JP2011019615A - Method for inducing expression of ucp1 - Google Patents

Method for inducing expression of ucp1 Download PDF

Info

Publication number
JP2011019615A
JP2011019615A JP2009165804A JP2009165804A JP2011019615A JP 2011019615 A JP2011019615 A JP 2011019615A JP 2009165804 A JP2009165804 A JP 2009165804A JP 2009165804 A JP2009165804 A JP 2009165804A JP 2011019615 A JP2011019615 A JP 2011019615A
Authority
JP
Japan
Prior art keywords
ucp1
expression
thermal
heat
fat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009165804A
Other languages
Japanese (ja)
Inventor
Masafumi Aoki
雅文 青木
Takatoshi Murase
孝利 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2009165804A priority Critical patent/JP2011019615A/en
Publication of JP2011019615A publication Critical patent/JP2011019615A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for inducing expression of UCP1 which does not require a treatment by a physician or administration of medicaments. <P>SOLUTION: The method for inducing expression of UCP1 is characterized by triggering an increase in the expression of UCP1 by imparting a thermal stimulus to a local or to the entire body to increase heat-producing ability. An energy expenditure by heat like this suppresses fat accumulation in a living body since burning of surplus fat and sugar is accelerated and leads to the prevention or improvement of various pathological conditions and diseases caused by obesity or fat accumulation. The application of a thermal load to regions (a body part, an organ, or tissues) where the increase in the expression of UCP1 is desired in a human or an animal or to the entire body from the outside is preferred as the thermal stimulus. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、脂肪の燃焼および熱産生に関与するUCP1(Uncoupling Protein1)の発現誘導方法に関する。   The present invention relates to a method for inducing the expression of UCP1 (Uncoupling Protein 1) involved in fat burning and heat production.

脱共役タンパク質 (Uncoupling Protein:UCP)は、小型の冬眠哺乳動物の褐色脂肪組織に存在するタンパク質 (UCP1)として古くから知られていたが、1997年にそのホモログ分子UCP2がヒトで発見された(非特許文献1)。その後、UCP3、UCP4が相次いでクローニングされ(非特許文献2及び3)、さらにアメーバやカビなどにも相同なタンパク質が存在することが示された(非特許文献4及び5)。UCPはいずれもミトコンドリアに局在し、その機能は名前の通り、酸化的リン酸化の脱共役である(非特許文献6)。すなわち、ミトコンドリアでの電子伝達系とATP合成は、内膜を介するプロトン濃度勾配によって密に共役している。UCPはこのプロトン濃度勾配を短絡・解消する6回膜貫通型のチャネルであり、これが活性化されると酸化基質の化学エネルギーはATP合成に利用されず、熱へと変換される。このような機能を持つことからUCPは熱産生タンパク質とも呼ばれ、体温調節やエネルギー代謝に関与すると考えられている。   Uncoupling protein (UCP) has long been known as a protein (UCP1) present in brown adipose tissue of small hibernating mammals, but its homolog molecule UCP2 was discovered in humans in 1997 ( Non-patent document 1). Thereafter, UCP3 and UCP4 were cloned one after another (Non-Patent Documents 2 and 3), and it was shown that homologous proteins exist in amoeba and fungi (Non-Patent Documents 4 and 5). UCP is localized in mitochondria, and its function is uncoupling of oxidative phosphorylation as the name suggests (Non-patent Document 6). That is, the electron transport system and ATP synthesis in mitochondria are closely coupled by a proton concentration gradient through the inner membrane. UCP is a six-transmembrane channel that short-circuits and eliminates this proton concentration gradient. When activated, the chemical energy of the oxidized substrate is not used for ATP synthesis but converted to heat. Because of this function, UCP is also called a heat-producing protein and is considered to be involved in body temperature regulation and energy metabolism.

生体内でエネルギー蓄積を担うのは主に脂肪であるが、これを行っているのは、白色脂肪組織(WAT:White Adipose Tissue)と呼ばれる部分である。逆に、熱としてエネルギーを消費させる脂肪も生体内には存在しており、これは褐色脂肪組織(BAT:Brown Adipose Tissue)と呼ばれている。   Fat is mainly responsible for energy storage in the living body, but it is a part called white adipose tissue (WAT) that does this. On the other hand, fat that consumes energy as heat also exists in the living body, and this is called brown adipose tissue (BAT).

