JP2011022102A - Current sensor and method for manufacturing current sensor - Google Patents

Current sensor and method for manufacturing current sensor Download PDF

Info

Publication number
JP2011022102A
JP2011022102A JP2009169729A JP2009169729A JP2011022102A JP 2011022102 A JP2011022102 A JP 2011022102A JP 2009169729 A JP2009169729 A JP 2009169729A JP 2009169729 A JP2009169729 A JP 2009169729A JP 2011022102 A JP2011022102 A JP 2011022102A
Authority
JP
Japan
Prior art keywords
air
core
winding
core coil
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009169729A
Other languages
Japanese (ja)
Other versions
JP5290899B2 (en
Inventor
Yutaka Ashida
豊 芦田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2009169729A priority Critical patent/JP5290899B2/en
Publication of JP2011022102A publication Critical patent/JP2011022102A/en
Application granted granted Critical
Publication of JP5290899B2 publication Critical patent/JP5290899B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a current sensor which enables a reduction of manufacturing cost. <P>SOLUTION: The current sensor includes a plurality of first air-core coils 2(2a) which are prepared by winding a first conductor clockwise around a first winding core and also by winding a second conductor counterclockwise around the first conductor, and second air-core coils 3(3a) which are prepared in the same number as the air-core coils 2(2a) by winding a third conductor counterclockwise around a second winding core and also by winding a fourth conductor clockwise around the third conductor. The air-core coils 2(2a) and 3(3a) are arranged annularly so that one end part of each of the air-core coils 2(2a) and 3(3a) and the other end part of each of the air-core coils 3(3a) and 2(2a) adjacent to each of the air-core coils 2(2a) and 3(3a) are opposed to each other, and the first and fourth conductors are connected in series respectively so as to form a clockwise winding conductor line, while the second and third conductors are connected in series respectively so as to form a counterclockwise winding conductor line, and either of the end parts of both of the conductor lines is connected mutually. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、電流検出用の電流センサおよびその製造方法に関するものである。   The present invention relates to a current sensor for detecting current and a manufacturing method thereof.

この種の電流センサとして、ロゴスキーコイル等の各種空芯コイルを用いた電流センサが知られている。例えば、特開2004−235595号公報に開示されているコイルは、円環状の巻芯(空心コア)に対して、所定の巻回方向(例えば左巻き)で導線を巻き進んで巻初め箇所まで1周に亘って導線を巻回した後に、巻回方向を逆向き(この例では、右巻き)にして巻初め箇所までさらに1周に亘って巻回して製造されている。つまり、この公開公報に開示されているコイル(以下、「従来の電流センサ」ともいう)では、巻芯に対する1周目の巻回方向と2周目の巻回方向とが逆方向となっている。この場合、従来の電流センサでは、巻芯に対する1周目の巻回によって導線を巻初め箇所まで1周に亘って巻回した後に、2周目の巻回時において、1周目に巻回した導線の外側および内側を交互に通過するように巻回する製造方法が採用されている。   As this type of current sensor, a current sensor using various air-core coils such as a Rogowski coil is known. For example, in the coil disclosed in Japanese Patent Application Laid-Open No. 2004-235595, a lead wire is wound around a circular winding core (air core) in a predetermined winding direction (for example, left-handed winding) to the winding start position 1 After winding a conducting wire over the circumference, the winding direction is reversed (in this example, right-handed), and the winding is further wound over one round to the beginning of winding. That is, in the coil disclosed in this publication (hereinafter also referred to as “conventional current sensor”), the winding direction of the first turn and the winding direction of the second turn with respect to the winding core are opposite to each other. Yes. In this case, in the conventional current sensor, after winding the conducting wire over one turn to the winding start position by winding the first turn around the winding core, the winding is performed on the first turn when winding the second turn. A manufacturing method is adopted in which winding is performed so as to alternately pass outside and inside of the conducting wire.

特開2004−235595号公報(第2−5頁、第4−5図)JP 2004-235595 A (page 2-5, FIG. 4-5)

ところが、従来の電流センサには、以下の問題点が存在する。すなわち、従来の電流センサでは、巻芯に対する導線の2周目の巻回時に、1周目に巻回した導線の外側および内側を交互に通過するように巻回する方法によって製造されている。この場合、この種の電流センサでは、巻芯に対して導線の位置ずれが生じることのないように、導線に対してある程度の引っ張り力(テンション)をかけた状態で巻芯に対して巻回する必要がある。したがって、巻芯に対する2周目の導線の巻回に際して、十分に巻き締まっている1周目の導線の内側を潜らせるようにして2周目の導線を巻回する作業が非常に困難となっている。このため、従来の電流センサには、巻芯に対する導線の巻回作業が困難であることに起因して、その製造コストが高騰しているという問題点がある。   However, the conventional current sensor has the following problems. That is, the conventional current sensor is manufactured by a method of winding so that the outer side and the inner side of the conductive wire wound in the first turn pass alternately when the second turn of the conductive wire is wound around the core. In this case, in this type of current sensor, the winding wire is wound around the winding core in a state where a certain amount of tension is applied to the conducting wire so that the displacement of the conducting wire relative to the winding core does not occur. There is a need to. Therefore, when winding the conducting wire for the second turn around the winding core, it is very difficult to wind the conducting wire for the second turn so that the inside of the conducting wire for the first turn which is sufficiently tightened is hidden. ing. For this reason, the conventional current sensor has a problem that its manufacturing cost is increased due to the difficulty of winding the conductive wire around the core.

本発明は、かかる問題点に鑑みてなされたものであり、製造コストの低減を図り得る電流センサ、およびその製造方法を提供することを主目的とする。   The present invention has been made in view of such problems, and a main object of the present invention is to provide a current sensor capable of reducing the manufacturing cost and a manufacturing method thereof.

上記目的を達成すべく請求項1記載の電流センサは、第1巻芯の周囲に第1導線が右巻きされると共に当該第1導線の周囲に第2導線が左巻きされた第1空芯コイルを複数備えると共に、第2巻芯の周囲に第3導線が左巻きされると共に当該第3導線の周囲に第4導線が右巻きされた第2空芯コイルを前記第1空芯コイルと同数備え、前記各空芯コイルの一端部と当該各空芯コイルに隣接する前記各空芯コイルの他端部とが対向するように当該各空芯コイルが環状に配置されることにより、前記各第1導線および前記各第4導線が直列に接続されて右巻き導線路が形成されると共に前記各第2導線および前記各第3導線が直列に接続されて左巻き導線路が形成され、かつ前記両導線路の一端部および他端部のいずれか一方が互いに接続されている。   In order to achieve the above object, the current sensor according to claim 1, wherein the first air-core coil has a first conductor wound clockwise around the first core and a second conductor left-turned around the first conductor. And the same number of second air-core coils as the first air-core coil, in which the third conductor is counterclockwise wound around the second core and the fourth conductor is wound clockwise around the third conductor. The air core coils are arranged in an annular shape so that one end portion of each air core coil and the other end portion of each air core coil adjacent to each air core coil face each other. One conducting wire and each fourth conducting wire are connected in series to form a right-handed conducting line, and each second conducting wire and each third conducting wire are connected in series to form a left-handed conducting line, and both Either one end or the other end of the conductive line is connected to each other That.

また、請求項2記載の電流センサは、請求項1記載の電流センサにおいて、前記第1空芯コイルにおける前記他端部と前記第2空芯コイルにおける前記一端部とが対向すると共に、前記第1空芯コイルにおける前記一端部と前記第2空芯コイルにおける前記他端部とが対向するように当該各空芯コイルが交互に配置されている。   The current sensor according to claim 2 is the current sensor according to claim 1, wherein the other end of the first air-core coil and the one end of the second air-core coil are opposed to each other. The air core coils are alternately arranged so that the one end portion in one air-core coil and the other end portion in the second air-core coil face each other.

