 7.5nm (weight mixing ratio P / N = 3). Subsequently, the formation of the I 1 a ZnPc on layer 1 Å / s, I 2 layers of 7.5nm were co-evaporated to C 60 with 1 Å / s (weight mixing ratio P / N = 1).
As a result, a mixed layer having a total thickness of 15 nm was formed.

比較例5
混合層を以下のように形成した他は、実施例2と同様にして有機薄膜太陽電池を形成した。
混合層を、以下の3層からなる構成とした。具体的に、ZnPcを1.5Å/s、C60を0.5Å/sで共蒸着し5nmのI層(重量混合比P/N=3)を形成した。続けて、このI層上にZnPcを1Å/s、C60を1Å/sで共蒸着し5nmのI層(重量混合比P/N=1)を形成した。続けて、このI層上にZnPcを0.5Å/s、C60を1.5Å/sで共蒸着し5nmのI層(重量混合比P/N=0.33)を形成した。
以上により、計15nm厚の混合層を形成した。
Comparative Example 5
An organic thin film solar cell was formed in the same manner as in Example 2 except that the mixed layer was formed as follows.
The mixed layer was composed of the following three layers. Specifically, to form ZnPc a 1.5 Å / s, I 1 layer of co-deposited to 5nm to C 60 with 0.5 Å / s (weight mixing ratio P / N = 3). Subsequently, the formation of the I 1 a ZnPc on layer 1 Å / s, I 2 layers of 5nm were co-evaporated to C 60 with 1 Å / s (weight mixing ratio P / N = 1). Subsequently, the formation of the I 2 a ZnPc on layer 0.5Å / s, 5nm I 3 layer by co-evaporation C 60 at 1.5 Å / s (weight mixing ratio P / N = 0.33).
As a result, a mixed layer having a total thickness of 15 nm was formed.

上記各実施例及び比較例で作製した有機薄膜太陽電池について、作製直後の電池と60日間保存(室温、常湿、暗所下)した後の電池の、変換効率を測定し、また、変換効率の変化を比較することにより耐久性を評価した。
具体的に、作製直後の電池と、60日間保存後の電池について、それぞれ、AM(エアマス)1.5条件下(入射強度(Pin)100mW/cm)でI−V特性を測定し、開放端電圧(Voc)、短絡電流密度(Jsc)、曲線因子(FF)から、変換効率(η)を下記式によって導出した。
For the organic thin-film solar cells produced in the above examples and comparative examples, the conversion efficiency of the battery immediately after production and the battery after storage for 60 days (room temperature, normal humidity, in the dark) is measured, and the conversion efficiency Durability was evaluated by comparing the changes of.
Specifically, the IV characteristics were measured under conditions of AM (air mass) 1.5 (incident intensity (Pin) 100 mW / cm 2 ) for the battery immediately after fabrication and the battery after storage for 60 days, respectively. The conversion efficiency (η) was derived from the end voltage (Voc), short circuit current density (Jsc), and fill factor (FF) by the following equation.

Figure 2011023594
Figure 2011023594

下記式により、作製直後の電池と60日間保存後の電池の変換効率の減衰率(%)を算出し、耐久性を評価した。変換効率(η)の減衰率(%)が負の値(向上している)又は、小さい素子ほど優れた耐久性を有する。

Figure 2011023594
(式中、Freshは作製直後の電池の変換効率、Preservedは60日間保存後の電池の変換効率である。) The attenuation rate (%) of the conversion efficiency of the battery immediately after production and the battery after storage for 60 days was calculated according to the following formula, and durability was evaluated. A device having a negative value (improvement) in attenuation rate (%) of conversion efficiency (η) or a smaller element has better durability.
Figure 2011023594
(In the formula, Fresh is the conversion efficiency of the battery immediately after fabrication, and Preserved is the conversion efficiency of the battery after storage for 60 days.)

上記各実施例及び比較例で作製した有機薄膜太陽電池の、作製直後と60日間保存後の変換効率、及び変換効率の減衰率を表1に示す。   Table 1 shows the conversion efficiencies of the organic thin-film solar cells produced in the above Examples and Comparative Examples immediately after production and after storage for 60 days, and the conversion efficiency decay rate.

