JP2011020548A - ALTERNATING CURRENT DeltaI TYPE FAULT SELECTION DEVICE - Google Patents

ALTERNATING CURRENT DeltaI TYPE FAULT SELECTION DEVICE Download PDF

Info

Publication number
JP2011020548A
JP2011020548A JP2009166856A JP2009166856A JP2011020548A JP 2011020548 A JP2011020548 A JP 2011020548A JP 2009166856 A JP2009166856 A JP 2009166856A JP 2009166856 A JP2009166856 A JP 2009166856A JP 2011020548 A JP2011020548 A JP 2011020548A
Authority
JP
Japan
Prior art keywords
current
power supply
train line
selection device
type fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009166856A
Other languages
Japanese (ja)
Inventor
Satoru Nakamura
哲 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009166856A priority Critical patent/JP2011020548A/en
Publication of JP2011020548A publication Critical patent/JP2011020548A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To detect a fault at a current value close to an original power supply system without being affected by SVC. <P>SOLUTION: The alternating current ΔI type fault section device includes: an input conversion means 31 for converting current flowing on the power supply system of a down electric train line and an up electric train line, and current flowing on a switching section to an optional current value, respectively; a sampling hold means 32 for sampling-storing converted individual analog current values at a predetermined cycle; an A/D conversion means 33 for converting the sampled individual analog current values to a digital current value, respectively; a harmonic wave detection means 34 for extracting a harmonic wave component from a digital current value corresponding to the current flowing on the switching section; and a harmonic wave component synthetic processing means 35 for calculating a load equivalent current by multiplying the extracted harmonic wave component by a synthesis ratio determined according to a system state, to synthesize into a digital current value corresponding to the current flowing on the power supply system. The alternating current ΔI type fault section device executes operation when the amount of current variation ΔI calculated from the obtained load equivalent current exceeds a predetermined value. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新幹線鉄道に使用される交流き電回路の交流ΔI形故障選択装置に関する。   The present invention relates to an AC ΔI type fault selection device for an AC feeder circuit used in a Shinkansen railway.

新幹線鉄道に使用される交流き電回路では、当該き電回路系統を含む電車線系統に地絡事故等が発生した場合、列車やき電変電所の機器を保護するために、列車の負荷と区別して確実に事故故障を検知し遮断する保護システムとして、交流ΔI形故障選択装置が設置されている。   In the AC feeder circuit used for the Shinkansen railway, in the event of a ground fault in the train line system including the feeder circuit system, in order to protect the equipment of the train and feeder substation, Separately, an AC ΔI type failure selection device is installed as a protection system that reliably detects and shuts down accident failures.

この交流ΔI形故障選択装置は、交流き電回路の電流変化量ΔIを監視し、その電流変化量ΔIが所定値を超えた時に事故と検出し、各種の系統機器を保護する動作を実行する。   This AC ΔI type fault selection device monitors the current change amount ΔI of the AC feeder circuit, detects an accident when the current change amount ΔI exceeds a predetermined value, and executes operations to protect various system devices. .

図4は交流ΔI形故障選択装置を備えた従来の交流き電回路の系統構成図である。
同図において、1Aはき電用変電所で得られる単相の交流電源、1Bは同一のき電用変電所で得られる異電源となる単相の交流電源(通常は同じ変電所から異相の異なる単相の交流電源を供給、別のポストからの供給も有り)、2は下り電車線用電力供給系統3に設置される下り電車線用開閉器、4は上り電車線用電力供給系統5に設置される上り電車線用開閉器、6,7は下り電車線用補助変流器、上り電車線用補助変流器、8,9は電力供給系統3、5に流れる電流変化量を監視する下り電車線用交流ΔI形故障選択装置、上り電車線用交流ΔI形故障選択装置である。
FIG. 4 is a system configuration diagram of a conventional AC feeding circuit provided with an AC ΔI type fault selection device.
In the figure, 1A is a single-phase AC power source obtained at a feeder substation, and 1B is a single-phase AC power source that is a different power source obtained at the same feeder substation (usually from the same substation 2 is a switch for the down train line installed in the power supply system 3 for the down train line, 4 is a power supply system for the up train line 5 Switch for upstream train line installed in, 6 and 7 for auxiliary current transformer for downward train line, auxiliary current transformer for upstream train line, 8 and 9 for monitoring the amount of current flowing through power supply systems 3 and 5 The AC ΔI type fault selection device for down train lines and the AC ΔI type fault selection device for up train lines.

また、10は異電源切替セクション、11,12は列車13が異電源切替セクション10を通過する際に切替制御される切替遮断器、14,15は切替セクション側補助変流器、16は切替セクション側補助変流器14の電流を変流比1/4とする補助変流器、17は切替セクション側補助変流器15の電流を変流比1/3とする補助変流器である。   Also, 10 is a different power source switching section, 11 and 12 are switching circuit breakers that are switched when the train 13 passes through the different power source switching section 10, 14 and 15 are switching section side auxiliary current transformers, and 16 is a switching section. An auxiliary current transformer 17 sets the current of the side auxiliary current transformer 14 to a current transformation ratio 1/4, and 17 denotes an auxiliary current transformer which sets the current of the switching section side auxiliary current transformer 15 to a current transformation ratio 1/3.

さらに、新幹線鉄道用の交流き電回路の末端には無効電力補償装置(Static Var Compensator:以下、SVCと呼ぶ)20が接続されている(特許文献1)。ここで、SVC20を設けた理由は、遅れ無効電力を補償することにより、交流き電回路の電圧降下を補償することにある。   Furthermore, a reactive power compensator (Static Var Compensator: hereinafter referred to as SVC) 20 is connected to the end of the AC feeder circuit for the Shinkansen railway (Patent Document 1). Here, the reason for providing the SVC 20 is to compensate for the voltage drop of the AC feeder circuit by compensating for the delayed reactive power.

ところで、新幹線鉄道では、地絡事故等以外に幾つかの要因により電流が増大し、交流ΔI形故障選択装置8,9を不要に動作させてしまう問題がある。   By the way, in the Shinkansen railway, there is a problem that the current increases due to several factors other than the ground fault and the like, and the AC ΔI type fault selection devices 8 and 9 are operated unnecessarily.

そこで、新幹線鉄道に使用される交流き電回路には、基本波電流に含有される第2、第3高調波電流の含有率を計測し、不要動作を防止する手段が講じられている。   Therefore, AC feeding circuits used for the Shinkansen railway are provided with means for measuring the contents of the second and third harmonic currents contained in the fundamental current and preventing unnecessary operations.

その1つの不要動作防止手段は、新幹線鉄道の列車13が異電源切替セクション10を通過する際、車両内変圧器に大きな無負荷励磁突入電流が流れる。この無負荷励磁突入電流は、上下波形が非対称であり、第2高調波電流が多く含まれているので、当該第2高調波電流の含有率が一定値以上であるとき、交流ΔI形故障選択装置9(8)の動作を抑制する。   One unnecessary operation preventing means is that when the train 13 of the Shinkansen railway passes through the different power source switching section 10, a large no-load excitation inrush current flows through the in-vehicle transformer. This no-load magnetizing inrush current has an asymmetrical top and bottom waveform and contains a lot of second harmonic current. Therefore, when the content of the second harmonic current is equal to or greater than a certain value, AC ΔI type fault selection The operation of the device 9 (8) is suppressed.

