JP2011021979A - Method for measurement of surface tension of very small amount of liquid - Google Patents

Method for measurement of surface tension of very small amount of liquid Download PDF

Info

Publication number
JP2011021979A
JP2011021979A JP2009166758A JP2009166758A JP2011021979A JP 2011021979 A JP2011021979 A JP 2011021979A JP 2009166758 A JP2009166758 A JP 2009166758A JP 2009166758 A JP2009166758 A JP 2009166758A JP 2011021979 A JP2011021979 A JP 2011021979A
Authority
JP
Japan
Prior art keywords
liquid
measured
needle
surface tension
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009166758A
Other languages
Japanese (ja)
Inventor
Takeshi Yamazaki
剛 山崎
Yoshiki Sato
嘉樹 佐藤
Satoshi Yamamura
聡 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2009166758A priority Critical patent/JP2011021979A/en
Publication of JP2011021979A publication Critical patent/JP2011021979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To measure the surface tension of an extremely small amount of a liquid to be measured. <P>SOLUTION: A method is provided for measuring the surface tension or wet index of an extremely small amount of the liquid to be measured using the needle driven by a drive unit. In the method, the tip of the needle is brought into contact with the liquid to be measured and subsequently moved in the direction separated from the liquid to be measured to measure the force required for separating the tip of the needle from the liquid to be measured and the surface tension or wet index of the liquid to be measured is calculated from the measured force value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、微小量液体の表面張力または濡れ指数の測定方法に関する。   The present invention relates to a method for measuring the surface tension or wetting index of a minute amount of liquid.

表面張力は気液界面における一般的な物性であり、従来から広く測定されてきた。その測定法としては、例えば毛細管上昇法、滴下法、Whlhelmy法、du Nouy ring法(吊環法)、最大バブル圧法などが挙げられる。   The surface tension is a general physical property at the gas-liquid interface and has been widely measured. Examples of the measuring method include a capillary ascending method, a dropping method, a Whlhelmy method, a du Nouy ring method (hanging ring method), and a maximum bubble pressure method.

以下、γは表面張力を、rは毛細管半径を、ρは液の密度を、gは重力加速度を、mは液滴質量を、θは接触角を、lは接触長を、Kはキャピラリー定数をそれぞれ表すものとする。   In the following, γ is the surface tension, r is the capillary radius, ρ is the density of the liquid, g is the acceleration of gravity, m is the mass of the droplet, θ is the contact angle, l is the contact length, and K is the capillary constant. Respectively.

毛細管上昇法では、毛細管の口を液に漬けたときの毛細管内を上昇する高さhから、次式に従って表面張力を求める。
2πrγ=πrhρg
滴下法では、円形の管の口から滴下する際の滴数とその液体の比重から次式に従って表面張力を求める。
mg=2πrγ
吊環法では、白金の小環を水平に吊るして液面に接触させ、小環を引上げる際に働く力fから次式に従って表面張力を求める。
f=4πrγ
最大バブル圧法では、液体中に毛細管から気体をゆっくり注入し発生する気泡が毛細管先端から離れる際の最大圧力Pから次式に従って表面張力を求める。
Pr=K2γcosθ
Wilhelmy法では、金属板等を液体中に漬し、そのときに生じる表面張力と浮力fの合力Fから次式に従って表面張力を求める。
F=mg+γcosθ・l−f
In the capillary ascending method, the surface tension is obtained according to the following formula from the height h that rises in the capillary when the capillary mouth is immersed in the liquid.
2πrγ = πr 2 hρg
In the dropping method, the surface tension is determined according to the following equation from the number of drops when dropping from the mouth of a circular tube and the specific gravity of the liquid.
mg = 2πrγ
In the hanging ring method, a platinum small ring is hung horizontally and brought into contact with the liquid surface, and the surface tension is obtained from the force f acting when the small ring is pulled up according to the following equation.
f = 4πrγ
In the maximum bubble pressure method, the surface tension is obtained from the maximum pressure P when bubbles generated by slowly injecting gas from the capillary into the liquid are separated from the tip of the capillary according to the following equation.
Pr = K2γ cos θ
In the Wilhelmy method, a metal plate or the like is immersed in a liquid, and the surface tension is determined from the resultant surface tension and the resultant force F of the buoyancy f according to the following equation.
F = mg + γcos θ · l−f

これらの方法はいずれも確立された測定法であり信頼性は高いが、一定量の測定対象液体を必要とすることから、測定対象液体が少量の場合には適用できない。   All of these methods are established measurement methods and have high reliability. However, since these methods require a certain amount of the liquid to be measured, they cannot be applied when the liquid to be measured is small.