さらに、請求項3記載の電流センサの製造方法は、第1巻芯の周囲に第1導線を右巻きすると共に当該第1導線の周囲に第2導線を左巻きした第1空芯コイルを複数形成すると共に、第2巻芯の周囲に第3導線を左巻きすると共に当該第3導線の周囲に第4導線を右巻きした第2空芯コイルを前記第1空芯コイルと同数形成し、前記各空芯コイルの一端部と当該各空芯コイルに隣接する前記各空芯コイルの他端部とが対向するように当該各空芯コイルを環状に配置することにより、前記各第1導線および前記各第4導線を直列に接続して右巻き導線路を形成すると共に前記各第2導線および前記各第3導線を直列に接続して左巻き導線路を形成し、かつ、前記両導線路の一端部および他端部のいずれか一方を互いに接続して電流センサを製造する。   Furthermore, in the method of manufacturing a current sensor according to claim 3, a plurality of first air-core coils are formed in which the first conductor is wound around the first core and the second conductor is wound around the first conductor. In addition, the same number of second air-core coils as the first air-core coils are formed by turning the third conductor around the second core and turning the fourth conductor around the third conductor. By arranging each air core coil in an annular shape so that one end portion of the air core coil and the other end portion of each air core coil adjacent to each air core coil are opposed to each other, Each fourth conductor is connected in series to form a right-handed conductor line, and each second conductor and each third conductor are connected in series to form a left-handed conductor, and one end of each of the two conductors The current sensor is manufactured by connecting one of the head and the other end to each other That.

また、請求項4記載の電流センサの製造方法は、請求項3記載の電流センサの製造方法において、前記第1空芯コイルにおける前記他端部と前記第2空芯コイルにおける前記一端部とが対向すると共に、前記第1空芯コイルにおける前記一端部と前記第2空芯コイルにおける前記他端部とが対向するように当該各空芯コイルを交互に配置する。   A current sensor manufacturing method according to claim 4 is the current sensor manufacturing method according to claim 3, wherein the other end portion of the first air-core coil and the one end portion of the second air-core coil are connected to each other. The air core coils are alternately arranged so as to face each other so that the one end portion of the first air core coil and the other end portion of the second air core coil face each other.

請求項1記載の電流センサ、および請求項3記載の電流センサの製造方法によれば、第1巻芯の周囲に第1導線を右巻きすると共に第1導線の周囲に第2導線を左巻きした複数の第1空芯コイル、および第2巻芯の周囲に第3導線を左巻きすると共に第3導線の周囲に第4導線を右巻きした複数(第1空芯コイルと同数)の第2空芯コイルを、各空芯コイルの一端部と、隣接する各空芯コイルの他端部とが対向するように環状に配置し、各第1導線および各第4導線を直列に接続して右巻き導線路を形成すると共に各第2導線および各第3導線を直列に接続して左巻き導線路を形成し、かつ、両導線路の一端部および他端部のいずれか一方を互いに接続して製造したことにより、巻芯に対する導線の2周目の巻回時に、1周目に巻回した導線の外側および内側を交互に通過するように巻回するといった煩雑な巻回作業を行うことなく、右巻き導線路によって形成される環状領域の面積と、左巻き導線路によって形成される環状領域の面積とが等しい電流センサを容易に製造することができる。これにより、この電流センサおよびその製造方法によれば、性能の低下を招くことなく、その製造コストを十分に低減することができる。   According to the current sensor of claim 1 and the method of manufacturing the current sensor of claim 3, the first conductor is wound around the first winding core and the second conductor is wound around the first conductor. A plurality of first air-core coils and a plurality of second airs (the same number as the first air-core coils) in which the third conductor is counterclockwise wound around the second core and the fourth conductor is wound around the third conductor. The core coil is annularly arranged so that one end of each air-core coil and the other end of each adjacent air-core coil face each other, and each first conductor and each fourth conductor are connected in series to the right. Forming a wound conductor line and connecting each second conductor and each third conductor in series to form a left-handed conductor line, and connecting one end part and the other end part of both conductor lines to each other Conducted wire wound in the first turn when the second turn of the conductive wire is wound around the winding core The area of the annular region formed by the right-handed conducting line and the area of the annular region formed by the left-handed conducting line without performing a complicated winding operation such as winding so as to alternately pass outside and inside Can be easily manufactured. Thereby, according to this current sensor and its manufacturing method, the manufacturing cost can be sufficiently reduced without degrading the performance.

また、請求項2記載の電流センサ、および請求項4記載の電流センサの製造方法によれば、第1空芯コイルにおける他端部と第2空芯コイルにおける一端部とが対向すると共に、第1空芯コイルにおける一端部と第2空芯コイルにおける他端部とが対向するように各空芯コイルを交互に配置したことにより、第1空芯コイルまたは第2空芯コイルが複数個連続するように配置した電流センサと比較して、右巻き導線路および左巻き導線路が例えば楕円形に変形させられた状態においても、右巻き導線路によって形成される環状領域の面積と、左巻き導線路によって形成される環状領域の面積とを等しくさせることができる。   According to the current sensor of claim 2 and the method of manufacturing the current sensor of claim 4, the other end of the first air core coil and the one end of the second air core coil are opposed to each other, By arranging the air core coils alternately so that one end of one air core coil and the other end of the second air core coil face each other, a plurality of first air core coils or second air core coils are continuously provided. Compared with the current sensor arranged so that the right-handed conductor line and the left-handed conductor line are deformed into an elliptical shape, for example, the area of the annular region formed by the right-handed conductor line and the left-handed conductor line The area of the annular region formed by can be made equal.

電流センサ1の外観図である。1 is an external view of a current sensor 1. FIG. 電流センサ1の一部を拡大した拡大図である。3 is an enlarged view of a part of the current sensor 1. FIG. 空芯コイル2(2a),3(3a)の外観斜視図である。It is an external appearance perspective view of air-core coil 2 (2a), 3 (3a). 空芯コイル2(2a),3(3a)の分解図である。It is an exploded view of the air-core coils 2 (2a) and 3 (3a). 空芯コイル2(2a)の断面図である。It is sectional drawing of the air-core coil 2 (2a). 空芯コイル3(3a)の断面図である。It is sectional drawing of the air-core coil 3 (3a). 鍔部12a側の端面および鍔部12b側の端面を示す空芯コイル2(2a),3(3a)の正面図である。It is a front view of the air-core coils 2 (2a) and 3 (3a) which show the end surface by the side of the collar part 12a, and the end surface by the side of the collar part 12b. 引出し部用基板50aの正面図である。It is a front view of the board | substrate 50a for drawer | drawing-out parts. 折返し部用基板50bの正面図である。It is a front view of the board | substrate 50b for folding | returning parts. 接続用基板50cの正面図である。It is a front view of the board for connection 50c. 接続用基板50dの正面図である。It is a front view of the board | substrate 50d for a connection. 空芯コイル2(3)の他端部P2と、空芯コイル3(2)の一端部P1とを対向させた状態の側面図である。It is a side view of the state which made the other end part P2 of the air-core coil 2 (3) and the one end part P1 of the air-core coil 3 (2) face each other. 空芯コイル2(3)と空芯コイル3(2)とを連結した状態の側面図である。It is a side view of the state which connected air core coil 2 (3) and air core coil 3 (2). 右巻き導線路LRによって形成される環状領域の面積と、左巻き導線路LLによって形成される環状領域の面積との関係について説明するための説明図である。It is explanatory drawing for demonstrating the relationship between the area of the cyclic | annular area | region formed with the right-handed conducting line LR, and the area of the cyclic | annular area | region formed with the left-handed conducting line LL.

以下、本発明に係る電流センサ、および電流センサの製造方法の実施の形態について、添付図面を参照して説明する。   Embodiments of a current sensor and a method for manufacturing the current sensor according to the present invention will be described below with reference to the accompanying drawings.