脂肪組織には、UCP1、UCP2、UCP3が発現しているが、この中のUCP1はBATに特徴的に発現しており、BATにおける熱エネルギー産生の中心分子であることが知られている。ラットなどゲッ歯類の動物に、寒冷刺激(4℃)を与えると、BATを中心とした非震え熱産生が起こるが、これは寒冷刺激により強力に発現誘導されたUCP1によるものである。つまり、低温条件下では、UCP1による熱エネルギー産生が亢進し、BATが生体の加温装置として働くことと考えられており、実際にUCP1ノックアウトマウスでは低温条件下での体温維持ができないことが明らかになっている(非特許文献7及び8)。   UCP1, UCP2, and UCP3 are expressed in the adipose tissue. Among these, UCP1 is characteristically expressed in BAT and is known to be a central molecule for heat energy production in BAT. When a cold stimulus (4 ° C.) is given to a rodent animal such as a rat, non-tremor heat production centering on BAT occurs, which is due to UCP1 whose expression is strongly induced by the cold stimulus. In other words, it is believed that under low temperature conditions, the production of thermal energy by UCP1 is enhanced, and BAT is considered to act as a living body warming device. In fact, body temperature cannot be maintained under low temperature conditions in UCP1 knockout mice. (Non-Patent Documents 7 and 8).

また、過食時に発現が増加し、食事性熱産生を引き起こすことから、UCP1は熱としてのエネルギー消費への関与も示唆されている。実際に、UCP1の発現が低下したマウスを作製したところ、寒冷曝露時の熱産生能が低下するとともに、平常時酸素消費量(エネルギー消費量)の低下も認められ、さらに体脂肪量が2倍以上になることが報告されており、これらの結果から、UCP1は、熱産生によって余剰エネルギーを消費する役割も担っていると考えられている(非特許文献9)。また、逆に脂肪細胞特異的にUCP1を過剰発現させたトランスジェニックマウスでは脂肪量が減少しており、この原因はUCP1によるエネルギー消費が亢進したためであると考えられている。(非特許文献10)。さらに、in vitro試験でもUCP1が熱産生によってエネルギー消費を増大させていることが示唆されている。本来、UCP1の発現が非常に低い肝臓細胞に、UCP1を過剰発現させると、ATP産生が低下するという結果が得られており、これ原因は、UCP1の増加にともない、肝臓細胞内の酸化的リン酸化反応の一部が、熱産生経路に移行したためであることが報告されている(非特許文献11)。以上のことから、UCP1の遺伝子発現量を増加させることは、熱産生を促進することになり、その結果として余剰エネルギーの消費を増大させ、脂肪蓄積や肥満を抑制することにつながると考えられる。   In addition, UCP1 is implicated in energy consumption as heat because its expression increases during overeating and causes dietary heat production. In fact, when mice with reduced expression of UCP1 were produced, the heat production ability during cold exposure was reduced, and a decrease in normal oxygen consumption (energy consumption) was also observed, and the body fat mass was doubled. From these results, UCP1 is considered to play a role of consuming surplus energy by heat production (Non-patent Document 9). Conversely, in the transgenic mice in which UCP1 is overexpressed specifically in adipocytes, the amount of fat is decreased, and this is thought to be due to increased energy consumption by UCP1. (Non-Patent Document 10). Furthermore, in vitro tests also suggest that UCP1 increases energy consumption by heat production. Originally, it has been obtained that when UCP1 is overexpressed in liver cells with very low UCP1 expression, ATP production is decreased. This is because the increase in UCP1 results in oxidative phosphorus in liver cells. It has been reported that a part of the oxidation reaction is transferred to the heat production pathway (Non-patent Document 11). From the above, it is considered that increasing the gene expression level of UCP1 promotes heat production, and as a result, increases the consumption of surplus energy and leads to suppression of fat accumulation and obesity.

また、このようなUCP1によるエネルギー消費には、主に中性脂肪(トリグリセリド)から切り出された遊離脂肪酸が利用されており、これが熱エネルギーへと変換されている。したがって、UCP1の増加は、生体内において脂肪燃焼の促進につながると考えられている(非特許文献12)。   Moreover, the free fatty acid cut out from neutral fat (triglyceride) is mainly utilized for energy consumption by such UCP1, and this is converted into heat energy. Therefore, it is considered that an increase in UCP1 leads to promotion of fat burning in the living body (Non-patent Document 12).

UCP2は、脂肪や骨格筋、肺、心臓など、全身に広く発現しており、最近では、活性酸素の発生を抑え、生体内の酸化ダメージを防ぐことが役割の1つであると考えられている(非特許文献12)。熱としてのエネルギー消費への寄与度は、はっきりしない部分も多いが、ヒトでの解析結果から、脂肪組織におけるUCP2の遺伝子発現は脂肪量に反比例していることや(非特許文献13)、肥満者の骨格筋におけるUCP2量は体脂肪率と有意な相関があることが報告されており(非特許文献14)、これらの結果は、UCP2が肥満に関与していることを示唆している。   UCP2 is widely expressed throughout the body, such as fat, skeletal muscle, lungs, and heart. Recently, it is considered that one of the roles is to suppress the generation of active oxygen and prevent oxidative damage in vivo. (Non-patent Document 12). Although the degree of contribution to energy consumption as heat is often unclear, the results of human analysis indicate that UCP2 gene expression in adipose tissue is inversely proportional to fat mass (Non-patent Document 13), obesity It has been reported that the amount of UCP2 in the skeletal muscles of the elderly has a significant correlation with the body fat percentage (Non-patent Document 14), and these results suggest that UCP2 is involved in obesity.