また、他の不要動作防止手段としては、新幹線鉄道の列車13が異電源切替セクション10に進入する際、切替遮断器11を遮断し、切替遮断器12を投入する、いわゆる異電源切替の際に急激な負荷電流が流れる。このとき、列車13による負荷電流が流れている場合、き電電流に第3高調波電流が含まれているので、この第3高調波電流の含有率から基本波電流が小さいと判断し、交流ΔI形故障選択装置9(8)の動作を抑制する。   As another unnecessary operation prevention means, when the train 13 of the Shinkansen railway enters the different power supply switching section 10, the switching breaker 11 is cut off and the switching breaker 12 is turned on, so-called different power supply switching. A sudden load current flows. At this time, when the load current by the train 13 is flowing, since the third harmonic current is included in the feeding current, it is determined that the fundamental current is small from the content of the third harmonic current, and the alternating current The operation of the ΔI type failure selection device 9 (8) is suppressed.

従って、不要動作防止手段は、列車13が切替セクション10を通過する際、大きな無負荷励磁突入電流が流れ、上り電車線用電力供給系統5に流れる電流の変化量が大きくなることを前提とし、交流ΔI形故障選択装置9の不要動作を防止している。   Therefore, the unnecessary operation preventing means is based on the premise that when the train 13 passes through the switching section 10, a large no-load excitation inrush current flows, and the amount of change in the current flowing in the power supply system 5 for the upstream train line increases. Unnecessary operation of the AC ΔI type failure selection device 9 is prevented.

しかし、前述したように新幹線鉄道に用いる交流き電回路の末端側にSVC20が設置されている場合、基本波電流であるき電電流に含まれる第2,第3高調波電流IfnがSVC20側と上り電車線用電力供給系統5側とに分流する結果、上り電車線用補助変流器7には実際の高調波電流Ifnの1/2の高調波電流(1/2)Ifn程度しか流れていない。ここで、上り電車線用補助変流器7に1/2の高調波電流(1/2)Ifnしか流れない根拠は、下り電車線用補助変流器6〜SVC20間と、上り電車線補助変流器7〜SVC20間とのインピーダンスが同等の値である為である。   However, as described above, when the SVC 20 is installed on the terminal side of the AC feeding circuit used for the Shinkansen railway, the second and third harmonic currents Ifn included in the feeding current as the fundamental current are increased from the SVC 20 side. As a result of the diversion to the electric power supply system 5 side for the train line, only about a half harmonic current (1/2) Ifn of the actual harmonic current Ifn flows through the auxiliary current transformer 7 for the upward train line. . Here, the reason why only the half harmonic current (1/2) Ifn flows through the auxiliary current transformer for the upstream train line 7 is that between the auxiliary current transformer for the downward train line 6 to the SVC 20 and the auxiliary current for the upward train line. This is because the impedance between the current transformer 7 and the SVC 20 is an equivalent value.

その結果、第2、第3高調波電流の含有率を小さくなり、例えば上り電車線用交流ΔI形故障選択装置9の動作に抑制がかからず、誤動作する恐れがある。   As a result, the content rate of the second and third harmonic currents is reduced, and for example, the operation of the AC ΔI type fault selection device 9 for the up-bound train line is not suppressed and may malfunction.

そこで、切替セクション用補助変流器15の電流を補助変流器17にて1/3とし、上り電車線用補助変流器7の電流から減算することにより、上り電車線用交流ΔI形故障選択装置9に入力される電流を見かけ上、小さくして電流の変化量を少なくし、誤動作を防止している。   Therefore, the current of the auxiliary current transformer 15 for the switching section is reduced to 1/3 by the auxiliary current transformer 17 and is subtracted from the current of the auxiliary current transformer 7 for the upstream train line. Apparently, the current input to the selection device 9 is reduced to reduce the amount of change in the current to prevent malfunction.

一方、列車13が切替セクション10を通過する際、下り電車線用補助変流器6には、基本波電流はほとんど流れないが、高調波電流Ifnの1/2の高調波電流(1/2)IfnがSVC20による分流によって流れている。この同時刻に事故が発生した場合、下り電車線用交流ΔI形故障選択装置8による誤不動作の可能性が出てくる。   On the other hand, when the train 13 passes through the switching section 10, almost no fundamental current flows through the auxiliary current transformer 6 for the descending train line, but the harmonic current (1/2 of the harmonic current Ifn is 1/2). ) Ifn is flowing by the diversion by the SVC 20. If an accident occurs at the same time, there is a possibility of malfunction due to the AC ∆I type fault selection device 8 for the descending train line.

そのため、切替セクション用補助変流器14の電流を補助変流器16により1/4とし、下り電車線用補助変流器6の電流に加算することにより、下り線用交流ΔI形故障選択装置8に入力される電流を見かけ上、大きくして高調波含有率を少なくし、誤不動作を防止している。   For this reason, the current of the auxiliary current transformer 14 for the switching section is reduced to ¼ by the auxiliary current transformer 16 and added to the current of the auxiliary current transformer 6 for the descending train line, whereby the down line AC ΔI type fault selection device. The current input to 8 is apparently increased to reduce the harmonic content to prevent malfunction.

特開2003−2088号公報JP 2003-2088 A

ところで、以上のような交流ΔI形故障選択装置の不要動作防止の技術によれば、次のような幾つかの問題が指摘されている。   By the way, according to the technique for preventing the unnecessary operation of the AC ΔI type fault selection device as described above, the following problems have been pointed out.

(1) 列車13が切替セクション10を通過してしまうと、上り電車線用補助変流器7の電流からの1/3減算分が無くなり、実質的に1/3が増えた状態となる。そのため、上り電車線用交流ΔI形故障選択装置9に入力される電流が1/3加算され、電流変化量が大きくなり、誤動作する可能性がある。 (1) When the train 13 passes through the switching section 10, the 1/3 subtraction from the current of the auxiliary current transformer 7 for the upward train line disappears, and the state is substantially increased by 1/3. Therefore, 1/3 of the current input to the AC ΔI type fault selection device 9 for the upward train line is added, the current change amount becomes large, and there is a possibility of malfunction.

(2) 列車13の切替セクション10への進入時、補助変流器17にて1/3減算させる形式をとっているので、上り電車線用電力供給系統5に流れる実際の電流値と異なっており、系統事故の検出が遅くなる可能性がある。 (2) When the train 13 enters the switching section 10, the auxiliary current transformer 17 subtracts 1/3, so that it differs from the actual current value flowing through the power supply system 5 for the upstream train line. And detection of grid faults may be delayed.