Figure 2011023594
Figure 2011023594

表1からわかるように、混合層が、電子供与性材料(P)と電子受容性材料(N)の重量混合比P/Nが3よりも大きい層を有し、重量混合比P/Nが陽極側から陰極側に向けて小さくなる構成とすることにより、比較例の素子に比べ高い変換効率が得られ、かつ、耐久性に優れていることが明らかになった。   As can be seen from Table 1, the mixed layer has a layer in which the weight mixing ratio P / N of the electron donating material (P) and the electron accepting material (N) is larger than 3, and the weight mixing ratio P / N is It has been clarified that by adopting a configuration that decreases from the anode side toward the cathode side, a higher conversion efficiency is obtained compared to the element of the comparative example and the durability is excellent.

本発明の光電変換素子は、有機薄膜太陽電池に限らず、例えば、フォトダイオード、撮像素子として使用できる。また、有機薄膜太陽電池は、時計、携帯電話及びモバイルパソコン等、各種装置、即ち、電化製品の電源として使用できる。   The photoelectric conversion element of the present invention is not limited to an organic thin film solar cell, and can be used as, for example, a photodiode or an imaging element. In addition, the organic thin film solar cell can be used as a power source for various devices such as watches, mobile phones, and mobile personal computers, that is, electrical appliances.

10 陽極
20 陰極
30 光電変換層
32 P層
34 混合層
36 N層
DESCRIPTION OF SYMBOLS 10 Anode 20 Cathode 30 Photoelectric conversion layer 32 P layer 34 Mixed layer 36 N layer

Claims (5)

陽極と陰極と、
前記陽極と陰極の間に光電変換層と、を含み、
前記光電変換層が、少なくとも、電子供与性材料(P)と電子受容性材料(N)を含有する混合層を有し、
前記混合層の最も陽極側部分の電子供与性材料(P)と電子受容性材料(N)の重量混合比(P/N)が、3よりも大きく、
前記混合層のP/Nが、陽極側から陰極側に向かって小さくなっている、光電変換素子。
An anode and a cathode;
A photoelectric conversion layer between the anode and the cathode,
The photoelectric conversion layer has at least a mixed layer containing an electron donating material (P) and an electron accepting material (N),
The weight mixing ratio (P / N) of the electron donating material (P) and the electron accepting material (N) in the most anode portion of the mixed layer is greater than 3,
The photoelectric conversion element in which P / N of the mixed layer decreases from the anode side toward the cathode side.
前記光電変換層は、
前記陽極と前記混合層の間に、電子供与性材料のみからなる層を有し、前記陰極と前記混合層の間に、電子受容性材料のみからなる層を有する、請求項1記載の光電変換素子。
The photoelectric conversion layer is
The photoelectric conversion according to claim 1, further comprising: a layer made of only an electron donating material between the anode and the mixed layer, and a layer made of only an electron accepting material between the cathode and the mixed layer. element.
前記混合層の最も陰極側部分のP/Nが、1よりも小さい請求項1又は2記載の光電変換素子。   3. The photoelectric conversion element according to claim 1, wherein P / N at the most cathode side portion of the mixed layer is smaller than 1. 4. 有機太陽電池である請求項1〜3のいずれかに記載の光電変換素子。   It is an organic solar cell, The photoelectric conversion element in any one of Claims 1-3. 請求項1〜4のいずれかに記載の光電変換素子を有する装置。   The apparatus which has a photoelectric conversion element in any one of Claims 1-4.
JP2009168026A 2009-07-16 2009-07-16 Photoelectric converting element Pending JP2011023594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009168026A JP2011023594A (en) 2009-07-16 2009-07-16 Photoelectric converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168026A JP2011023594A (en) 2009-07-16 2009-07-16 Photoelectric converting element

Publications (1)

Publication Number Publication Date
JP2011023594A true JP2011023594A (en) 2011-02-03

Family

ID=43633394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168026A Pending JP2011023594A (en) 2009-07-16 2009-07-16 Photoelectric converting element

Country Status (1)