図1,2に示す電流センサ1は、複数の空芯コイル2と複数(空芯コイル2と同数)の空芯コイル3とが交互に連結されて電流検出用の環状部Rが形成されると共に、切り離し部Sにおいて環状部Rを切り離して測定対象体(図示せず)に巻き付けることができるように構成されている。なお、以下の説明では、理解を容易とするために、環状部Rを構成する各空芯コイル2,3のうちの切り離し部Sに位置する空芯コイル2,3を他の空芯コイル2,3と区別して空芯コイル2a,3aともいう。   In the current sensor 1 shown in FIGS. 1 and 2, a plurality of air-core coils 2 and a plurality (the same number as the air-core coils 2) of air-core coils 3 are alternately connected to form an annular portion R for current detection. At the same time, the annular portion R is separated at the separation portion S so as to be wound around a measurement object (not shown). In the following description, in order to facilitate understanding, the air-core coils 2 and 3 positioned at the separation portion S of the air-core coils 2 and 3 constituting the annular portion R are replaced with other air-core coils 2. , 3 are also referred to as air-core coils 2a and 3a.

空芯コイル2は、第1空芯コイルに相当し、図3〜5に示すように、ボビン10、巻線20a,20b、スペーサ40,40および接続用基板50c,50dを備えて構成されている。また、後述するように、空芯コイル2aは、上記の接続用基板50cに代えて引出し部用基板50aを備えて構成されている。ボビン10は、図4に示すように、巻芯11(「第1巻芯」の一例)と、巻芯11の一端部P1に配設された鍔部12aと、巻芯11の他端部P2に配設された鍔部12bとが、一例として樹脂材料で一体成形されている。この場合、巻芯11は、後述するようにして各空芯コイル2,3を連結するための芯材4を挿通可能な挿通用孔H1が形成されて円筒形に形成されている。また、図7に示すように、鍔部12aには、巻芯11の周囲に巻回する巻線20a,20bを挿通させるための一対の挿通用孔13が形成されると共に、鍔部12bには、巻芯11の周囲に巻回した巻線20a,20bを挿通させるための一対の挿通用孔13が形成されている。   The air-core coil 2 corresponds to a first air-core coil, and includes a bobbin 10, windings 20a and 20b, spacers 40 and 40, and connection boards 50c and 50d as shown in FIGS. Yes. Further, as will be described later, the air-core coil 2a includes a lead-out portion substrate 50a instead of the connection substrate 50c. As shown in FIG. 4, the bobbin 10 includes a winding core 11 (an example of “first winding core”), a flange portion 12 a disposed at one end P <b> 1 of the winding core 11, and the other end of the winding core 11. The flange part 12b arrange | positioned by P2 is integrally molded with the resin material as an example. In this case, the winding core 11 is formed in a cylindrical shape with an insertion hole H1 through which the core material 4 for connecting the air-core coils 2 and 3 can be inserted as described later. Further, as shown in FIG. 7, the flange portion 12 a is formed with a pair of insertion holes 13 for inserting the windings 20 a and 20 b wound around the core 11, and the flange portion 12 b Are formed with a pair of insertion holes 13 through which the windings 20a and 20b wound around the core 11 are inserted.

巻線20aは、第1導線の一例であって、図5に示すように、ボビン10における巻芯11の周囲に右巻きで巻回されると共に、その両端部が鍔部12a,12bの挿通用孔13を挿通させられてボビン10の外にそれぞれ引き出されている。巻線20bは、第2導線の一例であって、巻芯11に巻回された巻線20aの周囲に左巻きで巻回されると共に、その両端部が鍔部12a,12bの挿通用孔13を挿通させられてボビン10の外にそれぞれ引き出されている。この場合、この空芯コイル2では、上記の巻線20aの巻数と巻線20bの巻数とが同数となるようにそれぞれ巻回されている。   The winding 20a is an example of the first conductor, and as shown in FIG. 5, the winding 20a is wound around the winding core 11 of the bobbin 10 with a right-hand winding, and both ends thereof are inserted into the flanges 12a and 12b. The through holes 13 are inserted and pulled out of the bobbin 10. The winding 20b is an example of a second conductor, and is wound around the winding 20a wound around the winding core 11 in a left-handed manner, and both end portions thereof are insertion holes 13 for the flange portions 12a and 12b. Are inserted and pulled out of the bobbin 10 respectively. In this case, the air-core coil 2 is wound so that the number of turns of the winding 20a and the number of turns of the winding 20b are the same.

スペーサ40は、図4に示すように、ボビン10と接続用基板50c,50dとの間に配設された緩衝材であって、弾性部材(一例として、発泡性樹脂材料)によってボビン10の鍔部12a,12bとほぼ同径の円板状に形成されている。この場合、スペーサ40は、一例として、環状部Rの内側に位置させられる部位の厚みが環状部Rの外側に位置させられる部位の厚みよりも薄くなるように側面視楔形状に形成されている。また、スペーサ40の中央部には、ボビン10の挿通用孔H1と連通させられて芯材4を挿通可能な挿通用孔H4が形成されている。さらに、スペーサ40には、ボビン10に巻回されて鍔部12a,12bの挿通用孔13を挿通させられた巻線20a,20bを挿通可能な挿通用孔(図示せず)が形成されている。   As shown in FIG. 4, the spacer 40 is a cushioning material disposed between the bobbin 10 and the connection substrates 50 c and 50 d, and is formed by an elastic member (for example, a foamed resin material). It is formed in a disk shape having substantially the same diameter as the portions 12a and 12b. In this case, as an example, the spacer 40 is formed in a wedge shape in a side view so that the thickness of the portion positioned inside the annular portion R is thinner than the thickness of the portion positioned outside the annular portion R. . Further, an insertion hole H4 that is communicated with the insertion hole H1 of the bobbin 10 and through which the core material 4 can be inserted is formed in the central portion of the spacer 40. Further, the spacer 40 is formed with an insertion hole (not shown) through which the windings 20a and 20b wound around the bobbin 10 and inserted through the insertion holes 13 of the flanges 12a and 12b can be inserted. Yes.

接続用基板50c,50dは、巻線20a,20bの各端部を後述する空芯コイル3の巻線30a,30b(図6参照)に接続するための基板であって、接続用基板50cがボビン10における鍔部12a側の端部にスペーサ40を介して取り付けられると共に、接続用基板50dがボビン10における鍔部12b側の端部にスペーサ40を介して取り付けられている。なお、前述したように、環状部Rの切り離し部Sに配置された空芯コイル2aには、接続用基板50cに代えて引出し部用基板50aが鍔部12a側の端部に取り付けられている。この場合、図8〜11に示すように、引出し部用基板50a、折返し部用基板50bおよび接続用基板50c,50dは、全体として円板状に形成されると共に、その中央部には、ボビン10の挿通用孔H1やスペーサ40の挿通用孔H4と連通させられて芯材4を挿通可能な挿通用孔H5が形成されている。   The connection boards 50c and 50d are boards for connecting the ends of the windings 20a and 20b to the windings 30a and 30b (see FIG. 6) of the air-core coil 3 described later. The bobbin 10 is attached to the end on the flange 12a side via the spacer 40, and the connection board 50d is attached to the end on the bobbin 10 on the flange 12b side via the spacer 40. As described above, the lead-out portion substrate 50a is attached to the end portion on the flange portion 12a side of the air-core coil 2a disposed in the separation portion S of the annular portion R, instead of the connection substrate 50c. . In this case, as shown in FIGS. 8 to 11, the drawer portion substrate 50a, the folded portion substrate 50b, and the connection substrates 50c and 50d are formed in a disc shape as a whole, and a bobbin is formed in the center portion thereof. 10 insertion holes H1 and the insertion holes H4 of the spacers 40 are connected to form insertion holes H5 through which the core material 4 can be inserted.