(3) 前述した不要動作防止の技術は、常に上り電車線用補助変流器7、下り電車線補助変流器6の電流に一定の比率の電流を減算または加算しているので、電車線用開閉器2,4の開閉動作に従ってき電系統が変更された際、上り電車線用交流ΔI形故障選択装置9、下り電車線用交流ΔI形故障選択装置8に入力される電流が、通常時に比べて大幅な加算または減算となり、不要動作する可能性が出てくる問題がある。 (3) The technique for preventing unnecessary operation described above always subtracts or adds a constant current to the current of the auxiliary current transformer 7 for the upward train line and the auxiliary current transformer 6 for the downward train line. When the feeder system is changed in accordance with the switching operation of the switches 2 and 4, the current input to the AC ΔI type fault selection device 9 for the upward train line and the AC ΔI type fault selection device 8 for the downward train line is normally There is a problem in that there is a possibility of unnecessary operation due to significant addition or subtraction compared to the case.

本発明は上記事情に鑑みてなされたもので、系統状態に応じた適正な高調波分を電力供給系統に流れる電流に合成することにより、交流き電回路の末端に設置されるSVCに影響されずに本来の電力供給系統に近い電流値で事故を確実に検出する交流ΔI形故障選択装置を提供することを目的とする。   The present invention has been made in view of the above circumstances, and is influenced by the SVC installed at the end of the AC feeder circuit by synthesizing an appropriate harmonic component according to the system state into the current flowing through the power supply system. An object of the present invention is to provide an AC ΔI type fault selection device that reliably detects an accident with a current value close to that of the original power supply system.

上記課題を解決するために、本発明は、末端側に無効電力補償装置を備えた交流き電回路に接続され、各種の系統事故を検出し保護する交流ΔI形故障選択装置であって、
列車が異電源切替セクションに通過する際、下り電車線用電力供給系統及び上り電車線用電力供給系統に流れる第1,第2の電流及び当該異電源切替セクションに流れる第3の電流をそれぞれ任意の第1〜第3のアナログ電流値データに変換する電流変換手段と、この電流変換出手段で変換された第1〜第3のアナログ電流値データを所定の周期でサンプリングして記憶するサンプリングホールド手段と、サンプリング記憶された第1〜第3のアナログ電流値データをそれぞれ第1〜第3のデジタル電流値データに変換するA/D変換手段と、このA/D変換手段で変換された第3のデジタル電流値データからデジタル高調波分データを抽出する高調波検出手段と、この高調波検出手段で抽出されたデジタル高調波分データに対して系統状態に応じて定まる合成比率を掛け、前記第1,第2のデジタル電流値データに合成し、負荷相当電流を算出する高調波分合成処理手段とを備え、
この高調波分合成処理手段で得られた負荷相当電流から電流変化量ΔIを求め、この求めた電流変化量ΔIが所定値を超えた時に保護動作を実行する交流ΔI形故障選択装置である。
In order to solve the above problems, the present invention is an AC ΔI type fault selection device that is connected to an AC feeder circuit having a reactive power compensator on the terminal side and detects and protects various system faults.
When the train passes through the different power supply switching section, the first and second currents flowing in the power supply system for the descending train line and the power supply system for the upstream train line and the third current flowing in the different power supply switching section are arbitrary. Current conversion means for converting the first to third analog current value data, and sampling hold for sampling and storing the first to third analog current value data converted by the current conversion output means at a predetermined cycle Means, A / D conversion means for converting the first to third analog current value data sampled and stored into first to third digital current value data, respectively, and the A / D conversion means converted by the A / D conversion means. Harmonic detection means for extracting digital harmonic data from the digital current value data of 3 and the system state for the digital harmonic data extracted by this harmonic detection means Depending multiplying determined synthesis ratios, said first and synthesized into a second digital current value data, and a harmonic component synthesizing processing means for calculating a load equivalent current,
This is an AC ΔI type fault selection device that obtains a current change amount ΔI from the load-corresponding current obtained by the harmonic component synthesizing means and performs a protection operation when the obtained current change amount ΔI exceeds a predetermined value.

本発明によれば、系統状態に応じて合成比率を変えて適正な高調波分を取得し、電力供給系統に流れる電流に合成することにより、交流き電回路の末端に設置されるSVCに影響されずに本来の電力供給系統に近い電流値で系統事故を検出する交流ΔI形故障選択装置を提供できる。   According to the present invention, an appropriate harmonic component is obtained by changing the synthesis ratio in accordance with the system state, and is synthesized with the current flowing in the power supply system, thereby affecting the SVC installed at the end of the AC feeder circuit. Instead, it is possible to provide an AC ΔI type fault selection device that detects a system fault with a current value close to that of the original power supply system.

本発明に係る交流ΔI形故障選択装置を組み込んだ交流き電回路の系統構成図。1 is a system configuration diagram of an AC feeder circuit incorporating an AC ΔI type fault selection device according to the present invention. 本発明に係る交流ΔI形故障選択装置の一実施の形態を示すブロック構成図。The block block diagram which shows one Embodiment of the alternating current (DELTA) I type | mold fault selection apparatus which concerns on this invention. 記憶装置に設けられた合成比率テーブルのデータ配列例図。The data array example figure of the synthetic | combination ratio table provided in the memory | storage device. 交流ΔI形故障選択装置を含む従来の交流き電回路の系統構成図。The system block diagram of the conventional AC feeder circuit containing an alternating current (DELTA) I type | mold fault selection apparatus.

以下、本発明の一実施の形態について、図面を参照して説明する。
図1は本発明に係る交流ΔI形故障選択装置を備えた交流き電回路の系統構成図である。同図において、図4と同一部分には同一符号を付し、その詳しい説明は省略する。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a system configuration diagram of an AC feeder circuit provided with an AC ΔI type fault selection device according to the present invention. In this figure, the same parts as those in FIG.

この交流き電回路は、前述した図4と同様に、下り電車線用電力供給系統3側に下り電車線用開閉器2及び下り電車線用補助変流器6、上り電車線用電力供給系統5側にも上り電車線用開閉器4及び上り電車線用補助変流器7がそれぞれ設置されている。また、各電力供給系統3,5間には自ポスト上下タイ開閉器21が設置されている
これら開閉器2,4,21、補助変流器6,7及び異電源切替セクション10側に設置される補助変流器22の各出力側には集約形保護継電装置23が接続されている。
This AC feeder circuit is similar to FIG. 4 described above, and is provided on the down train line power supply system 3 side on the down train line switch 2, down train line auxiliary current transformer 6, and up train line power supply system. On the side 5, an up train line switch 4 and an up line auxiliary current transformer 7 are also installed. In addition, the own post upper and lower tie switches 21 are installed between the power supply systems 3 and 5. These switches 2 and 21, the auxiliary current transformers 6 and 7, and the different power source switching section 10 are installed. A central protective relay device 23 is connected to each output side of the auxiliary current transformer 22.

この集約形保護継電装置23には、本発明に係る交流ΔI形故障選択装置その他の保護継電装置,例えば距離継電装置などが収納されている。   The aggregated protective relay device 23 accommodates an AC ΔI type fault selection device according to the present invention and other protective relay devices such as a distance relay device.

交流ΔI形故障選択装置は、各補助変流器6,7,22から取得された電流Ia,Ib,In及び各開閉器2,4,21の開閉状態(系統状態)を取り込み、系統事故等の発生時に交流き電回路や列車、変電所の設備機器を保護する動作を実施する。   The AC ΔI type fault selection device takes in the currents Ia, Ib, In acquired from the auxiliary current transformers 6, 7, 22 and the open / closed states (system state) of the respective switches 2, 4, 21, system faults, etc. The operation to protect AC feeder circuits, trains, and substation equipment in the event of an outbreak.