Country Link
JP (1) JP2011023594A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014033165A (en) * 2012-08-06 2014-02-20 Fujitsu Ltd Photoelectric conversion element
JP2017195413A (en) * 2011-09-09 2017-10-26 三星電子株式会社Samsung Electronics Co.,Ltd. Photodiode
CN114284436A (en) * 2021-12-21 2022-04-05 广州光达创新科技有限公司 Organic-inorganic hybrid short-wave infrared photoelectric detector, array formed by same and related preparation method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310727A (en) * 2005-03-28 2006-11-09 Dainippon Printing Co Ltd Process for producing lamination, process for fabricating organic device and process for manufacturing organic thin film solar cell using it, and organic device and organic thin film solar cell
JP2007273939A (en) * 2005-09-06 2007-10-18 Kyoto Univ Organic thin-film photoelectric converter and method of manufacturing the same
JP2008218702A (en) * 2007-03-05 2008-09-18 Pioneer Electronic Corp Organic solar cell
JP2009132674A (en) * 2007-10-31 2009-06-18 Idemitsu Kosan Co Ltd Photoelectric converter material composed of acenaphthofluoranthene compound and photoelectric converter using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310727A (en) * 2005-03-28 2006-11-09 Dainippon Printing Co Ltd Process for producing lamination, process for fabricating organic device and process for manufacturing organic thin film solar cell using it, and organic device and organic thin film solar cell
JP2007273939A (en) * 2005-09-06 2007-10-18 Kyoto Univ Organic thin-film photoelectric converter and method of manufacturing the same
JP2008218702A (en) * 2007-03-05 2008-09-18 Pioneer Electronic Corp Organic solar cell
JP2009132674A (en) * 2007-10-31 2009-06-18 Idemitsu Kosan Co Ltd Photoelectric converter material composed of acenaphthofluoranthene compound and photoelectric converter using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6013016244; P. Sullivan et al.: 'Influence of codeposition on the performance of CuPc-C60 heterojunction photovoltaic devices' APPLIED PHYSICS LETTERS VOLUME 84, NUMBER 7, 2004, PP.1210-1212 *
JPN6013017642; Jun-ichi Nakamura et al.: 'Relation between carrier mobility and cell performance in bulkheterojunction solar cells consisting' APPLIED PHYSICS LETTERS Vol.87, 2005, PP.132105-1-132105-3 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017195413A (en) * 2011-09-09 2017-10-26 三星電子株式会社Samsung Electronics Co.,Ltd. Photodiode
US10043992B2 (en) 2011-09-09 2018-08-07 Samsung Electronics Co., Ltd. Photodiode
US11114634B2 (en) 2011-09-09 2021-09-07 Samsung Electronics Co., Ltd. Photodiode
JP2014033165A (en) * 2012-08-06 2014-02-20 Fujitsu Ltd Photoelectric conversion element
CN114284436A (en) * 2021-12-21 2022-04-05 广州光达创新科技有限公司 Organic-inorganic hybrid short-wave infrared photoelectric detector, array formed by same and related preparation method

Similar Documents

Publication Publication Date Title
JP5580976B2 (en) Organic thin film solar cell
JP5583809B2 (en) Organic solar cell
JP2013529843A (en) Photoactive device with multiple conductive layer systems
WO2012132447A1 (en) Organic thin-film solar cell and organic thin-film solar cell module
JP2009132674A (en) Photoelectric converter material composed of acenaphthofluoranthene compound and photoelectric converter using the same
WO2013035305A1 (en) Organic solar cell
JP5260379B2 (en) Organic thin film solar cell
JP2014038975A (en) Organic thin-film solar cell module
WO2013102985A1 (en) Organic photoelectric conversion element and organic thin-film solar battery module
JP2011023594A (en) Photoelectric converting element
JP5469943B2 (en) Photoelectric conversion element
JP2014090093A (en) Tandem type organic thin-film solar cell
JP2011233692A (en) Photoelectric converter, organic solar cell and photoelectric conversion apparatus using these
JP2014075476A (en) Organic solar cell
JP5463551B2 (en) Organic thin film manufacturing method, organic thin film using the manufacturing method, and organic photoelectric conversion element using the thin film
JP5499193B2 (en) Organic thin film solar cell
JP2012033606A (en) Photoelectric conversion element
JP2014077042A (en) Organic thin film solar cell material including dibenzopyrromethene compound
JP5560132B2 (en) Organic thin film solar cell material and organic thin film solar cell using the same
TW201408755A (en) Photovoltaic element
JP2013168413A (en) Photoelectric conversion element and method for manufacturing the same
JP2014195030A (en) Organic thin-film solar cell containing inclpc
JP2014194998A (en) Organic solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130906

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131008