接続用基板50cは、図10に示すように、ボビン10から引き出された巻線20a,20bの一端部をそれぞれ挿通可能な挿通用孔53,53が形成されると共に、巻線20aの一端部が接続される接続用金具64と、巻線20bの一端部が接続される接続用金具65とが取り付けられている。この場合、接続用金具64,65は、一例として、平板状の金属板を折り曲げて板ばね状に形成されている。接続用基板50dは、図11に示すように、ボビン10から引き出された巻線20a,20bの他端部をそれぞれ挿通可能な挿通用孔53,53が形成されると共に、巻線20aの他端部が接続される接続用パターン66と、巻線20bの他端部が接続される接続用パターン67とが形成されている。一方、引出し部用基板50aは、図8に示すように、ボビン10から引き出された巻線20a,20bの一端部をそれぞれ挿通可能な挿通用孔53,53が形成されると共に、巻線20aの一端部が例えば半田付けで接続される配線パターン61と、巻線20bの一端部が例えば半田付けで接続される配線パターン62とが形成されている。この場合、配線パターン61,62には、電流センサ1を測定装置(電流検出装置)に接続するための信号ケーブル(図示せず)が接続部61a,62aに接続される。   As shown in FIG. 10, the connection board 50c is formed with insertion holes 53 and 53 through which one ends of the windings 20a and 20b drawn from the bobbin 10 can be inserted, respectively, and one end of the winding 20a. Are connected to a connection metal fitting 64 to which one end of the winding 20b is connected. In this case, as an example, the metal fittings 64 and 65 for connection are formed in a plate spring shape by bending a flat metal plate. As shown in FIG. 11, the connection board 50d is formed with insertion holes 53 and 53 through which the other ends of the windings 20a and 20b drawn from the bobbin 10 can be inserted, respectively. A connection pattern 66 to which the end portion is connected and a connection pattern 67 to which the other end portion of the winding 20b is connected are formed. On the other hand, as shown in FIG. 8, the lead-out substrate 50a is formed with insertion holes 53 and 53 through which one end portions of the windings 20a and 20b drawn from the bobbin 10 can be inserted, respectively. For example, a wiring pattern 61 in which one end portion of the winding 20b is connected by soldering and a wiring pattern 62 in which one end portion of the winding 20b is connected by soldering are formed. In this case, a signal cable (not shown) for connecting the current sensor 1 to the measuring device (current detecting device) is connected to the wiring patterns 61 and 62 to the connecting portions 61a and 62a.

一方、空芯コイル3は、第2空芯コイルに相当し、図3,4,6に示すように、ボビン10、巻線30a,30b、スペーサ40,40および接続用基板50c,50dを備えて構成されている。また、後述するように、空芯コイル3aは、上記の接続用基板50dに代えて折返し部用基板50bを備えて構成されている。なお、この空芯コイル3,3aにおいて上記の空芯コイル2,2aと同一の機能を有する構成要素については、同一の符号を付して重複する説明を省略する。この場合、この空芯コイル3,3aでは、上記の空芯コイル2,2aにおける巻線20a,20bに代えて巻線30a,30bが巻回されて構成されている。   On the other hand, the air-core coil 3 corresponds to a second air-core coil and includes a bobbin 10, windings 30a and 30b, spacers 40 and 40, and connection boards 50c and 50d as shown in FIGS. Configured. Further, as will be described later, the air-core coil 3a includes a folded portion substrate 50b in place of the connection substrate 50d. In addition, about the component which has the same function as said air core coil 2 and 2a in this air core coil 3 and 3a, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted. In this case, the air-core coils 3 and 3a are formed by winding the windings 30a and 30b in place of the windings 20a and 20b in the air-core coils 2 and 2a.

具体的には、巻線30aは、第3導線の一例であって、図6に示すように、ボビン10における巻芯11(「第2巻芯」の一例)の周囲に左巻きで巻回されると共に、その両端部が鍔部12a,12bの挿通用孔13を挿通させられてボビン10の外にそれぞれ引き出されている。巻線30bは、第4導線の一例であって、巻芯11に巻回された巻線30aの周囲に右巻きで巻回されると共に、その両端部が鍔部12a,12bの挿通用孔13を挿通させられてボビン10の外にそれぞれ引き出されている。この場合、この空芯コイル3では、上記の巻線30aの巻数と巻線30bの巻数とが同数となるようにそれぞれ巻回されている。   Specifically, the winding 30a is an example of a third conductor, and is wound around the winding core 11 (an example of “second winding core”) in the bobbin 10 in a left-handed manner as shown in FIG. At the same time, the both end portions are inserted through the insertion holes 13 of the flange portions 12a and 12b and pulled out of the bobbin 10, respectively. The winding 30b is an example of a fourth conductor, and is wound around the winding 30a wound around the winding core 11 with a right-hand winding, and both ends thereof are insertion holes for the flange portions 12a and 12b. 13 is inserted and pulled out of the bobbin 10. In this case, the air-core coil 3 is wound such that the number of turns of the winding 30a and the number of turns of the winding 30b are the same.

また、この空芯コイル3,3aでは、巻線30aの両端部が接続用基板50cの接続用金具64、および接続用基板50dの接続用パターン66にそれぞれ接続されると共に、巻線30bの両端部が接続用基板50cの接続用金具65、および接続用基板50dの接続用パターン67にそれぞれ接続されている。さらに、空芯コイル3aでは、ボビン10における鍔部12b側の端部に接続用基板50dに代えて折返し部用基板50b(図9参照)が取り付けられている。この場合、折返し部用基板50bは、図9に示すように、ボビン10から引き出された巻線30a,30bの一端部をそれぞれ挿通可能な挿通用孔53,53が形成されると共に、両挿通用孔53を挿通させられた巻線30a,30bを相互に接続するための配線パターン63が形成されている。   In the air-core coils 3 and 3a, both ends of the winding 30a are connected to the connection fitting 64 of the connection substrate 50c and the connection pattern 66 of the connection substrate 50d, respectively, and both ends of the winding 30b. Are connected to the connection metal fitting 65 of the connection substrate 50c and the connection pattern 67 of the connection substrate 50d. Further, in the air-core coil 3a, a folded portion substrate 50b (see FIG. 9) is attached to the end of the bobbin 10 on the flange 12b side instead of the connection substrate 50d. In this case, as shown in FIG. 9, the folded portion substrate 50b is formed with insertion holes 53, 53 through which one end portions of the windings 30a, 30b drawn from the bobbin 10 can be inserted, respectively. A wiring pattern 63 for connecting the windings 30a and 30b inserted through the through hole 53 to each other is formed.

この電流センサ1では、前述したように、上記の空芯コイル2,3が交互に連結されて環状部Rが形成されている。具体的には、空芯コイル2における他端部P2と空芯コイル3における一端部P1とが対向すると共に、空芯コイル2おける一端部P1と空芯コイル3における他端部P2とが対向するように各空芯コイル2,3の各挿通用孔H1,H4,H5(以下、これらを総称して「挿通用孔H」ともいう)に芯材4を挿通させるようにして空芯コイル2および空芯コイル3を交互に配置することによって環状部Rが形成されている(「各空芯コイルの一端部と各空芯コイルに隣接する各空芯コイルの他端部とが対向するように各空芯コイルが環状に配置され」との状態の一例)。この場合、図12に示すように、空芯コイル2,3の一端部P1には、接続用金具64,65が取り付けられた接続用基板50cが配設され、空芯コイル2,3の他端部P2には、接続用パターン66,67が形成された接続用基板50dが配設されている。   In the current sensor 1, as described above, the air core coils 2 and 3 are alternately connected to form an annular portion R. Specifically, the other end portion P2 of the air-core coil 2 and the one end portion P1 of the air-core coil 3 face each other, and the one end portion P1 of the air-core coil 2 and the other end portion P2 of the air-core coil 3 face each other. As described above, the core material 4 is inserted into the insertion holes H1, H4, and H5 (hereinafter collectively referred to as “insertion holes H”) of the air core coils 2 and 3, respectively. 2 and the air core coil 3 are alternately arranged to form an annular portion R (“one end portion of each air core coil and the other end portion of each air core coil adjacent to each air core coil face each other. An example of a state in which each air-core coil is annularly arranged as described above]. In this case, as shown in FIG. 12, at one end P1 of the air-core coils 2 and 3, a connection board 50c to which connection fittings 64 and 65 are attached is disposed. A connection substrate 50d on which connection patterns 66 and 67 are formed is disposed at the end portion P2.