さらに、交流き電回路の末端となる隣接ポストには隣接ポスト上下タイ開閉器24及びSVC20が設置される。隣接ポスト上下タイ開閉器24は、各電力供給系統3、5から下り電車線と上り電車線に供給される電源を突き合わせしている。   Further, the adjacent post upper and lower tie switches 24 and the SVC 20 are installed on the adjacent post which is the end of the AC feeder circuit. The adjacent post upper and lower tie switches 24 match the power supplied from the power supply systems 3 and 5 to the descending train line and the ascending train line.

図2は集約形保護継電装置23に収納される交流ΔI形故障選択装置30の一実施の形態を示すブロック構成図である。   FIG. 2 is a block configuration diagram showing an embodiment of the AC ΔI type failure selection device 30 housed in the intensive protection relay device 23.

交流ΔI形故障選択装置30は、各補助変流器6,7,22で取得される複数の電流1a,Ib,Inをそれぞれ任意のアナログ電流値(小電流値)に変換する入力変換手段(電流変換手段)31と、各アナログ電流値データを所定の周期でサンプリングし、量子化し記憶するサンプリングホールド手段32と、サンプリング記憶された各アナログ電流値データをそれぞれデジタル値データIa´、Ib´、In´に変換するA/D変換手段33と、異電源切替セクション10に流れるデジタル値データIn´から高調波デジタルデータIfn´を抽出する高調波検出手段34と、高調波分合成処理手段35と、ΔI(電流変化量)演算手段36とが設けられている。   The AC ΔI type fault selection device 30 is an input conversion means (converter) for converting a plurality of currents 1a, Ib, In acquired by the auxiliary current transformers 6, 7, 22 into arbitrary analog current values (small current values). Current conversion means) 31, sampling hold means 32 for sampling, quantizing and storing each analog current value data at a predetermined period, and each analog current value data sampled and stored as digital value data Ia ′, Ib ′, A / D conversion means 33 for converting to In ′, harmonic detection means 34 for extracting the harmonic digital data Ifn ′ from the digital value data In ′ flowing in the different power supply switching section 10, harmonic component combining processing means 35, , ΔI (current change amount) calculating means 36 is provided.

前記高調波分合成処理手段35は、CPUで構成され、機能的には、A/D変換手段33で変換されたデジタル値データIa´、Ib´及び高調波検出手段34で抽出された高調波デジタルデータIfn´を受け取り、記憶装置37に設けられた実測データ記憶部37aに格納するデータ記憶手段35A、各開閉器2,4,21の開閉状態CB−a,CB−b,DS−cから系統状態を判定する系統状態判定手段35B、この系統状態判定手段35Bで判定された系統状態に応じて、予め定めた合成比率及び所定の演算式に従って合成処理を実行し、列車の負荷相当電流ΔIa,ΔIbを算出し、前記実測データ記憶部37aに格納する合成演算処理手段35Cにより構成される。   The harmonic component synthesis processing means 35 is constituted by a CPU, and functionally, the digital value data Ia ′ and Ib ′ converted by the A / D conversion means 33 and the harmonics extracted by the harmonic detection means 34. From the open / close states CB-a, CB-b, and DS-c of the data storage means 35A that receives the digital data Ifn 'and stores it in the measured data storage unit 37a provided in the storage device 37, and the switches 2, 4, and 21. A system state determination unit 35B for determining a system state, and in accordance with the system state determined by the system state determination unit 35B, a combination process is executed according to a predetermined combination ratio and a predetermined arithmetic expression, and the load equivalent current ΔIa of the train , ΔIb are calculated, and are composed of the synthesis operation processing means 35C that stores the measured data storage unit 37a.

ΔI(電流変化量)演算手段36は、高調波分合成処理手段35とともにCPUで構成されるものであって、合成演算処理手段35Cで算出された負荷相当電流ΔIa,ΔIbに基づき、系統事故時に電力供給系統3,5に流れる電流変化量ΔIを求め、系統事故を検出し、交流き電回路を含む変電所や列車の機器を保護する。   The ΔI (current change amount) calculating means 36 is composed of a CPU together with the harmonic component combining processing means 35, and based on the load equivalent currents ΔIa and ΔIb calculated by the combining calculation processing means 35C, at the time of a system fault. A current change amount ΔI flowing through the power supply systems 3 and 5 is obtained, a system fault is detected, and a substation or train equipment including an AC feeder circuit is protected.

前記記憶装置37には、少なくとも前述した実測データ記憶部37aの他に、合成比率テーブル37bが設けられている。   The storage device 37 is provided with a composition ratio table 37b in addition to at least the above-described actual measurement data storage unit 37a.

図3は合成比率テーブル37bのデータ配列例を示す図である。   FIG. 3 is a diagram showing a data arrangement example of the synthesis ratio table 37b.

すなわち、合成比率テーブル37bには、予めユーザなどがキーボードやマウスなどの高調波合成比率設定手段38を通して、系統状態1.2,…ごとに各開閉器2,4,21の開・閉(投入)状態CB−a,CB−b,DS−cを設定し、かつ、そのときの負荷相当電流ΔIa,ΔIbに対する合成比率が設定されている。   That is, in the synthesis ratio table 37b, the user opens or closes (opens) the switches 2, 4, 21 for each system state 1.2,... Through the harmonic synthesis ratio setting means 38 such as a keyboard or a mouse in advance. ) The states CB-a, CB-b, and DS-c are set, and the composite ratios for the load equivalent currents ΔIa and ΔIb at that time are set.

次に、以上のように構成された交流ΔI形故障選択装置30の動作について説明する。   Next, the operation of the AC ΔI type fault selection device 30 configured as described above will be described.

先ず、各補助変流器6,7,22は、下り電車線用電力供給系統3、上り電車線用電力供給系統5及び異電源切替セクション10に流れる電流を所定の電流比で変流してなる電流Ia,Ib,Inを取り出し、入力変換手段31に導入する。入力変換手段31は、各補助変流器6,7,22により取得された電流1a,Ib,Inをそれぞれ任意のアナログ電流値(小電流値)に変換する。   First, each of the auxiliary current transformers 6, 7, and 22 transforms the current flowing through the power supply system 3 for the down train line, the power supply system 5 for the up train line, and the different power source switching section 10 at a predetermined current ratio. The currents Ia, Ib, and In are taken out and introduced into the input conversion means 31. The input conversion means 31 converts the currents 1a, Ib, and In acquired by the auxiliary current transformers 6, 7, and 22 into arbitrary analog current values (small current values), respectively.

通常、各補助変流器6,7,22は任意のアナログ電流値(小電流値)に変換することが可能である。この場合での入力変換手段31の実質的な構成は各補助変流器6,7,22となる。   Normally, each auxiliary current transformer 6, 7, 22 can be converted into an arbitrary analog current value (small current value). In this case, the substantial structure of the input conversion means 31 is the auxiliary current transformers 6, 7, and 22.