近年、測定対象液体量が非常に少ない測定法として、Christensonらにより、円盤引上法が報告された(非特許文献1)。そこでは、凸面状に研磨された直径2cmのシリカ円盤間に約0.2μlの3種類の測定対象液体滴(エタノール、エチレングリコール、水)を入れ、2枚の円盤間の距離を徐々に大きくしていったときの、円盤間の引力が急減する距離と測定対象液体の表面張力とに相関があることが示されている。   In recent years, as a measuring method with a very small amount of liquid to be measured, Christenson et al. Reported a disk lifting method (Non-Patent Document 1). There, about 0.2 μl of three types of liquid droplets to be measured (ethanol, ethylene glycol, water) are inserted between 2 cm diameter silica disks polished in a convex shape, and the distance between the two disks is gradually increased. It is shown that there is a correlation between the distance at which the attractive force between the disks suddenly decreases and the surface tension of the liquid to be measured.

J. of Colloid and Interface Science, 232, pp408-409, (2000)J. of Colloid and Interface Science, 232, pp408-409, (2000)

本発明が解決しようとする課題は、測定対象液体量が極めて少ない場合でも、液体の表面張力または濡れ指数を測定できる方法を提供することである。   The problem to be solved by the present invention is to provide a method capable of measuring the surface tension or wetting index of a liquid even when the amount of liquid to be measured is very small.

本発明者らは、例えば走査型プローブ顕微鏡(Scanning Probe Microscope、以下「SPM」と表記することがある)のフォースカーブ(force curve)機能を用いて、表面張力または濡れ指数既知の標準液体での測定結果との比較を行うことにより、ごく微量の測定対象液体量の表面張力または濡れ指数を測定する方法を見出し、さらに研究を進めて本発明に到達した。   The present inventors have used, for example, a force curve function of a scanning probe microscope (hereinafter, sometimes referred to as “SPM”), in a standard liquid with a known surface tension or wetting index. By comparing with the measurement results, a method for measuring the surface tension or the wetting index of a very small amount of liquid to be measured was found, and further research was advanced to arrive at the present invention.

すなわち、本発明は、駆動部により駆動される針を用いた表面張力または濡れ指数の測定法であって、針の先端部を測定対象液体に接触させた後、これを液体から離れる方向に移動させ、針の先端部を測定対象液体から離脱させるのに要した力を測定し、その値から測定対象液体の表面張力または濡れ指数を求める測定法である。   That is, the present invention is a method of measuring surface tension or wetting index using a needle driven by a driving unit, and the tip of the needle is brought into contact with the liquid to be measured and then moved away from the liquid. And measuring the force required to disengage the tip of the needle from the liquid to be measured, and obtaining the surface tension or wetting index of the liquid to be measured from the measured value.

本発明によれば、測定対象液体量が微量しか得られない場合にも、測定対象液体の表面張力または濡れ指数を測定することができる。例えば、測定対象液体が特定の生体由来や、特定の微量付着液の場合に有用である。   According to the present invention, even when only a very small amount of liquid to be measured is obtained, the surface tension or the wetting index of the liquid to be measured can be measured. For example, it is useful when the liquid to be measured is derived from a specific living body or a specific small amount of adhering liquid.

SPMのフォースカーブの一例を示すの模式図である。It is a schematic diagram which shows an example of the force curve of SPM. 実施例1での測定結果を示すグラフである。3 is a graph showing measurement results in Example 1. 実施例2での測定結果を示すグラフである。6 is a graph showing measurement results in Example 2.

本発明は、駆動部により駆動される針を用いた表面張力または濡れ指数の測定法であって、針の先端部を測定対象液体に接触させた後、これを液体から離れる方向に移動させ、針の先端部を測定対象液体から離脱させるのに要した力を測定し、その値から測定対象液体の表面張力または濡れ指数を求める測定法である。   The present invention is a method for measuring surface tension or wetting index using a needle driven by a drive unit, and after contacting the tip of the needle with the liquid to be measured, it is moved away from the liquid, This is a measurement method in which the force required to disengage the tip of the needle from the liquid to be measured is measured, and the surface tension or wetting index of the liquid to be measured is obtained from the measured value.

針の先端部が測定対象液体から離脱するのに要した力としては、離脱する直前の値が好ましく、通常はその時点で最大値をとるが、表面張力またはぬれ指数が求められる限り、これに限定されない。   As the force required for the tip of the needle to detach from the liquid to be measured, the value immediately before detachment is preferable, and usually takes the maximum value at that point, but as long as the surface tension or wetting index is required, It is not limited.

本発明で用いる針の一例として、SPMのプローブにおいて、カンチレバーの先端に固定された針が挙げられるが、その先端部と微小量液体との接触−離脱を観察でき、離脱させるのに要した力を測定できる限り、他の形状の針を用いてもよい。   As an example of the needle used in the present invention, in the SPM probe, a needle fixed to the tip of a cantilever can be mentioned. The contact-detachment between the tip of the cantilever and a minute amount of liquid can be observed, and the force required for the removal. Any other shape of needle may be used as long as it can be measured.

本発明で用いる針の先端部の形状は、微量の液体であってもそれとの接触−離脱を観察しやすいものであれば特に限定されない。例えば円錐形が挙げられるが、その頂角は鋭角である必要はなく、例えば60°でもよい。本発明で用いる針の材料は、それと微量の液体との接触−離脱を観察できるものである限り特に限定はない。例えばカーボンナノチューブ(CNT)を用いることもできる。   The shape of the tip of the needle used in the present invention is not particularly limited as long as it is easy to observe contact and detachment with a minute amount of liquid. For example, a conical shape may be mentioned, but the apex angle does not need to be an acute angle, and may be 60 °, for example. The needle material used in the present invention is not particularly limited as long as it can observe contact and separation between the needle material and a small amount of liquid. For example, carbon nanotubes (CNT) can be used.

ここで、「先端」とは針が測定対象液体と接触する部分であり、必ずしも針の端部になくてもよい。極微量の測定対象液体の表面張力を測定しようとする場合、測定に関与する部分の大きさを小さくすることが重要であるから、特に液量が少ない場合には、それに応じて針の先端部も小さくすることが好ましい。例えば、SPMで使用している針の先端部の径である数10nm程度のものを用いることができる。   Here, the “tip” is a portion where the needle comes into contact with the liquid to be measured, and does not necessarily have to be at the end of the needle. When measuring the surface tension of a very small amount of liquid to be measured, it is important to reduce the size of the part that is involved in the measurement. It is preferable to reduce the size. For example, a needle having a diameter of about several tens of nanometers, which is the diameter of the needle used in SPM, can be used.

また、かかる針は、SPMにおいてはカンチレバー形状の部材に取り付けられており、それが好適な実施形態であるが、針を円滑に移動させ、針の先端部と測定対象液体との接触−離脱を観察し、離脱させるのに要した力を測定するのに支障がなければ他の部材に取り付けられていてもよい。   In addition, such a needle is attached to a cantilever-shaped member in SPM, which is a preferred embodiment. However, the needle is smoothly moved so that contact between the tip of the needle and the liquid to be measured is separated. If there is no trouble in measuring the force required to observe and disengage, it may be attached to another member.

針が、ばね機構、例えばカンチレバーを介して駆動部により駆動される場合、針の先端部が測定対象液体から離脱するのに要した力は、針の先端部が測定対象液体から離れたときの位置とばね機構のばね定数とから計算することができる。例えば、ばね機構がカンチレバーである場合には、針の先端部が測定対象液体から離れたときの位置からカンチレバーのたわみを求め、その程度とばね定数とから針の先端部が測定対象液体から離脱するのに要した力を計算することができる。もっとも、ばね定数を用いるのは針の先端部の変位と復元力とが一次関数に近似できる場合であり、要求される精度によってはより高次の関数で近似することが好ましい。   When the needle is driven by a drive unit via a spring mechanism, for example, a cantilever, the force required for the tip of the needle to move away from the liquid to be measured is the force when the tip of the needle is separated from the liquid to be measured. It can be calculated from the position and the spring constant of the spring mechanism. For example, when the spring mechanism is a cantilever, the deflection of the cantilever is obtained from the position when the tip of the needle is separated from the liquid to be measured, and the tip of the needle is detached from the liquid to be measured from the degree and the spring constant. You can calculate the force required to do it. However, the spring constant is used when the displacement and restoring force of the tip of the needle can be approximated to a linear function, and it is preferable to approximate with a higher order function depending on the required accuracy.

針を駆動する駆動部は、これもSPMで用いられている機構を好適なものとして挙げることができるが、それに限られず、必要な駆動精度があり、針の先端部が測定対象液体から離脱するのに要した力を測定するのに必要な精度を有する限り、駆動部の機構は問わない。   The driving unit for driving the needle can be cited as a suitable mechanism used in SPM, but is not limited thereto, and has a required driving accuracy, and the tip of the needle is detached from the liquid to be measured. The mechanism of the drive unit is not limited as long as it has the accuracy necessary to measure the force required for the operation.

上述のように、本発明で用いる針やその先端部の形状、その取り付け態様や駆動方法はSPMの機構に準じて設計することが好ましく、SPM自体を利用することが特に好ましい。以下、SPMを利用する場合を例にとり、本発明の好適な実施態様の一つをより詳しく説明する。   As described above, it is preferable to design the needle used in the present invention, the shape of the tip thereof, its attachment mode and driving method according to the SPM mechanism, and it is particularly preferable to use the SPM itself. Hereinafter, taking a case where SPM is used as an example, one of the preferred embodiments of the present invention will be described in more detail.

SPMは表面形状測定装置の一つである。そして多くの機種ではフォースカーブも標準で測定できる。ここで、フォースカーブとは、プローブ(プローブにはカンチレバーが取り付けられており、カンチレバーには針が取り付けられている)と測定対象液体の距離の上限・下限を設定してプローブを上下動させ、プローブ−試料間の距離とカンチレバーに働く力(振幅減衰量)との関係をプロットした曲線をいう。なお、フォースカーブの測定は、コンタクトモードによる場合が多いが、これに限定されるものではない。   SPM is one of surface shape measuring devices. Many models can measure force curves as standard. Here, the force curve means that the probe is moved up and down by setting the upper and lower limits of the distance between the probe (the cantilever is attached to the probe and the needle is attached to the cantilever) and the liquid to be measured. A curve in which the relationship between the probe-sample distance and the force acting on the cantilever (amplitude attenuation) is plotted. The force curve is often measured by the contact mode, but is not limited to this.

本発明における測定対象液体の表面張力等の測定原理は、SPMを用いた場合、図1に示すフォースカーブの模式図を用いて次のように説明される。この図において、横軸はカンチレバー取付部を含むプローブの移動を、縦軸は針の先端部が受ける力を表している。   In the present invention, the measurement principle such as the surface tension of the liquid to be measured is explained as follows using the schematic diagram of the force curve shown in FIG. 1 when SPM is used. In this figure, the horizontal axis represents the movement of the probe including the cantilever mounting portion, and the vertical axis represents the force received by the tip of the needle.

最初、1のようにプローブを移動すると、針の先端部が測定対象液体を置いた固体表面に近づくが、固体表面Aに達するまでは、針の先端部はなんら力を受けない。表面Aに達した後、さらにプローブを押し込むと、2のように、針を取り付けたカンチレバーがバネとして動作し、移動距離に比例した力を針の先端部は受ける。   Initially, when the probe is moved as in 1, the tip of the needle approaches the solid surface on which the liquid to be measured is placed, but until the solid surface A is reached, the tip of the needle does not receive any force. When the probe is further pushed after reaching the surface A, the cantilever to which the needle is attached operates as a spring as shown in 2, and the tip of the needle receives a force proportional to the moving distance.

一定の距離を押し込んだ後、プローブを離していくと、3に示す様に同じラインを描くが、針の先端部は、固体表面Aを過ぎても測定対象液体の表面張力のために液体表面から離れず、今度は引力を受ける。   When the probe is released after a certain distance has been pushed in, the same line is drawn as shown in 3 but the tip of the needle remains on the liquid surface due to the surface tension of the liquid to be measured even after passing the solid surface A. Without getting away from it, this time it receives attraction.

C点に達すると、カンチレバーのばねにより引き離す力と測定対象液体の表面張力による引力が等しくなり、針の先端部は表面から離れる。その後、針の先端部が受ける力は4のように急激にゼロ(D)に戻る。その後は針の先端部は力を受けないため、5のような軌跡を描く。   When point C is reached, the pulling force by the spring of the cantilever becomes equal to the pulling force due to the surface tension of the liquid to be measured, and the tip of the needle moves away from the surface. Thereafter, the force applied to the tip of the needle suddenly returns to zero (D) as indicated by 4. After that, since the tip of the needle is not subjected to force, a locus like 5 is drawn.

ここで、測定対象液体の表面張力の大小により、針の先端部が離れるまでの距離ADが変化する。そして、例えば、表面張力が既知の液体を用いて同様に距離ADを測定してそれと対比することで、測定対象液体の表面張力または濡れ指数を求めることができる。
このようにして、微量の測定対象液体(例えば100nl)の試料でも、容易にその表面張力または濡れ指数を求めることができるのである。
Here, the distance AD until the tip of the needle is separated varies depending on the surface tension of the liquid to be measured. For example, the surface tension or the wetting index of the liquid to be measured can be obtained by measuring the distance AD using a liquid having a known surface tension and comparing it with the same.
In this way, the surface tension or the wetting index can be easily obtained even with a sample of a very small amount of liquid to be measured (for example, 100 nl).

なお、本発明方法の測定対象となる液体は特に限定されないが、測定条件によっては測定対象液体の蒸発や硬化などが懸念されるので、適切な測定時間や測定環境を設定することが望ましい。例えば、蒸発が懸念される場合には、測定対象液体の周囲をその蒸気で満たすなどである。   The liquid to be measured by the method of the present invention is not particularly limited, but depending on the measurement conditions, there is a concern about evaporation or curing of the liquid to be measured, so it is desirable to set an appropriate measurement time and measurement environment. For example, when there is a concern about evaporation, the circumference of the liquid to be measured is filled with the vapor.

本発明の測定方法において、針の移動速度や測定時間は、針の先端部を測定対象液体から離脱させるのに要した力を測定できる限り、特段の限定はない。もっとも、測定対象液体が微量であるから、その蒸発の影響を考慮して設定すべきである。   In the measuring method of the present invention, the moving speed and measuring time of the needle are not particularly limited as long as the force required to disengage the tip of the needle from the liquid to be measured can be measured. However, since the liquid to be measured is very small, it should be set in consideration of the evaporation effect.

[実施例1]
デジタルインスツルメンツ社製のSPM ナノスコープIIIaに、オリンパス社製のカンチレバー OTR−8を取り付け、コンタクトモードでフォースカーブを求めた。測定を行う表面としては、清浄であることと平坦であることを要することから、雲母の剥離面を採用した。
液体サンプルとして純水、エチレングリコールを用い、測定は大気中で行った。各液でSPMのプローブを濡らし、得られたフォースカーブ上で、引力が急減する距離を求めた。
[Example 1]
Olympus cantilever OTR-8 was attached to SPM Nanoscope IIIa manufactured by Digital Instruments, and the force curve was determined in contact mode. Since the surface to be measured needs to be clean and flat, a mica peeling surface was adopted.
Pure water and ethylene glycol were used as liquid samples, and the measurement was performed in the air. The SPM probe was wetted with each solution, and the distance at which the attractive force rapidly decreased was obtained on the obtained force curve.

より具体的には、雲母板上に、マイクロピペット等を使用して、測定対象液体を100nl滴下した。光学顕微鏡等で観察しながら、測定対象液体の端部ぎりぎりのところに針の先端部を降ろした。ナノスコープIIIaの場合では、針が右側から保持されるため、液滴の右端に針の先端部を降ろすことになる。針の先端部が液滴に接すると、そこに液滴の一部が付着し、球状となる。その状態となったら、手動でプローブを上昇させ、針の先端部を雲母板の濡れていない場所に移動させた。その位置は、針の先端部の移動距離を短くして測定対象液体の蒸発の影響を極小化すべく、すぐ右側とした。この操作は、測定対象液体の量を適正化するものである。その後、再度フォースカーブ測定を行った。この操作を必要な回数繰り返した。   More specifically, 100 nl of the liquid to be measured was dropped on the mica plate using a micropipette or the like. While observing with an optical microscope or the like, the tip of the needle was lowered to the very end of the liquid to be measured. In the case of Nanoscope IIIa, since the needle is held from the right side, the tip of the needle is lowered to the right end of the droplet. When the tip of the needle comes into contact with the droplet, a part of the droplet adheres to it and becomes spherical. When that state was reached, the probe was manually raised, and the tip of the needle was moved to a location where the mica plate was not wet. The position was set immediately on the right side in order to minimize the influence of evaporation of the liquid to be measured by shortening the moving distance of the tip of the needle. This operation is to optimize the amount of the liquid to be measured. Thereafter, force curve measurement was performed again. This operation was repeated as many times as necessary.

各液体の表面張力(文献値)と、SPMの針の先端部が測定対象液体表面から離れた時点におけるプローブの移動距離の測定結果を表1に示す。各液体の表面張力と、針の先端部が離れた時点におけるプローブの移動距離(すなわちカンチレバーの撓み)との間には、図2に示すように良好な相関が認められた。   Table 1 shows the measurement results of the surface tension (reference values) of each liquid and the probe moving distance when the tip of the SPM needle is separated from the surface of the liquid to be measured. As shown in FIG. 2, a good correlation was observed between the surface tension of each liquid and the moving distance of the probe (ie, the deflection of the cantilever) when the tip of the needle was separated.

Figure 2011021979
Figure 2011021979

[実施例2]
実施例1と同様の測定を、測定対象液体を変えて実施した。すなわち、測定対象液体として、和光純薬社製の濡れ張力試験用混合液3種類(No.40.0、60.0、67.0)を用いた。各液体のぬれ指数と、SPMの針の先端部が測定対象液体表面から離れた時点におけるプローブの移動距離の測定結果を表2に示す。測定対象液体の濡れ指数と、プローブが離れた時点におけるプローブの移動距離(すなわちカンチレバーの撓み)との間には、図3に示すように相関が認められた。
[Example 2]
The same measurement as in Example 1 was performed by changing the liquid to be measured. That is, three types of liquid mixture for wet tension test (No. 40.0, 60.0, 67.0) manufactured by Wako Pure Chemical Industries, Ltd. were used as liquids to be measured. Table 2 shows the measurement results of the wetting index of each liquid and the movement distance of the probe when the tip of the SPM needle is separated from the surface of the liquid to be measured. As shown in FIG. 3, a correlation was observed between the wetting index of the liquid to be measured and the moving distance of the probe when the probe was separated (that is, the deflection of the cantilever).

Figure 2011021979
Figure 2011021979

本発明によれば、測定対象液体が微量でも、その表面張力やぬれ指数を測定することができる。例えば各種試薬を生産する際の管理工程や各種研究の過程など、産業の各現場で利用できる。   According to the present invention, the surface tension and the wetting index can be measured even with a small amount of liquid to be measured. For example, it can be used at various industrial sites such as the management process and various research processes when producing various reagents.

Claims (6)

駆動部により駆動される針を用いた表面張力または濡れ指数の測定法であって、針の先端部を測定対象液体に接触させた後、これを液体から離れる方向に移動させ、針の先端部を測定対象液体から離脱させるのに要した力を測定し、その値から測定対象液体の表面張力または濡れ指数を求める測定法。   A method of measuring surface tension or wetting index using a needle driven by a driving unit, wherein the tip of the needle is brought into contact with the liquid to be measured, and then moved away from the liquid, so that the tip of the needle Is a measurement method that measures the force required to release the liquid from the liquid to be measured, and calculates the surface tension or wetting index of the liquid to be measured from the measured value. 針がばね機構を介して駆動部により駆動され、針の先端部が測定対象液体から離脱するのに要した力を、針の先端部が測定対象液体から離れたときの位置とばね定数とから求める請求項1に記載の測定法。   The force required for the needle to be driven by the drive unit via the spring mechanism and the tip of the needle to be separated from the liquid to be measured is calculated from the position when the tip of the needle is separated from the liquid to be measured and the spring constant. The measurement method according to claim 1 to be obtained. 走査型プローブ顕微鏡を用いる請求項1または2に記載の測定法。   The measuring method according to claim 1 or 2, wherein a scanning probe microscope is used. 測定対象液体を雲母板上に置いて測定する、請求項1から3のいずれかに記載の測定法。   The measurement method according to claim 1, wherein the measurement target liquid is placed on a mica plate and measured. 表面張力既知の物質を標準として用いる請求項1から4のいずれかに記載の測定法。   The measuring method according to claim 1, wherein a substance having a known surface tension is used as a standard. 表面張力既知の物質として濡れ指数標準液を用いる請求項5に記載の測定法。   The measurement method according to claim 5, wherein a wetting index standard solution is used as the substance having a known surface tension.
JP2009166758A 2009-07-15 2009-07-15 Method for measurement of surface tension of very small amount of liquid Pending JP2011021979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166758A JP2011021979A (en) 2009-07-15 2009-07-15 Method for measurement of surface tension of very small amount of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166758A JP2011021979A (en) 2009-07-15 2009-07-15 Method for measurement of surface tension of very small amount of liquid

Publications (1)

Publication Number Publication Date
JP2011021979A true JP2011021979A (en) 2011-02-03

Family

ID=43632202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166758A Pending JP2011021979A (en) 2009-07-15 2009-07-15 Method for measurement of surface tension of very small amount of liquid

Country Status (1)

Country Link
JP (1) JP2011021979A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476728A (en) * 2009-12-31 2011-07-06 Schlumberger Holdings Determination of fluid properties in a porous medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2476728A (en) * 2009-12-31 2011-07-06 Schlumberger Holdings Determination of fluid properties in a porous medium
GB2476728B (en) * 2009-12-31 2011-12-21 Schlumberger Holdings A method for determination of fluid properties in a porous medium

Similar Documents

Publication Publication Date Title
Craig Very small bubbles at surfaces—the nanobubble puzzle
Guevorkian et al. Micropipette aspiration: A unique tool for exploring cell and tissue mechanics in vivo
US12076748B2 (en) Slippery rough surfaces
Backholm et al. Micropipette force sensors for in vivo force measurements on single cells and multicellular microorganisms
Pan et al. The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review
US8479309B2 (en) Ultra-low damping imaging mode related to scanning probe microscopy in liquid
Wei et al. The formation of liquid bridge in different operating modes of AFM
Tang et al. Sharp silicon tips with different aspect ratios in wet etching/DRIE and surfactant-modified TMAH etching
CN115814718A (en) Preparation method of super-particle colloid probe
US20050241392A1 (en) Atomic force microscope tip holder for imaging in liquid
JP2010054312A (en) Method of measuring contact angle
Sudersan et al. Method to measure surface tension of microdroplets using standard AFM cantilever tips
Moloni et al. Tapping mode scanning force microscopy in water using a carbon nanotube probe
JP2011021979A (en) Method for measurement of surface tension of very small amount of liquid
CN112345524B (en) Execution and sensing integrated method and system based on micro-scale bubbles
CN104090104A (en) Carbon nanotube micro-cantilever biosensor for detecting tumor marker with concentration of 0.5-10[mu]g/mL
CN102564951A (en) Method for realizing optic visualization and/or effective marking on one-dimensional nanometer material
CN102211754B (en) AFM (Atomic Force Microscopy)-based processing method of nanometer channel
CN210198936U (en) Cell adhesion measuring device
Devenica et al. Biophysical measurements of cells, microtubules, and DNA with an atomic force microscope
Longo et al. Micropipet aspiration for measuring elastic properties of lipid bilayers
WO2015079477A1 (en) Aspiration method
CN210037532U (en) Scanning type substrate surface detection device
An et al. Position-resolved surface characterization and nanofabrication using an optical microscope combined with a nanopipette/quartz tuning fork atomic force microscope
JP2004150980A (en) Liquid sending device and liquid feed method of microchemical/biochemical chip

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Effective date: 20110704

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20110704

Free format text: JAPANESE INTERMEDIATE CODE: A7424