したがって、図13に示すように、空芯コイル2における他端部P2と空芯コイル3における一端部P1とが対向すると共に、空芯コイル2おける一端部P1と空芯コイル3における他端部P2とが対向するように各空芯コイル2,3を交互に連結することにより、空芯コイル2(3)における接続用金具64と空芯コイル3(2)における接続用パターン66とが電気的に接続されると共に、空芯コイル2(3)における接続用金具65と空芯コイル3(2)における接続用パターン67とが電気的に接続される。これにより、接続用金具64,65および接続用パターン66,67を介して、空芯コイル2の巻線20aおよび空芯コイル3の巻線30bが交互に接続されて右巻き導線路LR(図14参照)を構成する導線路が形成されると共に、空芯コイル2の巻線20bおよび空芯コイル3の巻線30aが交互に接続されて左巻き導線路LL(図14参照)を構成する導線路が形成される。また、両導線路LR,LLは、空芯コイル3aの折返し部用基板50bにおいて配線パターン63を介して互いに接続されると共に、空芯コイル2aの引出し部用基板50aにおいて、配線パターン61,62に接続された信号ケーブルにそれぞれ接続される。   Therefore, as shown in FIG. 13, the other end portion P <b> 2 of the air-core coil 2 and the one end portion P <b> 1 of the air-core coil 3 face each other, and the one end portion P <b> 1 in the air-core coil 2 and the other end portion in the air-core coil 3. By alternately connecting the air core coils 2 and 3 so as to face P2, the connection fitting 64 in the air core coil 2 (3) and the connection pattern 66 in the air core coil 3 (2) are electrically connected. The connection fitting 65 in the air-core coil 2 (3) and the connection pattern 67 in the air-core coil 3 (2) are electrically connected. Thus, the winding 20a of the air-core coil 2 and the winding 30b of the air-core coil 3 are alternately connected via the connection fittings 64 and 65 and the connection patterns 66 and 67, and the right-handed conducting line LR (FIG. 14) and the winding 20b of the air-core coil 2 and the winding 30a of the air-core coil 3 are alternately connected to form a left-handed conducting line LL (see FIG. 14). A path is formed. The two conductive lines LR and LL are connected to each other through the wiring pattern 63 in the folded portion substrate 50b of the air core coil 3a, and the wiring patterns 61 and 62 in the lead portion substrate 50a of the air core coil 2a. Are connected to signal cables connected to each.

この電流センサ1の製造に際しては、まず、空芯コイル2(2a)および空芯コイル3(3a)をそれぞれ製作する。具体的には、例えば空芯コイル2の製作に際しては、鍔部12aにおける中央部寄り挿通用孔13を挿通させた巻線20aを巻芯11の周囲に右巻きで巻回した後に、鍔部12bにおける中央部寄りの挿通用孔13からボビン10の外に引き出す。次いで、鍔部12aにおける外縁部寄りの挿通用孔13を挿通させた巻線20bを巻線20aの周囲に左巻きで巻回した後に、鍔部12bにおける外縁部寄りの挿通用孔13からボビン10の外に引き出す。続いて、巻線20a,20bの各々の一端部をスペーサ40の両挿通用孔および接続用基板50cの両挿通用孔53に挿通させた状態で、鍔部12aにスペーサ40を介して接続用基板50cを取り付けると共に、巻線20a,20bの各々の他端部をスペーサ40の両挿通用孔および接続用基板50dの両挿通用孔53に挿通させた状態で、鍔部12bにスペーサ40を介して接続用基板50dを取り付ける。   In manufacturing the current sensor 1, first, the air core coil 2 (2a) and the air core coil 3 (3a) are respectively manufactured. Specifically, for example, when the air-core coil 2 is manufactured, after winding the winding 20a inserted through the center portion side insertion hole 13 in the flange portion 12a with a right turn around the winding core 11, the flange portion It is pulled out of the bobbin 10 from the insertion hole 13 near the center in 12b. Next, after winding the winding 20b through which the insertion hole 13 near the outer edge in the flange 12a is inserted in a left-handed manner around the winding 20a, the bobbin 10 is inserted from the insertion hole 13 near the outer edge in the flange 12b. Pull out the outside. Subsequently, one end of each of the windings 20a and 20b is inserted into both the insertion holes 53 of the spacer 40 and both the insertion holes 53 of the connection substrate 50c, and is connected to the flange portion 12a via the spacer 40. While the substrate 50c is attached, the other end of each of the windings 20a and 20b is inserted into both the insertion holes 53 of the spacer 40 and both the insertion holes 53 of the connection substrate 50d, and the spacer 40 is inserted into the flange 12b. The connection board 50d is attached through the vias.

次いで、巻線20a,20bの両端部を接続用基板50cの接続用金具64,65および接続用基板50dの接続用パターン66,67に例えば半田付けによって接続する。これにより、空芯コイル2が完成する。なお、空芯コイル3や空芯コイル2a,3aの製作方法については、上記の空芯コイル2の製作方法と同様のため、詳細な説明を省略する。この場合、1つの電流センサ1の製造に際しては、互いに同数の複数の空芯コイル2,3を製作する。具体的には、一例として、17個の空芯コイル2、17個の空芯コイル3、1個の空芯コイル2aおよび1個の空芯コイル3aを製作する(第1空芯コイル、および第2空芯コイルがそれぞれ18個の例)。   Next, both ends of the windings 20a and 20b are connected to the connection fittings 64 and 65 of the connection board 50c and the connection patterns 66 and 67 of the connection board 50d by, for example, soldering. Thereby, the air-core coil 2 is completed. In addition, about the manufacturing method of the air core coil 3 and the air core coils 2a and 3a, since it is the same as that of the manufacturing method of said air core coil 2, detailed description is abbreviate | omitted. In this case, when one current sensor 1 is manufactured, the same number of air-core coils 2 and 3 are manufactured. Specifically, as an example, 17 air-core coils 2, 17 air-core coils 3, one air-core coil 2a, and one air-core coil 3a are manufactured (first air-core coil, and Example of 18 second air-core coils).

続いて、空芯コイル2,3を芯材4に交互に挿通させて環状部Rを形成する。具体的には、一例として、まず、空芯コイル3aの挿通用孔Hに折返し部用基板50bの側から芯材4を挿通させた状態で芯材4の端部に空芯コイル3aを固定(例えば接着)する。次いで、空芯コイル2の挿通用孔Hに接続用基板50dの側から芯材4を挿通させる。この際には、空芯コイル3aにおける接続用基板50cの接続用金具64,65と、空芯コイル2における接続用基板50dの接続用パターン66,67が接することで接続用金具64,65および接続用パターン66,67を介して空芯コイル3aの巻線30bと空芯コイル2の巻線20aとが直列に接続されると共に空芯コイル3aの巻線30aと空芯コイル2の巻線20bとが直列に接続される。   Subsequently, the air core coils 2 and 3 are alternately inserted into the core material 4 to form the annular portion R. Specifically, as an example, first, the air core coil 3a is fixed to the end of the core material 4 in a state where the core material 4 is inserted into the insertion hole H of the air core coil 3a from the folded portion substrate 50b side. (For example, bonding). Next, the core material 4 is inserted into the insertion hole H of the air core coil 2 from the connection substrate 50d side. At this time, the connection fittings 64 and 65 of the connection board 50c in the air-core coil 3a and the connection patterns 66 and 67 of the connection board 50d in the air-core coil 2 are in contact with each other, so that the connection fittings 64 and 65 and 65 The winding 30b of the air-core coil 3a and the winding 20a of the air-core coil 2 are connected in series via the connection patterns 66 and 67, and the winding 30a of the air-core coil 3a and the winding of the air-core coil 2 are connected. 20b is connected in series.

