JP2011020917A - METHOD FOR PRODUCING Ca-Gd-F-BASED TRANSLUCENT CERAMIC, Ca-Gd-F-BASED TRANSLUCENT CERAMIC, OPTICAL MEMBER, OPTICAL SYSTEM AND COMPOSITION FOR MOLDING CERAMIC - Google Patents

METHOD FOR PRODUCING Ca-Gd-F-BASED TRANSLUCENT CERAMIC, Ca-Gd-F-BASED TRANSLUCENT CERAMIC, OPTICAL MEMBER, OPTICAL SYSTEM AND COMPOSITION FOR MOLDING CERAMIC Download PDF

Info

Publication number
JP2011020917A
JP2011020917A JP2010089518A JP2010089518A JP2011020917A JP 2011020917 A JP2011020917 A JP 2011020917A JP 2010089518 A JP2010089518 A JP 2010089518A JP 2010089518 A JP2010089518 A JP 2010089518A JP 2011020917 A JP2011020917 A JP 2011020917A
Authority
JP
Japan
Prior art keywords
caf
particles
fine particles
gdf
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010089518A
Other languages
Japanese (ja)
Other versions
JP5682132B2 (en
Inventor
Hitoshi Ishizawa
均 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2010089518A priority Critical patent/JP5682132B2/en
Publication of JP2011020917A publication Critical patent/JP2011020917A/en
Application granted granted Critical
Publication of JP5682132B2 publication Critical patent/JP5682132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a Ca-Gd-F-based material having high Abbe number comparable with that of fluorite and having a refractive index higher than that of fluorite as a translucent ceramic. <P>SOLUTION: The translucent ceramic is produced by mixing CaF<SB>2</SB>fine particle and GdF<SB>3</SB>fine particle produced separately from the CaF<SB>2</SB>fine particle to prepare a fine particulate mixture and sintering the fine particulate mixture to make the sintered mixture transparent. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、カルシウム及びガドリニウムのフッ化物からなるCa−Gd−F系透光性セラミックスの製造方法、Ca−Gd−F系透光性セラミックス、光学部材、光学系、及びセラミックス形成用組成物に関する。   TECHNICAL FIELD The present invention relates to a method for producing a Ca—Gd—F based translucent ceramic made of a fluoride of calcium and gadolinium, a Ca—Gd—F based translucent ceramic, an optical member, an optical system, and a ceramic forming composition. .

蛍石(CaF)は、アッベ数(νd)が95と高く、屈折率分散特性に優れ、光の波長に対する屈折率の分散が小さい。また蛍石は、紫外域から赤外域までの光の透過率が高い。そのため蛍石は、優れた光学材料として知られている。
このような光学材料からなる凸レンズと、他の材料で形成された凹レンズを組み合わせると、色収差を良好に補正することができる。そのため、蛍石は、例えば顕微鏡対物レンズなど、各種の光学系に多数使用されている(例えば特許文献1)。
Fluorite (CaF 2 ) has a high Abbe number (νd) of 95, is excellent in refractive index dispersion characteristics, and has a small refractive index dispersion with respect to the wavelength of light. Fluorite has a high light transmittance from the ultraviolet region to the infrared region. Therefore, fluorite is known as an excellent optical material.
When a convex lens made of such an optical material is combined with a concave lens made of another material, chromatic aberration can be corrected well. Therefore, many fluorite is used in various optical systems such as a microscope objective lens (for example, Patent Document 1).

従来、蛍石単結晶が光学系に利用されているが、フッ化カルシウム焼結体として、蛍石セラミックスを製造する方法が、例えば特許文献2によって、知られている。特許文献2には、以下の蛍石セラミックスの製造方法が記載されている。カルシウム化合物とフッ素化合物を溶液中で反応させ、懸濁液を得る。次いで、この懸濁液を密閉容器に入れて100℃以上300℃以下に加熱することでフッ化カルシウム微粒子を作製する。このフッ化カルシウム微粒子を700℃以上1300℃以下に加熱して焼結することで焼結体が形成される。この焼結体に不活性雰囲気中で500Kg/cm以上10000Kg/cm以下の圧力をかけながら、800℃以上1300℃以下に加熱することで、焼結体が透明化し、蛍石セラミックスが形成される。 Conventionally, a fluorite single crystal has been used in an optical system. However, a method for producing fluorite ceramics as a calcium fluoride sintered body is known from Patent Document 2, for example. Patent Document 2 describes the following method for producing fluorite ceramics. A calcium compound and a fluorine compound are reacted in a solution to obtain a suspension. Next, this suspension is put in a sealed container and heated to 100 ° C. or higher and 300 ° C. or lower to produce calcium fluoride fine particles. The calcium fluoride fine particles are heated to 700 ° C. or higher and 1300 ° C. or lower and sintered to form a sintered body. Under pressure of the sintered body in an inert atmosphere 500 Kg / cm 2 or more 10000 kg / cm 2 or less, by heating to 800 ° C. or higher 1300 ° C. or less, the sintered body is transparent, fluorite ceramic formed Is done.

このように製造されたセラミックスは、ボイド等の発生が抑えられた緻密な焼結体であるため、優れた光学特性が得られる。   Since the ceramics produced in this way are dense sintered bodies in which the generation of voids and the like is suppressed, excellent optical characteristics can be obtained.

特開2004−191933号公報JP 2004-191933 A 特開2006−206359号公報JP 2006-206359 A

しかし、従来より光学系に使用されている単結晶材料の蛍石では、温度上昇の際の熱膨張歪が、結晶方位により異なり、非等方的に発生する。そのため、気温変化によって発生する熱膨張歪により、レンズの結像性能が低下し易い。更に、急激な温度変化により割れが生じ易いため、加工性に劣るという問題点もあった。   However, in the single crystal fluorite conventionally used in optical systems, the thermal expansion strain at the time of temperature rise varies depending on the crystal orientation and is generated anisotropically. For this reason, the imaging performance of the lens is likely to deteriorate due to thermal expansion distortion caused by temperature changes. Furthermore, since cracking is likely to occur due to a rapid temperature change, there is also a problem that workability is poor.

また、蛍石はアッベ数が高いものの、屈折率(nd)が1.43と非常に低い。そのため、蛍石セラミックスを用いた場合においても、光学的利用範囲が制限され易いという問題点があった。   Moreover, although fluorite has a high Abbe number, its refractive index (nd) is very low at 1.43. Therefore, even when fluorite ceramics are used, there is a problem that the optical utilization range is easily limited.

なお、立方晶構造を有するCa−Gd−F系の結晶の存在は知られているが、CaF2とGdF3の比重差が大きいため良質な単結晶を安定して製造することは難しい。そのため、Ca−Gd−F系の結晶を光学材料に適用するのは困難であった。   Although the existence of Ca—Gd—F crystals having a cubic structure is known, it is difficult to stably produce a good quality single crystal because of the large difference in specific gravity between CaF 2 and GdF 3. For this reason, it has been difficult to apply Ca-Gd-F based crystals to optical materials.

そこで、この発明は、蛍石と同程度の高いアッベ数を有すると共に、蛍石より高い屈折率を有し、かつ光学材料として利用可能な透光性を有するCa−Gd−F系透光性セラミックス、および該透光性セラミックスを用いた光学部材を提供することを課題とする。また、高い屈折率及びアッベ数を有し、温度上昇時の熱膨張が等方的に生じる、Ca−Gd−F系透光性セラミックス、及び該透光性セラミックスを用いた光学部材を提供することを課題とする。さらに、この発明は、このような光学部材を用いた光学系を提供することを他の課題とする。   Therefore, the present invention has a high Abbe number similar to that of fluorite, has a higher refractive index than fluorite, and has translucency that can be used as an optical material. An object is to provide ceramics and an optical member using the translucent ceramics. Also provided are a Ca-Gd-F-based translucent ceramic having a high refractive index and an Abbe number and causing isotropic thermal expansion when the temperature rises, and an optical member using the translucent ceramic. This is the issue. Furthermore, another object of the present invention is to provide an optical system using such an optical member.

また、この発明は、蛍石と同程度の高いアッベを有し、蛍石より高い屈折率を有するCa−Gd−F系透光性セラミックスを製造可能な製造方法を提供することを別の課題とする。
更に、この発明は、上記Ca−Gd−F系透光性セラミックスを製造するのに好適に使用可能なセラミックス形成用組成物を提供することを別の課題とする。
Another object of the present invention is to provide a production method capable of producing a Ca—Gd—F based translucent ceramic having an Abbe as high as fluorite and having a higher refractive index than fluorite. And
Furthermore, this invention makes it another subject to provide the composition for ceramic formation which can be used conveniently for manufacturing the said Ca-Gd-F type translucent ceramics.

この発明のCa−Gd−F系透光性セラミックスは、(Ca1−XGd)F2+X(ただし、Xは0より大きく0.4以下の数である。)の結晶を含む多結晶体からなり、光を透過可能な透光性を有する。 The Ca—Gd—F-based translucent ceramic of the present invention includes a polycrystal including a crystal of (Ca 1−X Gd X ) F 2 + X (where X is a number greater than 0 and equal to or less than 0.4). And has a light-transmitting property capable of transmitting light.

この発明の光学部材は、前記Ca−Gd−F系透光性セラミックスからなり、所定形状に形成されている。   The optical member of the present invention is made of the Ca—Gd—F based translucent ceramic and is formed in a predetermined shape.

この発明の光学系は、光路に少なくとも一組の凸レンズと、凹レンズとを備えた光学系であり、前記凸レンズ又は前記凹レンズの一方が前記Ca−Gd−F系透光性セラミックスからなり、他方が前記Ca−Gd−F系透光性セラミックスとは異なる材料からなる光学系である。上記光学系は、さらに1以上の凸レンズ、および1以上の凹レンズを備えていてもよい。   The optical system of the present invention is an optical system including at least one pair of convex lenses and concave lenses in an optical path, and one of the convex lens or the concave lens is made of the Ca-Gd-F based translucent ceramic, and the other is It is an optical system made of a material different from the Ca—Gd—F based translucent ceramic. The optical system may further include one or more convex lenses and one or more concave lenses.

この発明のCa−Gd−F系透光性セラミックスの製造方法は、CaF微粒子と、該CaF微粒子とは別に作製されたGdF微粒子とを混合して微粒子混合物とし、該微粒子混合物を焼結及び透明化することで透光性セラミックスを製造するCa−Gd−F系透光性セラミックスの製造方法である。
上記製造方法は、前記CaF微粒子の製造工程および/または前記GdF微粒子工程を含むものであってもよい。
上記製造方法は、前記CaF微粒子および前記GdF微粒子を含む微粒子混合物を調整する工程を含むものであってもよい。
Method for manufacturing a Ca-GdF KeiToruhikari ceramic of the present invention, baked and CaF 2 particles, by mixing the GdF 3 particles formed separately from the CaF 2 particles and particulate mixture, a fine particle mixture It is the manufacturing method of Ca-Gd-F type translucent ceramics which manufacture translucent ceramics by setting and making transparent.
The manufacturing method may include a manufacturing process of the CaF 2 fine particles and / or a GdF 3 fine particle process.
The manufacturing method may include a step of adjusting a fine particle mixture including the CaF 2 fine particles and the GdF 3 fine particles.

更に、この発明のセラミックス形成用組成物は、CaF微粒子と、該CaF微粒子とは別に作製されたGdF微粒子とを含有するセラミックス形成用組成物である。 Furthermore, the ceramic forming composition of the present invention is a ceramic forming composition containing CaF 2 fine particles and GdF 3 fine particles prepared separately from the CaF 2 fine particles.

この発明のCa−Gd−F系透光性セラミックスは、(Ca1−XGd)F2+X(Xは0より大きく0.4以下の数である。)の結晶を含む多結晶体からなり、光を透過可能な透光性を有する。そのため、この発明のCa−Gd−F系透光性セラミックスは、CaF結晶やGdF結晶とは異なる光学的特性を有する。すなわち、本発明によれば、蛍石と同程度の高いアッベ数を有すると共に、蛍石より高い屈折率を有するCa−Gd−F系透光性セラミックスを提供することができる。しかも、Ca−Gd−F系透光性セラミックスは多結晶体であるため、温度上昇時に等方的に熱膨張歪みが生じ易いという利点を有する。 The Ca—Gd—F-based translucent ceramic of the present invention is made of a polycrystal including a crystal of (Ca 1−X Gd X ) F 2 + X (X is a number greater than 0 and equal to or less than 0.4). , It has translucency that can transmit light. Therefore, the Ca—Gd—F based translucent ceramic of the present invention has optical characteristics different from those of the CaF 2 crystal and the GdF 3 crystal. That is, according to the present invention, it is possible to provide a Ca—Gd—F based translucent ceramic having an Abbe number as high as fluorite and having a higher refractive index than fluorite. And since Ca-Gd-F type translucent ceramics are a polycrystal, it has the advantage that it is easy to produce an isotropic thermal expansion distortion at the time of a temperature rise.

また、この発明の光学部材は、前記Ca−Gd−F系透光性セラミックスからなるので、蛍石と同程度の高いアッベ数を有すると共に、蛍石より高い屈折率を有する。更に、前記光学部材を有するこの発明の光学系によれば、優れた光学性能を実現し易い。   Moreover, since the optical member of this invention consists of said Ca-Gd-F type translucent ceramics, it has a high Abbe number comparable to fluorite and a higher refractive index than fluorite. Furthermore, according to the optical system of the present invention having the optical member, it is easy to realize excellent optical performance.

また、この発明のCa−Gd−F系透光性セラミックスの製造方法によれば、CaF微粒子と、このCaF微粒子とは別に作製されたGdF微粒子とを混合して微粒子混合物とし、この微粒子混合物を焼結及び透明化する。そのため、微粒子混合物の焼結性を確保し易く、カルシウム及びガドリニウムのフッ化物の多結晶体であって光を透過可能な透光性を有するCa−Gd−F系透光性セラミックスを製造することが可能である。 Further, according to the method for producing a Ca—Gd—F based translucent ceramic of the present invention, CaF 2 fine particles and GdF 3 fine particles prepared separately from the CaF 2 fine particles are mixed to form a fine particle mixture. Sinter and clear the particulate mixture. Therefore, it is easy to ensure the sinterability of the fine particle mixture, and to produce a Ca-Gd-F based translucent ceramic that is a polycrystal of calcium and gadolinium fluoride and has light transmissivity. Is possible.

更に、この発明のセラミックス形成用組成物は、CaF微粒子と、該CaF微粒子とは別に作製されたGdF微粒子とを含有するので、前記Ca−Gd−F系透光性セラミックスの製造方法に好適に使用可能である。 Furthermore, since the ceramic forming composition of the present invention contains CaF 2 fine particles and GdF 3 fine particles prepared separately from the CaF 2 fine particles, the method for producing the Ca—Gd—F based translucent ceramics Can be suitably used.

図1は、実施例1により作製されたCaF微粒子およびGdF微粒子のTEM写真であり、(a)はCaF微粒子、(b)はGdF微粒子を示す図である。FIG. 1 is a TEM photograph of CaF 2 fine particles and GdF 3 fine particles prepared in Example 1, wherein (a) shows CaF 2 fine particles and (b) shows GdF 3 fine particles. 図2Aは実施例1により製造されたCa−Gd−F系透光性セラミックスのX線解析の結果を示すチャートである。2A is a chart showing the results of X-ray analysis of the Ca—Gd—F based translucent ceramic produced according to Example 1. FIG. 図2Bは公知のCGF結晶の粉末X線解析の結果を示すチャートである。FIG. 2B is a chart showing the results of powder X-ray analysis of a known CGF crystal. 実施例1により製造されたCa−Gd−F系透光性セラミックスの波長に対する透過率を示すグラフである。4 is a graph showing the transmittance with respect to the wavelength of the Ca—Gd—F based translucent ceramics manufactured according to Example 1; 実施例1乃至3により製造されたCa−Gd−F系透光性セラミックスにおいて、CaF微粒子とGdF微粒子との混合割合を変化させた場合の屈折率変化とアッベ数変化とを示すグラフである。In the Ca-Gd-F type translucent ceramics manufactured by Examples 1 to 3, the graph shows the refractive index change and Abbe number change when the mixing ratio of CaF 2 fine particles and GdF 3 fine particles is changed. is there. 実施例1乃至3により製造されたCa−Gd−F系透光性セラミックス及び各種光学ガラスにおいて、アッベ数と部分分散比との相関を示すグラフである。It is a graph which shows the correlation with an Abbe number and a partial dispersion ratio in Ca-Gd-F type translucent ceramics and various optical glasses manufactured by Example 1 thru | or 3.

以下、この発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

この発明のCa−Gd−F系透光性セラミックスは、実質的にカルシウム及びガドリニウムのフッ化物の多結晶体であって、光を透過可能な透光性を有するものである。このCa−Gd−F系透光性セラミックスは、内部に光を透過させる部材として使用できる。特に、この透光性セラミックスは、レンズ等の光学部材に好適に使用可能である。   The Ca—Gd—F based translucent ceramic of the present invention is substantially a polycrystalline body of calcium and gadolinium fluoride, and has translucency capable of transmitting light. This Ca—Gd—F-based translucent ceramic can be used as a member that transmits light inside. In particular, this translucent ceramic can be suitably used for an optical member such as a lens.

このCa−Gd−F系セラミックスは、カルシウムガドリニウムフルオライド(以下、CGFと称す。)の結晶が含有されている多結晶体である。CGFは、(Ca1−XGd)F2+X(Xは0より大きく0.4以下の数である。)により示される組成比(原子比)を有する。組成比は蛍光X線分析や、各種の化学分析法により精度よく測定することが可能である。 This Ca-Gd-F ceramic is a polycrystal containing calcium gadolinium fluoride (hereinafter referred to as CGF) crystals. CGF has (Ca 1-X Gd X) F 2 + X (X is the number of greater than 0 and less than or equal 0.4.) The composition ratio shown (atomic ratio). The composition ratio can be accurately measured by fluorescent X-ray analysis or various chemical analysis methods.

このCGFの組成比は、製造時の条件の設定等により種々の値に設定可能であるが、Gd成分量を、焼結時の条件でCa成分リッチ相中に固溶するGd成分量の固溶限度以下としてCGFの組成比を調整することが好ましい。この場合、CaFを端成分とするCa成分リッチ相の結晶構造が有効に機能し易い構造が得られる。CaFの結晶系は立方晶であり、GdFは斜方晶であるが、上記範囲の組成のCGFは、立方晶となる。結晶系が立方晶であると、粒界において結晶構造の整合性を確保し易いため、セラミックスを透明化する条件として非常に有利である。 The composition ratio of this CGF can be set to various values depending on the setting of conditions at the time of manufacture, etc., but the amount of Gd component is fixed to the amount of Gd component dissolved in the Ca component rich phase under the conditions at the time of sintering. It is preferable to adjust the composition ratio of CGF below the solubility limit. In this case, a structure in which the crystal structure of the Ca component rich phase having CaF 2 as an end component easily functions effectively is obtained. The crystal system of CaF 2 is cubic and GdF 3 is orthorhombic, but CGF having a composition in the above range is cubic. A cubic crystal system is very advantageous as a condition for making ceramics transparent because it is easy to ensure crystal structure consistency at grain boundaries.

上記(Ca1−XGd)F2+Xで示されるCGFの組成比において、Xを0.4より大きくすると、CaFに対するGdイオンの固溶限界を超えるため、透光性を有するセラミックスを得ることが難しい。したがって、Xの上限を0.4とした。Xは0.1以上0.4以下とすることがより好ましい。Xが0.1未満では、蛍石との屈折率の差をあまり大きくすることができない。なお、Gd濃度の高い部位の発生を防止し、安定的に均質な光学特性を得るためには、Xは0.3以下とすることがより好ましい。したがって、Xは0.1以上0.3以下とすることがさらに好ましい。 In the composition ratio of CGF represented by the above (Ca 1−X Gd X ) F 2 + X , if X is larger than 0.4, the solid solution limit of Gd ions with respect to CaF 2 is exceeded, so that a translucent ceramic is obtained. It is difficult. Therefore, the upper limit of X is set to 0.4. X is more preferably 0.1 or more and 0.4 or less. If X is less than 0.1, the difference in refractive index from fluorite cannot be made too large. In order to prevent the generation of a portion having a high Gd concentration and to obtain stable and uniform optical characteristics, X is more preferably set to 0.3 or less. Therefore, X is more preferably 0.1 or more and 0.3 or less.

Ca−Gd−F系透光性セラミックスは実質的にCGF結晶からなるものが好適である。但し、所望の屈折率及びアッベ数が得られ、かつ光学材料として利用可能な透光性が得られる範囲において、CGFの結晶と共に、CaFの結晶及びGdFの結晶の一方又は双方が含まれていてもよい。
更に、所望の屈折率及びアッベ数が得られ、かつ光学材料として利用可能な透光性が得られる範囲において、他の不可避成分や焼結助剤等がCa−Gd−F系透光性セラミックスに含有されていてよい。
The Ca—Gd—F based translucent ceramic is preferably substantially composed of CGF crystals. However, in the range where desired refractive index and Abbe number can be obtained and translucency that can be used as an optical material is obtained, one or both of CaF 2 crystal and GdF 3 crystal are included together with CGF crystal. It may be.
Furthermore, other unavoidable components and sintering aids may be used as long as the desired refractive index and Abbe number can be obtained and the translucency that can be used as an optical material is obtained. It may be contained in.

Ca−Gd−F系透光性セラミックスは、上記のCaFの結晶またはGdFの結晶を含まず、実質的にCGF結晶からなるものがより好ましい。またCa−Gd−F系透光性セラミックスは、実質的に均質なCGF結晶からなることが好ましい。例えば、体積1μm×1μm×1μmの領域、好ましくは全体の領域において、CGF結晶の組成式(Ca1−XGd)F2+XにおけるXが、目標値に対し、±10%の範囲内に抑えられていることが好ましい。 More preferably, the Ca—Gd—F-based translucent ceramic does not include the CaF 2 crystal or the GdF 3 crystal and substantially consists of a CGF crystal. The Ca—Gd—F based translucent ceramic is preferably made of a substantially homogeneous CGF crystal. For example, in a region having a volume of 1 μm × 1 μm × 1 μm, preferably the entire region, X in the composition formula (Ca 1−X Gd X ) F 2 + X of the CGF crystal is suppressed within a range of ± 10% with respect to the target value. It is preferable that

Ca−Gd−F系透光性セラミックスは、光を透過可能な透光性を有する。この透光性は、Ca−Gd−F系透光性セラミックスの用途に応じた範囲でよい。例えば、使用時に透過させる波長の光の透過率が50%以上とすることができる。本発明が提供するCa−Gd−F系透光性セラミックスを色収差補正用の光学部材として用いる場合の使用波長は、例えば380nm〜780nmの可視光領域であり、代表波長は例えば550nmである。また、各種の光学部材では550nm以下の波長が使用される。そのため、Ca−Gd−F系透光性セラミックスは、550nmの波長の光の透過率が50%以上、より好ましくは350nm以上550nm以下の波長の光の透過率が50%以上としてもよい。なお、上記の波長または波長範囲における光の透過率は、70%以上であることが好ましく、80%以上であることがより好ましい。   Ca-Gd-F-based translucent ceramics have translucency capable of transmitting light. This translucency may be in a range according to the application of the Ca—Gd—F translucent ceramic. For example, the transmittance of light having a wavelength to be transmitted during use can be 50% or more. When the Ca-Gd-F translucent ceramic provided by the present invention is used as an optical member for correcting chromatic aberration, the wavelength used is, for example, a visible light region of 380 nm to 780 nm, and the representative wavelength is, for example, 550 nm. Further, in various optical members, a wavelength of 550 nm or less is used. Therefore, the Ca-Gd-F-based translucent ceramics may have a light transmittance of 50% or more, more preferably 50% or more of light having a wavelength of 350 nm to 550 nm. The light transmittance at the above-mentioned wavelength or wavelength range is preferably 70% or more, and more preferably 80% or more.

この透光性は、セラミックスの材料をCa及びGdのフッ化物に特定することで得られるものである。例えば、Gdの代わりにCeやYなどのフッ化物として高屈折率物質となり得る物質を用いたとしても、十分な透光性は得られない。その他の希土類のうち、Pr、Nd、Sm、Eu、Tb、Dy、Ho、Er、TmをGdの代わりに用いても透光性は得られるものの、可視光の一部波長を吸収したり、蛍光を発するなどの問題がある。ただし、La、Eu,Tb、Dyについては比較的吸収が少なかったり、蛍光発光強度が弱いため問題にならない可能性がある。   This translucency is obtained by specifying a ceramic material as a fluoride of Ca and Gd. For example, even if a substance that can be a high refractive index substance is used as a fluoride such as Ce or Y instead of Gd, sufficient translucency cannot be obtained. Among other rare earths, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, and Tm can be used in place of Gd, although translucency can be obtained, but some wavelengths of visible light are absorbed, There are problems such as emitting fluorescence. However, there is a possibility that La, Eu, Tb, and Dy do not cause a problem because of relatively little absorption or low fluorescence emission intensity.

このようなCa−Gd−F系透光性セラミックスは、そのまま使用してもよいが、所定形状の光学部材として使用することも可能である。例えばCa−Gd−F系透光性セラミックスを、光の入射面や放射面が、球面形状、非球面形状、平面形状、格子形状等、各種の形状を有する光学部材に加工することができる。更に、同様のCa−Gd−F系透光性セラミックスにより形成された1つ又は2以上の光学部材を組合せて使用することも可能である。或いは、上記光学部材を、他の材料により形成された光学部材と組合せて光学系を構成することにより使用することも可能である。例えば、Ca−Gd−F系透光性セラミックスにより形成された少なくとも一つの光学部材を、光学ガラス、光学プラスチック、光学結晶などから選択される材料で形成された少なくとも一つの光学部材と組合わせて使用することができる。   Such a Ca—Gd—F based translucent ceramic may be used as it is, but it can also be used as an optical member having a predetermined shape. For example, Ca—Gd—F-based translucent ceramics can be processed into an optical member having various shapes such as a spherical shape, an aspherical shape, a planar shape, and a lattice shape on the light incident surface and radiation surface. Furthermore, it is also possible to use a combination of one or two or more optical members formed of similar Ca—Gd—F based translucent ceramics. Or it is also possible to use the said optical member by comprising an optical system combining the optical member formed with the other material. For example, at least one optical member formed of Ca—Gd—F based translucent ceramics is combined with at least one optical member formed of a material selected from optical glass, optical plastic, optical crystal, and the like. Can be used.

以上のようなCa−Gd−F系透光性セラミックスは、良好な透光性が付与されたCGFの焼結体からなる新規なセラミックスである。そして、このセラミックスやこのセラミックスにより形成された光学部材は、CaF結晶及びGdF結晶の光学特性とは異なる光学特性を有し、従来にない屈折率とアッベ数をもつフッ化物材料となる。具体的には、このセラミックスは、蛍石と実質的に同じ程度に高いアッベ数を有すると共に、蛍石より高い屈折率を有している。例えば、Ca−Gd−F系透光性セラミックスは、屈折率(nd)が1.43以上1.55以下であると共に、アッベ数が85以上95以下の範囲を有している。そのため、このセラミックスは、種々の光学系に利用し易い。 The Ca—Gd—F-based translucent ceramic as described above is a novel ceramic made of a CGF sintered body imparted with good translucency. The optical member formed by the ceramic and the ceramic have different optical properties than the optical properties of the CaF 2 crystal and GdF 3 crystal, a fluoride material having an Abbe number and unprecedented refractive index. Specifically, this ceramic has an Abbe number that is substantially as high as fluorite and a higher refractive index than fluorite. For example, the Ca—Gd—F based translucent ceramic has a refractive index (nd) of 1.43 to 1.55 and an Abbe number of 85 to 95. Therefore, this ceramic is easy to use for various optical systems.

しかも、この屈折率及びアッベ数は、後述する実施例の図4に示す通り、CaとGdとの存在割合に対して一次関数的な相関を有している。そのため、CaとGdとの存在割合を調整することで、所望の屈折率及びアッベ数を有するセラミックスを容易に得ることが可能である。   Moreover, the refractive index and the Abbe number have a linear function correlation with the abundance ratio of Ca and Gd, as shown in FIG. Therefore, it is possible to easily obtain ceramics having a desired refractive index and Abbe number by adjusting the abundance ratio of Ca and Gd.

更に、このCa−Gd−F系透光性セラミックスは、各種のノーマルガラス(一般的な光学ガラス)と比較して異常部分分散を示す。例えば、アッベ数(νd)に対する部分分散比(Pg,F)の相関は、ノーマルガラスの場合、各後述の実施例の図5に示すように、直線で近似できる分布を示す。これに対し、Ca−Gd−F系セラミックスの場合、アッベ数に対する部分分散比は、上記の直線を離れ、ノーマルガラスとは異なる分布を示す。具体的には、本発明のCa−Gd−F系透光性セラミックスは、アッベ数が85以上95以下、部分分散比が0.53以上0.55以下の特性を有することができる。このため、Ca−Gd−F系セラミックスでは、フラウンフォーファーg線のような一部の光についての屈折率を、ノーマルガラスと異ならせることができる。   Furthermore, this Ca—Gd—F based translucent ceramic exhibits abnormal partial dispersion as compared with various normal glasses (general optical glasses). For example, the correlation of the partial dispersion ratio (Pg, F) with respect to the Abbe number (νd) shows a distribution that can be approximated by a straight line as shown in FIG. On the other hand, in the case of Ca-Gd-F ceramics, the partial dispersion ratio with respect to the Abbe number leaves the above straight line and shows a distribution different from that of normal glass. Specifically, the Ca—Gd—F-based translucent ceramic of the present invention can have characteristics with an Abbe number of 85 to 95 and a partial dispersion ratio of 0.53 to 0.55. For this reason, in the Ca—Gd—F based ceramics, the refractive index for a part of light such as the Fraunhofer g line can be made different from that of normal glass.

そのため、上記の異常部分分散を利用し、Ca−Gd−F系セラミックスで形成された部材を他の部材と組み合わせることで、色補正(色収差の補正)や二次スペクトルの除去等を容易に行うことができる。例えば、光路に凸レンズと凹レンズとを備えた光学系の場合、凸レンズ又は凹レンズの一方にこのCa−Gd−F系透光性セラミックスにより形成された部材を用い、他方にCa−Gd−F系透光性セラミックスとは異なる材料によって形成された部材を用いて光学系を構成することにより、効率よく二次スペクトルを除去することが可能である。例えば、上記光学系は、焦点距離の長い望遠レンズなどにも利用することができる。   Therefore, color correction (correction of chromatic aberration), removal of secondary spectrum, and the like can be easily performed by using the above-described abnormal partial dispersion and combining a member formed of Ca-Gd-F ceramics with another member. be able to. For example, in the case of an optical system including a convex lens and a concave lens in the optical path, a member formed of the Ca-Gd-F based translucent ceramic is used for one of the convex lens or the concave lens, and the Ca-Gd-F based transparent is used for the other. By configuring the optical system using a member formed of a material different from that of the photoceramic, it is possible to efficiently remove the secondary spectrum. For example, the optical system can be used for a telephoto lens having a long focal length.

本発明に係るCa−Gd−F系透光性セラミックスから凸レンズ又は凹レンズを製造する場合は、対象の形に近い形状に粗成形したCa−Gd−F系透光性セラミックスの表面を所定形状に加工し、さらに表面に光学研磨を施した後、必要に応じて反射防止加工等を行なえばよい。これらの各工程には公知の方法を適宜用いることができる。   When producing a convex lens or a concave lens from the Ca—Gd—F based translucent ceramic according to the present invention, the surface of the Ca—Gd—F based translucent ceramic that has been roughly molded into a shape close to the target shape is formed into a predetermined shape. After processing and further optically polishing the surface, antireflection processing or the like may be performed as necessary. A known method can be appropriately used for each of these steps.

このCa−Gd−F系透光性セラミックスは多結晶体であるため、温度上昇時に熱膨張歪が結晶方位に依存する異方性を示すことはなく、等方的に熱膨張歪が生じる。そのため、このセラミックスを加工する際には歪みによる破損が生じ難い。また、このセラミックスに光を透過して使用する際には、気温変化による結像性能の低下を生じ難い。   Since this Ca-Gd-F translucent ceramic is a polycrystal, the thermal expansion strain does not show anisotropy depending on the crystal orientation when the temperature rises, and isotropic thermal expansion strain occurs. Therefore, when processing this ceramic, breakage due to distortion is unlikely to occur. Further, when light is transmitted through the ceramics, it is difficult to cause deterioration in imaging performance due to temperature changes.

次に、このようなCa−Gd−F系透光性セラミックスの製造方法について説明する。
Ca−Gd−F系透光性セラミックスを製造するには、CaF微粒子と、このCaF微粒子とは別に形成されたGdF微粒子とを含有するセラミックス形成用組成物を準備し、このセラミックス形成用組成物を出来るだけ均一に混合して微粒子混合物とし、この微粒子混合物を焼結及び透明化することで製造することができる。
上記の製造方法は、前記セラミックス形成用組成物の調整を含む方法であってもよい。また、前記組成物に用いるCaF微粒子および/またはGdF微粒子の製造を含む方法であってもよい。なお、このセラミックス形成用組成物には、予め作製されたCaF微粒子及びGdF微粒子や、それらの混合物を用いることも可能である
ここで、セラミックス形成用組成物とは加熱、加圧等適宜な処理を施すことでセラミックスを形成可能な材料であって、焼結可能なCaF微粒子及びGdF微粒子を含有するものであればよい。前記組成物に含有されるCaF微粒子及びGdF微粒子は、他の成分の含有量を抑えた高純度の微粒子が好ましい。
Next, a method for producing such a Ca—Gd—F based translucent ceramic will be described.
To produce the Ca-GdF KeiToruhikari ceramic prepares the CaF 2 particles, the ceramic-forming composition containing a GdF 3 particles formed separately from the CaF 2 particles, the ceramic they are forming It can be produced by mixing the composition for use as uniformly as possible to obtain a fine particle mixture, and sintering and transparentizing the fine particle mixture.
The manufacturing method may include a method including adjustment of the ceramic forming composition. Further, a method including production of CaF 2 fine particles and / or GdF 3 fine particles used in the composition may be used. In addition, it is also possible to use CaF 2 fine particles and GdF 3 fine particles prepared in advance, or a mixture thereof, as the ceramic forming composition. Any material can be used as long as it is a material capable of forming ceramics by performing various treatments, and contains CaF 2 fine particles and GdF 3 fine particles that can be sintered. The CaF 2 fine particles and GdF 3 fine particles contained in the composition are preferably high-purity fine particles in which the content of other components is suppressed.

前記組成物に含有されるCaF微粒子と、GdF微粒子は、それぞれ別に製造されたものとする。例えば、カルシウム化合物とガドリニウム化合物両方を含む混合溶液にフッ素化合物を添加することにより、CaFとGdFを同時に生成せた微粒子混合物、あるいはこれらの成分を両方含む複合微粒子は、本発明では使用しない。このような方法では、焼結性に優れた微粒子を得ることが難しい。 The CaF 2 fine particles and the GdF 3 fine particles contained in the composition are manufactured separately. For example, a fine particle mixture in which CaF 2 and GdF 3 are simultaneously produced by adding a fluorine compound to a mixed solution containing both a calcium compound and a gadolinium compound, or a composite fine particle containing both of these components is not used in the present invention. . In such a method, it is difficult to obtain fine particles having excellent sinterability.

上記セラミックス形成用組成物に用いるCaF微粒子は、最大粒径5μm以下、好ましくは3μm以下、さらに好ましくは1μm以下の微粒子であることが望ましい。またGdF微粒子も、最大粒径5μm以下、好ましくは3μm以下、さらに好ましくは1μm以下の微粒子であることが望ましい。粒径5μmを越える粒子が組成物に含まれると、焼結後のセラミックスにおいて、Gd濃度が局所的に異なる部位を生じやすい。なお、組成物の材料が上記の上限値を越える粒径の粒子を含んでいても、微粒子混合物を調整する過程で上限の数値以下に細粒化されればよい。
上記、微粒子には、複数の一次粒子が凝集した凝集体(二次粒子)が含まれている。微粒子混合物を調整する段階において、二次粒子を細粒化し、一次粒子の割合を高めて、CaF2とGdFを均一に混合することが好ましい。
CaF2微粒子は、一次粒子の粒径を200nm以下とすることが好ましい。GdF微粒子は、一次粒子の粒径を200nm以下とすることが好ましい。
The CaF 2 fine particles used in the ceramic-forming composition are desirably fine particles having a maximum particle size of 5 μm or less, preferably 3 μm or less, and more preferably 1 μm or less. The GdF 3 fine particles are also desirably fine particles having a maximum particle size of 5 μm or less, preferably 3 μm or less, and more preferably 1 μm or less. When particles having a particle size exceeding 5 μm are contained in the composition, it is easy to generate sites where the Gd concentration is locally different in the sintered ceramic. Even if the material of the composition contains particles having a particle size exceeding the above upper limit value, it may be finely divided below the upper limit value in the process of preparing the fine particle mixture.
The fine particles include aggregates (secondary particles) in which a plurality of primary particles are aggregated. In the step of preparing the fine particle mixture, it is preferable that the secondary particles are finely divided and the proportion of the primary particles is increased to uniformly mix CaF 2 and GdF 3 .
The CaF 2 fine particles preferably have a primary particle size of 200 nm or less. The GdF 3 fine particles preferably have a primary particle size of 200 nm or less.

「CaF2微粒子の作成」
CaF微粒子は、カルシウム化合物とフッ素化合物とを水溶液中で反応させ、次いで密閉容器内で100℃以上300℃以下に加熱して作製することができる。
“Creation of CaF 2 fine particles”
The CaF 2 fine particles can be prepared by reacting a calcium compound and a fluorine compound in an aqueous solution, and then heating to 100 ° C. or more and 300 ° C. or less in a sealed container.

CaF微粒子の作成に用いるカルシウム化合物としては、酢酸塩、乳酸塩、シュウ酸塩、アスコルビン酸塩、アルギン酸塩、安息香酸塩、炭酸塩、クエン酸塩、グルコン酸塩、パントテン酸塩、サリチル酸塩、ステアリン酸塩、酒石酸塩、グリセリン酸塩、トリフルオロ酢酸塩等のカルシウムの有機酸塩を用いてもよく、カルシウムの塩化物、水酸化物、硝酸塩、硫酸塩等の無機塩を用いてもよい。カルシウム化合物としては、酢酸カルシウムを用いることが特に好ましい。酢酸カルシウムは水への溶解度が高く、硫酸塩や塩化物のような不純物イオンが残り難いため好適である。 Calcium compounds used for the preparation of CaF 2 fine particles include acetate, lactate, oxalate, ascorbate, alginate, benzoate, carbonate, citrate, gluconate, pantothenate, salicylate , Organic acid salts of calcium such as stearate, tartrate, glycerate and trifluoroacetate may be used, and inorganic salts such as calcium chloride, hydroxide, nitrate and sulfate may be used. Good. As the calcium compound, it is particularly preferable to use calcium acetate. Calcium acetate is suitable because it has a high solubility in water and impurity ions such as sulfates and chlorides hardly remain.

フッ素化合物としては、フッ化水素酸(フッ酸)等を用いることができる。フッ素化合物としてフッ酸を用いれば、不純物イオンが残り難く好適である。   As the fluorine compound, hydrofluoric acid (hydrofluoric acid) or the like can be used. If hydrofluoric acid is used as the fluorine compound, it is preferable that impurity ions hardly remain.

カルシウム化合物とフッ素化合物との反応は、それぞれを溶解して水溶液とし、常温常圧下で、カルシウム化合物水溶液中にフッ素化合物水溶液を徐々に注入することで反応させることができる。   Reaction of a calcium compound and a fluorine compound can be made to react by melt | dissolving each to make aqueous solution, and inject | pouring a fluorine compound aqueous solution gradually in calcium compound aqueous solution under normal temperature normal pressure.

この反応時には、反応混合物中にGdイオン等のような他のイオンが出来るだけ少ないことが好ましい。反応混合物中にCaイオンとフッ素イオン以外の他のイオンが共存すると、これらのイオンが形成されるCaF微粒子に取り込まれることにより、CaFの結晶性が低下し、粒子が凝集し易くなる。そのため、後述する焼結において、強く凝集された粒子が解離できず、セラミックス中にボイドが残留して密度が低下するなどの問題を生じ、焼結性が悪化し易い。焼結においては、焼結条件の僅かな変化でも高密度の焼結体が得られなくなることが多い。他のイオンは焼結性に敏感に影響して焼結性を悪化させるため、出来るだけ少なく抑えることが好適である。 During this reaction, it is preferable that other ions such as Gd ions are present in the reaction mixture as little as possible. When ions other than Ca ions and fluorine ions coexist in the reaction mixture, the ions are taken into the CaF 2 fine particles to be formed, whereby the crystallinity of CaF 2 is lowered and the particles are easily aggregated. For this reason, in the sintering described later, strongly agglomerated particles cannot be dissociated, causing problems such as voids remaining in the ceramics and lowering the density, and the sinterability tends to deteriorate. In sintering, it is often impossible to obtain a high-density sintered body even if the sintering conditions are slightly changed. Since other ions affect the sinterability sensitively and deteriorate the sinterability, it is preferable to suppress as much as possible.

また、反応時には、フッ素化合物をカルシウム化合物に対する化学当量(CaFに換算した場合の化学当量)より多い過剰量とするのが好適である。結晶性を向上させて凝集を抑え易くするためである。その結果、フッ素欠損が少なく、結晶性の高いCaF微粒子が形成される。 Moreover, at the time of reaction, it is suitable to make the fluorine compound into an excessive amount larger than the chemical equivalent to the calcium compound (chemical equivalent when converted to CaF 2 ). This is because the crystallinity is improved and aggregation is easily suppressed. As a result, CaF 2 fine particles with few fluorine defects and high crystallinity are formed.

更に、フッ素化合物水溶液の注入時には攪拌を行い、更に、注入終了後も攪拌を続けることが好ましい。生成されるCaF結晶からなる一次粒子の凝集を抑えるためである。強く凝集した状態の粒子が生成された場合、焼結及び透明化の際に加熱加圧しても、凝集状態が解離できず、ボイドが残留したり、緻密なセラミックスを得にくくなる。そのため、CaF結晶生成期間中は十分に攪拌を行うことが好適である。 Furthermore, it is preferable to stir at the time of pouring the fluorine compound aqueous solution and to continue stirring even after the pouring is completed. This is in order to suppress aggregation of primary particles made of the generated CaF 2 crystals. When strongly agglomerated particles are produced, the agglomerated state cannot be dissociated even when heated and pressurized during sintering and clarification, and voids remain, making it difficult to obtain dense ceramics. Therefore, it is preferable to sufficiently stir during the CaF 2 crystal generation period.

上記のように、常温常圧下でカルシウム化合物とフッ素化合物とを反応させた後に、反応混合物を密閉容器に収納し、100℃以上300℃以下で加熱・加圧処理を行う水熱反応処理を行うことが好ましい。
常温常圧下でカルシウム化合物とフッ素化合物とを反応させるだけでは、反応は十分に進行せず、結晶はフッ素欠損の多いフッ化物となっている。そのため、得られる反応混合物中の結晶の化学量論比はCa1に対してFが2より小さいく、結晶性が低く、凝集し易い。
そのため、上記のように所謂水熱反応を更に行い、カルシウム化合物とフッ素化合物の反応を完結させることが好ましい。水熱反応処理に用いる容器は特に限定されない。例えば、テフロン(登録商標)製のオートクレーブ等の密閉容器を用いてもよい。好ましい処理温度は120−180℃である。圧力は、この温度範囲における水の飽和蒸気圧である0.2−1.0MPaが好ましい。
As described above, after the calcium compound and the fluorine compound are reacted under normal temperature and normal pressure, the reaction mixture is stored in a hermetically sealed container, and a hydrothermal reaction process is performed in which heating and pressurizing processes are performed at 100 ° C. or more and 300 ° C. or less. It is preferable.
If the calcium compound and the fluorine compound are simply reacted at room temperature and normal pressure, the reaction does not proceed sufficiently, and the crystal is a fluoride with many fluorine deficiencies. Therefore, the stoichiometric ratio of crystals in the resulting reaction mixture is such that F is less than 2 with respect to Ca1, crystallinity is low, and aggregation is likely.
Therefore, it is preferable that the so-called hydrothermal reaction is further performed as described above to complete the reaction between the calcium compound and the fluorine compound. The container used for the hydrothermal reaction treatment is not particularly limited. For example, a sealed container such as an autoclave made of Teflon (registered trademark) may be used. The preferred processing temperature is 120-180 ° C. The pressure is preferably 0.2 to 1.0 MPa, which is the saturated vapor pressure of water in this temperature range.

これによりCaF微粒子のCa1に対するFの割合を実質的に2にでき、結晶性の高いCaF微粒子を形成できる。そのため、CaF微粒子の表面が安定になり、微粒子間の凝集力を小さくし易い。その結果、比較的低温でも高密度に焼結し易い、焼結性に優れたCaF微粒子を得ることができる。
なお、上記の方法によれば、たとえば、一次粒子の平均粒径100〜200nmのCaF微粒子を得ることができる。
This allows the ratio of F for Ca1 of CaF 2 particles substantially 2 can be formed with high crystallinity CaF 2 particles. Therefore, the surface of the CaF 2 fine particles becomes stable, and the cohesive force between the fine particles can be easily reduced. As a result, it is possible to obtain CaF 2 fine particles that are easy to sinter at a high density even at relatively low temperatures and have excellent sinterability.
Incidentally, according to the above method, for example, can be obtained CaF 2 particles having an average particle diameter 100~200nm of the primary particles.

「GdF微粒子の作成」
一方、GdF微粒子は、CaF微粒子の作製とほぼ同様に、ガドリニウム化合物とフッ素化合物とを水溶液中で反応させ、次いで密閉容器内で100℃以上300℃以下に加熱して作製することができる。
"Creation of GdF 3 fine particles"
On the other hand, the GdF 3 fine particles can be produced by reacting a gadolinium compound and a fluorine compound in an aqueous solution, and then heating to 100 ° C. or more and 300 ° C. or less in an airtight container in the same manner as the preparation of CaF 2 fine particles. .

ガドリニウム化合物としては、カルシウム化合物と同様のガドリニウムの有機酸塩や無機物を用いることができる。すなわち、酢酸塩、乳酸塩、シュウ酸塩、アスコルビン酸塩、アルギン酸塩、安息香酸塩、炭酸塩、クエン酸塩、グルコン酸塩、パントテン酸塩、サリチル酸塩、ステアリン酸塩、酒石酸塩、グリセリン酸塩、トリフルオロ酢酸塩等のガドリニウムの有機酸塩を用いてもよく、ガドリニウムの塩化物、水酸化物、硝酸塩、硫酸塩等の無機塩を用いてもよい。ガドリニウム化合物としては、酢酸ガドリニウムを用いることが好ましい。フッ素化合物としては、フッ酸を用いることができる。
まず、CaFの作成時と同様、ガドリニウム化合物とフッ化物のそれぞれを水溶液として常温常圧下で徐々に反応させる。ここでは、ガドリニウム化合物を十分溶解させるために微量の硝酸等の無機酸を添加してもよい。
As the gadolinium compound, an organic acid salt or inorganic substance of gadolinium similar to the calcium compound can be used. Acetate, lactate, oxalate, ascorbate, alginate, benzoate, carbonate, citrate, gluconate, pantothenate, salicylate, stearate, tartrate, glyceric acid An organic acid salt of gadolinium such as a salt or trifluoroacetate salt may be used, and an inorganic salt such as a gadolinium chloride, hydroxide, nitrate or sulfate may be used. As the gadolinium compound, it is preferable to use gadolinium acetate. As the fluorine compound, hydrofluoric acid can be used.
First, similarly to the preparation of CaF 2 , each of the gadolinium compound and the fluoride is gradually reacted as an aqueous solution under normal temperature and pressure. Here, a small amount of inorganic acid such as nitric acid may be added in order to sufficiently dissolve the gadolinium compound.

この反応時には、反応混合物中に存在するCaイオン等の他のイオンを出来るだけ少なくすることが好ましい。これにより、形成されるガドリニウムフッ化物の結晶性低下を抑制し、焼結性を向上させることができる。また、フッ素化合物水溶液をガドリニウム化合物水溶液(例えば酢酸ガドリニウム水溶液)に対し、化学当量(GdFに換算した化学当量)より多くなるように過剰量注入することが好ましい。これにより、ガドリニウムフッ化物の結晶性低下を抑制し、微粒子間の凝集力を弱くすることができる。更に、フッ素化合物水溶液の注入時及びその後に攪拌を続けることで、一次粒子の凝集を抑えることが好ましい。 At the time of this reaction, it is preferable to reduce as much as possible other ions such as Ca ions present in the reaction mixture. Thereby, the crystallinity fall of the gadolinium fluoride formed can be suppressed and sinterability can be improved. Further, it is preferable to inject an excess amount of the fluorine compound aqueous solution with respect to the gadolinium compound aqueous solution (for example, gadolinium acetate aqueous solution) so as to exceed the chemical equivalent (chemical equivalent converted to GdF 3 ). Thereby, the crystallinity fall of gadolinium fluoride can be suppressed and the cohesion force between fine particles can be weakened. Furthermore, it is preferable to suppress agglomeration of primary particles by continuing stirring during and after the injection of the fluorine compound aqueous solution.

そして、上記の反応後には、密閉容器内に反応混合物を収容して密閉し、100℃以上300℃以下、好ましくは120−180℃で加熱・加圧処理する水熱反応処理を行うことにより、ガドリニウム化合物とフッ素化合物の反応を完結させるのが好適である。これによりフッ素欠損を抑え、GdF微粒子の結晶性を高くすることができる。そのため、粒子が凝集し難くすることができ、比較的低温でも高密度に焼結し易いGdF微粒子を得ることができる。
なお、上記の方法によれば、たとえば、一次粒子の平均粒径50〜100nmのGdF微粒子を得ることができる。
And after said reaction, by carrying out the hydrothermal reaction process which accommodates and seals a reaction mixture in an airtight container, and heat-pressurizes at 100-300 degreeC, Preferably it is 120-180 degreeC, It is preferable to complete the reaction between the gadolinium compound and the fluorine compound. Thereby, fluorine deficiency can be suppressed and the crystallinity of the GdF 3 fine particles can be increased. Therefore, the particles can be made difficult to aggregate, and GdF 3 fine particles that can be sintered at a high density even at a relatively low temperature can be obtained.
Incidentally, according to the above method, for example, can be obtained GdF 3 fine particles having an average particle size of 50~100nm of the primary particles.

このようにして得られたCaF微粒子を含有する反応混合物及びGdF微粒子を含有する反応混合物は、何れも強酸性の水溶液中に結晶の微粒子が分散された懸濁液となっている。そのため、遠心分離機等により固液分離し、室温以上200℃以下の温度で乾燥することで、乾燥粉末とする。固液分離或いは更に乾燥によって強酸性の水溶液を分離することで、その後の処理や保管時において取扱が容易になる。更に、液相中の不純物の混入も抑制できる。また、CaF微粒子とGdF微粒子の両者を一定の割合で混合する際に、粉末であれば正確に秤量できるので屈折率などの光学性能が安定する。 The reaction mixture containing CaF 2 fine particles and the reaction mixture containing GdF 3 fine particles thus obtained are both suspensions in which fine particles of crystals are dispersed in a strongly acidic aqueous solution. Therefore, it is solid-liquid separated by a centrifuge or the like and dried at a temperature of room temperature to 200 ° C. to obtain a dry powder. Separation of a strongly acidic aqueous solution by solid-liquid separation or further drying facilitates handling during subsequent processing and storage. Furthermore, contamination of impurities in the liquid phase can be suppressed. In addition, when both the CaF 2 fine particles and the GdF 3 fine particles are mixed at a constant ratio, since the powder can be accurately weighed, the optical performance such as the refractive index is stabilized.

より好ましくは、上記反応混合物を含む懸濁液の固液分離後に、反応混合物に水またはアルコール等の洗浄用溶媒を注入して遠心分離し、上澄み液を除去する等の洗浄処理を1乃至複数回行うのが好適である。これにより強酸性の液や不純物をより効率良く除去することが可能である。アルコール等の有機溶媒を用いると、乾燥時に起こる微粒子同士の凝集力を弱くする効果があり、後述する分散処理を容易にするので好適である。   More preferably, after the solid-liquid separation of the suspension containing the reaction mixture, one or more washing processes such as injecting a washing solvent such as water or alcohol into the reaction mixture and centrifuging to remove the supernatant liquid are performed. It is preferable to perform it once. Thereby, it is possible to more efficiently remove strongly acidic liquids and impurities. Use of an organic solvent such as alcohol is preferable because it has an effect of weakening the cohesive force between the fine particles generated during drying, and facilitates the dispersion treatment described later.

「組成物の調整」
そして、これらの乾燥粉末状のCaF微粒子とGdF微粒子とを混合してセラミックス形成用組成物とする。このセラミックス形成用組成物とは、焼結及び透明化することで、透光性セラミックスを形成可能な材料である。上記セラミックス形成用組成物は、前記のようなCaF微粒子及びGdF微粒子が決められた重量比で正確に含有されていればよく、均一に混合されていてもよい。また、粉末状であってもよく、スラリー等のように分散液中に分散或いは懸濁されていてもよい。
"Composition adjustment"
Then, the ceramic forming composition by mixing these dry powdery CaF 2 particles and GdF 3 particles. This ceramic forming composition is a material capable of forming translucent ceramics by sintering and making transparent. The ceramic forming composition only needs to contain CaF 2 fine particles and GdF 3 fine particles as described above in a predetermined weight ratio, and may be uniformly mixed. Moreover, it may be in a powder form, and may be dispersed or suspended in a dispersion liquid such as a slurry.

次いで、上記セラミックス形成用組成物を準備した後、セラミックス形成用組成物をスラリー又は懸濁液として湿式混合により混合する。これによりCaF微粒子及びGdF微粒子を出来るだけ均一に混合する。湿式混合により混合すると、乾式混合より均一に混合できるうえ、CaF微粒子及びGdF微粒子の一次粒子に、過剰な応力による損傷を与え難いので好ましい。
この湿式混合においては、それぞれの粒子の凝集状態をできるだけ解離させて一次粒子にまで破壊し、両者をナノレベルで均一に混合することが好ましい。
Next, after preparing the ceramic forming composition, the ceramic forming composition is mixed as a slurry or suspension by wet mixing. As a result, CaF 2 fine particles and GdF 3 fine particles are mixed as uniformly as possible. Mixing by wet mixing is preferable because it can be mixed more uniformly than dry mixing, and the primary particles of CaF 2 fine particles and GdF 3 fine particles are hardly damaged by excessive stress.
In this wet mixing, it is preferable to dissociate the aggregated state of each particle as much as possible to break it down to primary particles, and to mix them uniformly at the nano level.

湿式混合に供されるCaF微粒子及びGdF微粒子は、例えば、上記のように作製時に凝集を抑え易くして製造しても、一次粒子が複数凝集した二次粒子となっている。また、CaF微粒子及びGdF微粒子を作製後に乾燥させた場合にも凝集が大きくなり易い。例えば、一次粒子径がCaFで150nm程度、GdFで70nm程度であったとしても、二次粒子は10μm程度となることもある。 The CaF 2 fine particles and GdF 3 fine particles used for wet mixing are, for example, secondary particles in which a plurality of primary particles are aggregated even if they are manufactured so as to easily suppress aggregation at the time of production. Further, when CaF 2 fine particles and GdF 3 fine particles are produced and then dried, aggregation tends to increase. For example, even if the primary particle diameter is about 150 nm for CaF 2 and about 70 nm for GdF 3 , the secondary particles may be about 10 μm.

CaF粒子及びGdF粒子が大きな塊状の二次粒子の形態のままで混合され、焼結されると、焼結時にCaF微粒子とGdF微粒子との接触面積が少なくなり易い。この場合、十分な固相反応が起こり難くなる。すると、最終的に得られるCa−Gd−F系透光性セラミックスにおいて、微視的にCaF結晶相とGdF結晶相とが生じ、微視的に不均一な組成のムラが生じることになる。それを解決するために反応温度を高くすると、今度はフッ化物からのフッ素の離脱が起きてしまい、透過率を低下させる原因になってしまう。また、CGF結晶のCa-rich相中においても、CaとGdの組成比に不均質性が生じる場合がある。その結果、屈折率にムラ(不均質分布)が生じ、Ca−Gd−F系透光性セラミックスに入射する光に対し、セラミックス中の内部散乱が大きくなり、透過率を低下させたり、所望の屈折率やアッベ数等の光学特性が得られなくなる。
そのため、粒子の凝集状態を出来るだけ解離させ、凝集粒子(二次粒子)を破壊して一次粒子の割合を高め、一次粒子同士を出来るだけ均一に混合させることが好ましい。
When CaF 2 particles and GdF 3 particles are mixed in the form of large massive secondary particles and sintered, the contact area between CaF 2 fine particles and GdF 3 fine particles tends to be reduced during sintering. In this case, a sufficient solid phase reaction is unlikely to occur. Then, in the finally obtained Ca—Gd—F based translucent ceramic, a CaF 2 crystal phase and a GdF 3 crystal phase are microscopically generated, and microscopically non-uniform composition unevenness is generated. Become. If the reaction temperature is increased in order to solve this problem, this time, the release of fluorine from the fluoride occurs, causing a decrease in transmittance. Further, even in the Ca-rich phase of the CGF crystal, the composition ratio of Ca and Gd may be inhomogeneous. As a result, unevenness (non-homogeneous distribution) occurs in the refractive index, and the internal scattering in the ceramic increases with respect to the light incident on the Ca-Gd-F-based translucent ceramics. Optical characteristics such as refractive index and Abbe number cannot be obtained.
Therefore, it is preferable to dissociate the aggregated state of the particles as much as possible, destroy the aggregated particles (secondary particles), increase the proportion of primary particles, and mix the primary particles as uniformly as possible.

二次粒子の凝集状態を解離するのに有効な手段は、化学的処理による凝集力低下と、機械的処理による凝集粒子破壊できある。
化学的な凝集力低下においては、水熱処理を終了したCaF及びGdFのスラリーを乾燥させる際、プロパノールなどの高級アルコールに置換・洗浄してから乾燥させると、凝集力を弱くすることができ、その後の機械的凝集破壊が容易になる。
CaF微粒子を作製する際、酢酸カルシウムは酢酸ガドリニウムと異なり蒸留水に容易に大量に溶解できるので硝酸は不要であるが、硝酸を添加した方が完成した乾燥粉末の凝集力が低下するので好ましい。
Effective means for dissociating the agglomerated state of the secondary particles are reduction of agglomeration force by chemical treatment and destruction of agglomerated particles by mechanical treatment.
In reducing the chemical cohesive force, when the hydrothermally treated slurry of CaF 2 and GdF 3 is dried, the cohesive force can be weakened by substituting and washing with higher alcohols such as propanol and then drying. Thereafter, mechanical cohesive failure is facilitated.
When preparing CaF 2 fine particles, calcium acetate can be easily dissolved in a large amount in distilled water unlike gadolinium acetate, so nitric acid is unnecessary, but adding nitric acid is preferable because the cohesion of the finished dry powder is reduced. .

一方、機械的凝集破壊としては、攪拌羽根等による攪拌、ビーズミル、高圧ホモジナイザー、高速旋回機、超音波分散等の分散機を用いて機械的凝集破壊を行ってもよい。   On the other hand, as mechanical cohesive failure, mechanical cohesive failure may be performed using a stirring machine such as a stirring blade, a bead mill, a high-pressure homogenizer, a high-speed swirler, or an ultrasonic dispersing machine.

機械的凝集破壊の場合、過剰な応力を与えると、一次粒子に応力が残留したり破損が生じるため、焼結の段階でセラミックスが割れたり反りを生じる易くなる。また、ビーズミルなどのメディアタイプの装置を用いた場合、ビーズ自身あるいは装置の摩耗からくるコンタミネーションが問題になることがあるので、一般的に用いられている部分安定化ジルコニアより窒化珪素または炭化珪素のビーズが好ましい。さらに好ましいのは、ビーズなどの分散媒体を使用しない、すなわちメディアレスタイプの装置である高圧ホモジナイザーを用いて分散を行うことが好ましい。   In the case of mechanical cohesive failure, if excessive stress is applied, stress remains in the primary particles or breakage occurs, so that the ceramic is easily cracked or warped at the stage of sintering. In addition, when media type equipment such as a bead mill is used, contamination caused by wear of the beads themselves or the equipment may become a problem. Therefore, silicon nitride or silicon carbide may be used rather than partially stabilized zirconia that is generally used. The beads are preferred. More preferably, the dispersion is preferably performed using a high-pressure homogenizer that does not use a dispersion medium such as beads, that is, a medialess type apparatus.

その後、CaF微粒子及びGdF微粒子が分散液中に均一に混合された微粒子混合物を遠心分離機により固液分離する。凝集粒子が破壊されて一次粒子にまで分散されると遠心分離が困難になる場合がある。そこで、溶液のpHをアルカリ性にすると再凝集が起きて容易に遠心分離できるようになる。このアルカリ液としては、水酸化ナトリウムや水酸化カリウムなどの無機アルカリの溶液、テトラメチルアンモニムハイドロオキサイド(TMAH)や2-ヒドロ岸エチルトリメチルアンモニウムハイドロオキサイドなどの有機アルカリの溶液などが挙げられる。有機アルカリ液であれば、無機アルカリ液のように、ナトリウムやカリウムなどの不純物が分散液中に混入する問題がない。また、有機アルカリ液は、加熱することで容易に分解・離脱するため、Ca−Gd−F系透光性セラミックス中に残留し難くて好適である。pHは7以上のアルカリ性にすると遠心沈降するようになるが、12以上13.5以下にすると均一な焼結体が得られるので好ましい。 Thereafter, the fine particle mixture in which the CaF 2 fine particles and the GdF 3 fine particles are uniformly mixed in the dispersion is subjected to solid-liquid separation using a centrifuge. Centrifugation may be difficult when the aggregated particles are broken and dispersed to primary particles. Therefore, when the pH of the solution is made alkaline, reaggregation occurs and the solution can be easily centrifuged. Examples of the alkali solution include inorganic alkali solutions such as sodium hydroxide and potassium hydroxide, and organic alkali solutions such as tetramethylammonium hydroxide (TMAH) and 2-hydrocarbon ethyltrimethylammonium hydroxide. If it is an organic alkali liquid, there will be no problem that impurities, such as sodium and potassium, will mix in a dispersion liquid like an inorganic alkali liquid. In addition, since the organic alkali solution is easily decomposed and detached by heating, it is difficult to remain in the Ca—Gd—F based translucent ceramics, which is preferable. When the pH is 7 or higher, centrifugal sedimentation occurs, but when the pH is 12 or higher and 13.5 or lower, a uniform sintered body is obtained, which is preferable.

この場合の再凝集は、一端CaFとGdFの一次粒子が均一混合された後に起こるものであるから、粉末全体としては組成の均一性は保たれているので問題ない。遠心分離して、上澄み液を捨ててから100℃で乾燥させると乾燥粉末が得られる。あるいは遠心分離機を用いずに、凍結乾燥法や噴霧乾燥法などにより直接乾燥粉末を得ることも可能である。
上記の凝集解離により、CaF微粒子及びGdF微粒子のそれぞれ80%以上(個数比)、好ましくは95%以上を一次粒子とすることが望ましい。
このようにして、CaF微粒子及びGdF微粒子の凝集を解離し、破壊することで、ほぼ一次粒子にまで分散させながら湿式混合を行えば、各々の一次粒子がより均一に混合できる。これにより、焼結後のセラミックスにおいて、内部の組成むら、即ち、屈折率むらを少なくすることができ、内部均質性に優れた透明セラミックスを得ることができる。
In this case, reaggregation occurs after the primary particles of CaF 2 and GdF 3 are uniformly mixed, so that there is no problem since the uniformity of the composition of the powder as a whole is maintained. After centrifuging and discarding the supernatant, it is dried at 100 ° C. to obtain a dry powder. Alternatively, it is also possible to obtain a dry powder directly by freeze drying or spray drying without using a centrifuge.
It is desirable that 80% or more (number ratio), preferably 95% or more, of CaF 2 fine particles and GdF 3 fine particles are primary particles by the above-described aggregation and dissociation.
In this way, by dissociating and destroying the aggregation of the CaF 2 fine particles and the GdF 3 fine particles, the primary particles can be mixed more uniformly if wet mixing is performed while being dispersed almost to the primary particles. Thereby, in the sintered ceramics, the internal composition unevenness, that is, the refractive index unevenness can be reduced, and a transparent ceramic excellent in internal homogeneity can be obtained.

上記湿式混合において、CaF微粒子とGdF微粒子との混合割合は、所望のCa−Gd−F系透光性セラミックスの屈折率及びアッベ数の少なくとも一方に基づいて定めることができる。前述の通り、屈折率及びアッベ数はCaとGdとの存在割合に対応して一次関数的な相関を有しているからである。 In the wet mixing, the mixing ratio of the CaF 2 fine particles and the GdF 3 fine particles can be determined based on at least one of the refractive index and the Abbe number of the desired Ca—Gd—F based translucent ceramic. This is because, as described above, the refractive index and the Abbe number have a linear function correlation corresponding to the ratio of Ca and Gd.

上記のように、湿式混合を行うことで、CaF微粒子及びGdF微粒子の一次粒子が出来るだけ均一に混合された状態の微粒子混合物が作製される。微視的に見ると、湿式混合により微粒子混合物中でCaFとGdFの一次粒子が接近して存在するようになると、CGFが生成される固相反応がより低温で進行する利点もある。その結果、焼結時に起こるフッ素抜けを抑制できて透過率が向上するので好ましい。 As described above, by performing wet mixing, a fine particle mixture in which primary particles of CaF 2 fine particles and GdF 3 fine particles are mixed as uniformly as possible is produced. When viewed microscopically, when the primary particles of CaF 2 and GdF 3 are close to each other in the fine particle mixture by wet mixing, there is an advantage that the solid-phase reaction in which CGF is generated proceeds at a lower temperature. As a result, it is preferable because fluorine escape occurring during sintering can be suppressed and the transmittance is improved.

次に、このようにして得られた乾燥粉末を、金型一軸プレス装置等により加圧して、成形体を作製する。さらに静水圧プレスにかけると、金型一軸プレスでしばしば発生するラミネーション(プレス方向と垂直方向に層状に剥離する現象)を防ぐことができ、大型の成形体を作製するのに有利であり好ましい。この成形体を、大気中700℃以上1000℃以下に加熱して焼結し、焼結体(前駆焼結体)を作製する。このとき、CaF微粒子及びGdF微粒子の一次粒子の凝集が破壊されていると共に、CaF微粒子及びGdF微粒子の結晶性が高いため、高密度に焼結でき、高い相対密度の焼結体を得ることが可能である。
700℃未満では、乾燥体の焼結を行うことが難しい。他方、焼結温度が1000℃をこえると、結晶構造からフッ素が脱離する現象が顕著となり、セラミックスの透明度が低下する。したがって、温度の上限は1000℃とした。好ましい温度範囲は、800℃以上900℃以下である。
Next, the dry powder obtained in this way is pressed by a die uniaxial press device or the like to produce a molded body. Furthermore, when it is subjected to an isostatic press, it is possible to prevent lamination (a phenomenon of peeling in layers in a direction perpendicular to the press direction) that often occurs in a uniaxial press of a mold, which is advantageous and preferable for producing a large-sized molded body. This molded body is heated to 700 ° C. or higher and 1000 ° C. or lower in the atmosphere and sintered to produce a sintered body (precursor sintered body). At this time, the aggregation of primary particles of CaF 2 fine particles and GdF 3 fine particles is broken, and since the crystallinity of CaF 2 fine particles and GdF 3 fine particles is high, it can be sintered at a high density, and a sintered body having a high relative density. It is possible to obtain
If it is less than 700 degreeC, it is difficult to sinter a dry body. On the other hand, when the sintering temperature exceeds 1000 ° C., the phenomenon that fluorine is desorbed from the crystal structure becomes remarkable, and the transparency of the ceramic is lowered. Therefore, the upper limit of the temperature was set to 1000 ° C. A preferable temperature range is 800 ° C. or higher and 900 ° C. or lower.

その後、この焼結体を、アルゴンまたは窒素などの不活性雰囲気中において、500Kg/cm以上3000Kg/cm以下の圧力で加圧しつつ、700℃以上1300℃以下の温度に加熱する(二次焼結)ことにより透明化する。この透明化は、例えば熱間等方圧加圧装置(HIP)を用いて行うことができる。 Thereafter, the sintered body, in an inert atmosphere such as argon or nitrogen, while pressing at 500 Kg / cm 2 or more 3000 Kg / cm 2 or less in pressure and heated to a temperature of 700 ° C. or higher 1300 ° C. or less (secondary It becomes transparent by sintering. This transparency can be performed using, for example, a hot isostatic press (HIP).

このとき、加圧される間に焼結体内部に残留していた気孔が外部に押し出されて透明になり、上記の焼結体(前駆焼結体)より更に高密度化し、より高い相対密度の透明な焼結体とすることが可能である。これにより、Ca−Gd−F系透光性セラミックスの製造が完了する。
なお、上記の前駈焼結体の形成時、および透明化の進行中において、CaF微粒子とGdF微粒子は、CaとGdの拡散を伴う反応(反応焼結)を生じ、CGF結晶の多結晶体が形成される。加圧・加熱時の温度が700℃未満では、CaF微粒子とGdF微粒子の反応が生じ難いため、CGF結晶の濃度分布を均一化することが難しい。したがって、温度の下限は700℃とした。他方、温度が1300℃を超えると、固液分離を生じる可能性があり、また加圧条件下でもフッ素の脱離を制御するのがむずかしい。従って、透明化時の温度の上限は1300℃とした。好ましい温度範囲は、800℃以上1200℃以下、より好ましい温度範囲は、900℃以上1000℃以下である。
At this time, pores remaining inside the sintered body while being pressed are pushed out and become transparent, and the density becomes higher than the above-mentioned sintered body (precursor sintered body), resulting in a higher relative density. It is possible to make a transparent sintered body. Thereby, manufacture of Ca-Gd-F type translucent ceramics is completed.
Note that, during the formation of the precursor sintered body and during the progress of transparency, the CaF 2 fine particles and the GdF 3 fine particles cause a reaction (reaction sintering) accompanied by diffusion of Ca and Gd, and a large amount of CGF crystals. Crystals are formed. If the temperature during pressurization / heating is less than 700 ° C., it is difficult for CaF 2 fine particles and GdF 3 fine particles to react, so it is difficult to make the CGF crystal concentration distribution uniform. Therefore, the lower limit of the temperature was set to 700 ° C. On the other hand, if the temperature exceeds 1300 ° C., solid-liquid separation may occur, and it is difficult to control fluorine desorption even under pressurized conditions. Therefore, the upper limit of the temperature at the time of transparency was set to 1300 ° C. A preferable temperature range is 800 ° C. or higher and 1200 ° C. or lower, and a more preferable temperature range is 900 ° C. or higher and 1000 ° C. or lower.

上記の過程で製造されるセラミックスは、CGF結晶を含む多結晶体である。多結晶体に粗大な結晶が含まれた場合、熱膨張の等方性が阻害される可能性がある。そのためセラミックスを構成する多結晶体において、結晶粒径は100μm以下とすることが望ましい。
なお、上記の方法では、微粒子混合物の焼結と透明化を、前駆焼結体を形成する一次焼結と、透明化を行う二次焼結の二段階で行ったが、一個の装置内で温度・圧力を所定の履歴に従って変動させることにより、焼結と透明化を行ってもよい。
The ceramic produced in the above process is a polycrystal including a CGF crystal. When coarse crystals are included in the polycrystal, the isotropic thermal expansion may be hindered. Therefore, it is desirable that the crystal grain size of the polycrystalline body constituting the ceramic is 100 μm or less.
In the above method, the fine particle mixture was sintered and transparentized in two stages, primary sintering for forming a precursor sintered body and secondary sintering for transparentization. Sintering and transparency may be performed by changing the temperature and pressure according to a predetermined history.

上記のCa−Gd−F系透光性セラミックスの製造方法では、CaF微粒子と、このCaF微粒子とは別に作製されたGdF微粒子とを混合して微粒子混合物とし、この微粒子混合物を焼結及び透明化する。このような製造方法によれば、微粒子混合物の焼結性を確保し易い。そのため、蛍石と同程度に高いアッベ数を有すると共に、蛍石より高い屈折率を有するCa−Gd−F系透光性セラミックスを製造することが可能である。 In the above method for producing a Ca—Gd—F based translucent ceramic, CaF 2 fine particles and GdF 3 fine particles produced separately from the CaF 2 fine particles are mixed to form a fine particle mixture, and this fine particle mixture is sintered. And make it transparent. According to such a manufacturing method, it is easy to ensure the sinterability of the fine particle mixture. Therefore, it is possible to produce a Ca—Gd—F based translucent ceramic having an Abbe number as high as fluorite and having a higher refractive index than fluorite.

また、微粒子混合物から焼結体を作製し、この焼結体を不活性雰囲気中で加圧しつつ、加熱することにより透明化するので、焼結体を高密度化して、透明度の高いCa−Gd−F系透光性セラミックスを製造できる。   In addition, a sintered body is prepared from the fine particle mixture, and the sintered body is made transparent by being heated in an inert atmosphere while being pressurized. Therefore, the sintered body is densified and Ca-Gd having high transparency is obtained. -F type translucent ceramics can be manufactured.

更に、CaF微粒子を、カルシウム化合物とフッ素化合物とを水溶液中で反応させ、次いで密閉容器内で所定温度に加熱して作製するので、焼結性に優れたCaF微粒子を作製できる。 Furthermore, since CaF 2 fine particles are produced by reacting calcium compounds and fluorine compounds in an aqueous solution and then heating to a predetermined temperature in a sealed container, CaF 2 fine particles having excellent sinterability can be produced.

また、GdF微粒子を、ガドリニウム化合物とフッ素化合物とを水溶液中で反応させ、次いで密閉容器内で所定温度に加熱して作製するので、焼結性に優れたGdF微粒子を作製できる。 Further, since the GdF 3 fine particles are produced by reacting a gadolinium compound and a fluorine compound in an aqueous solution and then heating to a predetermined temperature in a sealed container, GdF 3 fine particles having excellent sinterability can be produced.

更に、CaF微粒子とGdF微粒子とを湿式混合して微粒子混合物を作製するので、CaF微粒子及びGdF微粒子の一次粒子に過剰な応力が作用し難く、焼結時に割れや反り等が生じ難い。 Further, since the CaF 2 particles and GdF 3 fine particles were wet-mixed to produce a particulate mixture, excessive stress hardly acts on the primary particles of CaF 2 particles and GdF 3 particles, cracks and warpage during sintering occurs hard.

特に、CaF微粒子とGdF微粒子とを高圧ホモジナイザーを用いて湿式混合すれば、コンタミネーションを最小限に抑えつつ凝集破壊できる。 In particular, when CaF 2 fine particles and GdF 3 fine particles are wet-mixed using a high-pressure homogenizer, cohesive failure can be achieved while minimizing contamination.

更に、所望の屈折率及びアッベ数の少なくとも一方に基づいて、CaF微粒子とGdF微粒子との混合割合を調整して混合するので、所望の屈折率及びアッベ数を有するCa−Gd−F系透光性セラミックスを容易に製造できる。 Furthermore, since the mixing ratio of CaF 2 fine particles and GdF 3 fine particles is adjusted based on at least one of the desired refractive index and Abbe number, the Ca-Gd-F system having the desired refractive index and Abbe number is used. A translucent ceramic can be easily manufactured.

以下、この発明の実施例について説明する。
[実施例1]
「CaF微粒子の作製」
Examples of the present invention will be described below.
[Example 1]
“Preparation of CaF 2 fine particles”

酢酸カルシウム水和物180.4g(1mol)に蒸留水を640gと硝酸10mlを加えて、前記水和物を完全に溶かし、酢酸カルシウム水溶液を調製した。   640 g of distilled water and 10 ml of nitric acid were added to 180.4 g (1 mol) of calcium acetate hydrate to completely dissolve the hydrate to prepare an aqueous calcium acetate solution.

濃度50%のフッ化水素酸(フッ酸)163.8g(4mol)に同じ重量の蒸留水を加えてフッ酸水溶液を調製した。   An aqueous hydrofluoric acid solution was prepared by adding the same weight of distilled water to 163.8 g (4 mol) of hydrofluoric acid (hydrofluoric acid) having a concentration of 50%.

羽根付き攪拌棒(羽根径10cm)を300rpmで回転させ、酢酸カルシウム水溶液を攪拌しながら、酢酸カルシウム水溶液にフッ酸水溶液をゆっくり注入した。酢酸カルシウム水溶液を収納するプラスチックビーカー(直径13cm)の側面にフッ酸水溶液の注入口を取り付け、ローラーチューブポンプで吸い出したフッ酸水溶液を酢酸カルシウム水溶液の中に約1時間かけて注入した。   The stirring rod with blades (blade diameter 10 cm) was rotated at 300 rpm, and the aqueous hydrofluoric acid solution was slowly poured into the aqueous calcium acetate solution while stirring the aqueous calcium acetate solution. An injection port of a hydrofluoric acid aqueous solution was attached to the side of a plastic beaker (diameter 13 cm) containing a calcium acetate aqueous solution, and the hydrofluoric acid aqueous solution sucked out by a roller tube pump was injected into the calcium acetate aqueous solution over about 1 hour.

フッ酸水溶液の注入が終了した後、そのまま攪拌を6時間続け、凝集した粒子を破壊して粒径を小さくしつつ、CaFスラリーを作製した。 After the injection of the hydrofluoric acid aqueous solution was completed, stirring was continued for 6 hours as it was, and agglomerated particles were broken to reduce the particle size while preparing a CaF 2 slurry.

得られたCaFスラリーを、テフロン(登録商標)製オートクレーブに入れて密閉し、145℃で24時間加熱・加圧することにより水熱反応を行い、CaF微粒子が懸濁されたスラリーを完成した。このスラリーを遠心分離機にかけて粒子を沈降させ、上澄み液捨てたのちイソプロピルアルコールを加えて粒子を再分散させた。再び遠心分離機にかけ、上澄み液を捨てた。この操作をもう一度繰り返し、沈降した粒子を100℃で乾燥して乾燥CaF粉末を得た。このようにアルコール置換と遠心分離を繰り返すことにより、CaF微粒子をイソプロピルアルコールでよく洗浄し、乾燥時に起こる一次粒子同士の凝集力をできるだけ弱めた。
「GdF微粒子の作製」
The obtained CaF 2 slurry was put in an autoclave made of Teflon (registered trademark), sealed, and subjected to hydrothermal reaction by heating and pressurizing at 145 ° C. for 24 hours to complete a slurry in which CaF 2 fine particles were suspended. . The slurry was centrifuged to settle the particles. After discarding the supernatant, isopropyl alcohol was added to redisperse the particles. It was centrifuged again and the supernatant was discarded. This operation was repeated once more, and the precipitated particles were dried at 100 ° C. to obtain dry CaF 2 powder. By repeating the alcohol substitution and the centrifugation in this manner, the CaF 2 fine particles were thoroughly washed with isopropyl alcohol, and the cohesive force between the primary particles generated during drying was weakened as much as possible.
“Preparation of GdF 3 fine particles”

GdF微粒子をCaF微粒子と同様な方法で作製した。 GdF 3 fine particles were prepared in the same manner as CaF 2 fine particles.

酢酸ガドリニウム水和物290.4gに蒸留水を1000g加え、さらに硝酸を加えて酢酸ガドリニウム水和物を完全に溶かし、酢酸ガドリニウム水溶液を調製した。   1000 g of distilled water was added to 290.4 g of gadolinium acetate hydrate, and nitric acid was further added to completely dissolve gadolinium acetate hydrate to prepare an aqueous gadolinium acetate solution.

濃度50%のフッ酸183.8g(5mol)に同じ重量の蒸留水を加えてフッ酸水溶液を調製した。   An aqueous hydrofluoric acid solution was prepared by adding the same weight of distilled water to 183.8 g (5 mol) of hydrofluoric acid having a concentration of 50%.

CaF微粒子の作製と同様に、酢酸ガドリニウム水溶液を攪拌しながら、フッ酸水溶液を酢酸ガドリニウム水溶液の中にゆっくり注入した。注入終了後そのまま攪拌を続け、凝集した粒子を破壊して粒径を小さくしつつ、GdFスラリーを作製した。更に、得られたGdFスラリーに、CaFと同様にして水熱反応処理を行い、GdF微粒子が懸濁されたスラリーを完成させた。CaFと同様に、遠心沈降させた粒子を100℃で乾燥し、乾燥GdF粉末を得た。 Similar to the preparation of the CaF 2 fine particles, the aqueous hydrofluoric acid solution was slowly poured into the aqueous gadolinium acetate solution while stirring the aqueous gadolinium acetate solution. After completion of the injection, stirring was continued as it was, and agglomerated particles were broken to reduce the particle size, thereby preparing a GdF 3 slurry. Further, the obtained GdF 3 slurry was subjected to a hydrothermal reaction treatment in the same manner as CaF 2 to complete a slurry in which GdF 3 fine particles were suspended. Similar to CaF 2 , the centrifugally precipitated particles were dried at 100 ° C. to obtain dry GdF 3 powder.

得られたCaF微粒子とGdF微粒子の透過型電子顕微鏡(TEM)写真を図1A,図1Bに示す。一次粒子径はCaFで約150nm、GdFで約70nmであった。TEMを用い高倍率で観察すると粒子内に格子像が見られたことから、どちらの粒子もよく結晶化していることが確認された。低倍率で観察すると、どちらの粒子も多数の一次粒子が凝集した二次粒子を形成しており、最大で10μm程度となっていた。
「湿式混合」
Transmission electron microscope (TEM) photographs of the obtained CaF 2 fine particles and GdF 3 fine particles are shown in FIGS. 1A and 1B. The primary particle size was about 150 nm for CaF 2 and about 70 nm for GdF 3 . When TEM was observed at a high magnification, a lattice image was observed in the particles, and it was confirmed that both particles were well crystallized. When observed at a low magnification, both particles formed secondary particles in which a large number of primary particles were aggregated, and the maximum was about 10 μm.
"Wet mixing"

完成したCaF微粒子が懸濁されたスラリーとGdF微粒子が懸濁されたスラリーとを、モル比でGd/Ca=0.3となるように秤量して混合し、セラミックス形成用組成物とした。この混合粉末が重量比で20%となるように蒸留水を加え、超音波分散機に20分間かけ、おおまかに凝集粒子を破壊した微粒子分散液を作成した。さらに、市販の湿式分散装置(ナノマイザー(登録商標)、NM2−L200、吉田機械興業社製)にかけ、200MPaの圧力で凝集粒子を破壊し、液中でCaF2とGdF3微粒子が均一に混合された状態を実現した。
このセラミックス形成用組成物 懸濁液にTHAMを加え、pHを13にしてから遠心分離機にかけた。上澄み液を捨て、100℃で12時間乾燥させてセラミックス形成用混合粉末を得た。
「焼結」
The slurry in which the finished CaF 2 fine particles are suspended and the slurry in which the GdF 3 fine particles are suspended are weighed and mixed so that the molar ratio is Gd / Ca = 0.3. did. Distilled water was added so that the mixed powder was 20% by weight, and the mixture was passed through an ultrasonic disperser for 20 minutes to prepare a fine particle dispersion in which aggregated particles were roughly broken. Furthermore, it is applied to a commercially available wet dispersion device (Nanomizer (registered trademark), NM2-L200, manufactured by Yoshida Kikai Kogyo Co., Ltd.), the aggregated particles are broken at a pressure of 200 MPa, and CaF2 and GdF3 fine particles are uniformly mixed in the liquid. Realized.
THAM was added to this ceramic-forming composition suspension to adjust the pH to 13 and then centrifuged. The supernatant was discarded and dried at 100 ° C. for 12 hours to obtain a mixed powder for forming ceramics.
"Sintering"

乾燥粉末4gを直径20mmの金型を用いて一軸プレス成形して成形体とし、さらに50MPaで静水圧プレスして成形体を作製した。この成形体を空気中800℃で1時間焼結することにより、白色の焼結体を得た。
「透明化」
4 g of the dried powder was uniaxially press-molded using a mold having a diameter of 20 mm to form a molded body, and further, hydrostatically pressed at 50 MPa to produce a molded body. The molded body was sintered in air at 800 ° C. for 1 hour to obtain a white sintered body.
"Transparency"

次に、熱間等方圧加圧(HIP)装置(Dr.HIP、神戸製鋼社製、商標)により、アルゴン雰囲気中で1000Kg/cmの等方圧をかけながら、前記焼結体を1000℃で2時間加熱した。この処置により、焼結体内部に残留していた閉気孔が外部に押し出されて透明になり、Ca−Gd−F系透光性セラミックスが得られた。
[実施例2、3]
Next, while applying an isostatic pressure of 1000 kg / cm 2 in an argon atmosphere using a hot isostatic pressing (HIP) apparatus (Dr. HIP, manufactured by Kobe Steel, Ltd., trademark) Heated at 0 ° C. for 2 hours. By this treatment, the closed pores remaining inside the sintered body were pushed out to become transparent, and a Ca—Gd—F based translucent ceramic was obtained.
[Examples 2 and 3]

湿式混合におけるGd/Caのモル比を0.1、0.4とする他は、実施例1と同一にしてCa−Gd−F系透光性セラミックスを得た。   A Ca—Gd—F based translucent ceramic was obtained in the same manner as in Example 1 except that the molar ratio of Gd / Ca in wet mixing was set to 0.1 and 0.4.

以上の実施例1〜3で得られたCa−Gd−F系透光性セラミックスについて以下の測定を行った。
「CGF結晶」
The following measurements were performed on the Ca—Gd—F based translucent ceramics obtained in Examples 1 to 3 above.
"CGF crystal"

実施例1において得られたCa−Gd−F系透光性セラミックス(Ca0.7Gd0.32.3)について、X線解析を行った結果を図2A及び表1に示すと共に、JCPDSに記載されたCGF結晶(Ca0.88Gd0.122.12)の公知データを図2B及び表1に示す。 About the Ca-Gd-F type translucent ceramics (Ca 0.7 Gd 0.3 F 2.3 ) obtained in Example 1, the results of X-ray analysis are shown in FIG. 2A and Table 1, The known data of the CGF crystal (Ca 0.88 Gd 0.12 F 2.12 ) described in JCPDS is shown in FIG.

実施例1のCa−Gd−F系透光性セラミックス(Ca0.7Gd0.32.3)のX回折パターンと、JCPDS01−070−6178のCGF結晶(Ca0.88Gd0.122.12)のX線回折パターンとを比較すると、両者はほぼ一致している。ピーク位置に若干の差が存在するのは、Gd/Ca比が異なることに起因して格子定数に若干の差が存在するためである。従って、両者のX線回折パターンの比較から、実施例1により得られたCa−Gd−F系透光性セラミックスはCGF結晶からなるもの又はCGF結晶を含有するものであり、単にCaF微粒子とGdF微粒子とが緻密に焼結されたものではないことが確認できた。
「透過率」
The X diffraction pattern of the Ca—Gd—F based translucent ceramic (Ca 0.7 Gd 0.3 F 2.3 ) of Example 1 and the CGF crystal of JCPDS01-070-6178 (Ca 0.88 Gd 0. When compared with the X-ray diffraction pattern of 12 F 2.12 . The reason why there is a slight difference in the peak position is that there is a slight difference in the lattice constant due to the difference in the Gd / Ca ratio. Therefore, a comparison of both X-ray diffraction pattern, Ca-Gd-F KeiToruhikari ceramic obtained in Example 1 are those containing one or CGF crystals consisting CGF crystal, and simply CaF 2 particles It was confirmed that the GdF 3 fine particles were not densely sintered.
"Transmissivity"

得られた透光性セラミックス(厚さ4mm)の透過率を図3に示す。光の波長550nmにおける透過率は87.7%であった。微粒子混合物の調整において、化学的な処理による凝集力の低下と、機械的な凝集破壊を併用すると、微粒子混合物を焼結、透明化して得られたセラミックスにおいて光の透過率が向上することが確認された。これは、微粒子混合物の段階で、凝集粒子が一次粒子にまで分散されたため、焼結体内部の組成むらが低下したと考慮される。さらに、CaFとGdFの一次粒子同士が接近したおかげで固相反応が促進され、二次焼結温度が比較的低温の950℃で透明化できたため、焼結体からのフッ素の離脱も抑制できたためと考慮される。
「屈折率」
The transmittance of the obtained translucent ceramic (thickness 4 mm) is shown in FIG. The transmittance of light at a wavelength of 550 nm was 87.7%. When adjusting the fine particle mixture, the reduction of cohesive force due to chemical treatment and mechanical cohesive failure are used together, confirming that the light transmittance is improved in ceramics obtained by sintering and clarifying the fine particle mixture. It was done. This is considered that the unevenness of the composition inside the sintered body is reduced because the aggregated particles are dispersed to the primary particles at the stage of the fine particle mixture. Furthermore, because the primary particles of CaF 2 and GdF 3 are close to each other, the solid-phase reaction is promoted and the secondary sintering temperature can be made transparent at a relatively low temperature of 950 ° C. It is considered that it was able to be suppressed.
"Refractive index"

CaF微粒子とGdF微粒子との混合比であるGd/Caを0.1、0.3及び0.4に変化させて作製された実施例1〜3のCGF透明セラミックスにおいて、フラウンフォーファーg線、F線、e線、d線、C線における屈折率(ng、nF、ne、nd、nC)を測定した結果を表2に示す。なお屈折率の測定は、カールツァイスイエナ社製屈折計PR−2を用いて行った。 In the CGF transparent ceramics of Examples 1 to 3 manufactured by changing Gd / Ca, which is a mixing ratio of CaF 2 fine particles and GdF 3 fine particles, to 0.1, 0.3 and 0.4, Fraunforfer Table 2 shows the results of measuring the refractive indexes (ng, nF, ne, nd, nC) of g-line, F-line, e-line, d-line, and C-line. The refractive index was measured using a refractometer PR-2 manufactured by Carl Zeiss Jena.

「微粒子の混合比とアッベ数の相関」 "Correlation between mixing ratio of fine particles and Abbe number"

CaF微粒子とGdF微粒子の混合比であるGd/Caを0.1、0.3及び0.4に変化させて作製された実施例1〜3のCGF透明セラミックスにおいて、Gd/Caに対する屈折率(nd)とアッベ数との関係を図4に示す。 In the CGF transparent ceramics of Examples 1 to 3 manufactured by changing Gd / Ca, which is a mixing ratio of CaF 2 fine particles and GdF 3 fine particles, to 0.1, 0.3 and 0.4, refraction with respect to Gd / Ca The relationship between the rate (nd) and the Abbe number is shown in FIG.

GdF微粒子の添加量の増加と共に屈折率は上昇する傾向を示し、反対にアッベ数は低下する傾向を示した。屈折率は、Gd/Ca=0である蛍石の1.43からGd/Ca=0.4の1.52まで上昇した。Gd/Ca=0.4ではアッベ数は87に低下したものの依然として低分散の領域にある。従って、Gd/Caが0より大きく0.4以下の範囲では、低分散でありながら高屈折率である、従来にない透明材料が得られていた。
「異常部分分散比」
The refractive index tended to increase with increasing amount of GdF 3 fine particles, while the Abbe number tended to decrease. The refractive index increased from 1.43 for fluorite where Gd / Ca = 0 to 1.52 for Gd / Ca = 0.4. At Gd / Ca = 0.4, the Abbe number decreased to 87, but it is still in the low dispersion region. Therefore, in the range where Gd / Ca is greater than 0 and less than or equal to 0.4, an unprecedented transparent material having a high refractive index while being low dispersion has been obtained.
"Abnormal partial dispersion ratio"

前述の各線で測定された屈折率に基づいて、部分分散比を算出し、アッベ数と部分分散比との相関を、各種光学ガラス(ノーマルガラス)の相関と共に図5に示す。図中黒丸印●が各種光学ガラスの相関を示している。     FIG. 5 shows the correlation between the Abbe number and the partial dispersion ratio, together with the correlation of various optical glasses (normal glass), based on the refractive index measured on each line. The black circles ● in the figure indicate the correlation between various optical glasses.

なお、部分分散比(Pg,F)は、フラウンホーファーg線、F線、C線の屈折率に基づいて、次式により算出した。次式(1)において、ngはg線の屈折率、nFはF線の屈折率、nCは、C線の屈折率である。   The partial dispersion ratio (Pg, F) was calculated by the following equation based on the refractive indexes of Fraunhofer g line, F line, and C line. In the following formula (1), ng is the refractive index of g-line, nF is the refractive index of F-line, and nC is the refractive index of C-line.

Pg,F=(ng−nF)/(nF−nC) (1)     Pg, F = (ng−nF) / (nF−nC) (1)

なお、アッベ数(νd)は、下記の式(2)により算出される。下記の式において、ndはフラウンホーファーd線の屈折率、nFはF線の屈折率、nCはC線の屈折率である。   The Abbe number (νd) is calculated by the following equation (2). In the following formula, nd is the refractive index of the Fraunhofer d line, nF is the refractive index of the F line, and nC is the refractive index of the C line.

νd=(nd−1)/(nF−nC) (2)     νd = (nd−1) / (nF−nC) (2)

各種光学ガラスでは部分分散比はほぼ一直線上に並んでいるが、実施例1〜3で得られたCGF透明セラミックスは3種類ともこの直線から大きく離れており、各種光学ガラスには見られない異常部分分散性が確認できた。   In various optical glasses, the partial dispersion ratios are almost aligned. However, all three types of CGF transparent ceramics obtained in Examples 1 to 3 are far from this straight line, and are not found in various optical glasses. Partial dispersibility was confirmed.

特にGd/Ca=0.1では最も離れており、2次スペクトルを減少させるのに大きな効果が得られる。焦点距離の長い望遠レンズでは2次スペクトルの影響が大きいため、このようなCGF透明セラミックスを用いることで、色収差を減少させるのに有効である[比較例1]   In particular, Gd / Ca = 0.1 is farthest, and a great effect is obtained in reducing the secondary spectrum. A telephoto lens with a long focal length has a large influence of the secondary spectrum, and thus using such a CGF transparent ceramic is effective in reducing chromatic aberration [Comparative Example 1].

酢酸ガドリニウムの代わりに、酢酸セリウムを用いる他は、実施例1と全く同一にしてセラミックスを作製したところ、透明なセラミックスは得られなかった。
[比較例2]
A ceramic was produced in the same manner as in Example 1 except that cerium acetate was used in place of gadolinium acetate, and a transparent ceramic was not obtained.
[Comparative Example 2]

酢酸ガドリニウムの代わりに、酢酸イットリウムを用いる他は、実施例1と全く同一にしてセラミックスを作製したところ、透明なセラミックスは得られなかった。
[比較例3]
A ceramic was produced in the same manner as in Example 1 except that yttrium acetate was used in place of gadolinium acetate, and a transparent ceramic was not obtained.
[Comparative Example 3]

CaF微粒子とGdF微粒子とを別々に作製する代わりに、酢酸カルシウム及び酢酸ガドリニウムを混合してフッ酸と反応させて微粒子を得る他は、実施例1と同一にしてセラミックスを作製したところ、透明なセラミックスは得られなかった。 Instead of preparing CaF 2 fine particles and GdF 3 fine particles separately, a ceramic was produced in the same manner as in Example 1 except that calcium acetate and gadolinium were mixed and reacted with hydrofluoric acid to obtain fine particles. Transparent ceramics were not obtained.

本発明によれば、蛍石と同程度の高いアッベ数を有すると共に、蛍石より高い屈折率を有するCa−Gd−F系材料を、透光性セラミックスとして提供することができる。上記、透光性セラミックスは一般的な光学ガラスに比べ、異常部分分散性を示すので、この透光性セラミックスを光学部材として用いることにより、優れた光学性能の光学系を実現できる。また本発明は、上記透光性セラミックスの製造方法、およびこの製造に用い得る組成物を提供することができる。そのため、本発明は産業利用上、高い有用性を有する。   According to the present invention, it is possible to provide a Ca—Gd—F-based material having a high Abbe number comparable to that of fluorite and having a higher refractive index than fluorite as translucent ceramics. Since the above translucent ceramic exhibits abnormal partial dispersion as compared with general optical glass, an optical system having excellent optical performance can be realized by using the translucent ceramic as an optical member. Moreover, this invention can provide the composition which can be used for the manufacturing method of the said translucent ceramics, and this manufacture. Therefore, the present invention has high utility in industrial use.

Claims (21)

Ca−Gd−F系透光性セラミックスの製造方法であって、
CaF微粒子と、該CaF微粒子とは別に作製されたGdF微粒子とを混合して微粒子混合物を調整し、
前記微粒子混合物を焼結し、透明化することで透光性セラミックスを製造する、Ca−Gd−F系透光性セラミックスの製造方法。
A method for producing a Ca-Gd-F translucent ceramic,
And CaF 2 particles, by mixing the GdF 3 particles formed separately from the CaF 2 particles to adjust the particulate mixture,
A method for producing a Ca—Gd—F-based translucent ceramic, wherein the translucent ceramic is produced by sintering and transparentizing the fine particle mixture.
請求項1記載のCa−Gd−F系透光性セラミックスの製造方法であって、
前記微粒子混合物を700℃以上1000℃以下に加熱して前駆焼結体を作製し、
該前駆焼結体を不活性雰囲気中で500Kg/cm以上3000Kg/cm以下の圧力で加圧しつつ、700℃以上1300℃以下の温度に加熱することにより、前記透明化を行う、Ca−Gd−F系透光性セラミックスの製造方法。
It is a manufacturing method of the Ca-Gd-F type translucent ceramics according to claim 1,
The fine particle mixture is heated to 700 ° C. or more and 1000 ° C. or less to produce a precursor sintered body,
While pressing in the precursor sintered body 500 Kg / cm 2 or more 3000 Kg / cm 2 or less in pressure in an inert atmosphere, by heating to temperatures below 1300 ° C. 700 ° C. or higher, performing the transparency, Ca- A method for producing a Gd-F translucent ceramic.
更に、カルシウム化合物とフッ素化合物とを水溶液中で反応させ、次いで密閉容器内で100℃以上300℃以下に加熱して、前記CaF微粒子を作製する工程を含む、請求項1又は2に記載のCa−Gd−F系透光性セラミックスの製造方法。 Furthermore, by reacting a calcium compound and a fluorine compound in an aqueous solution and then heated to 300 ° C. below 100 ° C. or higher in a closed container, comprising the step of producing the CaF 2 particles, according to claim 1 or 2 A method for producing a Ca—Gd—F based translucent ceramic. 更に、ガドリニウム化合物とフッ素化合物とを水溶液中で反応させ、次いで密閉容器内で100℃以上300℃以下に加熱して、前記GdF微粒子を作製する工程を含む、請求項1乃至3の何れか一つに記載のCa−Gd−F系透光性セラミックスの製造方法。 The method further comprises a step of reacting a gadolinium compound and a fluorine compound in an aqueous solution, and then heating to 100 ° C. or more and 300 ° C. or less in a sealed container to produce the GdF 3 fine particles. The manufacturing method of Ca-Gd-F type translucent ceramics as described in one. 請求項1乃至4の何れか一つに記載のCa−Gd−F系透光性セラミックスの製造方法であって、
前記微粒子混合物の調整において、前記CaF微粒子と前記GdF微粒子とを湿式混合して前記微粒子混合物を作製する、請求項1乃至4の何れか一つに記載のCa−Gd−F系透光性セラミックスの製造方法。
A method for producing a Ca-Gd-F translucent ceramic according to any one of claims 1 to 4,
5. The Ca—Gd—F-based translucent according to claim 1, wherein in preparing the fine particle mixture, the CaF 2 fine particles and the GdF 3 fine particles are wet-mixed to produce the fine particle mixture. Of manufacturing ceramics.
前記湿式混合において、前記CaF微粒子と、前記GdF微粒子のそれぞれにおける一次粒子同士の凝集力を化学的に低下する請求項5に記載のCa−Gd−F系透光性セラミックスの製造方法。 Wherein in the wet mixing, and the CaF 2 particles, the GdF 3 manufacturing method of Ca-GdF KeiToruhikari ceramic according to claim 5, the cohesive force between the primary particles in each particle chemically reduced. 前記CaF微粒子と前記GdF微粒子とをアルカリ液中で湿式混合する請求項6に記載のCa−Gd−F系透光性セラミックスの製造方法。 The method for producing a Ca—Gd—F based translucent ceramic according to claim 6, wherein the CaF 2 fine particles and the GdF 3 fine particles are wet-mixed in an alkaline solution. 前記アルカリ液が有機アルカリ液である請求項7に記載のCa−Gd−F系透光性セラミックスの製造方法。     The method for producing a Ca—Gd—F based translucent ceramic according to claim 7, wherein the alkaline liquid is an organic alkaline liquid. 機械的混合手段を用いて前記湿式混合を行う請求項5乃至8の何れか一つに記載のCa−Gd−F系透光性セラミックスの製造方法。       The method for producing a Ca—Gd—F based translucent ceramic according to claim 5, wherein the wet mixing is performed using a mechanical mixing unit. 前記微粒子混合物の調整において、前記CaF微粒子と、前記GdF微粒子のそれぞれにおける、一次粒子同士の凝集を機械的に破壊する、機械的凝集破壊工程を更に含む請求項1乃至請求項9のいずれか1項に記載のCa−Gd−F系透光性セラミックスの製造方法。 10. The method according to claim 1, further comprising a mechanical cohesive failure step of mechanically destroying aggregation of primary particles in each of the CaF 2 fine particles and the GdF 3 fine particles in the preparation of the fine particle mixture. The manufacturing method of the Ca-Gd-F type translucent ceramics of Claim 1. 所望の屈折率又はアッベ数の少なくとも一方に基づいて、前記CaF微粒子と前記GdF微粒子との混合割合を調整して混合することを特徴とする請求項1乃至10の何れか一つに記載のCa−Gd−F系透光性セラミックスの製造方法。 11. The mixing according to claim 1, wherein mixing is performed by adjusting a mixing ratio of the CaF 2 fine particles and the GdF 3 fine particles based on at least one of a desired refractive index and Abbe number. The manufacturing method of Ca-Gd-F type translucent ceramics. 前記透光性セラミックスが、(Ca1−XGd)F2+X(Xは0より大きく0.4以下の数である。)の結晶を含む多結晶体であることを特徴とする請求項1乃至11の何れか一つに記載のCa−Gd−F系透光性セラミックスの製造方法。 The translucent ceramic is a polycrystalline body containing a crystal of (Ca 1−X Gd X ) F 2 + X (X is a number greater than 0 and equal to or less than 0.4). The manufacturing method of the Ca-Gd-F type translucent ceramics as described in any one of thru | or 11. (Ca1−XGd)F2+X(Xは0より大きく0.4以下の数である。)の結晶を含む多結晶体からなり、光を透過可能な透光性を有するCa−Gd−F系透光性セラミックス。 (Ca 1-X Gd X) F 2 + X (X is the number of greater than 0 and less than or equal 0.4.) A polycrystalline body containing crystal, Ca-Gd-with the possible translucent transmit light F-based translucent ceramics. 請求項13に記載のCa−Gd−F系透光性セラミックスであって、550nmの波長の光の透過率が50%以上であるCa−Gd−F系透光性セラミックス。       The Ca-Gd-F based translucent ceramic according to claim 13, wherein the transmissivity of light having a wavelength of 550 nm is 50% or more. 屈折率が1.43以上1.55以下であると共に、アッベ数が85以上95以下であることを特徴とする請求項13又は14に記載のCa−Gd−F系透光性セラミックス。       The Ca-Gd-F based translucent ceramic according to claim 13 or 14, wherein the refractive index is 1.43 or more and 1.55 or less, and the Abbe number is 85 or more and 95 or less. アッベ数が85以上95以下であるとともに、部分分散比が0.53以上0.55以下である、請求項13乃至15の何れか一つに記載のCa−Gd−F系透光性セラミックス。       The Ca-Gd-F based translucent ceramic according to any one of claims 13 to 15, wherein the Abbe number is 85 or more and 95 or less, and the partial dispersion ratio is 0.53 or more and 0.55 or less. 請求項13乃至16の何れか一つに記載のCa−Gd−F系透光性セラミックスからなり、所定形状に形成されている光学部材。   An optical member made of the Ca-Gd-F translucent ceramic according to any one of claims 13 to 16, and formed in a predetermined shape. 光路に少なくとも一組の凸レンズと、凹レンズとを備えた光学系であり、前記凸レンズ又は前記凹レンズの一方が請求項13乃至16に記載のCa−Gd−F系透光性セラミックスからなると共に、他方が前記Ca−Gd−F系透光性セラミックスとは異なる材料からなる光学系。     An optical system comprising at least one pair of convex lens and concave lens in an optical path, wherein one of the convex lens or the concave lens is made of the Ca-Gd-F based translucent ceramic according to claim 13 to 16, and the other Is an optical system made of a material different from the Ca-Gd-F translucent ceramics. CaF微粒子と、該CaF微粒子とは別に作製されたGdF微粒子とを含有することを特徴とするセラミックス形成用組成物。 And CaF 2 particles, ceramic-forming composition characterized by containing a GdF 3 particles formed separately from the CaF 2 particles. 前記CaF微粒子と前記GdF微粒子とが液中に懸濁又は分散されていることを特徴とする請求項19に記載のセラミックス形成用組成物。 The ceramic forming composition according to claim 19, wherein the CaF 2 fine particles and the GdF 3 fine particles are suspended or dispersed in a liquid. CaFの一次粒子と、GdFの一次粒子が混合されている、微粒子混合物を含む請求項19または20に記載のセラミックス形成用組成物。 21. The ceramic forming composition according to claim 19 or 20, comprising a fine particle mixture in which primary particles of CaF 2 and primary particles of GdF 3 are mixed.
JP2010089518A 2009-06-17 2010-04-08 Method for producing Ca-Gd-F-based translucent ceramics, Ca-Gd-F-based translucent ceramics, optical member, optical system, and ceramic-forming composition Active JP5682132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010089518A JP5682132B2 (en) 2009-06-17 2010-04-08 Method for producing Ca-Gd-F-based translucent ceramics, Ca-Gd-F-based translucent ceramics, optical member, optical system, and ceramic-forming composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009144661 2009-06-17
JP2009144661 2009-06-17
JP2010089518A JP5682132B2 (en) 2009-06-17 2010-04-08 Method for producing Ca-Gd-F-based translucent ceramics, Ca-Gd-F-based translucent ceramics, optical member, optical system, and ceramic-forming composition

Publications (2)

Publication Number Publication Date
JP2011020917A true JP2011020917A (en) 2011-02-03
JP5682132B2 JP5682132B2 (en) 2015-03-11

Family

ID=43631315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010089518A Active JP5682132B2 (en) 2009-06-17 2010-04-08 Method for producing Ca-Gd-F-based translucent ceramics, Ca-Gd-F-based translucent ceramics, optical member, optical system, and ceramic-forming composition

Country Status (1)

Country Link
JP (1) JP5682132B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073592A1 (en) * 2011-11-17 2013-05-23 株式会社ニコン Caf2 translucent ceramics and manufacturing method therefor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442348A (en) * 1987-08-11 1989-02-14 Ube Industries Production of polycrystalline calcium fluoride sintered body
JPH0323251A (en) * 1989-06-16 1991-01-31 Sumitomo Electric Ind Ltd Light-transmissive calcium fluoride sintered compact and its production
JP2003300777A (en) * 2002-04-03 2003-10-21 Toshiba Ceramics Co Ltd High purity calcium fluoride sintered compact and production method therefor
WO2005100645A1 (en) * 2004-04-12 2005-10-27 Stella Chemifa Corporation Solid solution material of rare earth element fluoride (polycrystal and single crystal), and method for preparation thereof, and radiation detector and test device
JP2006206359A (en) * 2005-01-27 2006-08-10 Nikon Corp Calcium fluoride fine particle, calcium fluoride dried body, calcium fluoride sintered compact, calcium fluoride transparent sintered compact and manufacturing method therefor
JP2009051966A (en) * 2007-08-28 2009-03-12 Nikon Corp Method for producing translucent calcium fluoride phosphor and calcium fluoride phosphor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442348A (en) * 1987-08-11 1989-02-14 Ube Industries Production of polycrystalline calcium fluoride sintered body
JPH0323251A (en) * 1989-06-16 1991-01-31 Sumitomo Electric Ind Ltd Light-transmissive calcium fluoride sintered compact and its production
JP2003300777A (en) * 2002-04-03 2003-10-21 Toshiba Ceramics Co Ltd High purity calcium fluoride sintered compact and production method therefor
WO2005100645A1 (en) * 2004-04-12 2005-10-27 Stella Chemifa Corporation Solid solution material of rare earth element fluoride (polycrystal and single crystal), and method for preparation thereof, and radiation detector and test device
JP2006206359A (en) * 2005-01-27 2006-08-10 Nikon Corp Calcium fluoride fine particle, calcium fluoride dried body, calcium fluoride sintered compact, calcium fluoride transparent sintered compact and manufacturing method therefor
JP2009051966A (en) * 2007-08-28 2009-03-12 Nikon Corp Method for producing translucent calcium fluoride phosphor and calcium fluoride phosphor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073592A1 (en) * 2011-11-17 2013-05-23 株式会社ニコン Caf2 translucent ceramics and manufacturing method therefor
JPWO2013073592A1 (en) * 2011-11-17 2015-04-02 株式会社ニコン CaF2-based translucent ceramics and method for producing the same
US9586867B2 (en) 2011-11-17 2017-03-07 Nikon Corporation CaF2 translucent ceramics and manufacturing method of CaF2 translucent ceramics

Also Published As

Publication number Publication date
JP5682132B2 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP5862677B2 (en) CaF2-based translucent ceramics and method for producing the same
US11161274B2 (en) Method for manufacturing transparent ceramic material for faraday rotator
JP5521551B2 (en) Method for producing Ca-La-F translucent ceramics, Ca-La-F translucent ceramics, optical member, optical device, and composition for forming Ca-La-F translucent ceramics
TW201609605A (en) Method for producing transparent ceramic, transparent ceramic, magneto-optical device and rare earth oxide powder for sintering
JP2019156666A (en) Method for producing transparent ceramics, the transparent ceramics, and magneto-optical device
CN110498677B (en) Paramagnetic garnet type transparent ceramic, magneto-optical material and magneto-optical device
US9862648B2 (en) Transparent metal fluoride ceramic
CN113880578B (en) Preparation method of Ho2Zr2O7 magneto-optical ceramic with high optical quality
Wu et al. Laser‐quality Tm:(Lu0. 8Sc0. 2) 2O3 mixed sesquioxide ceramics shaped by gelcasting of well‐dispersed nanopowders
JP2019199078A (en) Method for manufacturing ceramic molding for sintering and method for manufacturing ceramic sintered body
JP5682132B2 (en) Method for producing Ca-Gd-F-based translucent ceramics, Ca-Gd-F-based translucent ceramics, optical member, optical system, and ceramic-forming composition
JP6885314B2 (en) Manufacturing method of transparent ceramics for Faraday rotator
Ishizawa et al. CaF2 translucent ceramics and manufacturing method of CaF2 translucent ceramics
JP5549122B2 (en) Translucent ceramics and method for producing the same
CN116283271B (en) Gd with high refractive index and high optical quality 2 Sn 2 O 7 Method for preparing pyrochlore type transparent ceramic
TW202225124A (en) Paramagnetic garnet-type transparent ceramic, magneto-optical device, and production method for paramagnetic garnet-type transparent ceramic
JP2019156712A (en) Manufacturing method of transparent complex oxide sintered body, transparent complex oxide sintered body, and magnetic optical device
JP2005320216A (en) Synthetic silicon oxide particle and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130319

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141229

R150 Certificate of patent or registration of utility model

Ref document number: 5682132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250