UCP3は骨格筋において発現が高く、他に心筋や褐色脂肪においても発現しており、UCP2同様、最近では、生体内への酸化ダメージを防ぐ役割も担っていると考えられている(非特許文献12)。UCP3の肥満への関与については、UCP3を高発現するトランスジェニックマウスの研究から、コントロールマウスと比較して痩せていることや、糖代謝が改善していることが報告されている(非特許文献15)。また、ピマインディアンを対象とした研究では、UCP3の発現レベルとBMIには負の相関が、安静時代謝率には正の相関が認められることが報告されており(非特許文献16)、これらの事実は、UCP3がエネルギー消費や代謝の一部に関与していることを示唆している。   UCP3 is highly expressed in skeletal muscle, and is also expressed in cardiac muscle and brown fat, and recently, like UCP2, it is thought to play a role of preventing oxidative damage to the living body (non-patent document). 12). Regarding the involvement of UCP3 in obesity, studies on transgenic mice that highly express UCP3 have reported that they are leaner than in control mice and that glucose metabolism is improved (Non-patent Documents). 15). In addition, in a study targeting Pima Indians, it was reported that a negative correlation was found between the expression level of UCP3 and BMI, and a positive correlation was found in the resting metabolic rate (Non-patent Document 16). These facts suggest that UCP3 is involved in a part of energy consumption and metabolism.

以上のようにUCPは、肥満やエネルギー代謝に関与していると考えられている。すなわちUCPの増加や活性化は、エネルギー代謝を向上させることになり、肥満や脂肪蓄積を起因とする様々な病態・疾患(インスリン抵抗性、2型糖尿病、高血圧、高脂血症、虚血性心疾患、等)の予防・改善につながると考えられる。   As described above, UCP is considered to be involved in obesity and energy metabolism. In other words, the increase and activation of UCP will improve energy metabolism, and various pathologies and diseases (insulin resistance, type 2 diabetes, hypertension, hyperlipidemia, ischemic heart, etc. caused by obesity and fat accumulation) It is thought to lead to prevention and improvement of diseases, etc.).

実際に、ワカメなど海草に多く含まれるフコキサンチンが、脂肪細胞のUCP1を活性化し脂肪燃焼を促進することが報告されるとともに(非特許文献17)、抗肥満活性剤としてフコキサンチン有効であることが報告されている(特許文献1)。また、共役異性化された高度不飽和脂肪酸類もUCPを活性化することにより、抗肥満・内臓蓄積脂肪低減化機能を発揮することが報告されている(特許文献2)。   In fact, fucoxanthin, which is abundant in seaweeds such as seaweed, has been reported to activate UCP1 in fat cells and promote fat burning (Non-patent Document 17), and fucoxanthin is effective as an anti-obesity active agent Has been reported (Patent Document 1). In addition, it has been reported that conjugate unsaturated isomerized polyunsaturated fatty acids exhibit an anti-obesity / visceral accumulated fat reducing function by activating UCP (Patent Document 2).

また経口摂取だけでなく皮膚に塗布することによりUCPを活性化させる痩身用皮膚外用剤や(特許文献3)、におい刺激によりUCPが活性化させる、香料のダイエット組成物も報告されている(特許文献4)。   In addition to oral ingestion, a slimming skin external preparation that activates UCP by applying it to the skin (Patent Document 3), and a fragrance diet composition that UCP is activated by odor stimulation (patent) Reference 4).

UCPは、脂肪燃焼作用があることから、肥満だけでなく他の脂質代謝関連疾患にも関与している。実際に、抗肥満作用があることで知られるダルマギク抽出物は、UCPを活性化するため、高脂血症や心循環系疾患の予防・改善に有効であることが示されている(特許文献5)。   UCP is involved not only in obesity but also in other lipid metabolism-related diseases because of its fat burning action. In fact, the dalmagiku extract known to have an anti-obesity action activates UCP, and thus has been shown to be effective in preventing and improving hyperlipidemia and cardiovascular diseases (Patent Literature) 5).

以上のことから、UCPを増加または活性化することは、肥満や内臓脂肪症候群、またそれらを起因とする生活習慣病をはじめ、高脂血症や糖尿病の予防改善に有用であることが推測される。また、このような症状の改善・予防方法として、薬剤などを使うことなく、簡易且つ安全に、UCPを制御する方法の確立が望まれていた。   From the above, it is speculated that increasing or activating UCP is useful for the prevention and improvement of hyperlipidemia and diabetes, including obesity, visceral fat syndrome, and lifestyle-related diseases caused by them. The In addition, as a method for improving / preventing such symptoms, it has been desired to establish a method for controlling UCP simply and safely without using drugs.

特開2008−280281公報JP 2008-280281 A 特開2000―144170公報JP 2000-144170 A 特開2003―63977公報Japanese Patent Laid-Open No. 2003-63977 特開2009−23964公報JP 2009-23964 A 特表2008−533196公報Special table 2008-533196

Fleury C, et al. (1997) Nat Genet. 15 : 269-272Fleury C, et al. (1997) Nat Genet. 15: 269-272 Boss O, et al. (1997) FEBS Lett. 408 : 39-42Boss O, et al. (1997) FEBS Lett. 408: 39-42 Mao W, et al. (1999) FEBS Lett. 443 : 326-330Mao W, et al. (1999) FEBS Lett. 443: 326-330 Jarmuszkiewicz W, et al. (1999) J Biol Chem. 274 : 23198 -23202Jarmuszkiewicz W, et al. (1999) J Biol Chem. 274: 23198 -23202 Jarmuszkiewicz W, et al. (2000) FEBS Lett. 467 : 145-149Jarmuszkiewicz W, et al. (2000) FEBS Lett. 467: 145-149 Ricquier D, Bouillaud F. (1997) Prog Nucleic Acid Res Mol Biol. 56 : 83-108Ricquier D, Bouillaud F. (1997) Prog Nucleic Acid Res Mol Biol. 56: 83-108 Lowell BB, Spiegelman BM. (2000) Nature. 404 : 652-660Lowell BB, Spiegelman BM. (2000) Nature. 404: 652-660 Enerback S, et al. (1997) Nature. 387 : 90-94Enerback S, et al. (1997) Nature. 387: 90-94 Lowell BB, et al. (1993) Nature. 366 : 740-742.Lowell BB, et al. (1993) Nature. 366: 740-742. Kopecky J, et al. (1995) J Clin Invest. 96 : 2914-2923.Kopecky J, et al. (1995) J Clin Invest. 96: 2914-2923. Gonzalez-Muniesa P, et al. (2005) J Physiol Biochem. 61 : 389-393Gonzalez-Muniesa P, et al. (2005) J Physiol Biochem. 61: 389-393 斉藤正之,佐々木典康 (1996) 実験医学.14: 222-227Masayuki Saito, Noriyasu Sasaki (1996) Experimental Medicine. 14: 222-227 Kogure A, et al. (1998) Diabetologia. 41 : 1399Kogure A, et al. (1998) Diabetologia. 41: 1399 Echtay KS. (2007) Free Radic Biol Med. 43 : 1351-1371.Echtay KS. (2007) Free Radic Biol Med. 43: 1351-1371. Pinkney JH, et al. (2000) J Clin Endocrinol Metab. 85 : 2312-2317.Pinkney JH, et al. (2000) J Clin Endocrinol Metab. 85: 2312-2317. Simoneau JA, et al. (1999) Int J Obes Relat Metab Disord. 23 :S68- S71Simoneau JA, et al. (1999) Int J Obes Relat Metab Disord. 23: S68- S71 Clapham JC, et al. (2000) Nature. 406 : 415-418Clapham JC, et al. (2000) Nature. 406: 415-418

本発明は、簡便・安全で、且つ効果的にUCP1を誘導し、熱産生および脂肪燃焼を促進させる方法に関する。   The present invention relates to a method for inducing UCP1 in a simple, safe and effective manner and promoting heat production and fat burning.

本発明者らは、生体への負荷が小さく、容易に実施できるUCP1発現制御方法について検討したところ、生体に安全な温度で温熱刺激を与えることにより、UCP1の発現を誘導できることを見出した。   The present inventors examined a UCP1 expression control method that can be easily carried out with a small load on the living body, and found that the expression of UCP1 can be induced by applying a thermal stimulus at a safe temperature to the living body.

すなわち、本発明は以下の1)〜4)の発明に係るものである。
1)局所又は全身に温熱刺激を付与することを特徴とするUCP1発現誘導方法。
2)局所又は全身に温熱刺激を付与することを特徴とする脂肪組織における熱産生促進方法。
3)局所又は全身に温熱刺激を付与することを特徴とする脂肪組織における脂肪燃焼促進方法。
4)温熱刺激が、40〜43℃で30〜60分の温熱負荷である上記1)〜3)の方法。
That is, the present invention relates to the following inventions 1) to 4).
1) A method for inducing UCP1 expression, which comprises applying thermal stimulation locally or systemically.
2) A method for promoting the production of heat in adipose tissue, characterized by applying a thermal stimulus locally or throughout the body.
3) A method for promoting fat burning in adipose tissue, characterized by applying thermal stimulation locally or systemically.
4) The method according to 1) to 3) above, wherein the thermal stimulation is a thermal load at 40 to 43 ° C. for 30 to 60 minutes.