続いて、空芯コイル3の挿通用孔Hに接続用基板50dの側から芯材4を挿通させる。この際には、空芯コイル2における接続用基板50cの接続用金具64,65と、空芯コイル3における接続用基板50dの接続用パターン66,67が接することで接続用金具64,65および接続用パターン66,67を介して空芯コイル2の巻線20aと空芯コイル3の巻線30bとが直列に接続されると共に空芯コイル2の巻線20bと空芯コイル3の巻線30aとが直列接続される。この後、上記の手順と同様の手順で、他の空芯コイル2における挿通用孔H、および他の空芯コイル3における挿通用孔Hに芯材4を交互に挿通させる。   Subsequently, the core material 4 is inserted into the insertion hole H of the air-core coil 3 from the connection substrate 50d side. At this time, the connection fittings 64 and 65 of the connection board 50c in the air-core coil 2 and the connection patterns 66 and 67 of the connection board 50d in the air-core coil 3 are in contact with each other, so that the connection fittings 64 and 65 and 65 The winding 20a of the air-core coil 2 and the winding 30b of the air-core coil 3 are connected in series via the connection patterns 66 and 67, and the winding 20b of the air-core coil 2 and the winding of the air-core coil 3 are connected. 30a is connected in series. Thereafter, the core material 4 is alternately inserted into the insertion hole H in the other air-core coil 2 and the insertion hole H in the other air-core coil 3 in the same procedure as described above.

続いて、17個目の空芯コイル3における挿通用孔Hに芯材4を挿通させた後に、空芯コイル2aの挿通用孔Hに接続用基板50dの側から芯材4を挿通させた状態で芯材4の端部に空芯コイル2aを固定(例えば接着)する。この際には、17個目の空芯コイル3における接続用基板50cの接続用金具64,65と、空芯コイル2aにおける接続用基板50dの接続用パターン66,67が接することで接続用金具64,65および接続用パターン66,67を介して空芯コイル3の巻線30bと空芯コイル2aの巻線20aとが直列に接続されると共に空芯コイル3の巻線30aと空芯コイル2aの巻線20bとが直列に接続される。次いで、空芯コイル2aの引出し部用基板50aにおける配線パターン61,62の接続部61a,62aに信号ケーブルを例えば半田付けによって接続する。これにより、図1に示すように、電流センサ1が完成する。なお、図1および図2では、引出し部用基板50aに接続した信号ケーブルの図示を省略している。   Subsequently, after the core material 4 was inserted into the insertion hole H in the 17th air-core coil 3, the core material 4 was inserted into the insertion hole H of the air-core coil 2a from the connection substrate 50d side. In the state, the air core coil 2a is fixed (for example, bonded) to the end of the core material 4. At this time, the connection fittings 64 and 65 of the connection board 50c in the seventeenth air-core coil 3 and the connection patterns 66 and 67 of the connection board 50d in the air-core coil 2a are in contact with each other, so that the connection fittings are connected. The winding 30b of the air-core coil 3 and the winding 20a of the air-core coil 2a are connected in series via the 64, 65 and the connection patterns 66, 67, and the winding 30a of the air-core coil 3 and the air-core coil. The winding 2b of 2a is connected in series. Next, the signal cable is connected to the connection portions 61a and 62a of the wiring patterns 61 and 62 in the lead portion substrate 50a of the air-core coil 2a by, for example, soldering. Thereby, as shown in FIG. 1, the current sensor 1 is completed. In FIG. 1 and FIG. 2, illustration of the signal cable connected to the drawer portion substrate 50a is omitted.

この電流センサ1を用いた電流検出に際しては、図2に示すように、環状部Rを切り離し部Sにおいて空芯コイル2aと空芯コイル3aとを切り離して電流検出対象体(例えば電力線)に巻き付けた後に(電流検出対象体の周囲に環状部Rを配設した後に)、図1に示すように、空芯コイル2a,3aを当接させる。また、信号ケーブルを介して空芯コイル2aの配線パターン61(接続部61a)および配線パターン62(接続部62a)を測定装置(電流検出装置)に接続する。これにより、環状部R内を挿通させられている電流検出対象体を流れる電流の検出が可能となる。この場合、この電流センサ1では、空芯コイル2(2a)において巻芯11の周囲に巻回された巻線20a(内側に巻回された同線)、および空芯コイル3(3a)において巻線30aの周囲に巻回された巻線30b(外側に巻回された同線)が交互に接続されて形成された右巻き導線路LR(図14参照)と、空芯コイル2(2a)において巻線20aの周囲に巻回された巻線20b(外側に巻回された同線)、および空芯コイル3(3a)において巻芯11の周囲に巻回された巻線30a(内側に巻回された同線)が交互に接続されて形成された左巻き導線路LL(図14参照)とが空芯コイル3aの折返し部用基板50bにおいて配線パターン63によって相互に接続されて構成されている。   At the time of current detection using the current sensor 1, as shown in FIG. 2, the annular portion R is separated from the air core coil 2a and the air core coil 3a at the separation portion S and wound around a current detection object (for example, a power line). After that (after the annular portion R is disposed around the current detection object), the air-core coils 2a and 3a are brought into contact with each other as shown in FIG. Further, the wiring pattern 61 (connection portion 61a) and the wiring pattern 62 (connection portion 62a) of the air-core coil 2a are connected to a measurement device (current detection device) via a signal cable. Thereby, it is possible to detect the current flowing through the current detection object inserted through the annular portion R. In this case, in the current sensor 1, in the air core coil 2 (2a), the winding 20a wound around the core 11 (same wire wound inward) and the air core coil 3 (3a) A right-handed conductive line LR (see FIG. 14) formed by alternately connecting windings 30b wound around the winding 30a (same lines wound outward), and an air-core coil 2 (2a ) And a winding 30a (inner side) wound around the core 11 in the air-core coil 3 (3a). And the left-handed conductive line LL (see FIG. 14) formed by being alternately connected to each other by the wiring pattern 63 on the folded portion substrate 50b of the air-core coil 3a. ing.

また、この電流センサ1では、空芯コイル2(2a)の数と、空芯コイル3(3a)の数とが互いに等しい数(この例では、17+1=18個)だけ連結されて環状部Rが形成されている。したがって、右巻き導線路LRを構成する巻線が内側に巻回されている巻数(巻線20aの巻数)と左巻き導線路LLを構成する巻線が内側に巻回されている巻数(巻線30aの巻数)とが互いに等しい巻数となると共に、右巻き導線路LRを構成する巻線が外側に巻回されている巻数(巻線20bの巻数)と左巻き導線路LLを構成する巻線が外側に巻回されている巻数(巻線30bの巻数)とが互いに等しい巻数となっている。このため、環状部R全体としての右巻き導線路LRの平均巻き径と、左巻き導線路LLの平均巻き径とが互いに等しくなっている。   Further, in this current sensor 1, the number of the air-core coils 2 (2a) and the number of the air-core coils 3 (3a) are equal to each other (in this example, 17 + 1 = 18), and the annular portion R is connected. Is formed. Therefore, the number of turns in which the winding constituting the right-handed conducting line LR is wound inward (the number of turns of the winding 20a) and the number of turns in which the winding constituting the left-handed conducting line LL is wound inward (winding) The number of turns of the winding 30b) is equal to the number of turns, and the number of turns in which the winding constituting the right-handed conducting line LR is wound outward (number of turns of the winding 20b) and the number of turns constituting the left-handed conducting line LL are The number of turns wound outside (the number of turns of the winding 30b) is equal to the number of turns. For this reason, the average winding diameter of the right-handed conducting line LR as the entire annular portion R and the average winding diameter of the left-handed conducting line LL are equal to each other.