しかし、補助変流器6,7,22の出力は、交流ΔI形故障選択装置30以外の他の保護継電装置にも利用することが考えれるので、各補助変流器6,7,22で取得された電流1a,Ib,Inを、さらに交流ΔI形故障選択装置30で使用可能な任意のアナログ電流値に変換するための変流要素を追加する必要がある。この例によれば、入力変換手段31は、各補助変流器6,7,22に新たに追加される変流要素も含むものとなる。   However, since the outputs of the auxiliary current transformers 6, 7, and 22 can be used for other protective relay devices other than the AC ΔI type fault selection device 30, each auxiliary current transformer 6, 7, 22 is used. It is necessary to add a current-transforming element for converting the currents 1a, Ib, and In acquired in step 1 into an arbitrary analog current value that can be used by the AC ΔI type fault selection device 30. According to this example, the input conversion means 31 includes a current transformer element newly added to each auxiliary current transformer 6, 7, 22.

以上のようにして入力変換手段31が各電流1a,Ib,Inに対応する各任意のアナログ電流値データに変換して出力するが、このとき、サンプリングホールド手段32は、所定の周期をもって当該各任意のアナログ電流値データをサンプリングし、量子化し、記憶装置37の適宜な空き領域に格納する。   As described above, the input conversion means 31 converts each analog current value data corresponding to each of the currents 1a, Ib, In and outputs it. At this time, the sampling and holding means 32 outputs the respective analog current value data with a predetermined cycle. Arbitrary analog current value data is sampled, quantized, and stored in an appropriate free space in the storage device 37.

ここで、A/D変換手段33は、サンプリングホールド手段32で記憶された各アナログ電流値データをそれぞれデジタル値データIa´、Ib´、In´に変換した後、下り電車線用電力供給系統3及び上り電車線用電力供給系統5に流れるき電電流に関するデジタル値データIa´、Ib´を高調波分合成処理手段35に送出する。   Here, the A / D conversion means 33 converts each analog current value data stored in the sampling and holding means 32 into digital value data Ia ′, Ib ′, In ′, respectively, and then the power supply system 3 for the descending train line. The digital value data Ia ′ and Ib ′ relating to the feeding current flowing in the power supply system 5 for the upstream train line is sent to the harmonic component synthesis processing means 35.

高調波分合成処理手段35におけるデータ記憶手段35Aは、A/D変換手段33からデジタル値データIa´、Ib´を受け取ると、記憶装置37の実測データ記憶部37aに順次格納していく。   When receiving the digital value data Ia ′ and Ib ′ from the A / D conversion unit 33, the data storage unit 35 </ b> A in the harmonic component synthesis processing unit 35 sequentially stores the digital value data Ia ′ and Ib ′ in the measured data storage unit 37 a of the storage device 37.

一方、A/D変換手段33でデジタル変換された異電源切替セクション10に流れる電流に対応するデジタル値データIn´については、高調波検出手段34によって高調波分が抽出される。すなわち、高調波検出手段34は、異電源切替セクション10に流れるデジタル値データIn´から高調波分を抽出するものであって、種々高調波抽出技術が用いられる。例えばデジタル値データIn´に含有される第2,第3高調波電流の含有率を計測し取り出すとか、あるいはデジタル値データIn´から第2,第3高調波電流を検出する高調波デジタルフィルタ等を用いて、第2,第3高調波分を抽出する。   On the other hand, with respect to the digital value data In ′ corresponding to the current flowing in the different power supply switching section 10 digitally converted by the A / D conversion means 33, a harmonic component is extracted by the harmonic detection means 34. That is, the harmonic detection means 34 extracts harmonics from the digital value data In ′ flowing in the different power supply switching section 10, and various harmonic extraction techniques are used. For example, the content rate of the second and third harmonic currents contained in the digital value data In ′ is measured and extracted, or the harmonic digital filter for detecting the second and third harmonic currents from the digital value data In ′, etc. Is used to extract the second and third harmonic components.

高調波検出手段34は、抽出されたデジタル高調波分データIfn´を高調波分合成処理手段35に送出する
高調波分合成処理手段35のデータ記憶手段35Aは、受け取ったデジタル高調波分データIfn´を記憶装置37の実測データ記憶部37aに格納するが、このとき、既に格納されているデジタル値データIa´、Ib´に対応付けして格納する。
The harmonic detection unit 34 sends the extracted digital harmonic component data Ifn ′ to the harmonic component synthesis processing unit 35. The data storage unit 35A of the harmonic component synthesis processing unit 35 receives the received digital harmonic component data Ifn. 'Is stored in the actual measurement data storage unit 37a of the storage device 37. At this time, it is stored in association with the already stored digital value data Ia' and Ib '.

デジタル高調波分データIfn´を格納した後、高調波分合成処理手段35は、系統状態判定手段35Bを実行する。   After storing the digital harmonic component data Ifn ′, the harmonic component synthesis processing unit 35 executes the system state determination unit 35B.

系統状態判定手段35Bは、各開閉器2,4,21の開・閉(投入)状態CB−a,CB−b,DS−cを取り込み、予めユーザなどがキーボードやマウスなどの高調波合成比率設定手段38を通して、記憶装置37に設定される図3に示す合成比率テーブル37bを参照し、各開閉器2,4,21の開閉状態CB−a,CB−b,DS−cから何れの系統状態となっているか判定する。   The system state determination unit 35B takes in the open / closed (closed) states CB-a, CB-b, and DS-c of the respective switches 2, 4, and 21, and the user or the like previously generates a harmonic synthesis ratio such as a keyboard or a mouse. Through the setting means 38, the combination ratio table 37b shown in FIG. 3 set in the storage device 37 is referred to, and any system is selected from the open / close states CB-a, CB-b, DS-c of the respective switches 2, 4, 21. Determine if it is in a state.

ちなみに、下り電車線用開閉器2及び上り電車線開閉器4の出力であるCB−a,CB−bが投入(閉)状態、自ポスト上下タイ用開閉器21の出力であるDS−cが開放状態にあるとき、図3から系統状態1と判定し、ΔIaに対する合成比率=0.5、ΔIbに対する合成比率=1.5を特定する。   Incidentally, CB-a and CB-b which are the outputs of the down train line switch 2 and the up train line switch 4 are turned on (closed), and the DS-c which is the output of the own post vertical tie switch 21 is When in the open state, it is determined from FIG. 3 that the system state is 1, and the combination ratio with respect to ΔIa = 0.5 and the combination ratio with respect to ΔIb = 1.5 are specified.

なお、各開閉器2,4,21の開閉状態CB−a,CB−b,DS−cが系統状態1にあるときに合成比率=(0.5)、(1.5)とした理由は、異電源切替セクション10側の補助変流器22に基本波電流分Ib+高調波電流分Ifnが流れるが、高調波電流分IfnがSVC20と電力供給系統5とで分流されるため、上り電車線用補助変流7には基本波電流分Ib−高調波電流分Ifn/2(※)が流れる。その結果、ΔIaに対する合成比率=0.5、ΔIbに対する合成比率=1.5とすれば、交流ΔI形故障選択装置30に入力される電流値が、SVC20が無い場合と同等になる。つまり、交流ΔI形故障選択装置30が、交流き電回路の末端に設置されたSVC20の影響を受けない状態となる。   The reason why the combination ratios = (0.5) and (1.5) when the open / close states CB-a, CB-b, and DS-c of the respective switches 2, 4, and 21 are in the system state 1 is as follows. The fundamental current component Ib + the harmonic current component Ifn flows through the auxiliary current transformer 22 on the side of the different power supply switching section 10, but the harmonic current component Ifn is shunted between the SVC 20 and the power supply system 5. The auxiliary current transformer 7 has a fundamental current component Ib−a harmonic current component Ifn / 2 (*). As a result, if the combination ratio with respect to ΔIa = 0.5 and the combination ratio with respect to ΔIb = 1.5, the current value input to the AC ΔI type fault selection device 30 is equivalent to that without the SVC 20. That is, the AC ΔI type failure selection device 30 is not affected by the SVC 20 installed at the end of the AC feeder circuit.

前述した(※)の意味するところは、下り電車線用補助変流器6〜SVC20間と、上り電車線補助変流器7〜SVC20間とのインピーダンスを同等とした場合である。   The meaning of (*) described above is a case where the impedance between the auxiliary current transformer 6 for the downward train line 6 to the SVC 20 and the impedance between the auxiliary current transformer 7 for the upward train line 7 to the SVC 20 are made equal.

さらに、図3に示す系統状態2は、下り電車線用開閉器2の出力であるCB−a及び自ポスト上下タイ用開閉器21の出力であるDS−cが開放状態、上り電車線開閉器4の出力であるCB−bが投入状態のとき、ΔIbに対する合成比率=1.0となる。その根拠は、切替セクション10側の補助変流器22に基本波電流分Ib+高調波電流分Ifnが流れる、高調波電流分IfnはSVC20に流れるため、上り電車線用補助変流器6には基本波電流分Ibしか流れない。その結果、以上のようにΔIbに対する合成比率=1.0とすることにより、交流ΔI形故障選択装置30に入力される電流値が、SVC20が無い場合と同等になる。つまり、交流ΔI形故障選択装置30が、交流き電回路の末端に設置されたSVC20の影響を受けない状態となる。   Further, in the system state 2 shown in FIG. 3, the CB-a that is the output of the down train line switch 2 and the DS-c that is the output of the own post vertical tie switch 21 are open, and the up line switch When CB-b, which is the output of 4, is in the input state, the composite ratio with respect to ΔIb = 1.0. The basis for this is that the fundamental current component Ib + the harmonic current component Ifn flows through the auxiliary current transformer 22 on the switching section 10 side, and the harmonic current component Ifn flows through the SVC 20. Only the fundamental current Ib flows. As a result, by setting the composite ratio with respect to ΔIb = 1.0 as described above, the current value input to the AC ΔI type fault selection device 30 becomes equivalent to the case where there is no SVC 20. That is, the AC ΔI type failure selection device 30 is not affected by the SVC 20 installed at the end of the AC feeder circuit.

従って、以上のように合成比率テーブル37bには、予め各開閉器2,4,21の開・閉(投入)状態CB−a,CB−b,DS−cによって決まる系統状態毎に、交流ΔI形故障選択装置30が交流き電回路の末端に設置されたSVC20の影響を受けないような電流合成比率を設定している。   Therefore, as described above, the combination ratio table 37b includes an alternating current ΔI for each system state determined in advance by the open / closed (closed) states CB-a, CB-b, and DS-c of the switches 2, 4, and 21. The current composition ratio is set so that the shape failure selection device 30 is not affected by the SVC 20 installed at the end of the AC feeder circuit.

そこで、高調波分合成処理手段35は、前記系統状態判定手段35Aで各開閉器2,4,21の開・閉(投入)状態CB−a,CB−b,DS−cから例えば系統状態1と判定したとき、引き続き、合成演算処理手段35Cを実行する。   Therefore, the harmonic component combining processing means 35 is connected to the system state determining means 35A from the open / closed (closed) states CB-a, CB-b, DS-c of the respective switches 2, 4, 21, for example, the system state 1 When it is determined, the synthesis calculation processing means 35C is subsequently executed.

合成演算処理手段35Cは、系統状態1の判定結果に基づいて図3の合成比率テーブル37bから合成比率データを読み出した後、既に実測データ記憶部37aに格納される高調波検出手段34で抽出された高調波電流分Ifn´に乗算し、デジタル値データIa´、Ib´と合成することにより、下記の式(1),式(2)による演算を実施し、負荷相当電流ΔIa,ΔIbを算出し、実測データ記憶部37aのデジタル値データIa´、Ib´に対応付けして記憶する。   The synthesis calculation processing unit 35C reads the synthesis ratio data from the synthesis ratio table 37b of FIG. 3 based on the determination result of the system state 1, and then is extracted by the harmonic detection unit 34 already stored in the actual measurement data storage unit 37a. By multiplying the harmonic current component Ifn ′ and combining with the digital value data Ia ′ and Ib ′, the calculation by the following equations (1) and (2) is performed to calculate the load equivalent currents ΔIa and ΔIb. And stored in association with the digital value data Ia ′ and Ib ′ of the actual measurement data storage unit 37a.

ΔIa=Ia´+Ifn´×合成比率=Ia´+(−Ifn´×0.5)…(1)
ΔIb=Ib´+Ifn´×合成比率=Ib´+(+Ifn´×1.5)…(2)
なお、合成演算処理手段35Cは、系統状態2の判定を行ったとき、図3に設定された合成比率に従い、下記の式(3)に基づいて負荷相当電流ΔIaを算出する。
ΔIb=Ib´+Ifn´×合成比率=Ib´+(+Ifn´×1.0)…(3)
ΔI演算手段36は、合成演算処理手段35Cで算出された負荷相当電流ΔIa,ΔIbと系統事故時の事故電流とから電力供給系統3,5に流れる電流変化量ΔIを求め、この求めた電流変化量ΔIが所定値を超えたときに系統事故と選択し、必要な保護処置を実施する。
ΔIa = Ia ′ + Ifn ′ × synthesis ratio = Ia ′ + (− Ifn ′ × 0.5) (1)
ΔIb = Ib ′ + Ifn ′ × composition ratio = Ib ′ + (+ Ifn ′ × 1.5) (2)
In addition, when the combination operation processing unit 35C determines the system state 2, the combination calculation processing unit 35C calculates the load-equivalent current ΔIa based on the following equation (3) according to the combination ratio set in FIG.
ΔIb = Ib ′ + Ifn ′ × combination ratio = Ib ′ + (+ Ifn ′ × 1.0) (3)
The ΔI calculating means 36 obtains a current change amount ΔI flowing in the power supply systems 3 and 5 from the load equivalent currents ΔIa and ΔIb calculated by the composite arithmetic processing means 35C and the fault current at the time of the grid fault, and the obtained current change When the amount ΔI exceeds a predetermined value, a system fault is selected and necessary protective measures are taken.

従って、以上のような実施の形態によれば、新幹線鉄道の交流き電回路の末端側にSVC20が設置されていても、電力供給系統3,5に設置される開閉器2,4,21の開閉に伴う系統状態に応じて、予め設定された合成比率を用いて高調波電流分に乗算し、適正な高調波分とした後、電力供給系統3,5に流れる電流に合成するので、SVC20の影響を受けない適正な高調波分を交流ΔI形故障選択装置9に入力でき、必ず高調波分によつて確実に不要動作を防止でき、また、本来の電力供給系統の電流に限りなく近い電流値で系統事故を検出する信頼性の高い交流ΔI形故障選択装置30を実現できる。   Therefore, according to the above embodiment, even if the SVC 20 is installed on the terminal side of the AC feeder circuit of the Shinkansen railway, the switches 2, 4, 21 installed in the power supply systems 3, 5 Since the harmonic current is multiplied by a preset synthesis ratio in accordance with the system state accompanying opening and closing to obtain an appropriate harmonic component, the resultant is combined with the current flowing through the power supply systems 3 and 5, so the SVC 20 Appropriate harmonic components that are not affected by the current can be input to the AC ΔI type fault selection device 9, and unnecessary operations can be surely prevented by the harmonic components, and it is as close as possible to the current of the original power supply system. A highly reliable AC ΔI type fault selection device 30 that detects a system fault with a current value can be realized.

なお、上記実施の形態では、入力変換手段31が電流Ia,Ib,Inを順次切り替えて任意の小電流値に変換しているが、例えば複数の入力変換手段31,…を用いて、電流Ia,Ib,Inごとに個別に任意の小電流値に変換する構成であってもよい。この点は、サンプリングホールド手段32、A/D変換手段33にあっても同様である。   In the above embodiment, the input conversion means 31 sequentially switches the currents Ia, Ib, and In to convert them into arbitrary small current values. For example, a plurality of input conversion means 31,. , Ib, In may be configured to individually convert to an arbitrary small current value. This also applies to the sampling hold means 32 and the A / D conversion means 33.

その他、本発明は、上記実施の形態に限定されるものでなく、その要旨を逸脱しない範囲で種々変形して実施できる。   In addition, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention.

1A,1B…単相の交流電源、2…下り電車線用開閉器、3…下り電車線用電力供給系統、4…上り電車線用開閉器、5…上り電車線用電力供給系統、6…下り電車線用補助変流器、7…上り電車線用補助変流器、8…下り電車線用交流ΔI形故障選択装置、9…上り電車線用交流ΔI形故障選択装置、10…異電源切替セクション、11,12…切替遮断器、13…列車、20…SVC、21…自ポスト上下タイ開閉器、22…異電源切替セクション側補助変流器、23…集約形保護継電装置、24…隣接ポスト上下タイ開閉器、30…交流ΔI形故障選択装置、31…入力変換手段(電流変換手段)、32…サンプリングホールド手段、33…A/D変換手段、34…高調波検出手段、35…高調波分合成処理手段、35B…系統状態判定手段、35C…合成演算処理手段、36…ΔI(電流変化量)演算手段、37…記憶装置、37b…合成比率テーブル、38…高調波合成比率設定手段。   DESCRIPTION OF SYMBOLS 1A, 1B ... Single phase alternating current power supply, 2 ... Switch for down train line, 3 ... Power supply system for down train line, 4 ... Switch for up train line, 5 ... Power supply system for up train line, 6 ... Auxiliary current transformer for down train line, 7 ... Auxiliary current transformer for up train line, 8 ... AC ΔI type fault selection device for down train line, 9 ... AC ΔI type fault selection device for up train line, 10 ... Different power supply Switching section, 11, 12 ... Switching circuit breaker, 13 ... Train, 20 ... SVC, 21 ... Own post top and bottom tie switch, 22 ... Different power source switching section side auxiliary current transformer, 23 ... Centralized protective relay device, 24 ... Adjacent post upper / lower tie switch, 30 ... AC ΔI type failure selection device, 31 ... input conversion means (current conversion means), 32 ... sampling hold means, 33 ... A / D conversion means, 34 ... harmonic detection means, 35 ... Harmonic component synthesis processing means, 35B ... System state determination Stage, 35C ... combining processing unit, 36 ... [Delta] I (current change amount) computing means, 37 ... storage device, 37b ... combination ratio table, 38 ... harmonic synthesis rate setting means.

Claims (5)

末端側に無効電力補償装置を備えた交流き電回路に接続され、各種の系統事故を検出し保護する交流ΔI形故障選択装置において、
列車が異電源切替セクションに通過する際、下り電車線用電力供給系統及び上り電車線用電力供給系統に流れる第1,第2の電流及び当該異電源切替セクションに流れる第3の電流をそれぞれ任意の第1〜第3のアナログ電流値データに変換する電流変換手段と、
この電流変換出手段で変換された第1〜第3のアナログ電流値データを所定の周期でサンプリングして記憶するサンプリングホールド手段と、
このサンプリング記憶された第1〜第3のアナログ電流値データをそれぞれ第1〜第3のデジタル電流値データに変換するA/D変換手段と、
このA/D変換手段で変換された第3のデジタル電流値データからデジタル高調波分データを抽出する高調波検出手段と、
この高調波検出手段で抽出されたデジタル高調波分データに系統状態に応じて定まる合成比率を掛け、前記第1,第2のデジタル電流値データの何れか一方、または両電流値データそれぞれと合成し、負荷相当電流を算出する高調波分合成処理手段とを備え、
この高調波分合成処理手段で得られた負荷相当電流から電流変化量ΔIを求め、この求めた電流変化量ΔIが所定値を超えた時に動作を実行することを特徴とする交流ΔI形故障選択装置。
In an AC ΔI type fault selection device that is connected to an AC feeder circuit having a reactive power compensator on the terminal side and detects and protects various system faults,
When the train passes through the different power supply switching section, the first and second currents flowing in the power supply system for the descending train line and the power supply system for the upstream train line and the third current flowing in the different power supply switching section are arbitrary. Current converting means for converting the first to third analog current value data;
Sampling hold means for sampling and storing the first to third analog current value data converted by the current conversion output means at a predetermined cycle;
A / D conversion means for converting the sampled first to third analog current value data into first to third digital current value data, respectively.
Harmonic detection means for extracting digital harmonic component data from the third digital current value data converted by the A / D conversion means;
The digital harmonic component data extracted by the harmonic detection means is multiplied by a synthesis ratio determined in accordance with the system state, and synthesized with either the first or second digital current value data or both current value data. And harmonic component synthesis processing means for calculating the load equivalent current,
AC ΔI type fault selection characterized in that a current change amount ΔI is obtained from the load equivalent current obtained by the harmonic component combining processing means, and an operation is executed when the obtained current change amount ΔI exceeds a predetermined value. apparatus.
請求項1に記載の交流ΔI形故障選択装置において、
前記電流変換手段は、下り電車線用電力供給系統及び上り電車線用電力供給系統に流れる第1,第2の電流及び当該異電源切替セクションに流れる第3の電流をそれぞれ検出する各補助変流器で構成していることを特徴とする交流ΔI形故障選択装置。
In the AC ΔI type fault selection device according to claim 1,
The current conversion means detects each of the first and second currents flowing in the power supply system for the descending train line and the power supply system for the upward train line and the third current flowing in the different power source switching section. AC ΔI type fault selection device, characterized in that it is constituted by a device.
請求項1に記載の交流ΔI形故障選択装置において、
前記高調波検出手段で抽出されるデジタル高調波分データは、列車が異電源切替セクションに通過する際に発生する無負荷励磁突入電流や異電源に切り替えた際に発生する急激な変化の負荷電流に含む第2,第3高調波電流に関するデータであることを特徴とする交流ΔI形故障選択装置。
In the AC ΔI type fault selection device according to claim 1,
The digital harmonic data extracted by the harmonic detection means is a no-load exciting inrush current that occurs when the train passes through the different power supply switching section or a sudden change load current that occurs when the train is switched to a different power source. AC ΔI type fault selection device, characterized in that the data is related to the second and third harmonic currents included.
請求項1に記載の交流ΔI形故障選択装置において、
予め下り電車線及び上り電車線に電力を供給する下り電車線用電力供給系統及び上り電車線用電力供給系統に設置される複数の開閉器の開閉状態から定まる系統状態毎に、前記交流き電回路の末端に設置される無効電力補償装置の影響を受けないようにする、前記デジタル高調波分データに対して乗算する合成比率を設定する合成比率テーブルを設けたことを特徴とする交流ΔI形故障選択装置。
In the AC ΔI type fault selection device according to claim 1,
For each system state determined from the open / closed states of a plurality of switches installed in the down train line power supply system and the up train line power supply system for supplying power to the down train line and the up train line in advance, the AC feeder AC ΔI type characterized by comprising a synthesis ratio table for setting a synthesis ratio for multiplying the digital harmonic component data so as not to be affected by the reactive power compensator installed at the end of the circuit Failure selection device.
請求項1または請求項4に記載の交流ΔI形故障選択装置において、
前記高調波分合成処理手段は、下り電車線用電力供給系統及び上り電車線用電力供給系統に設置される複数の開閉器の開閉状態から系統状態を判定し、この判定された系統状態に応じて合成比率を選定する系統状態判定手段を設けたことを特徴とする交流ΔI形故障選択装置。
In the AC ΔI type fault selection device according to claim 1 or 4,
The harmonic component combining processing means determines the system state from the open / closed states of a plurality of switches installed in the power supply system for the down train line and the power supply system for the up train line, and according to the determined system state And an AC ΔI type fault selection device provided with system state determination means for selecting a composite ratio.
JP2009166856A 2009-07-15 2009-07-15 ALTERNATING CURRENT DeltaI TYPE FAULT SELECTION DEVICE Withdrawn JP2011020548A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166856A JP2011020548A (en) 2009-07-15 2009-07-15 ALTERNATING CURRENT DeltaI TYPE FAULT SELECTION DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166856A JP2011020548A (en) 2009-07-15 2009-07-15 ALTERNATING CURRENT DeltaI TYPE FAULT SELECTION DEVICE

Publications (1)

Publication Number Publication Date
JP2011020548A true JP2011020548A (en) 2011-02-03

Family

ID=43630993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166856A Withdrawn JP2011020548A (en) 2009-07-15 2009-07-15 ALTERNATING CURRENT DeltaI TYPE FAULT SELECTION DEVICE

Country Status (1)

Country Link
JP (1) JP2011020548A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176078A (en) * 2011-12-26 2013-06-26 株式会社宇进产电 Power quality monitoring apparatus for railway power system
CN104281736A (en) * 2014-08-01 2015-01-14 国家电网公司 Power supply cable type selecting method for urban track traffic traction power supply and distribution system
WO2019043910A1 (en) * 2017-09-01 2019-03-07 三菱電機株式会社 Digital protection relay and threshold learning method of digital protection relay

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103176078A (en) * 2011-12-26 2013-06-26 株式会社宇进产电 Power quality monitoring apparatus for railway power system
JP2013135605A (en) * 2011-12-26 2013-07-08 Woojin Industrial Systems Co Ltd Power quality monitoring device in railroad power system
CN104281736A (en) * 2014-08-01 2015-01-14 国家电网公司 Power supply cable type selecting method for urban track traffic traction power supply and distribution system
CN104281736B (en) * 2014-08-01 2018-03-02 国家电网公司 A kind of selection method of urban track traffic traction power supply-distribution system service cable
WO2019043910A1 (en) * 2017-09-01 2019-03-07 三菱電機株式会社 Digital protection relay and threshold learning method of digital protection relay
JPWO2019043910A1 (en) * 2017-09-01 2019-11-07 三菱電機株式会社 Digital protective relay and threshold learning method for digital protective relay
KR20200026986A (en) * 2017-09-01 2020-03-11 미쓰비시덴키 가부시키가이샤 Digital protective relays, and how to learn thresholds for digital protective relays
KR102259958B1 (en) 2017-09-01 2021-06-02 미쓰비시덴키 가부시키가이샤 Digital protection relay, and method of learning threshold value of digital protection relay

Similar Documents

Publication Publication Date Title
US8335656B2 (en) Short-circuit recognition method for an electric network
TW480800B (en) Protection system for power receiving station
AU2016254275A1 (en) Method and apparatus for identifying open phase of circuit breaker on basis of voltage
JP2018183034A (en) Protector for power supply system and system comprising the same
CN104753361A (en) Multi-phase power driver and method thereof
KR100918697B1 (en) Low voltage distribution panel with power quality meter and operating method therefor
RU2550751C2 (en) Method and device for detection of ground short-circuit
JP2011020548A (en) ALTERNATING CURRENT DeltaI TYPE FAULT SELECTION DEVICE
Liu et al. Protection of microgrids with high amounts of renewables: Challenges and solutions
Meral et al. Power quality improvement with an extended custom power park
KR20190110411A (en) Out of order discrimination apparatus and protective relay apparatus
KR101485050B1 (en) rcabinet panel emote monitoring DC-DC
US7206177B2 (en) Device and method for protection against overcurrents in an electrical energy distribution cabinet
Fidigatti et al. Effect of harmonic pollution on low voltage overcurrent protection
JP4385920B2 (en) Voltage drop detection device
JP5404081B2 (en) Overcurrent detection apparatus and method
JP6517667B2 (en) Ground fault detection device
JP2007060797A (en) Generator protective relay device
KR20060003704A (en) Apparatus for detecting defect in direct current line
KR102633927B1 (en) Relay for protecting electric system
JP2015033306A (en) Three-phase open-phase protection device, and three-phase open-phase protection method
RU55153U1 (en) DEVICE FOR DETERMINING THE LOCATION OF DAMAGE TO THE ELECTRIC VOLTAGE NETWORK OF 6 (10) -35 KV WITH ISOLATED OR COMPENSATED NEUTRAL
RU57018U1 (en) DEVICE FOR DETERMINING THE LOCATION OF DAMAGE TO THE ELECTRICAL VOLTAGE NETWORK OF 6 (10) -35 KV WITH ISOLATED OR COMPENSATED NEUTRAL
JP2010075001A (en) Harmonic relay
JP3436775B2 (en) Discharger electrode wear rate measuring device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121002