本発明の方法は、生体への負荷が小さく、医師による処置や薬剤投与を必要とせず、一般市民やエステティシャン等が容易に実施できる。従って、本発明によれば、簡易且つ安全に、局所もしくは全身の脂肪組織におけるUCP1の発現を誘導することができる。
また、UCP1発現増加による熱産生を通して、余剰エネルギーの消費を促すことができ、皮下脂肪など局所の脂肪や全身性の脂肪の減少を図ることができ、さらに脂肪蓄積に起因して発症する病態の予防・改善を図ることができる。
The method of the present invention has a small burden on a living body, does not require treatment by a doctor and does not require drug administration, and can be easily implemented by ordinary citizens, estheticians, and the like. Therefore, according to the present invention, it is possible to induce UCP1 expression in a local or whole body adipose tissue easily and safely.
In addition, through the production of heat due to increased UCP1 expression, it is possible to promote consumption of surplus energy, to reduce local fat and systemic fat such as subcutaneous fat, and to develop pathological conditions caused by fat accumulation Can prevent and improve.

温熱刺激を付加した場合のBATにおけるUCP1の経時的発現量を示す図The figure which shows the time-dependent expression level of UCP1 in BAT when a thermal stimulus is added 温熱刺激を付加した場合のWATにおけるUCP1の経時的発現量を示す図The figure which shows the time-dependent expression level of UCP1 in WAT when a thermal stimulus is added

本発明のUCP1発現誘導方法は、熱産生によるエネルギー消費の増大を通して、局所的な皮下脂肪の減少や、脂肪蓄積に起因して引き起こされる症状の予防・改善を図るものであり、医療目的以外の目的、主に美容・ダイエットを目的として行われるものであって、いわゆる医療行為を含むものではない。   The method for inducing UCP1 expression of the present invention is intended to prevent or improve symptoms caused by a decrease in local subcutaneous fat or fat accumulation through an increase in energy consumption by heat production. The purpose is mainly for the purpose of beauty and dieting, and does not include so-called medical practice.

後記実施例に示すとおり、マウスに温熱刺激を与えることにより、BATおよびWATのUCP1の遺伝子発現が増加する。従って、温熱刺激により生体内の脂肪組織における熱産生の促進、すなわち脂肪燃焼促進を図ることできる。   As shown in Examples below, by applying a thermal stimulus to mice, the gene expression of UCP1 in BAT and WAT increases. Therefore, it is possible to promote heat production in the adipose tissue in the living body, that is, promote fat burning by thermal stimulation.

本発明に用いる温熱刺激としては、ヒト又は動物の局所、すなわちUCP1の発現増加を望む部位(臓器・器官・組織)、もしくは全身に外部から温熱負荷を与えるのが好ましい。人の場合、少なくとも38℃以上の温熱負荷を30分以上、好ましくは40〜43℃の温熱負荷を30〜60分与えるのがよい。   As the thermal stimulation used in the present invention, it is preferable to apply a thermal load from the outside to a local area of human or animal, that is, a site (organ / organ / tissue) in which UCP1 expression increase is desired, or the whole body. In the case of humans, it is preferable to apply a thermal load of at least 38 ° C. or more for 30 minutes or more, preferably 40 to 43 ° C. for 30 to 60 minutes.

温熱刺激は、最低1週間に1回、好ましくは3日に1回、更に好ましくは毎日とし、この温熱刺激を1回もしくは複数回繰り返すことにより行うことができる。   The thermal stimulation is performed at least once a week, preferably once every three days, more preferably every day, and can be performed by repeating this thermal stimulation one or more times.

温熱刺激は、UCP1の発現誘導が可能な温熱負荷手段を用いて行えばよいが、好適には、既存の温熱負荷装置又は器具を用いて、上記の温熱負荷を与えるのがよい。   The thermal stimulation may be performed using a thermal load means capable of inducing the expression of UCP1, but preferably the above-described thermal load is applied using an existing thermal load device or instrument.

熱負荷装置・器具は、ヒト又は動物の局所又は全身に温熱刺激を加えることができ、その熱量、温度が制御可能であれば、どのような熱負荷装置又は器具を用いてもよい。   As the heat load device / apparatus, any heat load device or tool may be used as long as it can apply a thermal stimulus to a local or whole body of a human or an animal and its heat amount and temperature can be controlled.

温熱負荷装置・器具の熱源は、通常ガス、電気等であり、熱源で作られた熱の搬送手段は、パイプ、電線等が挙げられる。これらの熱をヒト、動物等に伝える媒体としては、気体、液体、伝熱性のある固体等が挙げられる。例えば、温熱負荷装置として、電源を必要とするエアーインキュベーターである場合、電気により発生させた熱を、電線やパイプで搬送し、気体を媒体として生体に熱を伝えればよい。また、超音波振動や、マイクロ波による温熱負荷等も、本発明の温熱負荷法として用いることができる。
また、熱を発生する市販の温熱カイロ類や温熱貼布剤、蒸気温熱貼布剤等を用いることもできる。
The heat source of the thermal load device / apparatus is usually gas, electricity or the like, and examples of the heat transfer means produced by the heat source include pipes and electric wires. Examples of the medium for transferring such heat to humans, animals and the like include gases, liquids, solids having heat transfer properties, and the like. For example, in the case of an air incubator that requires a power source as a thermal load device, heat generated by electricity may be conveyed by electric wires or pipes, and heat may be transmitted to the living body using gas as a medium. Moreover, ultrasonic vibration, a thermal load by microwaves, and the like can be used as the thermal load method of the present invention.
Also, commercially available thermal warmers that generate heat, thermal patch, steam thermal patch, and the like can be used.

試験動物はC57BL/6Jマウス(6週齢 ♂)(日本クレア)を用いた。試験開始前の1週間、室温23±2℃、湿度55±10%、12時間の明暗サイクル(明期;AM7:00〜PM7:00)下で予備飼育した。尚、飼育期間中、すべてのマウスに、CE−2固形食(日本クレア)を自由摂食させるとともに、水道水を自由飲水させた。   As test animals, C57BL / 6J mice (6 weeks old pupa) (CLEA Japan) were used. One week before the start of the test, the animals were preliminarily reared under a light / dark cycle (light period; AM7: 00 to PM7: 00) of room temperature 23 ± 2 ° C., humidity 55 ± 10%, and 12 hours. During the breeding period, all mice were allowed to freely eat the CE-2 solid food (Clea Japan) and tap water freely.

1週間の予備飼育後、平均体重が等しくなるように、C57BL/6Jマウスを非加温群と加温群の2群に分けた。加温群のマウスは、41℃のヒートチャンバーに1時間入れることで温熱刺激を与え、その刺激から12、24、36、48時間後に解剖を行い(N=6)、肩甲骨間白色脂肪(WAT)と、肩甲骨間褐色脂肪(BAT) を採取した。非加温群はコントロールとし、温熱刺激を与えず、0、12、24、36、48時間後に解剖を行い(N=6)、WATとBATを採取した。温熱刺激による脱水症状を避けるため、加温群のマウスは、ヒートチャンバー内で41℃の水を自由摂取できるようにした。採取した脂肪組織は、1mlのISOGEN(ニッポンジーン)内でホモジナイズ後、ただちに液体窒素に入れ、凍結保存した。   After one week of preliminary breeding, C57BL / 6J mice were divided into two groups, a non-warming group and a warming group, so that the average body weights were equal. The mice in the warming group were given a thermal stimulus by placing them in a 41 ° C. heat chamber for 1 hour, dissected 12, 24, 36, and 48 hours after the stimulus (N = 6), and interscapular white fat ( WAT) and interscapular brown fat (BAT). The non-warming group was used as a control, and no thermal stimulation was given, and dissection was performed after 0, 12, 24, 36, and 48 hours (N = 6), and WAT and BAT were collected. In order to avoid dehydration caused by thermal stimulation, the mice in the warming group were allowed to freely take water at 41 ° C. in the heat chamber. The collected adipose tissue was homogenized in 1 ml of ISOGEN (Nippon Gene), immediately placed in liquid nitrogen, and stored frozen.

凍結した組織からのRNAの調製は、ISOGENのマニュアルに従った。
調製したRNAは濃度をそろえ、65℃、10分間の熱処理を行い、急冷後に使用した。逆転写には、125ng相当のRNAを使用し、20μlの反応液(1×PCR buffer II(Roche)、5mM MgCl2(Roche)、1mM dNTP mix(Takara),2.5mM Oligo d(T)18 mRNA primer(New England Biolabs)、1U/μl RNase inhibitor(Takara))を調製した。反応は42℃,60分→52℃、30分→99℃、5分→4℃で行い、得られたcDNAは、使用時まで−20℃で保存した。また、定量的PCRのスタンダード用として、500ng相当のRNAを使用し、同様の反応系で逆転写を行った。
Preparation of RNA from frozen tissues was according to ISOGEN manual.
The prepared RNAs were prepared at the same concentration, heat-treated at 65 ° C. for 10 minutes, and used after rapid cooling. For reverse transcription, RNA corresponding to 125 ng was used, and 20 μl of reaction solution (1 × PCR buffer II (Roche), 5 mM MgCl 2 (Roche), 1 mM dNTP mix (Takara), 2.5 mM Oligo d (T) 18 mRNA) primer (New England Biolabs), 1 U / μl RNase inhibitor (Takara)) was prepared. The reaction was performed at 42 ° C., 60 minutes → 52 ° C., 30 minutes → 99 ° C., 5 minutes → 4 ° C., and the obtained cDNA was stored at −20 ° C. until use. In addition, as a standard for quantitative PCR, 500 ng of RNA was used, and reverse transcription was performed in the same reaction system.

逆転写反応によって得られたcDNAを鋳型として、ABI PRISM7500 Real−time PCR System(Applied Biosystems)にて定量的PCRを行った。スタンダード用cDNAを7段階希釈したものをスタンダードとして、作成した標準曲線に基づき、定量を行った。得られた解析結果は36B4の発現量を内部標準として補正し、相対的mRNA発現量として表した。反応液は、Power SYBR Green PCR Master Mix(Applied Biosystems) 25μl、100μM Forward primer 1μl、100μM Reverse primer 1μl、dH2O 22μl、cDNA 1μl、となるように調製した。定量的PCRの温度条件は50℃2分、95℃10秒の後、95℃15秒と60℃1分の反応を40 サイクル繰り返した。
以下に、定量的PCRで用いたプライマーの配列を示す。
Quantitative PCR was performed with the ABI PRISM7500 Real-time PCR System (Applied Biosystems) using the cDNA obtained by the reverse transcription reaction as a template. Quantification was performed based on a standard curve prepared using a standard cDNA diluted in 7 steps as a standard. The obtained analysis results were corrected by using the expression level of 36B4 as an internal standard and expressed as a relative mRNA expression level. The reaction solution was prepared as follows: Power SYBR Green PCR Master Mix (Applied Biosystems) 25 μl, 100 μM Forward primer 1 μl, 100 μM Reverse primer 1 μl, dH2O 22 μl, cDNA 1 μl. The temperature conditions for quantitative PCR were 50 ° C. for 2 minutes and 95 ° C. for 10 seconds, followed by 40 cycles of 95 ° C. for 15 seconds and 60 ° C. for 1 minute.
The primer sequences used in quantitative PCR are shown below.

Figure 2011019615
Figure 2011019615

試験結果は、温熱刺激から0、12、24、36、48時間後の各点の非加温群の遺伝子発現量を1とした相対平均を求め、平均値±標準偏差(Average(Ave)±standard deviation(SD))で表した。また、有意差検定は各時点の非加温群と加温群の間でt−testを行い、p値が0.05未満のものを統計学的有意差があるとした。   The test results were obtained by calculating a relative average with the gene expression level of the non-warming group at each point 0, 12, 24, 36, and 48 hours after thermal stimulation as 1, and calculating an average value ± standard deviation (Average (Ave) ± Standard deviation (SD)). Moreover, the significant difference test performed t-test between the non-warming group and the warming group of each time point, and the thing with p value less than 0.05 was considered to have a statistical significant difference.

マウスに温熱刺激を与えると、刺激から12時間後にはBATのUCP1の遺伝子発現が増加しはじめ、24時間後には有意な発現増加が認められた(図1)。さらに、UCP1の発現の高い状態は、温熱刺激から48時間後でも維持されていた。このことから、温熱刺激はBATにおけるUCP1の発現を増加させることが明らかになった。したがって、温熱刺激は、熱エネルギーの産生亢進に有効であると考えられる。   When heat stimulation was given to mice, the gene expression of UCP1 in BAT began to increase 12 hours after the stimulation, and a significant increase in expression was observed after 24 hours (FIG. 1). Furthermore, the high expression state of UCP1 was maintained even 48 hours after the thermal stimulation. From this, it became clear that thermal stimulation increases the expression of UCP1 in BAT. Therefore, it is considered that thermal stimulation is effective for enhancing production of thermal energy.

また、温熱刺激はWATにおいてもUCP1の遺伝子発現を増加させた(図2)。温熱刺激から12時間後にはUCP1遺伝子の有意な増加が認められ、この有意な増加状態は、48時間後も観察された。このことから、温熱刺激はWATにおいても、UCP1の発現増加を促し、熱エネルギーの産生を亢進させることが示された。   Heat stimulation also increased UCP1 gene expression in WAT (FIG. 2). A significant increase in the UCP1 gene was observed 12 hours after the thermal stimulation, and this significant increase was also observed after 48 hours. From this, it was shown that thermal stimulation promotes the increase in UCP1 expression and enhances the production of thermal energy even in WAT.

以上のことから、温熱刺激は、UCP1の発現増加を引き起こし、熱産生能を向上させることが示された。このような熱によるエネルギー消費は、余剰な脂肪や糖の燃焼を促進することから、生体における脂肪蓄積を抑制することにつながる。従って、UCP1の発現誘導を促す温熱刺激は、肥満や生活習慣病の制御に有効であると考えられる。   From the above, it was shown that thermal stimulation increases the expression of UCP1 and improves the heat production ability. Such energy consumption by heat promotes the burning of excess fat and sugar, leading to suppression of fat accumulation in the living body. Therefore, it is considered that the thermal stimulation that promotes the induction of UCP1 expression is effective in controlling obesity and lifestyle-related diseases.