このため、図14に示すように、空芯コイル2a,3aを当接させて環状部Rが形成された状態では、上記の右巻き導線路LRによって形成される環状領域(同図における左図において右下がりの破線で塗り潰した領域)の面積と、上記の左巻き導線路LLによって形成される環状領域(同図における右図において左下がりの破線で塗り潰した領域)の面積とが互いに等しい面積となる。これにより、上記の両環状領域(センサの窓)の面積が相違する電流センサと比較して、両環状領域に対して交差する向きで両導線路LR,LLに入り込む外部磁界の影響が十分に小さくなっている。   For this reason, as shown in FIG. 14, in the state in which the air core coils 2a and 3a are brought into contact with each other and the annular portion R is formed, the annular region formed by the right-handed conducting line LR (the left diagram in FIG. 14). And the area of the annular region formed by the left-handed conducting line LL (the region filled with the left-down dashed line in the right figure in FIG. 6) is equal to each other. Become. Thereby, compared with the current sensor in which the areas of the two annular regions (sensor windows) are different from each other, the influence of the external magnetic field entering the two conductive lines LR and LL in a direction intersecting the two annular regions is sufficient. It is getting smaller.

このように、この電流センサ1およびその製造方法によれば、巻芯11の周囲に巻線20aを右巻きすると共に巻線20aの周囲に巻線20bを左巻きした複数の空芯コイル2、および巻芯11の周囲に巻線30aを左巻きすると共に巻線30aの周囲に巻線30bを右巻きした複数(空芯コイル2と同数)の空芯コイル3を、各空芯コイル2,3の一端部P1と各空芯コイル2,3に隣接する各空芯コイル3,2の他端部P2とが対向するように環状に配置し、各巻線20a,30bを直列に(相互に)接続して右巻き導線路LRを形成すると共に各巻線20b,30aを直列に(相互に)接続して左巻き導線路LLを形成し、かつ、両導線路LR,LLの一端部を互いに接続して製造したことにより、巻芯に対する導線の2周目の巻回時に、1周目に巻回した導線の外側および内側を交互に通過するように巻回するといった煩雑な巻回作業を行うことなく、各巻線20a,30bで構成された右巻き導線路LRによって形成される環状領域の面積と、各巻線20b,30aで構成された左巻き導線路LLによって形成される環状領域の面積とが等しい電流センサ1を製造することができる。これにより、この電流センサ1およびその製造方法によれば、性能の低下を招くことなく、その製造コストを十分に低減することができる。   Thus, according to the current sensor 1 and the manufacturing method thereof, the plurality of air-core coils 2 in which the winding 20a is wound clockwise around the winding core 11 and the winding 20b is wound counterclockwise around the winding 20a, and A plurality of air core coils 3 (the same number as the air core coils 2) are wound around each of the air core coils 2 and 3 by winding the winding 30a counterclockwise around the winding core 11 and winding the winding 30b clockwise around the winding 30a. One end P1 and the other end P2 of each air-core coil 3, 2 adjacent to each air-core coil 2, 3 are arranged in an annular shape, and the windings 20a, 30b are connected in series (mutually). Then, the right-handed conductive line LR is formed, and the windings 20b and 30a are connected in series (mutually) to form the left-handed conductive line LL, and one end portions of both the conductive lines LR and LL are connected to each other. Due to the manufacture, when winding the second turn of the conducting wire around the core Formed by the right-handed conductive line LR composed of the windings 20a and 30b without performing a complicated winding operation such as winding so as to alternately pass outside and inside of the conducting wire wound in the first turn. The current sensor 1 can be manufactured in which the area of the annular region formed is equal to the area of the annular region formed by the left-handed conducting line LL formed by the windings 20b and 30a. Thereby, according to this current sensor 1 and its manufacturing method, the manufacturing cost can fully be reduced, without causing a performance fall.

また、この電流センサ1およびその製造方法によれば、各空芯コイル2および各空芯コイル3を交互に配置したことにより、空芯コイル2または空芯コイル3が複数個連続するように配置した電流センサと比較して、環状部R(右巻き導線路LRおよび左巻き導線路LL)が例えば楕円形に変形させられ状態においても、右巻き導線路LRによって形成される環状領域の面積と、左巻き導線路LLによって形成される環状領域の面積とを等しくさせることができる。   Further, according to the current sensor 1 and the manufacturing method thereof, the air-core coils 2 and the air-core coils 3 are alternately arranged, so that a plurality of air-core coils 2 or air-core coils 3 are arranged continuously. Compared with the current sensor, the area of the annular region formed by the right-handed conducting line LR even when the annular part R (the right-handed conducting line LR and the left-handed conducting line LL) is deformed into an elliptical shape, for example, The area of the annular region formed by the left-handed conducting line LL can be made equal.

なお、電流センサの構成は、上記の構成に限定されない。例えば、各空芯コイル2,3の挿通用孔Hに芯材4を挿通させて連結して環状部Rを形成した電流センサ1を例に挙げて説明したが、各第1空芯コイルおよび各第2空芯コイルに連結機構(図示せず)を設けて芯材4等を用いることなく環状部を形成する構成を採用することもできる。また、接続用基板50c,50dを介して各巻線20a,20b,30a,30bを相互に接続した電流センサ1を例に挙げて説明したが、各巻線20a,20b,30a,30bを直接接続して右巻き導線路および左巻き導線路を形成する構成を採用することもできる。さらに、折返し部用基板50bの配線パターン63を介して右巻き導線路LRおよび左巻き導線路LLを相互に接続した電流センサ1を例に挙げて説明したが、例えば上記の空芯コイル3aにおける巻線30a,30bを直接接続して右巻き導線路および左巻き導線路を相互に接続する構成を採用することもできる。   The configuration of the current sensor is not limited to the above configuration. For example, although the current sensor 1 in which the core member 4 is inserted and connected to the insertion holes H of the air core coils 2 and 3 to form the annular portion R has been described as an example, each of the first air core coils and It is also possible to employ a configuration in which a connecting mechanism (not shown) is provided in each second air core coil to form an annular portion without using the core material 4 or the like. Further, the current sensor 1 in which the windings 20a, 20b, 30a, and 30b are connected to each other via the connection boards 50c and 50d has been described as an example. However, the windings 20a, 20b, 30a, and 30b are directly connected. It is also possible to adopt a configuration in which a right-handed conducting line and a left-handed conducting line are formed. Further, the current sensor 1 in which the right-handed conducting line LR and the left-handed conducting line LL are connected to each other via the wiring pattern 63 of the folded portion substrate 50b has been described as an example. For example, the winding in the air-core coil 3a is described above. A configuration in which the wires 30a and 30b are directly connected and the right-handed conducting line and the left-handed conducting line are connected to each other may be employed.

また、第1空芯コイルに相当する空芯コイル2(2a)と、第2空芯コイルに相当する空芯コイル3(3a)とを交互に配置して環状部Rを形成した電流センサ1を例に挙げて説明したが、空芯コイル2(第1空芯コイル)の数と空芯コイル3(第2空芯コイル)の数とが同数である限り、複数の空芯コイル2を連続して配置する構成、言い替えれば、複数の空芯コイル3を連続して配置する構成を採用して、電流センサを構成することもできる。   Further, the current sensor 1 in which the air core coil 2 (2a) corresponding to the first air core coil and the air core coil 3 (3a) corresponding to the second air core coil are alternately arranged to form the annular portion R. However, as long as the number of air-core coils 2 (first air-core coils) and the number of air-core coils 3 (second air-core coils) are the same, a plurality of air-core coils 2 are provided. A current sensor can also be configured by adopting a configuration in which a plurality of air-core coils 3 are continuously arranged, in other words, a configuration in which the plurality of air-core coils 3 are continuously arranged.