Claims (4)

局所又は全身に温熱刺激を付与することを特徴とするUCP1発現誘導方法。   A method for inducing UCP1 expression, comprising applying thermal stimulation locally or systemically. 局所又は全身に温熱刺激を付与することを特徴とする脂肪組織における熱産生促進方法。   A method for promoting heat production in adipose tissue, characterized by applying a thermal stimulus locally or systemically. 局所又は全身に温熱刺激を付与することを特徴とする脂肪組織における脂肪燃焼促進方法。   A method for promoting fat burning in adipose tissue, characterized by applying a thermal stimulus locally or systemically. 温熱刺激が、40〜43℃で30〜60分の温熱負荷である請求項1〜2の何れか1項記載の方法。   The method according to claim 1, wherein the thermal stimulation is a thermal load at 40 to 43 ° C. for 30 to 60 minutes.
JP2009165804A 2009-07-14 2009-07-14 Method for inducing expression of ucp1 Pending JP2011019615A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009165804A JP2011019615A (en) 2009-07-14 2009-07-14 Method for inducing expression of ucp1

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009165804A JP2011019615A (en) 2009-07-14 2009-07-14 Method for inducing expression of ucp1

Publications (1)

Publication Number Publication Date
JP2011019615A true JP2011019615A (en) 2011-02-03

Family

ID=43630224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009165804A Pending JP2011019615A (en) 2009-07-14 2009-07-14 Method for inducing expression of ucp1

Country Status (1)

Country Link
JP (1) JP2011019615A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170128A (en) * 1999-12-22 2001-06-26 Matsushita Electric Works Ltd Weight reducing apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001170128A (en) * 1999-12-22 2001-06-26 Matsushita Electric Works Ltd Weight reducing apparatus

Similar Documents

Publication Publication Date Title
Nunes et al. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies
Ceylan-Isik et al. Apelin administration ameliorates high fat diet-induced cardiac hypertrophy and contractile dysfunction
Forini et al. Triiodothyronine prevents cardiac ischemia/reperfusion mitochondrial impairment and cell loss by regulating miR30a/p53 axis
Qi et al. Cordycepin promotes browning of white adipose tissue through an AMP-activated protein kinase (AMPK)-dependent pathway
Kazemi et al. Effects of exercise training on adipose tissue apelin expression in streptozotocin-nicotinamide induced diabetic rats
Braud et al. Carbon monoxide–induced metabolic switch in adipocytes improves insulin resistance in obese mice
Choudhary et al. All-trans retinoic acid prevents development of cardiac remodeling in aortic banded rats by inhibiting the renin-angiotensin system
Chen et al. Effects of bariatric surgery on change of brown adipocyte tissue and energy metabolism in obese mice
Rodríguez et al. Short-term effects of sleeve gastrectomy and caloric restriction on blood pressure in diet-induced obese rats
Mariani et al. Circulating SIRT1 increases after intragastric balloon fat loss in obese patients
Zoth et al. Metabolic effects of estrogen substitution in combination with targeted exercise training on the therapy of obesity in ovariectomized Wistar rats
Reitelseder et al. Positive muscle protein net balance and differential regulation of atrogene expression after resistance exercise and milk protein supplementation
Liu et al. The ameliorating effect of rosiglitazone on experimental nonalcoholic steatohepatitis is associated with regulating adiponectin receptor expression in rats
Dideriksen et al. Skeletal muscle adaptation to immobilization and subsequent retraining in elderly men: no effect of anti-inflammatory medication
Han et al. Duodenal-jejunal bypass surgery suppresses hepatic de novo lipogenesis and alleviates liver fat accumulation in a diabetic rat model
Hu et al. Duodenal–jejunal bypass improves glucose metabolism and adipokine expression independently of weight loss in a diabetic rat model
Hooper Insulin signaling, GSK-3, heat shock proteins and the natural history of type 2 diabetes mellitus: a hypothesis
Zhang et al. Bariatric surgery ameliorates diabetic cardiac dysfunction by inhibiting ER stress in a diabetic rat model
Jamal et al. Effect of sleeve gastrectomy on the expression of meteorin-like (METRNL) and Irisin (FNDC5) in muscle and brown adipose tissue and its impact on uncoupling proteins in diet-induced obesity rats
Tsuzuki et al. Attenuation of exercise-induced heat shock protein 72 expression blunts improvements in whole-body insulin resistance in rats with type 2 diabetes
Wei et al. miR-320 mediates diabetes amelioration after duodenal-jejunal bypass via targeting adipoR1
Guarnieri et al. Fighting protein-energy wasting in chronic kidney disease: a challenge of complexity
Pae et al. Short-term electrical stimulation alters tongue muscle fibre type composition
Kataoka et al. Effect of late androgen replacement therapy on erectile function through structural changes in castrated rats
Jie et al. Melatonin alleviates liver fibrosis by inhibiting autophagy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130627

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131112