1 電流センサ
2,2a,3,3a 空芯コイル
11 巻芯
20a,20b,30a,30b 巻線
LL 左巻き導線路
LR 右巻き導線路
P1 一端部
P2 他端部
R 環状部
DESCRIPTION OF SYMBOLS 1 Current sensor 2, 2a, 3, 3a Air-core coil 11 Winding core 20a, 20b, 30a, 30b Winding LL Left-handed conducting line LR Right-handed conducting line P1 One end part P2 Other end part R Annular part

Claims (4)

第1巻芯の周囲に第1導線が右巻きされると共に当該第1導線の周囲に第2導線が左巻きされた第1空芯コイルを複数備えると共に、第2巻芯の周囲に第3導線が左巻きされると共に当該第3導線の周囲に第4導線が右巻きされた第2空芯コイルを前記第1空芯コイルと同数備え、前記各空芯コイルの一端部と当該各空芯コイルに隣接する前記各空芯コイルの他端部とが対向するように当該各空芯コイルが環状に配置されることにより、前記各第1導線および前記各第4導線が直列に接続されて右巻き導線路が形成されると共に前記各第2導線および前記各第3導線が直列に接続されて左巻き導線路が形成され、かつ前記両導線路の一端部および他端部のいずれか一方が互いに接続されている電流センサ。   A plurality of first air core coils in which the first conductor is wound around the first core and the second conductor is wound around the first conductor are provided around the first core, and the third conductor is disposed around the second core. Is provided with the same number of second air-core coils as the first air-core coils, and one end of each air-core coil and each air-core coil. The air core coils are arranged in an annular shape so that the other end portions of the air core coils adjacent to each other face each other, so that the first conductor wires and the fourth conductor wires are connected in series to the right. A winding line is formed, and each of the second and third conductive lines is connected in series to form a left-handed conducting line, and either one end or the other end of the both conducting lines is mutually connected Connected current sensor. 前記第1空芯コイルにおける前記他端部と前記第2空芯コイルにおける前記一端部とが対向すると共に、前記第1空芯コイルにおける前記一端部と前記第2空芯コイルにおける前記他端部とが対向するように当該各空芯コイルが交互に配置されている請求項1記載の電流センサ。   The other end portion of the first air-core coil and the one end portion of the second air-core coil face each other, and the one end portion of the first air-core coil and the other end portion of the second air-core coil. The current sensor according to claim 1, wherein the air-core coils are alternately arranged so as to face each other. 第1巻芯の周囲に第1導線を右巻きすると共に当該第1導線の周囲に第2導線を左巻きした第1空芯コイルを複数形成すると共に、第2巻芯の周囲に第3導線を左巻きすると共に当該第3導線の周囲に第4導線を右巻きした第2空芯コイルを前記第1空芯コイルと同数形成し、前記各空芯コイルの一端部と当該各空芯コイルに隣接する前記各空芯コイルの他端部とが対向するように当該各空芯コイルを環状に配置することにより、前記各第1導線および前記各第4導線を直列に接続して右巻き導線路を形成すると共に前記各第2導線および前記各第3導線を直列に接続して左巻き導線路を形成し、かつ、前記両導線路の一端部および他端部のいずれか一方を互いに接続して電流センサを製造する電流センサの製造方法。   A plurality of first air-core coils are formed around the first winding core, the first conducting wire is wound clockwise and the second conducting wire is wound counterclockwise around the first conducting wire, and the third conducting wire is formed around the second winding core. The same number of second air-core coils as the first air-core coil, which are left-handed and are wound around the third conductor, are adjacent to the air-core coils and one end of each air-core coil. By connecting each air core coil in an annular shape so that the other end of each air core coil faces each other, the first conductor and the fourth conductor are connected in series to form a right-handed conductor. And forming the left-handed conducting line by connecting the second conducting wire and the third conducting wire in series, and connecting either one end or the other end of the conducting wires to each other. A current sensor manufacturing method for manufacturing a current sensor. 前記第1空芯コイルにおける前記他端部と前記第2空芯コイルにおける前記一端部とが対向すると共に、前記第1空芯コイルにおける前記一端部と前記第2空芯コイルにおける前記他端部とが対向するように当該各空芯コイルを交互に配置する請求項3記載の電流センサの製造方法。   The other end portion of the first air-core coil and the one end portion of the second air-core coil face each other, and the one end portion of the first air-core coil and the other end portion of the second air-core coil. The method of manufacturing a current sensor according to claim 3, wherein the air-core coils are alternately arranged so as to face each other.
JP2009169729A 2009-07-21 2009-07-21 Current sensor and method of manufacturing current sensor Expired - Fee Related JP5290899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009169729A JP5290899B2 (en) 2009-07-21 2009-07-21 Current sensor and method of manufacturing current sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009169729A JP5290899B2 (en) 2009-07-21 2009-07-21 Current sensor and method of manufacturing current sensor

Publications (2)

Publication Number Publication Date
JP2011022102A true JP2011022102A (en) 2011-02-03
JP5290899B2 JP5290899B2 (en) 2013-09-18

Family

ID=43632305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009169729A Expired - Fee Related JP5290899B2 (en) 2009-07-21 2009-07-21 Current sensor and method of manufacturing current sensor

Country Status (1)

Country Link
JP (1) JP5290899B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215808A (en) * 2013-05-31 2014-12-17 西门子公司 Diverter used for measuring alternating current
JP2019012028A (en) * 2017-06-30 2019-01-24 日置電機株式会社 Current detection device and measuring device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643189A (en) * 1992-05-25 1994-02-18 Mitsubishi Electric Corp Ammeter
JP2008112982A (en) * 2006-09-29 2008-05-15 Gm Global Technology Operations Inc High precision rogowski current transformer of improved type

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0643189A (en) * 1992-05-25 1994-02-18 Mitsubishi Electric Corp Ammeter
JP2008112982A (en) * 2006-09-29 2008-05-15 Gm Global Technology Operations Inc High precision rogowski current transformer of improved type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104215808A (en) * 2013-05-31 2014-12-17 西门子公司 Diverter used for measuring alternating current
JP2019012028A (en) * 2017-06-30 2019-01-24 日置電機株式会社 Current detection device and measuring device

Also Published As

Publication number Publication date
JP5290899B2 (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP4674533B2 (en) AC current detection coil
JP5973995B2 (en) Electromagnetic coil structure with flat conductive track, magnetic core and electromagnetic angle sensor
JP6455811B2 (en) Current detection coil
CN108141082B (en) Rotating electrical machine
JP2007057494A (en) Coil for detecting alternating current
JP6672614B2 (en) Coil parts
JP2008041879A (en) Reactor
JP4569481B2 (en) Toroidal coil structure
JP4220727B2 (en) Air core coil
JP5290899B2 (en) Current sensor and method of manufacturing current sensor
JP5497232B2 (en) Current sensor and method of manufacturing current sensor
JP6154310B2 (en) Resolver
JP2004087619A (en) Air-core coil
JP7206803B2 (en) Coil wire, current sensor material and current sensor
JP2011022101A (en) Current sensor and method for manufacturing current sensor
JP5490448B2 (en) Magnetic sensor and current measuring device
JP4933068B2 (en) Magnetic sensor
JP6455812B2 (en) Current measuring device
JP6413639B2 (en) Magnetic element
JP5088638B2 (en) Coil component, transformer, and method of manufacturing coil component
JP2006310487A (en) Coil component
JP2009272438A (en) Switching transformer
JP2013168476A (en) Common mode choke coil
JP3947028B2 (en) Air core coil
JP6584849B2 (en) Electrical component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130604

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130606

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees