JP2011017992A - Optical waveguide and optoelectric compound wiring board - Google Patents
Optical waveguide and optoelectric compound wiring board Download PDFInfo
- Publication number
- JP2011017992A JP2011017992A JP2009163931A JP2009163931A JP2011017992A JP 2011017992 A JP2011017992 A JP 2011017992A JP 2009163931 A JP2009163931 A JP 2009163931A JP 2009163931 A JP2009163931 A JP 2009163931A JP 2011017992 A JP2011017992 A JP 2011017992A
- Authority
- JP
- Japan
- Prior art keywords
- optical waveguide
- thickness
- core
- film
- clad layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 139
- 150000001875 compounds Chemical class 0.000 title abstract description 29
- 238000005253 cladding Methods 0.000 claims description 80
- 239000002131 composite material Substances 0.000 claims description 14
- 239000010410 layer Substances 0.000 description 166
- 229920005989 resin Polymers 0.000 description 98
- 239000011347 resin Substances 0.000 description 98
- 239000011162 core material Substances 0.000 description 78
- 239000012792 core layer Substances 0.000 description 52
- 239000002585 base Substances 0.000 description 44
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 41
- 238000000034 method Methods 0.000 description 40
- -1 alicyclic glycidyl ethers Chemical class 0.000 description 39
- 229920000647 polyepoxide Polymers 0.000 description 29
- 239000003822 epoxy resin Substances 0.000 description 28
- 238000004519 manufacturing process Methods 0.000 description 27
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 23
- 230000001681 protective effect Effects 0.000 description 21
- 239000011342 resin composition Substances 0.000 description 16
- 238000005452 bending Methods 0.000 description 14
- 239000004593 Epoxy Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 12
- 239000000853 adhesive Substances 0.000 description 11
- 230000001070 adhesive effect Effects 0.000 description 11
- 230000001588 bifunctional effect Effects 0.000 description 11
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 10
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 10
- 239000003960 organic solvent Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 238000011161 development Methods 0.000 description 9
- 230000018109 developmental process Effects 0.000 description 9
- 229920005601 base polymer Polymers 0.000 description 8
- 238000001723 curing Methods 0.000 description 8
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 8
- 238000010030 laminating Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 229920002799 BoPET Polymers 0.000 description 7
- 239000007864 aqueous solution Substances 0.000 description 7
- 230000008878 coupling Effects 0.000 description 7
- 238000010168 coupling process Methods 0.000 description 7
- 238000005859 coupling reaction Methods 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000003999 initiator Substances 0.000 description 7
- 239000013034 phenoxy resin Substances 0.000 description 7
- 229920006287 phenoxy resin Polymers 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 239000012790 adhesive layer Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 229920003986 novolac Polymers 0.000 description 6
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 5
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 5
- 125000002723 alicyclic group Chemical group 0.000 description 5
- 239000004760 aramid Substances 0.000 description 5
- 229920003235 aromatic polyamide Polymers 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 5
- 239000005020 polyethylene terephthalate Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- LLHKCFNBLRBOGN-UHFFFAOYSA-N propylene glycol methyl ether acetate Chemical compound COCC(C)OC(C)=O LLHKCFNBLRBOGN-UHFFFAOYSA-N 0.000 description 5
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Inorganic materials [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 239000002966 varnish Substances 0.000 description 5
- 239000004925 Acrylic resin Substances 0.000 description 4
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 238000003491 array Methods 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 4
- 238000009429 electrical wiring Methods 0.000 description 4
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- VEORPZCZECFIRK-UHFFFAOYSA-N 3,3',5,5'-tetrabromobisphenol A Chemical compound C=1C(Br)=C(O)C(Br)=CC=1C(C)(C)C1=CC(Br)=C(O)C(Br)=C1 VEORPZCZECFIRK-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 3
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004734 Polyphenylene sulfide Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 3
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical class C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 3
- 238000003851 corona treatment Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000069 polyphenylene sulfide Polymers 0.000 description 3
- 229920001451 polypropylene glycol Polymers 0.000 description 3
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 2
- ARXJGSRGQADJSQ-UHFFFAOYSA-N 1-methoxypropan-2-ol Chemical compound COCC(C)O ARXJGSRGQADJSQ-UHFFFAOYSA-N 0.000 description 2
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- GJKGAPPUXSSCFI-UHFFFAOYSA-N 2-Hydroxy-4'-(2-hydroxyethoxy)-2-methylpropiophenone Chemical compound CC(C)(O)C(=O)C1=CC=C(OCCO)C=C1 GJKGAPPUXSSCFI-UHFFFAOYSA-N 0.000 description 2
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 2
- YCPMSWJCWKUXRH-UHFFFAOYSA-N 2-[4-[9-[4-(2-prop-2-enoyloxyethoxy)phenyl]fluoren-9-yl]phenoxy]ethyl prop-2-enoate Chemical compound C1=CC(OCCOC(=O)C=C)=CC=C1C1(C=2C=CC(OCCOC(=O)C=C)=CC=2)C2=CC=CC=C2C2=CC=CC=C21 YCPMSWJCWKUXRH-UHFFFAOYSA-N 0.000 description 2
- UHFFVFAKEGKNAQ-UHFFFAOYSA-N 2-benzyl-2-(dimethylamino)-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=CC=C1 UHFFVFAKEGKNAQ-UHFFFAOYSA-N 0.000 description 2
- JESXATFQYMPTNL-UHFFFAOYSA-N 2-ethenylphenol Chemical compound OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 description 2
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 2
- NJWGQARXZDRHCD-UHFFFAOYSA-N 2-methylanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3C(=O)C2=C1 NJWGQARXZDRHCD-UHFFFAOYSA-N 0.000 description 2
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 2
- UUEWCQRISZBELL-UHFFFAOYSA-N 3-trimethoxysilylpropane-1-thiol Chemical compound CO[Si](OC)(OC)CCCS UUEWCQRISZBELL-UHFFFAOYSA-N 0.000 description 2
- VVBLNCFGVYUYGU-UHFFFAOYSA-N 4,4'-Bis(dimethylamino)benzophenone Chemical compound C1=CC(N(C)C)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 VVBLNCFGVYUYGU-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- YYVYAPXYZVYDHN-UHFFFAOYSA-N 9,10-phenanthroquinone Chemical compound C1=CC=C2C(=O)C(=O)C3=CC=CC=C3C2=C1 YYVYAPXYZVYDHN-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 229930185605 Bisphenol Natural products 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- MJVAVZPDRWSRRC-UHFFFAOYSA-N Menadione Chemical compound C1=CC=C2C(=O)C(C)=CC(=O)C2=C1 MJVAVZPDRWSRRC-UHFFFAOYSA-N 0.000 description 2
- YNAVUWVOSKDBBP-UHFFFAOYSA-N Morpholine Chemical compound C1COCCN1 YNAVUWVOSKDBBP-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- NPKSPKHJBVJUKB-UHFFFAOYSA-N N-phenylglycine Chemical compound OC(=O)CNC1=CC=CC=C1 NPKSPKHJBVJUKB-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- 230000001680 brushing effect Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 229930003836 cresol Natural products 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- WMFOQBRAJBCJND-UHFFFAOYSA-M lithium hydroxide Inorganic materials [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- QWVGKYWNOKOFNN-UHFFFAOYSA-N o-cresol Chemical compound CC1=CC=CC=C1O QWVGKYWNOKOFNN-UHFFFAOYSA-N 0.000 description 2
- 239000013307 optical fiber Substances 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 239000004328 sodium tetraborate Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 2
- AMCZOMYXYYYAPT-UHFFFAOYSA-N triphenylselanium Chemical compound C1=CC=CC=C1[Se+](C=1C=CC=CC=1)C1=CC=CC=C1 AMCZOMYXYYYAPT-UHFFFAOYSA-N 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- PJLLSZIVQKRTSE-UHFFFAOYSA-N (7-methyl-8-prop-2-enoyloxyoctyl) prop-2-enoate Chemical compound C=CC(=O)OCC(C)CCCCCCOC(=O)C=C PJLLSZIVQKRTSE-UHFFFAOYSA-N 0.000 description 1
- UOCLXMDMGBRAIB-UHFFFAOYSA-N 1,1,1-trichloroethane Chemical compound CC(Cl)(Cl)Cl UOCLXMDMGBRAIB-UHFFFAOYSA-N 0.000 description 1
- XHXSXTIIDBZEKB-UHFFFAOYSA-N 1,2,3,4,5,6,7,8-octamethylanthracene-9,10-dione Chemical compound CC1=C(C)C(C)=C2C(=O)C3=C(C)C(C)=C(C)C(C)=C3C(=O)C2=C1C XHXSXTIIDBZEKB-UHFFFAOYSA-N 0.000 description 1
- GJZFGDYLJLCGHT-UHFFFAOYSA-N 1,2-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=C(CC)C(CC)=CC=C3SC2=C1 GJZFGDYLJLCGHT-UHFFFAOYSA-N 0.000 description 1
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 description 1
- ALVZNPYWJMLXKV-UHFFFAOYSA-N 1,9-Nonanediol Chemical compound OCCCCCCCCCO ALVZNPYWJMLXKV-UHFFFAOYSA-N 0.000 description 1
- LMGYOBQJBQAZKC-UHFFFAOYSA-N 1-(2-ethylphenyl)-2-hydroxy-2-phenylethanone Chemical compound CCC1=CC=CC=C1C(=O)C(O)C1=CC=CC=C1 LMGYOBQJBQAZKC-UHFFFAOYSA-N 0.000 description 1
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 1
- BOCJQSFSGAZAPQ-UHFFFAOYSA-N 1-chloroanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2Cl BOCJQSFSGAZAPQ-UHFFFAOYSA-N 0.000 description 1
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 1
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 1
- CMQUQOHNANGDOR-UHFFFAOYSA-N 2,3-dibromo-4-(2,4-dibromo-5-hydroxyphenyl)phenol Chemical compound BrC1=C(Br)C(O)=CC=C1C1=CC(O)=C(Br)C=C1Br CMQUQOHNANGDOR-UHFFFAOYSA-N 0.000 description 1
- KIJPZYXCIHZVGP-UHFFFAOYSA-N 2,3-dimethylanthracene-9,10-dione Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=C(C)C(C)=C2 KIJPZYXCIHZVGP-UHFFFAOYSA-N 0.000 description 1
- GSKOWRJEBKQTKZ-UHFFFAOYSA-N 2,6-dihydroxy-2,6-dimethylheptan-4-one Chemical compound CC(C)(O)CC(=O)CC(C)(C)O GSKOWRJEBKQTKZ-UHFFFAOYSA-N 0.000 description 1
- UCSGWEMRGIONEW-UHFFFAOYSA-N 2-(2-chlorophenyl)-4,5-bis(2-methoxyphenyl)-1h-imidazole Chemical class COC1=CC=CC=C1C1=C(C=2C(=CC=CC=2)OC)NC(C=2C(=CC=CC=2)Cl)=N1 UCSGWEMRGIONEW-UHFFFAOYSA-N 0.000 description 1
- NSWNXQGJAPQOID-UHFFFAOYSA-N 2-(2-chlorophenyl)-4,5-diphenyl-1h-imidazole Chemical class ClC1=CC=CC=C1C1=NC(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)N1 NSWNXQGJAPQOID-UHFFFAOYSA-N 0.000 description 1
- SBASXUCJHJRPEV-UHFFFAOYSA-N 2-(2-methoxyethoxy)ethanol Chemical compound COCCOCCO SBASXUCJHJRPEV-UHFFFAOYSA-N 0.000 description 1
- XIOGJAPOAUEYJO-UHFFFAOYSA-N 2-(2-methoxyphenyl)-4,5-diphenyl-1h-imidazole Chemical class COC1=CC=CC=C1C1=NC(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)N1 XIOGJAPOAUEYJO-UHFFFAOYSA-N 0.000 description 1
- IEQWWMKDFZUMMU-UHFFFAOYSA-N 2-(2-prop-2-enoyloxyethyl)butanedioic acid Chemical compound OC(=O)CC(C(O)=O)CCOC(=O)C=C IEQWWMKDFZUMMU-UHFFFAOYSA-N 0.000 description 1
- SNFCQJAJPFWBDJ-UHFFFAOYSA-N 2-(4-methoxyphenyl)-4,5-diphenyl-1h-imidazole Chemical class C1=CC(OC)=CC=C1C1=NC(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)N1 SNFCQJAJPFWBDJ-UHFFFAOYSA-N 0.000 description 1
- DVVXXHVHGGWWPE-UHFFFAOYSA-N 2-(dimethylamino)benzoic acid Chemical compound CN(C)C1=CC=CC=C1C(O)=O DVVXXHVHGGWWPE-UHFFFAOYSA-N 0.000 description 1
- WMYINDVYGQKYMI-UHFFFAOYSA-N 2-[2,2-bis(hydroxymethyl)butoxymethyl]-2-ethylpropane-1,3-diol Chemical compound CCC(CO)(CO)COCC(CC)(CO)CO WMYINDVYGQKYMI-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- SJEBAWHUJDUKQK-UHFFFAOYSA-N 2-ethylanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC=C3C(=O)C2=C1 SJEBAWHUJDUKQK-UHFFFAOYSA-N 0.000 description 1
- 125000004198 2-fluorophenyl group Chemical group [H]C1=C([H])C(F)=C(*)C([H])=C1[H] 0.000 description 1
- VZMLJEYQUZKERO-UHFFFAOYSA-N 2-hydroxy-1-(2-methylphenyl)-2-phenylethanone Chemical compound CC1=CC=CC=C1C(=O)C(O)C1=CC=CC=C1 VZMLJEYQUZKERO-UHFFFAOYSA-N 0.000 description 1
- NLGDWWCZQDIASO-UHFFFAOYSA-N 2-hydroxy-1-(7-oxabicyclo[4.1.0]hepta-1,3,5-trien-2-yl)-2-phenylethanone Chemical class OC(C(=O)c1cccc2Oc12)c1ccccc1 NLGDWWCZQDIASO-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- QWGRWMMWNDWRQN-UHFFFAOYSA-N 2-methylpropane-1,3-diol Chemical class OCC(C)CO QWGRWMMWNDWRQN-UHFFFAOYSA-N 0.000 description 1
- AXYQEGMSGMXGGK-UHFFFAOYSA-N 2-phenoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(=O)C(C=1C=CC=CC=1)OC1=CC=CC=C1 AXYQEGMSGMXGGK-UHFFFAOYSA-N 0.000 description 1
- YTPSFXZMJKMUJE-UHFFFAOYSA-N 2-tert-butylanthracene-9,10-dione Chemical compound C1=CC=C2C(=O)C3=CC(C(C)(C)C)=CC=C3C(=O)C2=C1 YTPSFXZMJKMUJE-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- LVNLBBGBASVLLI-UHFFFAOYSA-N 3-triethoxysilylpropylurea Chemical compound CCO[Si](OCC)(OCC)CCCNC(N)=O LVNLBBGBASVLLI-UHFFFAOYSA-N 0.000 description 1
- AHIPJALLQVEEQF-UHFFFAOYSA-N 4-(oxiran-2-ylmethoxy)-n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1COC(C=C1)=CC=C1N(CC1OC1)CC1CO1 AHIPJALLQVEEQF-UHFFFAOYSA-N 0.000 description 1
- OECTYKWYRCHAKR-UHFFFAOYSA-N 4-vinylcyclohexene dioxide Chemical compound C1OC1C1CC2OC2CC1 OECTYKWYRCHAKR-UHFFFAOYSA-N 0.000 description 1
- MTRFEWTWIPAXLG-UHFFFAOYSA-N 9-phenylacridine Chemical compound C1=CC=CC=C1C1=C(C=CC=C2)C2=NC2=CC=CC=C12 MTRFEWTWIPAXLG-UHFFFAOYSA-N 0.000 description 1
- IXCOKTMGCRJMDR-UHFFFAOYSA-N 9h-fluorene;phenol Chemical compound OC1=CC=CC=C1.OC1=CC=CC=C1.C1=CC=C2CC3=CC=CC=C3C2=C1 IXCOKTMGCRJMDR-UHFFFAOYSA-N 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- NUMHVCSBYOMRSH-UHFFFAOYSA-N C(C=C)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(O)CCC Chemical compound C(C=C)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(C=C)(=O)O.C(O)CCC NUMHVCSBYOMRSH-UHFFFAOYSA-N 0.000 description 1
- AYTGUEVAVWCIPY-UHFFFAOYSA-N C1(=CC=CC=C1)C1=CC=2C(C3=CC=CC=C3C(C2C=C1C1=CC=CC=C1)=O)=O.C1(=CC=CC=C1)C1=CC=2C(C3=CC=CC=C3C(C2C=C1)=O)=O Chemical compound C1(=CC=CC=C1)C1=CC=2C(C3=CC=CC=C3C(C2C=C1C1=CC=CC=C1)=O)=O.C1(=CC=CC=C1)C1=CC=2C(C3=CC=CC=C3C(C2C=C1)=O)=O AYTGUEVAVWCIPY-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- 239000004977 Liquid-crystal polymers (LCPs) Substances 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 229920002614 Polyether block amide Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- IDCBOTIENDVCBQ-UHFFFAOYSA-N TEPP Chemical compound CCOP(=O)(OCC)OP(=O)(OCC)OCC IDCBOTIENDVCBQ-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- MPIAGWXWVAHQBB-UHFFFAOYSA-N [3-prop-2-enoyloxy-2-[[3-prop-2-enoyloxy-2,2-bis(prop-2-enoyloxymethyl)propoxy]methyl]-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(COC(=O)C=C)COCC(COC(=O)C=C)(COC(=O)C=C)COC(=O)C=C MPIAGWXWVAHQBB-UHFFFAOYSA-N 0.000 description 1
- ARNIZPSLPHFDED-UHFFFAOYSA-N [4-(dimethylamino)phenyl]-(4-methoxyphenyl)methanone Chemical compound C1=CC(OC)=CC=C1C(=O)C1=CC=C(N(C)C)C=C1 ARNIZPSLPHFDED-UHFFFAOYSA-N 0.000 description 1
- YIBIUQVXHLBOGO-UHFFFAOYSA-N [PH3]=O.COC1=C(C(=O)P(CC(CC(C)(C)C)C)C(C2=C(C=CC=C2OC)OC)=O)C(=CC=C1)OC Chemical class [PH3]=O.COC1=C(C(=O)P(CC(CC(C)(C)C)C)C(C2=C(C=CC=C2OC)OC)=O)C(=CC=C1)OC YIBIUQVXHLBOGO-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 150000001251 acridines Chemical class 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical class OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001854 alkali hydroxide Inorganic materials 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910000318 alkali metal phosphate Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 235000012501 ammonium carbonate Nutrition 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229940027998 antiseptic and disinfectant acridine derivative Drugs 0.000 description 1
- 150000008365 aromatic ketones Chemical class 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- LHMRXAIRPKSGDE-UHFFFAOYSA-N benzo[a]anthracene-7,12-dione Chemical compound C1=CC2=CC=CC=C2C2=C1C(=O)C1=CC=CC=C1C2=O LHMRXAIRPKSGDE-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- JRPRCOLKIYRSNH-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,2-dicarboxylate Chemical class C=1C=CC=C(C(=O)OCC2OC2)C=1C(=O)OCC1CO1 JRPRCOLKIYRSNH-UHFFFAOYSA-N 0.000 description 1
- KTPIWUHKYIJBCR-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohex-4-ene-1,2-dicarboxylate Chemical compound C1C=CCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 KTPIWUHKYIJBCR-UHFFFAOYSA-N 0.000 description 1
- XFUOBHWPTSIEOV-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) cyclohexane-1,2-dicarboxylate Chemical compound C1CCCC(C(=O)OCC2OC2)C1C(=O)OCC1CO1 XFUOBHWPTSIEOV-UHFFFAOYSA-N 0.000 description 1
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000000332 coumarinyl group Chemical class O1C(=O)C(=CC2=CC=CC=C12)* 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 150000007973 cyanuric acids Chemical class 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 239000012954 diazonium Substances 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- XXJWXESWEXIICW-UHFFFAOYSA-N diethylene glycol monoethyl ether Chemical compound CCOCCOCCO XXJWXESWEXIICW-UHFFFAOYSA-N 0.000 description 1
- 229940075557 diethylene glycol monoethyl ether Drugs 0.000 description 1
- OWZDULOODZHVCQ-UHFFFAOYSA-N diphenyl-(4-phenylsulfanylphenyl)sulfanium Chemical compound C=1C=C([S+](C=2C=CC=CC=2)C=2C=CC=CC=2)C=CC=1SC1=CC=CC=C1 OWZDULOODZHVCQ-UHFFFAOYSA-N 0.000 description 1
- OZLBDYMWFAHSOQ-UHFFFAOYSA-N diphenyliodanium Chemical compound C=1C=CC=CC=1[I+]C1=CC=CC=C1 OZLBDYMWFAHSOQ-UHFFFAOYSA-N 0.000 description 1
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000002314 glycerols Chemical class 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- ACCCMOQWYVYDOT-UHFFFAOYSA-N hexane-1,1-diol Chemical compound CCCCCC(O)O ACCCMOQWYVYDOT-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 229940086559 methyl benzoin Drugs 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- XZHHMXJAOXVQPW-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)-2-(trifluoromethyl)aniline Chemical compound FC(F)(F)C1=CC=CC=C1N(CC1OC1)CC1OC1 XZHHMXJAOXVQPW-UHFFFAOYSA-N 0.000 description 1
- JAYXSROKFZAHRQ-UHFFFAOYSA-N n,n-bis(oxiran-2-ylmethyl)aniline Chemical compound C1OC1CN(C=1C=CC=CC=1)CC1CO1 JAYXSROKFZAHRQ-UHFFFAOYSA-N 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 238000000016 photochemical curing Methods 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920006290 polyethylene naphthalate film Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 235000007686 potassium Nutrition 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000011085 pressure filtration Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 235000019795 sodium metasilicate Nutrition 0.000 description 1
- 229940048086 sodium pyrophosphate Drugs 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 150000003459 sulfonic acid esters Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- WPZJSWWEEJJSIZ-UHFFFAOYSA-N tetrabromobisphenol-F Natural products C1=C(Br)C(O)=C(Br)C=C1CC1=CC(Br)=C(O)C(Br)=C1 WPZJSWWEEJJSIZ-UHFFFAOYSA-N 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- KCNSDMPZCKLTQP-UHFFFAOYSA-N tetraphenylen-1-ol Chemical compound C12=CC=CC=C2C2=CC=CC=C2C2=CC=CC=C2C2=C1C=CC=C2O KCNSDMPZCKLTQP-UHFFFAOYSA-N 0.000 description 1
- RYCLIXPGLDDLTM-UHFFFAOYSA-J tetrapotassium;phosphonato phosphate Chemical compound [K+].[K+].[K+].[K+].[O-]P([O-])(=O)OP([O-])([O-])=O RYCLIXPGLDDLTM-UHFFFAOYSA-J 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- YRHRIQCWCFGUEQ-UHFFFAOYSA-N thioxanthen-9-one Chemical class C1=CC=C2C(=O)C3=CC=CC=C3SC2=C1 YRHRIQCWCFGUEQ-UHFFFAOYSA-N 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 125000005409 triarylsulfonium group Chemical group 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- WLOQLWBIJZDHET-UHFFFAOYSA-N triphenylsulfonium Chemical compound C1=CC=CC=C1[S+](C=1C=CC=CC=1)C1=CC=CC=C1 WLOQLWBIJZDHET-UHFFFAOYSA-N 0.000 description 1
- 239000012953 triphenylsulfonium Substances 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
- 238000004383 yellowing Methods 0.000 description 1
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical compound O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
本発明は、特定部分の剛性や柔軟性に優れ、かつ光損失の少ない光導波路に関するものである。 The present invention relates to an optical waveguide that is excellent in rigidity and flexibility of a specific portion and has little optical loss.
近年、電子素子間や配線基板間の高速・高密度信号伝送において、従来の電気配線による伝送では、信号の相互干渉や減衰が障壁となり、高速・高密度化の限界が見え始めている。これを打ち破るため電子素子間や配線基板間を光で接続する技術、いわゆる光インタコネクションが検討されている。光の伝送路として加工の容易さ、低コスト、配線の自由度が高く、かつ高密度化が可能な点からポリマー光導波路が注目を集めている。特に、携帯電話やノート型パソコンなどに光導波路を用いることが検討されている。 In recent years, in high-speed and high-density signal transmission between electronic devices and between wiring boards, signal transmission interference and attenuation are barriers in conventional transmission using electric wiring, and the limits of high-speed and high-density have begun to appear. In order to overcome this problem, a technique for optically connecting electronic elements and wiring boards, so-called optical interconnection, has been studied. As an optical transmission line, polymer optical waveguides are attracting attention because of their ease of processing, low cost, high flexibility in wiring, and high density. In particular, the use of optical waveguides in mobile phones, notebook computers, and the like has been studied.
ところで、携帯電話などの電子機器においては、開閉可能な二つの機構部間の信号伝送にフレキシブル光導波路を用いる場合に、該フレキシブル光導波路は二つの機構部の連結部(ヒンジ)を跨ぐことが考えられる。この場合に、ヒンジによってフレキシブル光導波路は曲げられ、屈曲によって割れやクラックが生じることがあった。特に、近年の電子機器の小型化の要請から、ヒンジにおいて、Rが1〜2mm程度の小さい曲げ半径で曲げることが要求されるため、ヒンジでの割れやクラックの発生が顕著になるという問題があった。
特に、省スペース、薄型化に対応するため、光配線と電気配線を組み合わせた光電気混載基板が望まれるが、光電気混載基板ではさらにその厚さが増大するため、フレキシブル光導波路にはより一層の耐屈曲耐久性が求められていた。
By the way, in an electronic device such as a mobile phone, when a flexible optical waveguide is used for signal transmission between two mechanisms that can be opened and closed, the flexible optical waveguide may straddle the connecting portion (hinge) of the two mechanisms. Conceivable. In this case, the flexible optical waveguide is bent by the hinge, and a crack or a crack may occur due to the bending. In particular, because of recent demands for downsizing electronic devices, it is required that the hinge be bent with a small bending radius of about 1 to 2 mm. there were.
In particular, an opto-electric hybrid board that combines optical wiring and electrical wiring is desired in order to cope with space saving and thinning. However, the thickness of the opto-electric hybrid board is further increased. The bending resistance was demanded.
フレキシブル光導波路の耐屈曲耐久性を向上させる方法としては、屈曲部分の厚さを薄くする方法があるが、光導波路全体の厚さを薄くすると、光導波路のコアサイズも小さくなり、光結合効率が低下することが考えられる。そこで、光入力部よりもフィルム厚さが薄い箇所を有する光導波路フィルムが提案されている(特許文献1参照)。
特許文献1では、上記のような光導波路フィルムを作製する方法として、コア材もしくはクラッド材、又はその前駆体の溶液を膜厚制御部を有するアプリケータヘッドを具備するアプリケータを用いて塗布するステップ、及び塗布された溶液の一部を除去するステップを含む製造方法が提案されている。しかしながら、上述のような溶液を用いる方法では、膜厚の制御が容易ではない。
一方、コアサイズを変えずに、屈曲部分のクラッド層を薄くすることができれば、光結合効率低下の問題点は発生せず、光導波路の耐屈曲耐久性を向上させることができるが、クラッド層の一部の膜厚を制御することは困難であった。
As a method of improving the bending resistance of the flexible optical waveguide, there is a method of reducing the thickness of the bent portion. However, if the thickness of the entire optical waveguide is reduced, the core size of the optical waveguide is reduced, and the optical coupling efficiency is reduced. Is considered to be reduced. Then, the optical waveguide film which has a location where film thickness is thinner than an optical input part is proposed (refer patent document 1).
In
On the other hand, if the clad layer in the bent portion can be made thin without changing the core size, the problem of lowering the optical coupling efficiency does not occur and the bending resistance of the optical waveguide can be improved. It was difficult to control a part of the film thickness.
一方、用途によっては、光導波路の特定部分の強度を向上させたい場合があり、特定部分の厚さを厚くすることが要求される。この場合にも、上部クラッドの膜厚を制御することができ、コネクタ接続部など特定部分の強度を向上させることができれば、上記要求を満足させることが可能である。
このように、光導波路は使用態様によって、耐屈曲性を求められたり、強度を求められるが、光導波路の厚さのコントロールによって、光導波路の柔軟性及び剛性を制御することが可能となる。光導波路の厚さを制御する方法は種々考えられるが、必ずしも有効な手段はこれまで提案されておらず、より簡便な制御手段が求められていた。
On the other hand, depending on the application, it may be desired to improve the strength of a specific portion of the optical waveguide, and it is required to increase the thickness of the specific portion. Also in this case, if the film thickness of the upper clad can be controlled and the strength of a specific portion such as a connector connection portion can be improved, the above requirement can be satisfied.
As described above, the optical waveguide is required to have bending resistance or strength depending on the use mode, but the flexibility and rigidity of the optical waveguide can be controlled by controlling the thickness of the optical waveguide. Various methods for controlling the thickness of the optical waveguide are conceivable, but effective means have not been proposed so far, and simpler control means have been demanded.
本発明は、上記問題点に鑑み、簡便に厚さを制御し得る光導波路の構造を提供することによって、特定部分の剛性や柔軟性に優れ、光損失の少ない光導波路、及び光電気複合配線板を提供することを目的とする。 In view of the above-described problems, the present invention provides an optical waveguide structure capable of easily controlling the thickness, thereby providing an optical waveguide having excellent rigidity and flexibility at a specific portion and less optical loss, and a photoelectric composite wiring. The purpose is to provide a board.
本発明者らは、鋭意検討を重ねた結果、第2のクラッド層の中間部における厚さを端部よりも厚くすることで、上記課題を解決し得ることを見出した。
すなわち、本発明は、第1のクラッド層、コアパターン、及び第2のクラッド層が順に積層された光導波路であって、光導波路の中間部における第2のクラッド層の厚さが、光導波路の少なくとも一方の端部における第2のクラッド層の厚さより厚いことを特徴とする光導波路、及び該光導波路を電気配線板に積層した光電気複合配線板を提供するものである。
As a result of intensive studies, the present inventors have found that the above problem can be solved by making the thickness of the intermediate portion of the second cladding layer thicker than the end portion.
That is, the present invention provides an optical waveguide in which a first cladding layer, a core pattern, and a second cladding layer are sequentially stacked, and the thickness of the second cladding layer in the intermediate portion of the optical waveguide An optical waveguide characterized by being thicker than the thickness of the second cladding layer at at least one end thereof, and an optoelectric composite wiring board in which the optical waveguide is laminated on an electrical wiring board.
本発明によれば、簡便に厚さを制御し得る光導波路の構造を提供することによって、特定部分の剛性や柔軟性に優れ、かつ光損失の少ない光導波路、及び光電気複合配線板を提供することができる。 According to the present invention, by providing a structure of an optical waveguide whose thickness can be easily controlled, an optical waveguide excellent in rigidity and flexibility of a specific part and having little optical loss, and an optoelectric composite wiring board are provided. can do.
本発明の光導波路は、第1のクラッド層、コアパターン、及び第2のクラッド層が順に積層された光導波路であって、光導波路の中間部における第2のクラッド層の厚さが、光導波路の少なくとも一方の端部における第2のクラッド層の厚さより厚いことを特徴とする。前記光導波路の中間部におけるコアパターンは、該中間部において第2のクラッド層の厚さを容易に制御する観点から、ダミーコアを含むことが好ましい。
本発明の光導波路の例を図1(f)、図4(a)及び(b)に示す。高屈折率であるコア層形成用樹脂からなるコアパターン6と、低屈折率であるクラッド層形成用樹脂からなるクラッド層(第1のクラッド層2および第2のクラッド層7)とで構成されている。コアパターン6は、コア層形成用樹脂からなるコア層に後述のようにネガマスクパターン5を通して活性光線を画像状に照射された後、現像工程を経て、パターン状に形成される。また、本発明の光導波路の中間部におけるコアパターンは、図4(a)に示すように、光伝送路として機能させるコア部4とともに、光伝送路として使用されないダミーコア9を含むことが好ましい。
The optical waveguide of the present invention is an optical waveguide in which a first cladding layer, a core pattern, and a second cladding layer are laminated in order, and the thickness of the second cladding layer in the intermediate portion of the optical waveguide It is characterized by being thicker than the thickness of the second cladding layer at at least one end of the waveguide. The core pattern in the intermediate portion of the optical waveguide preferably includes a dummy core from the viewpoint of easily controlling the thickness of the second cladding layer in the intermediate portion.
Examples of the optical waveguide of the present invention are shown in FIGS. 1 (f), 4 (a) and 4 (b). A core pattern 6 made of a core layer forming resin having a high refractive index and a clad layer made of a low refractive index clad layer forming resin (the
本発明の光導波路は、少なくとも一方の端部と中間部とにおける第2のクラッド層の厚さが、上記の関係を充足していればよいが、中間部での強度(剛性)を高める観点から、図4(b)に示すように、光導波路の中間部における第2のクラッド層の厚さが、両端部における第2のクラッド層の厚さより厚いことが好ましい。一方、光導波路の少なくとも一方の端部を薄くし柔軟性を持たせた構造とすることで、光導波路端部にコネクタ等を接続するときのハンドリング性が向上する。さらに、コネクタ接続部では、光結合損失低減のため、光導波路の膜厚を高精度に制御がする必要があるが、膜厚が薄い方が精度を確保しやすい利点がある。これらの観点から、光導波路の両端部における第2のクラッド層の厚さが中間部における第2のクラッド層の厚さより薄いことが好ましい。
本発明の光導波路は、少なくとも一方の端部における第2のクラッド層の最小厚さが、中間部における第2のクラッド層の厚さに対して10〜80%の範囲にあることが好ましく、20〜70%の範囲にあることがより好ましい。端部での第2のクラッド層の最小厚さが上記の範囲であれば、光損失を抑制しつつ、中間部での剛性および少なくとも一方の端部での柔軟性を向上させることができる。
なお、本発明における端部及び中間部とは、光導波路の形態により一概には決められないが、光導波路の端から導波方向に向って、光導波路全長に対して好ましくは1〜40%の範囲内にあるいずれかの部分に端部と中間部との境界が設けられる。中間部にダミーコアを含む場合には、中間部とは、ダミーコアの端から導波方向に向って他方の端までの長さに相当する部分をいい、端部は中間部以外の部分をいう。
また、本発明において、第2のクラッド層の厚さとは、特に断りがない限り、コアパターンの上面と第2のクラッド層との境界から第2のクラッド層の上面までの値であり、後述する一般式(I)及び図5におけるHocで示される。
In the optical waveguide of the present invention, the thickness of the second clad layer at least at one end and the intermediate portion only needs to satisfy the above relationship, but the viewpoint of increasing the strength (rigidity) at the intermediate portion. Therefore, as shown in FIG. 4B, it is preferable that the thickness of the second cladding layer in the intermediate portion of the optical waveguide is thicker than the thickness of the second cladding layer at both ends. On the other hand, handling at the time of connecting a connector or the like to the end portion of the optical waveguide is improved by making the end portion of the optical waveguide thin and flexible. Furthermore, in the connector connecting portion, it is necessary to control the film thickness of the optical waveguide with high accuracy in order to reduce the optical coupling loss. However, the thinner the film thickness, the easier it is to ensure the accuracy. From these viewpoints, it is preferable that the thickness of the second cladding layer at both ends of the optical waveguide is thinner than the thickness of the second cladding layer at the intermediate portion.
In the optical waveguide of the present invention, the minimum thickness of the second cladding layer at at least one end is preferably in the range of 10 to 80% with respect to the thickness of the second cladding layer in the intermediate portion, More preferably, it is in the range of 20 to 70%. If the minimum thickness of the second cladding layer at the end is within the above range, the rigidity at the intermediate portion and the flexibility at at least one end can be improved while suppressing optical loss.
Note that the end portion and the intermediate portion in the present invention are not generally determined depending on the form of the optical waveguide, but preferably 1 to 40% of the entire length of the optical waveguide from the end of the optical waveguide toward the waveguide direction. A boundary between the end portion and the intermediate portion is provided at any portion within the range. When the intermediate part includes a dummy core, the intermediate part means a part corresponding to the length from the end of the dummy core to the other end in the waveguide direction, and the end part means a part other than the intermediate part.
In the present invention, the thickness of the second clad layer is a value from the boundary between the upper surface of the core pattern and the second clad layer to the upper surface of the second clad layer unless otherwise specified. The general formula (I) and H oc in FIG.
本発明で用いるクラッド層形成用樹脂としては、コア層より低屈折率で、光又は熱により硬化する樹脂組成物であれば特に限定されず、熱硬化性樹脂組成物や感光性樹脂組成物を使用することができる。
より好適には、クラッド層形成用樹脂が、(A)ベースポリマー、(B)光重合性化合物、及び(C)光重合開始剤を含有する樹脂組成物により構成されることが好ましい。
The clad layer forming resin used in the present invention is not particularly limited as long as it is a resin composition that has a lower refractive index than the core layer and is cured by light or heat, and includes a thermosetting resin composition and a photosensitive resin composition. Can be used.
More preferably, the clad layer forming resin is preferably composed of a resin composition containing (A) a base polymer, (B) a photopolymerizable compound, and (C) a photopolymerization initiator.
ここで用いる(A)ベースポリマーはクラッド層を形成し、該クラッド層の強度を確保するためのものであり、該目的を達成し得るものであれば特に限定されず、フェノキシ樹脂、エポキシ樹脂、(メタ)アクリル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリエーテルアミド、ポリエーテルイミド、ポリエーテルスルホン等、あるいはこれらの誘導体などが挙げられる。これらのベースポリマーは1種単独でも、また2種以上を混合して用いてもよい。
上記で例示したベースポリマーのうち、耐熱性が高いとの観点から、主鎖に芳香族骨格を有することが好ましく、特にフェノキシ樹脂が好ましい。
また、3次元架橋し、耐熱性を向上できるとの観点からは、エポキシ樹脂、特に室温で固形のエポキシ樹脂が好ましい。さらに、後に詳述する(B)光重合性化合物との相溶性が、クラッド層形成用樹脂フィルムの透明性を確保するために重要であるが、この点からは上記フェノキシ樹脂及び(メタ)アクリル樹脂が好ましい。なお、ここで(メタ)アクリル樹脂とは、アクリル樹脂及びメタクリル樹脂を意味するものである。
The (A) base polymer used here is for forming a clad layer and ensuring the strength of the clad layer, and is not particularly limited as long as the object can be achieved, phenoxy resin, epoxy resin, (Meth) acrylic resin, polycarbonate resin, polyarylate resin, polyether amide, polyether imide, polyether sulfone, etc., or derivatives thereof. These base polymers may be used alone or in combination of two or more.
Of the base polymers exemplified above, from the viewpoint of high heat resistance, the main chain preferably has an aromatic skeleton, and particularly preferably a phenoxy resin.
From the viewpoint of three-dimensional crosslinking and improving heat resistance, an epoxy resin, particularly an epoxy resin that is solid at room temperature is preferable. Further, compatibility with the photopolymerizable compound (B) described in detail later is important for ensuring the transparency of the resin film for forming the cladding layer. From this point, the phenoxy resin and the (meth) acrylic resin are used. Resins are preferred. Here, (meth) acrylic resin means acrylic resin and methacrylic resin.
フェノキシ樹脂の中でも、ビスフェノールA又はビスフェノールA型エポキシ化合物若しくはそれらの誘導体、及びビスフェノールF又はビスフェノールF型エポキシ化合物若しくはそれらの誘導体を共重合成分の構成単位として含むものは、耐熱性、密着性及び溶解性に優れるため好ましい。ビスフェノールA又はビスフェノールA型エポキシ化合物の誘導体としては、テトラブロモビスフェノールA、テトラブロモビスフェノールA型エポキシ化合物等が好適に挙げられる。また、ビスフェノールF又はビスフェノールF型エポキシ化合物の誘導体としては、テトラブロモビスフェノールF、テトラブロモビスフェノールF型エポキシ化合物等が好適に挙げられる。ビスフェノールA/ビスフェノールF共重合型フェノキシ樹脂の具体例としては、東都化成(株)製「フェノトートYP−70」(商品名)が挙げられる。 Among phenoxy resins, those containing bisphenol A or a bisphenol A type epoxy compound or a derivative thereof, and bisphenol F or a bisphenol F type epoxy compound or a derivative thereof as a constituent unit of a copolymer component are heat resistant, adhesive and soluble. It is preferable because of its excellent properties. Preferred examples of the bisphenol A or bisphenol A type epoxy compound include tetrabromobisphenol A and tetrabromobisphenol A type epoxy compounds. Moreover, as a derivative of bisphenol F or a bisphenol F-type epoxy compound, tetrabromobisphenol F, a tetrabromobisphenol F-type epoxy compound, etc. are mentioned suitably. Specific examples of the bisphenol A / bisphenol F copolymer type phenoxy resin include “Phenotote YP-70” (trade name) manufactured by Toto Kasei Co., Ltd.
室温で固形のエポキシ樹脂としては、例えば、東都化成(株)製「エポトートYD−7020、エポトートYD−7019、エポトートYD−7017」(いずれも商品名)、ジャパンエポキシレジン(株)製「エピコート1010、エピコート1009、エピコート1008」(いずれも商品名)などのビスフェノールA型エポキシ樹脂が挙げられる。 Examples of the epoxy resin that is solid at room temperature include “Epototo YD-7020, Epototo YD-7019, Epototo YD-7007” (all trade names) manufactured by Toto Kasei Co., Ltd., and “Epicoat 1010” manufactured by Japan Epoxy Resin Co. Bisphenol A type epoxy resin such as “Epicoat 1009, Epicoat 1008” (both trade names).
(A)ベースポリマーの分子量については、フィルム形成性の点から、数平均分子量で5,000以上であることが好ましく、さらに10,000以上が好ましく、特に30,000以上であることが好ましい。数平均分子量の上限については、特に制限はないが、(B)光重合性化合物との相溶性や露光現像性の観点から、1,000,000以下であることが好ましく、さらには500,000以下、特には200,000以下であることが好ましい。なお、本発明における数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレン換算した値である。 (A) The molecular weight of the base polymer is preferably 5,000 or more in terms of number average molecular weight, more preferably 10,000 or more, and particularly preferably 30,000 or more, from the viewpoint of film formability. Although there is no restriction | limiting in particular about the upper limit of a number average molecular weight, From a compatible viewpoint with (B) photopolymerizable compound and exposure developability, it is preferable that it is 1,000,000 or less, Furthermore, 500,000 Hereinafter, it is particularly preferably 200,000 or less. The number average molecular weight in the present invention is a value measured by gel permeation chromatography (GPC) and converted to standard polystyrene.
(A)ベースポリマーの配合量は、(A)成分及び(B)成分の総量に対して、10〜80質量%とすることが好ましい。この配合量が10質量%以上であると、光導波路形成に必要な50〜500μm程度の厚膜フィルムの形成が容易であるという利点があり、一方、80質量%以下であると、光硬化反応が十分に進行する。以上の観点から、(A)ベースポリマーの配合量は、20〜70質量%とすることがさらに好ましい。 (A) It is preferable that the compounding quantity of a base polymer shall be 10-80 mass% with respect to the total amount of (A) component and (B) component. When the blending amount is 10% by mass or more, there is an advantage that it is easy to form a thick film having a thickness of about 50 to 500 μm necessary for forming the optical waveguide. On the other hand, when the blending amount is 80% by mass or less, the photocuring reaction is performed. Progresses sufficiently. From the above viewpoint, the blending amount of (A) the base polymer is more preferably 20 to 70% by mass.
次に、(B)光重合性化合物としては、紫外線等の光の照射によって重合するものであれば特に限定されず、分子内に2つ以上のエポキシ基を有する化合物や分子内にエチレン性不飽和基を有する化合物などが挙げられる。 Next, (B) the photopolymerizable compound is not particularly limited as long as it is polymerized by irradiation with light such as ultraviolet rays, and a compound having two or more epoxy groups in the molecule or an ethylenic non-polymer in the molecule. Examples thereof include compounds having a saturated group.
分子内に2つ以上のエポキシ基を有する化合物の具体例としては、ビスフェノールA型エポキシ樹脂、テトラブロモビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ナフタレン型エポキシ樹脂等の2官能芳香族グリシジルエーテル;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ジシクロペンタジエン−フェノール型エポキシ樹脂、テトラフェニロールエタン型エポキシ樹脂等の多官能芳香族グリシジルエーテル;ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ネオペンチルグリコール型エポキシ樹脂、ヘキサンジオール型エポキシ樹脂等の2官能脂肪族グリシジルエーテル;水添ビスフェノールA型エポキシ樹脂等の2官能脂環式グリシジルエーテル;トリメチロールプロパン型エポキシ樹脂、ソルビトール型エポキシ樹脂、グリセリン型エポキシ樹脂等の多官能脂肪族グリシジルエーテル;フタル酸ジグリシジルエステル等の2官能芳香族グリシジルエステル;テトラヒドロフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル等の2官能脂環式グリシジルエステル;N,N−ジグリシジルアニリン、N,N−ジグリシジルトリフルオロメチルアニリン等の2官能芳香族グリシジルアミン;N,N,N’,N’−テトラグリシジル−4,4−ジアミノジフェニルメタン、1,3−ビス(N,N−グリシジルアミノメチル)シクロヘキサン、N,N,O−トリグリシジル−p−アミノフェノール等の多官能芳香族グリシジルアミン;アリサイクリックジエポキシアセタール、アリサイクリックジエポキシアジペート、アリサイクリックジエポキシカルボキシレート、ビニルシクロヘキセンジオキシド等の2官能脂環式エポキシ樹脂;ジグリシジルヒダントイン等の2官能複素環式エポキシ樹脂;トリグリシジルイソシアヌレート等の多官能複素環式エポキシ樹脂;オルガノポリシロキサン型エポキシ樹脂等の2官能又は多官能ケイ素含有エポキシ樹脂などが挙げられる。 Specific examples of compounds having two or more epoxy groups in the molecule include bisphenol A type epoxy resins, tetrabromobisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol AD type epoxy resins, naphthalene type epoxy resins, etc. Bifunctional aromatic glycidyl ether; phenol novolac type epoxy resin, cresol novolac type epoxy resin, dicyclopentadiene-phenol type epoxy resin, tetraphenylol ethane type epoxy resin, etc. polyfunctional aromatic glycidyl ether; polyethylene glycol type epoxy resin, Bifunctional aliphatic glycidyl ether such as polypropylene glycol type epoxy resin, neopentyl glycol type epoxy resin, hexanediol type epoxy resin; hydrogenated bisphenol A type epoxy Bifunctional alicyclic glycidyl ethers such as resins; polyfunctional aliphatic glycidyl ethers such as trimethylolpropane type epoxy resins, sorbitol type epoxy resins and glycerin type epoxy resins; bifunctional aromatic glycidyl esters such as phthalic acid diglycidyl esters; Bifunctional alicyclic glycidyl esters such as tetrahydrophthalic acid diglycidyl ester and hexahydrophthalic acid diglycidyl ester; bifunctional aromatic glycidyl amines such as N, N-diglycidylaniline and N, N-diglycidyltrifluoromethylaniline N, N, N ′, N′-tetraglycidyl-4,4-diaminodiphenylmethane, 1,3-bis (N, N-glycidylaminomethyl) cyclohexane, N, N, O-triglycidyl-p-aminophenol Polyfunctional aromatic glycidi such as Amines; bifunctional alicyclic epoxy resins such as alicyclic diepoxy acetals, alicyclic diepoxy adipates, alicyclic diepoxy carboxylates, vinylcyclohexene dioxide; bifunctional heterocyclic epoxy resins such as diglycidyl hydantoin A polyfunctional heterocyclic epoxy resin such as triglycidyl isocyanurate; a bifunctional or polyfunctional silicon-containing epoxy resin such as an organopolysiloxane type epoxy resin;
これらの分子内に2つ以上のエポキシ基を有する化合物は、通常その分子量が、100〜2000程度であり、さらに好ましくは150〜1000程度であり、室温で液状のものが好適に用いられる。またこれらの化合物は、単独または2種類以上組み合わせて使用することができ、さらにその他の光重合性化合物と組み合わせて使用することもできる。なお、本発明における光重合性化合物の分子量は、GPC法又は質量分析法にて測定できる。 These compounds having two or more epoxy groups in the molecule usually have a molecular weight of about 100 to 2,000, more preferably about 150 to 1,000, and those that are liquid at room temperature are suitably used. Moreover, these compounds can be used individually or in combination of 2 or more types, Furthermore, it can also be used in combination with another photopolymerizable compound. In addition, the molecular weight of the photopolymerizable compound in the present invention can be measured by GPC method or mass spectrometry.
また、分子内にエチレン性不飽和基を有する化合物の具体例としては、(メタ)アクリレート、ハロゲン化ビニリデン、ビニルエーテル、ビニルピリジン、ビニルフェノール等が挙げられるが、これらのうち透明性と耐熱性の観点から、(メタ)アクリレートが好ましく、1官能性のもの、2官能性のもの、3官能性以上のもののいずれも用いることができる。 Specific examples of the compound having an ethylenically unsaturated group in the molecule include (meth) acrylate, vinylidene halide, vinyl ether, vinyl pyridine, vinyl phenol, etc. Of these, transparency and heat resistance are included. From the viewpoint, (meth) acrylate is preferable, and any of monofunctional, bifunctional, trifunctional or higher can be used.
1官能性(メタ)アクリレートとしては、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、ラウリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、2−(メタ)アクリロイロキシエチルコハク酸、パラクミルフェノキシエチレングリコール(メタ)アクリレート、2−テトラヒドロピラニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ベンジル(メタ)アクリレート等がある。 Monofunctional (meth) acrylates include methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, lauryl (meth) acrylate, isostearyl (meth) acrylate, and 2- (meth) acryloyloxyethyl succinic acid. , Paracumylphenoxyethylene glycol (meth) acrylate, 2-tetrahydropyranyl (meth) acrylate, isobornyl (meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate Etc.
また、2官能性(メタ)アクリレートとしては、エトキシ化2−メチル−1,3−プロパンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−へキサンジオールジ(メタ)アクリレート、2−メチル−1,8−オクタンジオールジアクリレート、1,9−ノナンジオールジ(メタ)アクリレート、1,10−ノナンジオールジ(メタ)アクリレート、エトキシ化ポリプロピレングリコールジ(メタ)アクリレート、プロポキシ化エトキシ化ビスフェノールAジアクリレート、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレート、トリシクロデカンジ(メタ)アクリレート、エトキシ化シクロヘキサンジメタノールジ(メタ)アクリレート、2−ヒドロキシ−1−アクリロキシ−3−メタクリロキシプロパン、2−ヒドロキシ−1,3−ジメタクリロキシプロパン、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン、9,9−ビス[3−フェニル−4−アクリロイルポリオキシエトキシ)フルオレン、ビスフェノールA型,フェノールノボラック型,クレゾールノボラック型,及びグリシジルエーテル型のエポキシ(メタ)アクリレート等がある。 Moreover, as bifunctional (meth) acrylate, ethoxylated 2-methyl-1,3-propanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) Acrylate, 2-methyl-1,8-octanediol diacrylate, 1,9-nonanediol di (meth) acrylate, 1,10-nonanediol di (meth) acrylate, ethoxylated polypropylene glycol di (meth) acrylate, propoxy Ethoxylated bisphenol A diacrylate, ethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol Di (meth) acrylate, ethoxylated bisphenol A di (meth) acrylate, tricyclodecane di (meth) acrylate, ethoxylated cyclohexanedimethanol di (meth) acrylate, 2-hydroxy-1-acryloxy-3-methacryloxypropane, 2-hydroxy-1,3-dimethacryloxypropane, 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene, 9,9-bis [3-phenyl-4-acryloylpolyoxyethoxy) fluorene Bisphenol A type, phenol novolak type, cresol novolak type, glycidyl ether type epoxy (meth) acrylate, and the like.
さらに、3官能以上の(メタ)アクリレートとしては、エトキシ化イソシアヌル酸トリ(メタ)アクリレート、エトキシ化グリセリントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、エトキシ化トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、エトキシ化ペンタエリスリトールテトラ(メタ)アクリレート、プロポキシ化ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、カプロラクトン変性ジトリメチロールプロパンテトラアクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等がある。これらは単独で又は2種類以上を組み合わせて使用することができる。 Furthermore, as tri- or more functional (meth) acrylates, ethoxylated isocyanuric acid tri (meth) acrylate, ethoxylated glycerin tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, ethoxylated trimethylolpropane tri (meth) Acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, ethoxylated pentaerythritol tetra (meth) acrylate, propoxylated pentaerythritol tetra (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, caprolactone modified ditri Examples include methylolpropane tetraacrylate and dipentaerythritol hexa (meth) acrylate. These can be used alone or in combination of two or more.
なお、ここで(メタ)アクリレートとは、アクリレート及びメタクリレートを意味する。前記(B)光重合性化合物の配合量は、(A)成分及び(B)成分の総量に対して、20〜90質量%とすることが好ましい。この配合量が、20質量%以上であると、ベースポリマーを絡み込んで硬化させることが容易にでき、一方、90質量%以下であると、十分な厚さのクラッド層を容易に形成することできる。以上の観点から、(B)光重合性化合物の配合量は30〜80質量%とすることがさらに好ましい。 Here, (meth) acrylate means acrylate and methacrylate. The blending amount of the (B) photopolymerizable compound is preferably 20 to 90% by mass with respect to the total amount of the component (A) and the component (B). When the blending amount is 20% by mass or more, the base polymer can be easily entangled and cured, and when it is 90% by mass or less, a sufficiently thick clad layer can be easily formed. it can. From the above viewpoint, the blending amount of the photopolymerizable compound (B) is more preferably 30 to 80% by mass.
次に(C)成分の光重合開始剤としては、特に制限はなく、例えばエポキシ化合物の開始剤として、p−メトキシベンゼンジアゾニウムヘキサフルオロホスフェートなどのアリールジアゾニウム塩;ジフェニルヨードニウムヘキサフロロホスホニウム塩、ジフェニルヨードニウムヘキサフロロアンチモネート塩などのジアリールヨードニウム塩;トリフェニルスルホニウムヘキサフロロホスホニウム塩、トリフェニルスルホニウムヘキサフロロアンチモネート塩、ジフェニル−4−チオフェノキシフェニルスルホニウムヘキサフロロアンチモネート塩、ジフェニル−4−チオフェノキシフェニルスルホニウムヘキサフロロアンチモネート塩、ジフェニル−4−チオフェノキシフェニルスルホニウムペンタフロロヒドロキシアンチモネート塩などのトリアリールスルホニウム塩;トリフェニルセレノニウムヘキサフロロホスホニウム塩、トリフェニルセレノニウムホウフッ化塩、トリフェニルセレノニウムヘキサフロロアンチモネート塩などのトリアリルセレノニウム塩;ジメチルフェナシルスルホニウムヘキサフロロアンチモネート塩、ジエチルフェナシルスルホニウムヘキサフロロアンチモネート塩などのジアルキルフェナジルスルホニウム塩;4−ヒドロキシフェニルジメチルスルホニウムヘキサフロロアンチモネート塩、4−ヒドロキシフェニルベンジルメチルスルホニウムヘキサフロロアンチモネートなどのジアルキル−4−ヒドロキシフェニルスルホニウム塩;α−ヒドロキシメチルベンゾインスルホン酸エステル、N−ヒドロキシイミドスルホネート、α−スルホニロキシケトン、β−スルホニロキシケトンなどのスルホン酸エステルなどが挙げられる。 Next, there is no restriction | limiting in particular as a photoinitiator of (C) component, For example, as an initiator of an epoxy compound, aryl diazonium salts, such as p-methoxybenzenediazonium hexafluorophosphate; diphenyliodonium hexafluorophosphonium salt, diphenyliodonium Diaryl iodonium salts such as hexafluoroantimonate salt; triphenylsulfonium hexafluorophosphonium salt, triphenylsulfonium hexafluoroantimonate salt, diphenyl-4-thiophenoxyphenylsulfonium hexafluoroantimonate salt, diphenyl-4-thiophenoxyphenylsulfonium Hexafluoroantimonate salt, diphenyl-4-thiophenoxyphenylsulfonium pentafluorohydroxyantimonate salt A triarylsulfonium salt of triarylselenonium salt such as triphenylselenonium hexafluorophosphonium salt, triphenylselenonium borofluoride salt, triphenylselenonium hexafluoroantimonate salt; dimethylphenacylsulfonium hexafluoroantimonate salt; Dialkylphenazylsulfonium salts such as diethylphenacylsulfonium hexafluoroantimonate; dialkyl-4-hydroxyphenylsulfonium salts such as 4-hydroxyphenyldimethylsulfonium hexafluoroantimonate, 4-hydroxyphenylbenzylmethylsulfonium hexafluoroantimonate Α-hydroxymethylbenzoin sulfonate ester, N-hydroxyimide sulfonate, α-sulfonyloxy Ketones, such as sulfonic acid esters, such as β- sulfo Niro carboxymethyl ketone.
また、分子内にエチレン性不飽和基を有する化合物の開始剤としては、ベンゾフェノン、N,N’−テトラメチル−4,4’−ジアミノベンゾフェノン(ミヒラーケトン)、N,N’−テトラエチル−4,4’−ジアミノベンゾフェノン、4−メトキシ−4’−ジメチルアミノベンゾフェノン、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタン−1−オン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン、1,2−メチル−1−[4−(メチルチオ)フェニル]−2−モルフォリノプロパン−1−オン等の芳香族ケトン;2−エチルアントラキノン、フェナントレンキノン、2−tert−ブチルアントラキノン、オクタメチルアントラキノン、1,2−ベンズアントラキノン、2,3−ベンズアントラキノン、2−フェニルアントラキノン、2,3−ジフェニルアントラキノン、1−クロロアントラキノン、2−メチルアントラキノン、1,4−ナフトキノン、9,10−フェナントラキノン、2−メチル1,4−ナフトキノン、2,3−ジメチルアントラキノン等のキノン類;ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインフェニルエーテル等のベンゾインエーテル化合物;ベンゾイン、メチルベンゾイン、エチルベンゾイン等のベンゾイン化合物;ベンジルジメチルケタール等のベンジル誘導体;2−(o−クロロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−クロロフェニル)−4,5−ジ(メトキシフェニル)イミダゾール二量体、2−(o−フルオロフェニル)−4,5−ジフェニルイミダゾール二量体、2−(o−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体、2−(p−メトキシフェニル)−4,5−ジフェニルイミダゾール二量体等の2,4,5−トリアリールイミダゾール二量体;ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド、ビス(2,6−ジメトキシベンゾイル)−2,4,4−トリメチルペンチルフォスフィンオキサイド、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド等のフォスフィンオキサイド類;9−フェニルアクリジン、1,7−ビス(9,9’−アクリジニル)ヘプタン等のアクリジン誘導体;N−フェニルグリシン、N−フェニルグリシン誘導体、クマリン系化合物などが挙げられる。また、2,4,5−トリアリールイミダゾール二量体において、2つの2,4,5−トリアリールイミダゾールのアリール基の置換基は同一で対称な化合物を与えてもよいし、相違して非対称な化合物を与えてもよい。また、ジエチルチオキサントンとジメチルアミノ安息香酸の組み合わせのように、チオキサントン系化合物と3級アミン化合物とを組み合わせてもよい。なお、コア層及びクラッド層の透明性を向上させる観点からは、上記化合物のうち、芳香族ケトン及びフォスフィンオキサイド類が好ましい。これらの(C)光重合開始剤は、単独で又は2種類以上組み合わせて用いることができる。 Moreover, as an initiator of the compound having an ethylenically unsaturated group in the molecule, benzophenone, N, N′-tetramethyl-4,4′-diaminobenzophenone (Michler ketone), N, N′-tetraethyl-4,4 '-Diaminobenzophenone, 4-methoxy-4'-dimethylaminobenzophenone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one, 2,2-dimethoxy-1,2 -Diphenylethane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy- 2-Methyl-1-propan-1-one, 1,2-methyl-1- [4- (methylthio) phenyl] -2- Aromatic ketones such as ruphorinopropan-1-one; 2-ethylanthraquinone, phenanthrenequinone, 2-tert-butylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-benzanthraquinone, 2-phenylanthraquinone 2,3-diphenylanthraquinone, 1-chloroanthraquinone, 2-methylanthraquinone, 1,4-naphthoquinone, 9,10-phenanthraquinone, 2-methyl-1,4-naphthoquinone, 2,3-dimethylanthraquinone, etc. Quinones; benzoin ether compounds such as benzoin methyl ether, benzoin ethyl ether, and benzoin phenyl ether; benzoin compounds such as benzoin, methyl benzoin, and ethyl benzoin; 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- (o-fluorophenyl) ) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole dimer, etc. 2,4,5-triarylimidazole dimer; bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine Phosphine oxides such as oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide; Examples include acridine derivatives such as 9-phenylacridine and 1,7-bis (9,9'-acridinyl) heptane; N-phenylglycine, N-phenylglycine derivatives, and coumarin compounds. In addition, in the 2,4,5-triarylimidazole dimer, the aryl group substituents of two 2,4,5-triarylimidazoles may give the same and symmetric compounds, or differently asymmetric Such compounds may be provided. Moreover, you may combine a thioxanthone type compound and a tertiary amine compound like the combination of diethyl thioxanthone and dimethylaminobenzoic acid. Of these compounds, aromatic ketones and phosphine oxides are preferred from the viewpoint of improving the transparency of the core layer and the cladding layer. These (C) photopolymerization initiators can be used alone or in combination of two or more.
(C)光重合開始剤の配合量は、(A)成分及び(B)成分の総量100質量部に対して、0.1〜10質量部とすることが好ましい。0.1質量部以上であると、光感度が十分であり、一方10質量部以下であれば、光導波路の表面のみが選択的に硬化し、硬化が不十分となることがなく、また、光重合開始剤自身の吸収により光伝搬損失が増大することもなく好適である。以上の観点から、(C)光重合開始剤の配合量は、1〜5質量部とすることがさらに好ましい。 (C) It is preferable that the compounding quantity of a photoinitiator shall be 0.1-10 mass parts with respect to 100 mass parts of total amounts of (A) component and (B) component. If it is 0.1 parts by mass or more, the photosensitivity is sufficient, while if it is 10 parts by mass or less, only the surface of the optical waveguide is selectively cured, the curing does not become insufficient, It is preferable that light propagation loss does not increase due to absorption of the photopolymerization initiator itself. From the above viewpoint, the blending amount of (C) the photopolymerization initiator is more preferably 1 to 5 parts by mass.
また、このほかに必要に応じて、本発明のクラッド層形成用樹脂中には、酸化防止剤、黄変防止剤、紫外線吸収剤、可視光吸収剤、着色剤、可塑剤、安定剤、充填剤などのいわゆる添加剤を本発明の効果に悪影響を与えない割合で添加してもよい。 In addition to the above, the clad layer forming resin of the present invention contains an antioxidant, an anti-yellowing agent, an ultraviolet absorber, a visible light absorber, a colorant, a plasticizer, a stabilizer, and a filler as necessary. You may add what is called additives, such as an agent, in the ratio which does not have a bad influence on the effect of this invention.
本発明で使用するコア層形成用樹脂としては、コア層がクラッド層より高屈折率であるように設計され、活性光線によりコアパターンを形成し得る樹脂組成物を用いることができ、感光性樹脂組成物が好適である。具体的には、上記クラッド層形成用樹脂で用いたのと同様の樹脂組成物を用いることが好ましい。すなわち、前記(A)、(B)及び(C)成分を含有し、必要に応じて前記任意成分を含有する樹脂組成物である。 As the core layer forming resin used in the present invention, a resin composition that is designed so that the core layer has a higher refractive index than the cladding layer and can form a core pattern with actinic rays can be used. Compositions are preferred. Specifically, it is preferable to use the same resin composition as that used in the clad layer forming resin. That is, it is a resin composition containing the components (A), (B) and (C) and optionally containing the optional components.
本発明の光導波路を製造する方法としては、特に制限はないが、好ましくは下記(I)〜(IV)の工程を有する方法により製造することができる。
(I)第1のクラッド層を形成する工程
(II)第1のクラッド層上にコア層を形成する工程
(III)コア層をパターニングして光導波路のコアパターンを形成する工程
(IV)該コアパターン上に第2のクラッド層を形成してコアパターンを埋め込む工程
Although there is no restriction | limiting in particular as a method to manufacture the optical waveguide of this invention, Preferably it can manufacture by the method which has the process of following (I)-(IV).
(I) Step of forming a first cladding layer (II) Step of forming a core layer on the first cladding layer (III) Step of patterning the core layer to form a core pattern of an optical waveguide (IV) Forming a second cladding layer on the core pattern and embedding the core pattern
上記の製造方法では、クラッド層及びコア層の形成方法については特に制限はなく、スピンコート、コンマコート、ダイコートなどの塗布法を用いることもできるが、クラッド層形成用樹脂フィルム及びコア層形成用樹脂フィルムを用いて形成することが好ましい。このようなフィルムを用いることで、膜厚の制御が容易であるとともに、ハンドリング性に優れたものとなる。
また、(III)工程において、中間部におけるコアパターンがダミーコアを含むようにコアの数及び形状を調整することにより、中間部及び端部における第2のクラッド層の厚さを所望の厚さに制御することができる。
以下、図1を参照しつつ、工程ごとに詳細に記載する。
In the manufacturing method described above, the clad layer and core layer forming method is not particularly limited, and coating methods such as spin coating, comma coating, and die coating can be used, but the clad layer forming resin film and the core layer forming method can be used. It is preferable to form using a resin film. By using such a film, the film thickness can be easily controlled and the handleability is excellent.
Further, in the step (III), by adjusting the number and shape of the cores so that the core pattern in the intermediate portion includes the dummy core, the thickness of the second cladding layer in the intermediate portion and the end portion is set to a desired thickness. Can be controlled.
Hereinafter, it describes in detail for every process, referring FIG.
(I)工程
(I)工程は、第1のクラッド層を形成する工程である。ここでは、クラッド層形成用樹脂フィルムを用いることが好ましく、図1(a)に示すように、クラッド層形成用樹脂フィルムのクラッド層形成用樹脂を硬化して第1のクラッド層(下部クラッド層)2を形成する方法を用いることが好ましい。以下、本発明においては、第1のクラッド層(下部クラッド層)を形成するための樹脂フィルムを、第1のクラッド層形成用樹脂フィルムということがあり、後に詳述する第2のクラッド層(上部クラッド層)を形成するための樹脂フィルムを、第2のクラッド層形成用樹脂フィルムということがある。
ここで用いるクラッド層形成用樹脂フィルム10は、図2に示すように、基材フィルム11上にクラッド層形成用樹脂12を塗工したものであり、必要に応じて保護フィルム(セパレーター)13が積層された構造をなす。
なお、保護フィルムは、クラッド層形成用樹脂フィルムの製造に際し、クラッド層形成用樹脂フィルムの保護やロール状に製造する際の巻き取り性を向上させるなどの目的で設けられ、保護フィルムとしては、後述する基材フィルムとして例示されるものと同様なものが使用できる。なお、保護フィルムは、クラッド層形成用樹脂フィルムからの剥離を容易にするためコロナ処理等の接着処理は行っていないことが好ましく、必要に応じ離型処理や帯電防止処理がなされていてもよい。
(I) Step (I) Step is a step of forming a first cladding layer. Here, it is preferable to use a clad layer forming resin film. As shown in FIG. 1A, the clad layer forming resin film of the clad layer forming resin film is cured to form a first clad layer (lower clad layer). ) 2 is preferably used. Hereinafter, in the present invention, the resin film for forming the first clad layer (lower clad layer) may be referred to as a first clad layer forming resin film. The resin film for forming the (upper clad layer) may be referred to as a second clad layer forming resin film.
As shown in FIG. 2, the clad layer forming
In addition, the protective film is provided for the purpose of improving the winding property when manufacturing the clad layer forming resin film or in the form of a roll in the production of the clad layer forming resin film, The thing similar to what is illustrated as a base film mentioned later can be used. The protective film is preferably not subjected to an adhesive treatment such as a corona treatment in order to facilitate peeling from the clad layer forming resin film, and may be subjected to a release treatment or an antistatic treatment as necessary. .
基材フィルム11としては、クラッド層形成用樹脂12を塗工し、かつ後の光導波路製造工程の支持基材となるものであり、その材料については特に制限はないが、柔軟性、強靭性を有するとの観点から、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリフェニレンエーテル、ポリエーテルサルファイド、ポリフェニレンサルファイド、ポリアリレート、液晶ポリマー、ポリスルホン、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリアミドイミド、ポリイミド、アラミドなどが好適に挙げられる。
As the
これら基材フィルムの中でも、光導波路の製造に際して、製造可能な耐熱性、現像液耐性、クラッド層を硬化するための紫外線透過性、入手のしやすさの観点からポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル、ポリアミド、ポリフェニレンサルファイド、アラミドを基材フィルムに用いるのが好ましい。特に、光導波路製造時の耐熱性、低収縮率の観点からは、アラミド、ポリアミドフィルム、ポリエチレンナフタレートフィルム及びポリフェニレンサルファイドフィルムが、また、クラッド層の硬化のための紫外線透過性の観点からはポリエチレンテレフタレートフィルムが特に好ましい。
基材フィルムの表面は、クラッド層形成用樹脂12との接着性などを向上させるために、処理が施されていてもよく、例えば、酸化法や凹凸化法などの物理的又は化学的表面処理を挙げることができる。酸化法としては、例えばコロナ処理、クロム酸化処理、火炎処理、熱風処理、オゾン・紫外線処理法などが挙げられ、凹凸化法としては、例えばサンドブラスト法、溶剤処理法などが挙げられる。
Among these substrate films, in the production of optical waveguides, polyethylene terephthalate, polyethylene naphthalate, etc. from the viewpoint of heat resistance that can be produced, resistance to developer, ultraviolet transparency for curing the clad layer, and availability Polyester, polyamide, polyphenylene sulfide, and aramid are preferably used for the base film. In particular, aramid, polyamide film, polyethylene naphthalate film and polyphenylene sulfide film are used from the viewpoint of heat resistance and low shrinkage during the production of optical waveguides, and polyethylene is used from the viewpoint of ultraviolet transparency for curing the cladding layer. A terephthalate film is particularly preferred.
The surface of the base film may be treated in order to improve adhesion with the clad layer forming resin 12, for example, physical or chemical surface treatment such as an oxidation method or an unevenness method. Can be mentioned. Examples of the oxidation method include corona treatment, chromium oxidation treatment, flame treatment, hot air treatment, ozone / ultraviolet treatment method, and examples of the unevenness method include a sand blast method and a solvent treatment method.
上記(I)工程において、クラッド層形成用樹脂フィルムの基材フィルムの反対側に保護フィルム13を設けている場合(図2参照)には該保護フィルムを剥離後、クラッド層形成用樹脂フィルムを光(紫外線(UV)など)又は加熱により硬化し、第1のクラッド層(下部クラッド層)2を形成する。 In the step (I), when the protective film 13 is provided on the opposite side of the base film of the clad layer forming resin film (see FIG. 2), the protective film is peeled off, and then the clad layer forming resin film is removed. The first clad layer (lower clad layer) 2 is formed by curing with light (ultraviolet light (UV) or the like) or heating.
クラッド層形成用樹脂フィルムは(A)〜(C)成分を含有する樹脂組成物を溶媒に溶解して、前記基材フィルムに塗布し、溶媒を除去することにより容易に製造することができる。ここで用いる溶媒としては、該樹脂組成物を溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N−ジメチルアセトアミド、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、N−メチル−2−ピロリドン等の溶媒又はこれらの混合溶媒を用いることができる。樹脂溶液中の固形分濃度は30〜80質量%程度であることが好ましい。 The resin film for forming a clad layer can be easily produced by dissolving a resin composition containing the components (A) to (C) in a solvent, applying the resin composition to the base film, and removing the solvent. The solvent used here is not particularly limited as long as it can dissolve the resin composition. For example, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylacetamide, propylene glycol monomethyl ether, A solvent such as propylene glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone, or a mixed solvent thereof can be used. The solid content concentration in the resin solution is preferably about 30 to 80% by mass.
第1のクラッド層の厚さに関しては、乾燥後の厚さで、5〜500μmの範囲が好ましい。5μm以上であると、光の閉じ込めに必要なクラッド厚さが確保でき、500μm以下であると、膜厚を均一に制御することが容易である。以上の観点から、該クラッド層の厚さは、さらに10μm〜100μmの範囲であることが好ましい。 Regarding the thickness of the first cladding layer, the thickness after drying is preferably in the range of 5 to 500 μm. When the thickness is 5 μm or more, a clad thickness necessary for light confinement can be secured, and when the thickness is 500 μm or less, it is easy to control the film thickness uniformly. From the above viewpoint, the thickness of the cladding layer is preferably in the range of 10 μm to 100 μm.
また、最初に形成される第1のクラッド層(下部クラッド層)と、後述するコアパターンを埋め込むための第2のクラッド層(上部クラッド層)の厚さは、同一であっても異なってもよい。 Further, the first clad layer (lower clad layer) formed first and the second clad layer (upper clad layer) for embedding a core pattern described later may be the same or different. Good.
(II)工程
(II)工程は、第1のクラッド層上にコア層を形成する工程である。ここでは、前述のように、コア層形成用樹脂フィルムを用いることが好ましく、図1(b)に示すように、第1のクラッド層(下部クラッド層)2上にコア層形成用樹脂フィルムを積層してコア層3を形成することが好ましい。
ここで用いるコア層形成用樹脂フィルムとは、基材フィルム上にコア層形成用樹脂を塗工したもの、又はコア層形成用樹脂単独で構成されているものが挙げられるが、基材フィルム上にコア層形成用樹脂を形成したものを用いるほうが、取り扱いが容易で好ましい。より具体的には、図3に示すような構成のものが挙げられる。すなわち、基材フィルム21上にコア層形成用樹脂22を形成したものであり、コア層形成用樹脂フィルムの保護やロール状に製造する際の巻き取り性を向上させるなどの目的で、所望により基材フィルム21の反対側に保護フィルム23が設けられたものである。保護フィルムとしては、前記クラッド層形成用樹脂フィルムの基材フィルムとして例に挙げたものと同様なものが使用できる。
なお、保護フィルム及び基材フィルムは、コア層形成用樹脂フィルムからの剥離を容易にするためコロナ処理等の接着処理は行っていないことが好ましく、必要に応じ離型処理、帯電防止処理が施されていてもよい。
Step (II) Step (II) is a step of forming a core layer on the first cladding layer. Here, as described above, it is preferable to use the core layer forming resin film. As shown in FIG. 1B, the core layer forming resin film is provided on the first cladding layer (lower cladding layer) 2. It is preferable to form the
Examples of the core layer forming resin film used herein include those obtained by coating the core layer forming resin on the base film, or those composed of the core layer forming resin alone. It is preferable to use a material in which a core layer-forming resin is formed in order to facilitate handling. More specifically, a configuration as shown in FIG. That is, the core
The protective film and the base film are preferably not subjected to an adhesion treatment such as a corona treatment in order to facilitate peeling from the core layer forming resin film, and are subjected to a release treatment or an antistatic treatment as necessary. May be.
コア層形成用樹脂フィルム20の積層に際しては、密着性及び追従性の見地から、コア層形成用樹脂フィルムは減圧下で積層することが好ましい。また、ここでの加熱温度は50〜130℃とすることが好ましく、圧着圧力は、0.1〜1.0MPa(1〜10kgf/cm2)程度とすることが好ましいが、これらの条件には特に制限はない。
また、第1のクラッド層とコア層の間への気泡の混入を防ぐとの観点から、ロールラミネータを用いて積層することが好ましい。
When laminating the core layer-forming
Moreover, it is preferable to laminate | stack using a roll laminator from a viewpoint of preventing mixing of the bubble between a 1st clad layer and a core layer.
本発明で使用するコア層形成用樹脂フィルムは、コア層がクラッド層より高屈折率であるように設計され、活性光線によりコアパターンを形成し得る樹脂組成物を用いることができ、感光性樹脂組成物が好適である。具体的には、上記クラッド層形成用樹脂で用いたのと同様の樹脂組成物を用いることが好ましい。 The resin film for forming a core layer used in the present invention can use a resin composition that is designed so that the core layer has a higher refractive index than that of the cladding layer and can form a core pattern with actinic rays. Compositions are preferred. Specifically, it is preferable to use the same resin composition as that used in the clad layer forming resin.
コア層形成用樹脂フィルムは、(A)〜(C)成分を含有する樹脂組成物を溶媒に溶解して基材フィルムに塗布し、溶媒を除去することにより容易に製造することができる。ここで用いる溶媒としては、該樹脂組成物を溶解し得るものであれば特に限定されず、例えば、アセトン、メチルエチルケトン、メチルセロソルブ、エチルセロソルブ、トルエン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、シクロヘキサノン、N−メチル−2−ピロリドン等の溶媒又はこれらの混合溶媒を用いることができる。樹脂溶液中の固形分濃度は、通常30〜80質量%程度であることが好ましい。 The resin film for forming a core layer can be easily produced by dissolving a resin composition containing the components (A) to (C) in a solvent, applying the resin composition to a base film, and removing the solvent. The solvent used here is not particularly limited as long as it can dissolve the resin composition. For example, acetone, methyl ethyl ketone, methyl cellosolve, ethyl cellosolve, toluene, N, N-dimethylformamide, N, N-dimethyl A solvent such as acetamide, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, cyclohexanone, N-methyl-2-pyrrolidone, or a mixed solvent thereof can be used. The solid content concentration in the resin solution is usually preferably about 30 to 80% by mass.
コア層形成用樹脂フィルムの厚さについては特に限定されず、乾燥後のコア層の厚さに応じて適宜決定される。
本発明の光導波路は、コア層の厚さが通常は10〜100μmとなるように調整される。コア層の厚さが10μm以上であると、光導波路形成後の受発光素子又は光ファイバーとの結合において位置合わせトレランスが拡大できるという利点があり、100μm以下であると、光導波路形成後の受発光素子又は光ファイバーとの結合において、結合効率が向上するという利点がある。以上の観点から、コア層の厚さは、さらに30〜70μmの範囲であることが好ましい。
The thickness of the resin film for forming the core layer is not particularly limited, and is appropriately determined according to the thickness of the core layer after drying.
The optical waveguide of the present invention is adjusted so that the thickness of the core layer is usually 10 to 100 μm. When the thickness of the core layer is 10 μm or more, there is an advantage that the alignment tolerance can be increased in the coupling with the light emitting / receiving element or the optical fiber after the optical waveguide is formed, and when the thickness is 100 μm or less, the light receiving / emitting after the optical waveguide is formed. In coupling with an element or an optical fiber, there is an advantage that coupling efficiency is improved. From the above viewpoints, the thickness of the core layer is preferably in the range of 30 to 70 μm.
コア層形成用樹脂フィルムが、基材フィルム上にコア層形成用樹脂を塗工したものである場合は、その基材フィルム、コア層形成用樹脂フィルムがコア層形成用樹脂単独で構成されている場合は、コア層形成用樹脂フィルムの製造過程で用いる基材フィルムについて、その材料については特に限定されないが、後に剥離することが容易であり、かつ、耐熱性及び耐溶剤性を有するとの観点から、ポリエチレンテレフタレート等のポリエステル、ポリプロピレン、ポリエチレンなどが好適に挙げられる。
また、該基材フィルムの厚さは、5〜50μmであることが好ましい。5μm以上であると、支持体としての強度が得やすいという利点があり、50μm以下であると、パターン形成時のマスクとのギャップが小さくなり、より微細なパターンが形成できるという利点がある。以上の観点から、該基材フィルムの厚さは10〜40μmの範囲であることがより好ましく、15〜30μmであることが特に好ましい。
When the core layer forming resin film is obtained by coating the core layer forming resin on the base film, the base film and the core layer forming resin film are composed of the core layer forming resin alone. In the case of the base film used in the production process of the core layer forming resin film, the material is not particularly limited, but it is easy to peel off later and has heat resistance and solvent resistance. From the viewpoint, polyesters such as polyethylene terephthalate, polypropylene, polyethylene and the like are preferable.
Moreover, it is preferable that the thickness of this base film is 5-50 micrometers. When it is 5 μm or more, there is an advantage that the strength as a support is easily obtained, and when it is 50 μm or less, there is an advantage that a gap with the mask at the time of pattern formation becomes small and a finer pattern can be formed. From the above viewpoint, the thickness of the base film is more preferably in the range of 10 to 40 μm, and particularly preferably 15 to 30 μm.
また、露光用光線の透過率向上及びコアパターンの側壁荒れ低減のため、高透明タイプのフレキシブルな基材を用いるのが好ましい。高透明タイプの基材フィルムのヘイズ値は5%以下であることが好ましく、3%以下であることがより好ましく、2%以下であることが特に好ましい。なお、ヘイズ値はJIS K7105に準拠して測定したものであり、例えば、NDH−1001DP(日本電色工業(株)製)等の市販の濁度計などで測定可能である。このような基材フィルムとしては、東洋紡績(株)製、商品名「コスモシャインA1517」や「コスモシャインA4100」として入手可能である。
なお、上記基材フィルムは、剥離を容易とするため、離型処理、帯電防止処理等が施されていてもよい。
Moreover, it is preferable to use a highly transparent flexible base material in order to improve the transmittance of exposure light and reduce the side wall roughness of the core pattern. The haze value of the highly transparent base film is preferably 5% or less, more preferably 3% or less, and particularly preferably 2% or less. The haze value is measured in accordance with JIS K7105, and can be measured with a commercially available turbidimeter such as NDH-1001DP (manufactured by Nippon Denshoku Industries Co., Ltd.). Such a base film is available from Toyobo Co., Ltd. under the trade names “Cosmo Shine A1517” and “Cosmo Shine A4100”.
In addition, in order to make peeling easily, the said base film may be subjected to mold release treatment, antistatic treatment or the like.
(III)工程
(III)工程は、コア層をパターニングして光導波路のコアパターンを形成する工程である。より具体的には、図1(c)及び(d)に示すように、コア層3を露光現像し、光導波路のコアパターン6を形成する方法が好適である。
露光の方法としては、具体的には、フォトマスク(ネガマスクパターン)5を通して活性光線が画像状に照射される。活性光線の光源としては、例えば、カーボンアーク灯、水銀蒸気アーク灯、超高圧水銀灯、高圧水銀灯、キセノンランプ等の紫外線を有効に放射する公知の光源が挙げられる。また、他にも写真用フラッド電球、太陽ランプ等の可視光を有効に放射するものも用いることができる。
Step (III) Step (III) is a step of patterning the core layer to form the core pattern of the optical waveguide. More specifically, as shown in FIGS. 1C and 1D, a method of exposing and developing the
As an exposure method, specifically, an actinic ray is irradiated in an image form through a photomask (negative mask pattern) 5. Examples of the active light source include known light sources that effectively emit ultraviolet rays, such as carbon arc lamps, mercury vapor arc lamps, ultrahigh pressure mercury lamps, high pressure mercury lamps, and xenon lamps. In addition, those that effectively emit visible light, such as a photographic flood bulb and a solar lamp, can be used.
次いで、必要に応じ露光後加熱を行った後、コア層形成用樹脂フィルムの基材フィルムが残っている場合には基材フィルムを剥離し、ウエット現像、ドライ現像等で未露光部を除去して現像し、コアパターンを製造する。ウエット現像の場合は、有機溶剤、アルカリ性水溶液、水系現像液等のうち、樹脂フィルムの組成に対応した現像液を用いて、例えば、スプレー、揺動浸漬、ブラッシング、スクラッピング等の公知の方法により現像する。
現像液としては、有機溶剤、アルカリ性水溶液等の安全かつ安定であり、操作性が良好なものが好ましく用いられる。前記有機溶剤系現像液としては、例えば、1,1,1−トリクロロエタン、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、シクロヘキサノン、メチルイソブチルケトン、γ−ブチロラクトン等が挙げられる。これらの有機溶剤は、引火防止のため、1〜20質量%の範囲で水を添加してもよい。
Next, after the post-exposure heating as necessary, if the base film of the core layer forming resin film remains, the base film is peeled off, and the unexposed portion is removed by wet development, dry development, or the like. To develop a core pattern. In the case of wet development, among organic solvents, alkaline aqueous solutions, aqueous developers, etc., using a developer corresponding to the composition of the resin film, for example, by a known method such as spraying, rocking immersion, brushing, scraping, etc. develop.
As the developer, an organic solvent, an alkaline aqueous solution or the like that is safe and stable and has good operability is preferably used. Examples of the organic solvent developer include 1,1,1-trichloroethane, N-methylpyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, cyclohexanone, methyl isobutyl ketone, and γ-butyrolactone. It is done. These organic solvents may be added with water in the range of 1 to 20% by mass in order to prevent ignition.
上記アルカリ性水溶液の塩基としては、例えば、リチウム、ナトリウム又はカリウムの水酸化物等の水酸化アルカリ、リチウム、ナトリウム、カリウム若しくはアンモニウムの炭酸塩又は重炭酸塩等の炭酸アルカリ、リン酸カリウム、リン酸ナトリウム等のアルカリ金属リン酸塩、ピロリン酸ナトリウム、ピロリン酸カリウム等のアルカリ金属ピロリン酸塩などが用いられる。また、現像に用いるアルカリ性水溶液としては、例えば、0.1〜5質量%炭酸ナトリウムの希薄溶液、0.1〜5質量%炭酸カリウムの希薄溶液、0.1〜5質量%水酸化ナトリウムの希薄溶液、0.1〜5質量%四ホウ酸ナトリウムの希薄溶液等が好ましく挙げられる。また、現像に用いるアルカリ性水溶液のpHは9〜14の範囲とすることが好ましく、その温度は、感光性樹脂組成物の層の現像性に合わせて調節される。また、アルカリ性水溶液中には、表面活性剤、消泡剤、現像を促進させるための少量の有機溶剤等を混入させてもよい。 Examples of the base of the alkaline aqueous solution include alkali hydroxides such as lithium, sodium, or potassium hydroxide, alkali carbonates such as lithium, sodium, potassium, or ammonium carbonate or bicarbonate, potassium phosphate, and phosphoric acid. Alkali metal phosphates such as sodium and alkali metal pyrophosphates such as sodium pyrophosphate and potassium pyrophosphate are used. Examples of the alkaline aqueous solution used for development include a dilute solution of 0.1 to 5% by mass of sodium carbonate, a dilute solution of 0.1 to 5% by mass of potassium carbonate, and a dilute solution of 0.1 to 5% by mass of sodium hydroxide. Preferred examples include a solution and a dilute solution of 0.1 to 5% by mass sodium tetraborate. Moreover, it is preferable to make pH of the alkaline aqueous solution used for image development into the range of 9-14, and the temperature is adjusted according to the developability of the layer of the photosensitive resin composition. In the alkaline aqueous solution, a surfactant, an antifoaming agent, a small amount of an organic solvent for accelerating development, and the like may be mixed.
上記水系現像液としては、水又はアルカリ水溶液と一種以上の有機溶剤とからなる。ここでアルカリ物質としては、前記物質以外に、例えば、ホウ砂、メタケイ酸ナトリウム、水酸化テトラメチルアンモニウム、エタノールアミン、エチレンジアミン、ジエチレントリアミン、2ーアミノ−2−ヒドロキシメチル−1、3−プロパンジオール、1、3−ジアミノプロパノール−2、モルホリン等が挙げられる。現像液のpHは、レジストの現像が充分にできる範囲でできるだけ小さくすることが好ましく、pH8〜12とすることが好ましく、pH9〜10とすることがより好ましい。上記有機溶剤としては、例えば、三アセトンアルコール、アセトン、酢酸エチル、炭素数1〜4のアルコキシ基をもつアルコキシエタノール、エチルアルコール、イソプロピルアルコール、ブチルアルコール、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル等が挙げられる。これらは、単独で又は2種類以上を組み合わせて使用される。有機溶剤の濃度は、通常、2〜90質量%とすることが好ましく、その温度は、現像性にあわせて調整することができる。また、水系現像液中には、界面活性剤、消泡剤等の添加剤を少量混入することもできる。 The aqueous developer comprises water or an alkaline aqueous solution and one or more organic solvents. Examples of the alkaline substance include borax, sodium metasilicate, tetramethylammonium hydroxide, ethanolamine, ethylenediamine, diethylenetriamine, 2-amino-2-hydroxymethyl-1,3-propanediol, 1 , 3-diaminopropanol-2, morpholine and the like. The pH of the developer is preferably as low as possible within a range where the resist can be sufficiently developed, preferably pH 8-12, more preferably pH 9-10. Examples of the organic solvent include triacetone alcohol, acetone, ethyl acetate, alkoxyethanol having an alkoxy group having 1 to 4 carbon atoms, ethyl alcohol, isopropyl alcohol, butyl alcohol, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol mono And butyl ether. These are used alone or in combination of two or more. The concentration of the organic solvent is usually preferably 2 to 90% by mass, and the temperature can be adjusted according to the developability. Further, a small amount of additives such as a surfactant and an antifoaming agent can be mixed in the aqueous developer.
また、必要に応じて2種類以上の現像方法を併用してもよい。現像の方式としては、例えば、ディップ方式、バトル方式、高圧スプレー方式等のスプレー方式、ブラッシング、スラッピング等が挙げられる。
現像後の処理として、必要に応じて60〜250℃程度の加熱又は0.1〜1000mJ/cm2程度の露光を行うことによりコアパターンをさらに硬化して用いてもよい。
Moreover, you may use together 2 or more types of image development methods as needed. Examples of the development method include a dip method, a battle method, a spray method such as a high-pressure spray method, brushing, and slapping.
As the treatment after development, the core pattern may be further cured and used by heating at about 60 to 250 ° C. or exposure at about 0.1 to 1000 mJ / cm 2 as necessary.
上記(III)工程において、コアパターン6の数及び形状によって第2のクラッド層(上部クラッド層)の厚さを制御することができる。
すなわち、コアパターン6の上にクラッド層形成用樹脂フィルムを、好適には平板型真空加圧式ラミネータを用いて、加圧接着して積層する。その際に、上部クラッド層形成用樹脂が、コアパターンの体積に応じて、押し出されるように、厚さを増大する方向に変化する。例えば、図4(a)に光導波路を上面から見た透視図、図4(b)に断面図を示すが、中間部において、いわゆるダミーコア9を設けてコアの数を多くしたため、中間部においクラッド層形成用樹脂が両端部と比べて多く押し出される形で、第2のクラッド層の厚さが厚くなる。
このような構成をとることにより、中間部において第2のクラッド層が厚く、両端部において第2のクラッド層が薄い光導波路を得ることができる。このような光導波路は、中間部には剛性を付与することができ、両端部には柔軟性を付与することができ、ハンドリング性に優れたものとなる。
In the step (III), the thickness of the second cladding layer (upper cladding layer) can be controlled by the number and shape of the core patterns 6.
That is, a clad layer forming resin film is preferably laminated on the core pattern 6 by pressure adhesion using a flat plate type vacuum pressure laminator. At that time, the resin for forming the upper clad layer changes in the direction of increasing the thickness so as to be extruded according to the volume of the core pattern. For example, FIG. 4A shows a perspective view of the optical waveguide as viewed from above, and FIG. 4B shows a cross-sectional view. In the middle part, so-called dummy cores 9 are provided to increase the number of cores. The thickness of the second cladding layer is increased in such a manner that a larger amount of the cladding layer forming resin is extruded than both ends.
By adopting such a configuration, it is possible to obtain an optical waveguide in which the second cladding layer is thick at the intermediate portion and the second cladding layer is thin at both ends. Such an optical waveguide can impart rigidity to the intermediate portion and flexibility to both end portions, and has excellent handling properties.
すなわち、上記の方法を用いることで、第1のクラッド層(下部クラッド層)、複数のコアパターン及び第2のクラッド層(上部クラッド層)が順に積層された光導波路であって、中間部における第2のクラッド層の厚さが、少なくとも一方の端部における第2のクラッド層の厚さより厚いことを特徴とする本発明の光導波路を高い生産性で得ることができる。本発明の光導波路は、少なくとも一方の端部において、高い柔軟性を有し、任意の位置で柔軟性と剛性を発現できるフレキシブルな光導波路として有用である。なお、該光導波路は、電気配線板に積層することで、光電気複合配線板を作製可能であり、これにより、光配線と電気配線を一体化した高密度配線基板を作製できる。 That is, by using the above method, an optical waveguide in which a first cladding layer (lower cladding layer), a plurality of core patterns, and a second cladding layer (upper cladding layer) are sequentially stacked, The optical waveguide of the present invention can be obtained with high productivity, wherein the thickness of the second cladding layer is thicker than the thickness of the second cladding layer at at least one end. The optical waveguide of the present invention has high flexibility at at least one end, and is useful as a flexible optical waveguide that can exhibit flexibility and rigidity at an arbitrary position. The optical waveguide can be laminated on an electric wiring board to produce a photoelectric composite wiring board, whereby a high-density wiring board in which the optical wiring and the electric wiring are integrated can be produced.
以上のように、上部クラッド層の厚さは、コアの数(ダミーコアの数)及び形状によって制御することができるが、その他、コア層の厚さ、コア層の幅、コアピッチ、ダミーコアの長さ(領域長さ)、アレイ数、アレイピッチなどによって制御することができる。 As described above, the thickness of the upper cladding layer can be controlled by the number of cores (number of dummy cores) and the shape, but in addition, the thickness of the core layer, the width of the core layer, the core pitch, and the length of the dummy core It can be controlled by (region length), number of arrays, array pitch, and the like.
上述の制御は、より具体的には、下記一般式(I)によって、高い精度で制御することができる。
Toc=(((Wco×Nco×Hoc+(Pco−Wco)×(Nco−1)×(Hco+Hoc)+(Par−(Pco×Nco−Wco))×(Hco+Hoc))×Nar−(Par−(Pco×Nco−Wco))×(Hco+Hoc))+(L−Nar×Par)×(Hco+Hoc))/L ・・・(I)
More specifically, the above control can be controlled with high accuracy by the following general formula (I).
T oc = ((((W co × N co × H oc + (P co −W co ) × (N co −1) × (H co + H oc ) + (P ar − (P co × N co −W co )) × (H co + H oc )) × N ar − (P ar − (P co × N co −W co )) × (H co + H oc )) + (L−N ar × P ar ) × (H co + H oc )) / L (I)
ここで、Tocは第2のクラッド層形成用樹脂フィルムの厚さ(μm)、Pcoはコアのピッチ(μm)、Narはアレイ数、Ncoはコア数、Parはアレイピッチ(μm)、Hcoはコアの厚さ(μm)、Wcoはコア幅(μm)、Hocは第2のクラッド(上部クラッド)の厚さ(コア上面から第2のクラッド層上面までの厚さ)(μm)、Lは領域長さ(μm)、をそれぞれ表わす(図5及び図2参照)。 Here, Toc is the thickness (μm) of the second cladding layer forming resin film, P co is the core pitch (μm), N ar is the number of arrays, N co is the number of cores, P ar is the array pitch ( μm), H co is the thickness of the core (μm), W co is the core width (μm), and H oc is the thickness of the second cladding (upper cladding) (the thickness from the upper surface of the core to the upper surface of the second cladding layer) ) (Μm), L represents the region length (μm), respectively (see FIGS. 5 and 2).
(IV)工程
(IV)工程は、コアパターン上に第2のクラッド層を形成してコアパターンを埋め込む工程である。好適な方法としては、コア層3を露光現像などにより得たコアパターン6上に、クラッド層形成用樹脂フィルムを積層してコアパターン6を埋め込む方法が挙げられる。通常は、その後に該クラッド層形成用樹脂フィルムのクラッド層形成用樹脂を硬化し、第2のクラッド層(上部クラッド層)7を形成する(図1(e)参照)。
このときの前記一般式(I)において(Hco+Hoc)で示される第2のクラッド層の厚さは、硬化後の厚さでコア層(コアパターン)の厚さより大きくすることが好ましい。また、第2のクラッド層形成用樹脂の硬化は光又は熱によって、第1のクラッド層を形成するのと同様の方法で行うことができる。
Step (IV) The step (IV) is a step of embedding the core pattern by forming a second cladding layer on the core pattern. As a suitable method, a method of embedding the core pattern 6 by laminating a resin film for forming a clad layer on the core pattern 6 obtained by exposing and developing the
At this time, the thickness of the second cladding layer represented by (H co + H oc ) in the general formula (I) is preferably greater than the thickness of the core layer (core pattern) after curing. The second clad layer forming resin can be cured by light or heat in the same manner as the first clad layer is formed.
本発明の光導波路の中間部での第2のクラッド層の厚さ(コア上面から第2のクラッド層上面までの厚さ)(Hoc)は、光導波路コアへの光の閉じ込めが十分にできる範囲であれば、特に制限はないが、乾燥後の厚さで、10〜100μmであることが好ましい。中間部での第2のクラッド層の厚さがこの範囲内であれば、光導波路の中間部における強度を高めることができる。以上の観点から、その厚さは15〜90μmの範囲であることがより好ましく、20〜80μmの範囲であることが特に好ましい。
一方、端部での第2のクラッド層の厚さは、光導波路コアへの光の閉じ込めが十分にできる範囲であれば、特に制限はないが、薄いほど柔軟性には有利であり、光損失を抑制しつつ、結合のためのコネクタを接続される際のハンドリングを容易にするとの点からはある程度の厚さが必要である。以上の観点から、端部での第2のクラッド層の最小厚さは、中間部での第2のクラッド層の厚さに対して10〜80%の範囲であることが好ましく、より具体的には1〜80μmの範囲が好ましく、2〜70μmの範囲がより好ましい。端部での第2のクラッド層の厚さがこの範囲内であれば、端部での第2のクラッド層の膜厚の均一性を確保でき、光損失を抑制しつつ、光導波路とコネクタとの接続が容易となる。
第2のクラッド層の厚さは、最初に形成される第1のクラッド層の厚さと同一であっても異なってもよい。
The thickness of the second clad layer (thickness from the upper surface of the core to the upper surface of the second clad layer) (H oc ) in the intermediate portion of the optical waveguide of the present invention is sufficient to confine light in the optical waveguide core. There is no particular limitation as long as it is within the range, but the thickness after drying is preferably 10 to 100 μm. If the thickness of the second cladding layer at the intermediate portion is within this range, the strength at the intermediate portion of the optical waveguide can be increased. From the above viewpoint, the thickness is more preferably in the range of 15 to 90 μm, and particularly preferably in the range of 20 to 80 μm.
On the other hand, the thickness of the second cladding layer at the end is not particularly limited as long as light can be sufficiently confined in the optical waveguide core. A certain amount of thickness is required from the viewpoint of facilitating handling when connecting a connector for coupling while suppressing loss. From the above viewpoint, the minimum thickness of the second cladding layer at the end is preferably in the range of 10 to 80% with respect to the thickness of the second cladding layer at the intermediate portion, and more specifically. Is preferably in the range of 1 to 80 μm, more preferably in the range of 2 to 70 μm. If the thickness of the second clad layer at the end is within this range, the uniformity of the film thickness of the second clad layer at the end can be ensured, and the optical waveguide and connector can be suppressed while suppressing optical loss. It becomes easy to connect with.
The thickness of the second cladding layer may be the same as or different from the thickness of the first cladding layer formed first.
ここで用いる第2のクラッド層形成用樹脂フィルムは、第1のクラッド層形成用樹脂フィルムと同様であって、図2に示すように、基材フィルム11上にクラッド層形成用樹脂12を積層したものであり、必要に応じて保護フィルム(セパレーター)13が積層された構造をなす。また、基材フィルム11の材料については、第1のクラッド層形成用樹脂フィルムにおける基材フィルムと同様である。さらに、クラッド層形成用樹脂についても、第1のクラッド層形成用樹脂フィルムにおけるクラッド層形成用樹脂と同様である。
また、第2のクラッド層形成用樹脂フィルムの基材フィルムの反対側に保護フィルムを設けている場合(図2参照)には該保護フィルムを剥離後、クラッド層形成用樹脂フィルムを光又は加熱により硬化し、第2のクラッド層を形成する。保護フィルムは、クラッド層形成用樹脂フィルムからの剥離を容易にするため接着処理は行っていないことが好ましく、必要に応じ離型処理、帯電処理が施されていてもよい。
The second clad layer forming resin film used here is the same as the first clad layer forming resin film, and as shown in FIG. 2, the clad layer forming resin 12 is laminated on the
In addition, when a protective film is provided on the opposite side of the base film of the second clad layer forming resin film (see FIG. 2), the protective film is peeled off and then the clad layer forming resin film is lighted or heated. To form a second cladding layer. The protective film is preferably not subjected to adhesion treatment in order to facilitate peeling from the clad layer forming resin film, and may be subjected to mold release treatment or charging treatment as necessary.
上記の製造方法により得られる光導波路は、第2のクラッド層(上部クラッド層)形成後に、第1及び第2のクラッド層形成用樹脂フィルムのうち少なくとも一方の基材フィルムが剥離される。
上記の製造方法においては、クラッド層形成用樹脂フィルムの基材フィルムは、光導波路の製造過程において、支持体としての役割をも担う。この基材フィルムは、従来支持体として用いられていたシリコン基板などに比べ、大きなものを用いることができるため、大面積化が容易で生産性に優れる。
なお、基材フィルムは、光導波路の片面に残してもよいが、両面剥離した対称構造とすることで反りの少ない光導波路を製造することができる。また、基材フィルムを剥離することで、光導波路の薄型化も可能となる(図1(f)参照)。
In the optical waveguide obtained by the above-described manufacturing method, at least one of the first and second clad layer forming resin films is peeled after the second clad layer (upper clad layer) is formed.
In the above manufacturing method, the base film of the clad layer forming resin film also serves as a support in the manufacturing process of the optical waveguide. Since this base film can be larger than a silicon substrate or the like conventionally used as a support, the area can be easily increased and the productivity is excellent.
The base film may be left on one side of the optical waveguide, but an optical waveguide with less warpage can be manufactured by forming a symmetrical structure with both sides peeled. In addition, the optical waveguide can be thinned by peeling the base film (see FIG. 1F).
また、基材フィルムを剥離する工程中に加湿処理を含むことが好ましい。加湿処理は、基材フィルムとクラッド層の密着力を低下させることができ、光導波路の破損なく容易に基材フィルムを剥離できるためである。加湿処理は、加熱を併用すると処理時間を短縮できるため、例えば、高温高湿条件、煮沸条件、プレッシャクッカ条件下などで行うことがより好ましい。 Moreover, it is preferable that a humidification process is included in the process of peeling a base film. This is because the humidification treatment can reduce the adhesion between the base film and the clad layer and can easily peel the base film without damaging the optical waveguide. The humidification treatment is preferably performed under high temperature and high humidity conditions, boiling conditions, pressure cooker conditions, and the like, since the treatment time can be shortened when heating is used in combination.
なお、上記の製造方法により得られる光導波路は、前記(IV)工程の記載から明らかなように、コアパターンが上部クラッド層及び下部クラッド層に取り囲まれる形であり、上下クラッド層に加えて、サイドクラッドを有する。 In addition, the optical waveguide obtained by the above manufacturing method has a shape in which the core pattern is surrounded by the upper cladding layer and the lower cladding layer, as is apparent from the description of the step (IV), in addition to the upper and lower cladding layers, It has a side cladding.
さらに、本発明の光導波路を、電気配線板に積層することで、光電気複合配線板を作製可能であり、これにより、光配線と電気配線を一体化した高密度配線基板を作製できる。ここで電気配線板とは、ガラスエポキシ基板、セラミック基板、ポリイミド基板、半導体基板、シリコン基板やガラス基板などの上に電気回路やこれを保護するための絶縁層が形成されたものを指す。
積層の方法としては、別々に製造した光導波路と電気配線板を、接着剤等を用いて積層する方法に加え、電気配線板上に光導波路をビルドアップしていく方法なども挙げられる。
Furthermore, by laminating the optical waveguide of the present invention on an electric wiring board, an opto-electric composite wiring board can be produced, whereby a high-density wiring board in which optical wiring and electric wiring are integrated can be produced. Here, the electric wiring board refers to a glass epoxy substrate, a ceramic substrate, a polyimide substrate, a semiconductor substrate, a silicon substrate, a glass substrate, or the like on which an electric circuit or an insulating layer for protecting it is formed.
As a lamination method, in addition to a method of laminating separately manufactured optical waveguides and electrical wiring boards using an adhesive or the like, a method of building up the optical waveguides on the electrical wiring boards, or the like can also be mentioned.
以下に、本発明を実施例によりさらに具体的に説明するが、本発明は、これらの実施例によってなんら限定されるものではない。
(評価方法)
1.引張弾性率及び引張強度
測定対象のフィルムから、幅10mm、長さ70mmのサンプルを得、引張試験機((株)オリエンテック製「RTM−100」)を用い、JIS−K7127に準拠して、以下の条件で測定した。
条件:つかみ具間距離50mm、温度25℃、引張り速度50mm/min
引張弾性率は、引張り応力―ひずみ曲線の初めの直線部分を用いて以下に示す式により算出した。また、引張り応力―ひずみ曲線において、破断するまでの最大強度を引張強度とした。
引張り弾性率(MPa)=直線上の2点間の応力の差(N)÷光導波路フィルムの元の平均断面積(mm2)÷同じ2点間のひずみの差
EXAMPLES The present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
(Evaluation methods)
1. Tensile modulus and tensile strength From a film to be measured, a sample having a width of 10 mm and a length of 70 mm was obtained, and a tensile tester (“RTM-100” manufactured by Orientec Co., Ltd.) was used in accordance with JIS-K7127. Measurement was performed under the following conditions.
Conditions: distance between grippers 50 mm, temperature 25 ° C., pulling speed 50 mm / min
The tensile elastic modulus was calculated by the following formula using the first linear portion of the tensile stress-strain curve. In the tensile stress-strain curve, the maximum strength until breakage was taken as the tensile strength.
Tensile modulus (MPa) = Difference in stress between two points on a straight line (N) ÷ Original average cross-sectional area of optical waveguide film (mm 2 ) ÷ Difference in strain between the same two points
2.屈曲耐久性試験
各実施例及び比較例で製造された光電気複合配線板について、図6に示すようなスライド式の屈曲耐久試験機((株)大昌電子製)を用いて、屈曲耐久性試験を行った。試験は各実施例及び比較例で得られた光電気複合配線板41を、屈曲軸44に対して、フレキシブル光導波路を内側に配置して行った。また、曲げ半径(R)については、2mmの条件で行い、スライド速度80mm/秒、X1〜X2間の距離20mmの条件で試験を行った。評価については、1万回毎に破断の有無を観察して破断しない最大回数を求めた。なお、屈曲軸44は実際に存在するものではなく、光電気複合配線板を屈曲させ、スライドさせる際の仮想軸である。
2. Bending durability test Using the sliding bending durability tester (manufactured by Daisho Electronics Co., Ltd.) as shown in FIG. Went. The test was performed on the photoelectric
実施例1
(1)クラッド層形成用樹脂フィルムの作製
(A)バインダポリマーとして、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成(株)製)48質量部、(B)光重合性化合物として、アリサイクリックジエポキシカルボキシレート(商品名:KRM−2110、分子量:252、(株)ADEKA製)49.6質量部、(C)光重合開始剤として、トリフェニルスルホニウムヘキサフロロアンチモネート塩(商品名:SP−170、(株)ADEKA製)2質量部、増感剤として、SP−100(商品名、(株)ADEKA製)0.4質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を広口のポリ瓶に秤量し、メカニカルスターラ、シャフト及びプロペラを用いて、温度25℃、回転数400rpmの条件で、6時間撹拌し、クラッド層形成用樹脂ワニスAを調合した。その後、孔径2μmのポリフロンフィルタ(商品名:PF020、アドバンテック東洋(株)製)を用いて、温度25℃、圧力0.4MPaの条件で加圧濾過し、さらに真空ポンプ及びベルジャーを用いて減圧度50mmHgの条件で15分間減圧脱泡した。
上記で得られたクラッド層形成用樹脂ワニスAを、アラミドフィルム(商品名:ミクトロン、東レ(株)製、厚さ:12μm)のコロナ処理面上に塗工機(マルチコーターTM−MC、(株)ヒラノテクシード製)を用いて塗布し、80℃、10分、その後100℃、10分乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム(株)、厚さ:25μm)を離型面が樹脂側になるように貼り付け、クラッド層形成用樹脂フィルムを得た。このとき樹脂層の厚さは、塗工機のギャップを調節することで、任意に調整可能であり、本実施例では硬化後の膜厚が、下部クラッド用フィルムが18μm、上部クラッド用フィルムが75μmとなるように調節した。
Example 1
(1) Production of resin film for forming clad layer (A) As binder polymer, 48 parts by mass of phenoxy resin (trade name: Phenototo YP-70, manufactured by Toto Kasei Co., Ltd.), (B) As a photopolymerizable compound, Alicyclic diepoxycarboxylate (trade name: KRM-2110, molecular weight: 252, manufactured by ADEKA Corporation) 49.6 parts by mass, (C) triphenylsulfonium hexafluoroantimonate salt (product) Name: SP-170, manufactured by ADEKA Co., Ltd. 2 parts by mass, sensitizer as SP-100 (trade name, manufactured by ADEKA Co., Ltd.) 0.4 part by mass, propylene glycol monomethyl ether acetate as organic solvent, 40 parts by mass Weigh the part into a wide-mouthed plastic bottle and use a mechanical stirrer, shaft and propeller, temperature 25 ° C, rotation speed 4 The mixture was stirred for 6 hours under the condition of 00 rpm to prepare a resin varnish A for forming a clad layer. After that, using a polyfluorone filter (trade name: PF020, manufactured by Advantech Toyo Co., Ltd.) with a pore size of 2 μm, it is filtered under pressure at a temperature of 25 ° C. and a pressure of 0.4 MPa, and further decompressed using a vacuum pump and a bell jar. Degassed under reduced pressure for 15 minutes under the condition of a degree of 50 mmHg.
The clad layer-forming resin varnish A obtained above was coated on a corona-treated surface of an aramid film (trade name: Miktron, manufactured by Toray Industries, Inc., thickness: 12 μm) (Multicoater TM-MC, ( Coated with Hirano Techseed Co., Ltd., dried at 80 ° C. for 10 minutes, then at 100 ° C. for 10 minutes, and then released as a protective film PET film (trade name: Purex A31, Teijin DuPont Films, Inc.) 25 μm) was attached so that the release surface was on the resin side, and a resin film for forming a clad layer was obtained. At this time, the thickness of the resin layer can be arbitrarily adjusted by adjusting the gap of the coating machine. In this example, the film thickness after curing is 18 μm for the lower clad film and the film for the upper clad. It adjusted so that it might become 75 micrometers.
(2)コア層形成用樹脂フィルムの作製
(A)バインダポリマーとして、フェノキシ樹脂(商品名:フェノトートYP−70、東都化成(株)製)26質量部、(B)光重合性化合物として、9,9−ビス[4−(2−アクリロイルオキシエトキシ)フェニル]フルオレン(商品名:A−BPEF、新中村化学工業(株)製)36質量部、およびビスフェノールA型エポキシアクリレート(商品名:EA−1020、新中村化学工業(株)製)36質量部、(C)光重合開始剤として、ビス(2,4,6−トリメチルベンゾイル)フェニルフォスフィンオキサイド(商品名:イルガキュア819、チバ・ジャパン(株)製)1質量部、及び1−[4−(2−ヒドロキシエトキシ)フェニル]−2−ヒドロキシ−2−メチル−1−プロパン−1−オン(商品名:イルガキュア2959、チバ・ジャパン(株)製)1質量部、有機溶剤としてプロピレングリコールモノメチルエーテルアセテート40質量部を用いたこと以外は上記(1)と同様の方法および条件でコア層形成用樹脂ワニスBを調合した。その後、上記(1)と同様の方法および条件で加圧濾過さらに減圧脱泡した。
上記で得られたコア層形成用樹脂ワニスBを、PETフィルム(商品名:コスモシャインA1517、東洋紡績(株)製、厚さ:16μm)の非処理面上に、上記製造例と同様な方法で塗布乾燥し、次いで保護フィルムとして離型PETフィルム(商品名:ピューレックスA31、帝人デュポンフィルム(株)、厚さ:25μm)を離型面が樹脂側になるように貼り付け、コア層形成用樹脂フィルムを得た。本実施例では硬化後の膜厚が70μmとなるよう、塗工機のギャップを調整した。
(2) Production of core layer-forming resin film (A) As binder polymer, 26 parts by mass of phenoxy resin (trade name: Phenototo YP-70, manufactured by Toto Kasei Co., Ltd.), (B) as a photopolymerizable compound, 36 parts by mass of 9,9-bis [4- (2-acryloyloxyethoxy) phenyl] fluorene (trade name: A-BPEF, manufactured by Shin-Nakamura Chemical Co., Ltd.) and bisphenol A type epoxy acrylate (trade name: EA) -1020, Shin-Nakamura Chemical Co., Ltd.) 36 parts by mass, (C) As a photopolymerization initiator, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (trade name: Irgacure 819, Ciba Japan) 1 part by mass and 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl-1-propane-1 -On (trade name: Irgacure 2959, manufactured by Ciba Japan Co., Ltd.) 1 part by mass, and using the same method and conditions as in (1) above except that 40 parts by mass of propylene glycol monomethyl ether acetate was used as the organic solvent. Layer forming resin varnish B was prepared. Thereafter, pressure filtration and degassing under reduced pressure were carried out under the same method and conditions as in (1) above.
The resin layer varnish B for core layer formation obtained above is applied to a non-treated surface of a PET film (trade name: Cosmo Shine A1517, manufactured by Toyobo Co., Ltd., thickness: 16 μm) in the same manner as in the above production example. Then, release PET film (trade name: PUREX A31, Teijin DuPont Films Co., Ltd., thickness: 25 μm) is applied as a protective film so that the release surface is on the resin side to form the core layer A resin film was obtained. In this example, the gap of the coating machine was adjusted so that the film thickness after curing was 70 μm.
(3)フレキシブル光導波路の作製
上記で得られた下部クラッド層形成用樹脂フィルムの保護フィルムである離型PETフィルム(ピューレックスA31)を剥離し、紫外線露光機((株)オーク製作所製、EXM−1172)にて樹脂側(基材フィルムの反対側)から紫外線(波長365nm)を1J/cm2照射し、次いで80℃で10分間加熱処理することにより、第1のクラッド層(下部クラッド層)を形成した((I)工程)。該下部クラッド層の厚さは、約18μmであった。
(3) Fabrication of flexible optical waveguide The release PET film (Purex A31), which is a protective film for the resin film for forming the lower clad layer obtained above, is peeled off, and an ultraviolet exposure machine (EXM, manufactured by Oak Manufacturing Co., Ltd.). -1172), the resin side (opposite side of the base film) was irradiated with ultraviolet rays (wavelength 365 nm) at 1 J / cm 2 , and then heat-treated at 80 ° C. for 10 minutes, whereby the first cladding layer (lower cladding layer) ) Was formed (step (I)). The thickness of the lower cladding layer was about 18 μm.
次に、該下部クラッド層上に、ロールラミネータ(日立化成テクノプラント(株)製、HLM−1500)を用い圧力0.5MPa、温度50℃、ラミネート速度0.2m/minの条件で、上記コア層形成用樹脂フィルムを、保護フィルムである離型PETフィルムを剥離しながら、ラミネートした((II)工程)。コア層の厚さは約70μmであった。 Next, on the lower cladding layer, a roll laminator (manufactured by Hitachi Chemical Technoplant Co., Ltd., HLM-1500) is used under the conditions of a pressure of 0.5 MPa, a temperature of 50 ° C., and a laminating speed of 0.2 m / min. The layer-forming resin film was laminated while peeling the release PET film as the protective film (step (II)). The thickness of the core layer was about 70 μm.
次に、幅80μmのネガ型フォトマスクを介し、上記紫外線露光機にて紫外線(波長365nm)を0.6J/cm2照射し、次いで80℃で5分間露光後加熱を行って、図5および第1表に記載されるようなコア形状とした。すなわち、コアパターン6としては、図5に示すように、光伝送路として機能させるコア部4に、さらに中間部にダミーコア9を複数有するものである。
その後、支持フィルムであるPETフィルムを剥離し、現像液(プロピレングリコールモノメチルエーテルアセテート/N,N−ジメチルアセトアミド=8/2、質量比)を用いて、コアパターンを現像した。続いて、洗浄液(イソプロパノール)を用いて洗浄し、100℃で10分間加熱乾燥して、コアパターンを得た((III)工程)。
Next, ultraviolet rays (wavelength 365 nm) were irradiated with 0.6 J / cm 2 with the above-described ultraviolet exposure machine through a negative photomask having a width of 80 μm, followed by heating after exposure at 80 ° C. for 5 minutes, and FIG. The core shape was as described in Table 1. That is, as shown in FIG. 5, the core pattern 6 includes a core portion 4 that functions as an optical transmission line and a plurality of dummy cores 9 in the middle portion.
Thereafter, the PET film as the support film was peeled off, and the core pattern was developed using a developer (propylene glycol monomethyl ether acetate / N, N-dimethylacetamide = 8/2, mass ratio). Then, it wash | cleaned using the washing | cleaning liquid (isopropanol), and heat-dried at 100 degreeC for 10 minute (s), and obtained the core pattern ((III) process).
次いで、上記と同様なラミネート条件にて、上部クラッド層として上記クラッド層形成用樹脂フィルムを、保護フィルムである離型PETフィルムを剥離しながら、ラミネートした。さらに、紫外線(波長365nm)を両面に合計で25J/cm2照射後、160℃で1時間加熱処理することによって、上部クラッド層を形成し基材フィルムが外側に配置された光導波路を作製した((IV)工程)。さらにアラミドフィルム剥離のため、該光導波路を85℃/85%の高温高湿条件で24時間処理し、基材フィルムを除去した光導波路を作製した。 Next, under the same laminating conditions as described above, the clad layer forming resin film was laminated as an upper clad layer while peeling the release PET film as a protective film. Furthermore, ultraviolet light (wavelength 365 nm) was irradiated on both surfaces for a total of 25 J / cm 2 and then heat-treated at 160 ° C. for 1 hour to form an optical waveguide in which an upper clad layer was formed and the base film was disposed outside. (Step (IV)). Further, in order to peel off the aramid film, the optical waveguide was treated under high temperature and high humidity conditions of 85 ° C./85% for 24 hours to produce an optical waveguide from which the base film was removed.
なお、コア層及びクラッド層の屈折率をMetricon社製プリズムカプラー(Model2010)で測定したところ、波長830nmにて、コア層が1.584、クラッド層が1.550であった。
また、作製した光導波路(光導波路長12cm)の挿入損失を、光源に850nmの面発光レーザー((EXFO社製、FLS−300−01−VCL)を、受光センサに(株)アドバンテスト製、Q82214、入射ファイバーにGI−50/125マルチモードファイバー(NA=0.20)、出射ファイバーにSI−114/125(NA=0.22)を用い測定したところ、0.6dBであった。
また、得られたフレキシブル光導波路の引張弾性率及び引張強度を上記方法により測定した結果、引張弾性率が2,000MPa、引張強度が70MPaであった。
式(I)に用いられる各パラメーターについて第1表にまとめる。
In addition, when the refractive index of the core layer and the clad layer was measured by a prism coupler (Model2010) manufactured by Metricon, the core layer was 1.584 and the clad layer was 1.550 at a wavelength of 830 nm.
In addition, the insertion loss of the produced optical waveguide (optical waveguide length 12 cm) was measured using a surface-emitting laser (850 nm manufactured by EXFO, FLS-300-01-VCL) as a light source, and Q82214 manufactured by Advantest Co., Ltd. as a light receiving sensor. Measured using a GI-50 / 125 multimode fiber (NA = 0.20) as the input fiber and SI-114 / 125 (NA = 0.22) as the output fiber, it was 0.6 dB.
Moreover, as a result of measuring the tensile elasticity modulus and tensile strength of the obtained flexible optical waveguide by the above method, the tensile elasticity modulus was 2,000 MPa, and the tensile strength was 70 MPa.
The parameters used in formula (I) are summarized in Table 1.
ここで、Lは領域長さ(μm)、Ncoはコア数、Narはアレイ数、Pcoはコアのピッチ(μm)、Parはアレイピッチ(μm)、Wcoはコア幅(μm)、Hcoはコアの厚さ(μm)、Hocは第2のクラッド(上部クラッド)の厚さ(コア上面から第2のクラッド層上面までの厚さ)(μm)、をそれぞれ表わす。 Where L is the region length (μm), N co is the number of cores, N ar is the number of arrays, P co is the core pitch (μm), P ar is the array pitch (μm), and W co is the core width (μm). ), H co represents the thickness of the core (μm), and H oc represents the thickness of the second cladding (upper cladding) (thickness from the upper surface of the core to the upper surface of the second cladding layer) (μm).
(4)光電気複合配線板の作製
(4−1)シート状接着剤の作製
HTR−860P−3(ナガセケムテックス(株)製、商品名、グリシジル基含有アクリルゴム、分子量100万、Tg−7℃)100質量部、YDCN−703(東都化成(株)製、商品名、o−クレゾールノボラック型エポキシ樹脂、エポキシ当量210)5.4質量部、YDCN−8170C(東都化成(株)製、商品名、ビスフェノールF型エポキシ樹脂、エポキシ当量157)16.2質量部、プライオーフェンLF2882(大日本インキ化学工業(株)製、商品名、ビスフェノールAノボラック樹脂)15.3質量部、NUCA−189(日本ユニカー(株)製、商品名、γ−メルカプトプロピルトリメトキシシラン)0.1質量部、NUCA−1160(日本ユニカー(株)製、商品名、γ−ウレイドプロピルトリエトキシシラン)0.3質量部、A−DPH(新中村化学工業(株)製、商品名、ジペンタエリスリトールヘキサアクリレート)30質量部、イルガキュア369(チバ・ジャパン(株)製、商品名、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1−オン:I−369)1.5質量部、シクロヘキサノンを加えて攪拌混合し、真空脱気した。この接着剤ワニスを、厚さ75μmの表面離型処理ポリエチレンテレフタレート(帝人(株)製、テイジンテトロンフィルム:A−31)上に塗布し、80℃で30分間加熱乾燥し粘接着シートを得た。この粘接着シートに、厚さ80μmの光透過性の支持基材(サーモ(株)製、低密度ポリエチレンテレフタレート/酢酸ビニル/低密度ポリエチレンテレフタレート三層フィルム:FHF−100)をあわせてラミネートすることにより保護フィルム(表面離型処理ポリエチレンテレフタレート)、粘接着剤層、及び光透過性の支持基材からなるシート状接着剤を作製した。粘接着剤層の厚みは10μmとした。
(4) Production of photoelectric composite wiring board (4-1) Production of sheet adhesive HTR-860P-3 (manufactured by Nagase ChemteX Corp., trade name, glycidyl group-containing acrylic rubber, molecular weight 1 million, Tg- 7 ° C) 100 parts by mass, YDCN-703 (manufactured by Toto Kasei Co., Ltd., trade name, o-cresol novolac type epoxy resin, epoxy equivalent 210), 5.4 parts by mass, YDCN-8170C (manufactured by Toto Kasei Co., Ltd.) Product name, 16.2 parts by mass of bisphenol F type epoxy resin, epoxy equivalent 157), PRIOFEN LF2882 (manufactured by Dainippon Ink & Chemicals, Inc., product name, bisphenol A novolac resin), 15.3 parts by mass, NUCA-189 (Nippon Unicar Co., Ltd., trade name, γ-mercaptopropyltrimethoxysilane) 0.1 parts by mass, NUCA-1160 (Japan) Nicar Co., Ltd., trade name, γ-ureidopropyltriethoxysilane 0.3 parts by mass, A-DPH (Shin Nakamura Chemical Co., Ltd., trade name, dipentaerythritol hexaacrylate) 30 parts by mass, Irgacure 369 (Ciba Japan Co., Ltd., trade name, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1-one: I-369) 1.5 parts by mass, cyclohexanone In addition, the mixture was stirred and mixed and vacuum degassed. This adhesive varnish was coated on a 75 μm-thick surface release-treated polyethylene terephthalate (manufactured by Teijin Ltd., Teijin Tetron Film: A-31) and dried by heating at 80 ° C. for 30 minutes to obtain an adhesive sheet. It was. This adhesive sheet is laminated together with a light-transmitting supporting substrate having a thickness of 80 μm (manufactured by Thermo Co., Ltd., low density polyethylene terephthalate / vinyl acetate / low density polyethylene terephthalate three-layer film: FHF-100). Thus, a sheet-like adhesive composed of a protective film (surface release-treated polyethylene terephthalate), an adhesive layer, and a light-transmitting support substrate was produced. The thickness of the adhesive layer was 10 μm.
(4−2)接着剤層付き光導波路の作製
続いて、上記で作製したフレキシブル光導波路に、ロールラミネータ(日立化成テクノプラント(株)製、HLM−1500)を用い圧力0.4MPa、温度50℃、ラミネート速度0.2m/minの条件で、保護フィルムを剥がしたシート状接着剤をラミネートした。次に、接着シートの支持基材側から紫外線(365nm)を250mJ/cm2照射し、粘接着剤層と支持基材界面の密着力を低下させ支持基材を剥がして接着剤層付き光導波路を得た。
(4-2) Production of optical waveguide with adhesive layer Subsequently, a roll laminator (manufactured by Hitachi Chemical Technoplant Co., Ltd., HLM-1500) is used for the flexible optical waveguide produced as described above, pressure 0.4 MPa, temperature 50 The sheet-like adhesive from which the protective film was peeled was laminated under the conditions of 0 ° C. and a laminating speed of 0.2 m / min. Next, ultraviolet light (365 nm) is irradiated from the support base material side of the adhesive sheet at 250 mJ / cm 2 , the adhesive strength between the adhesive layer and the support base material is reduced, the support base material is peeled off, and the light with the adhesive layer is provided. A waveguide was obtained.
(4−3)光電気複合配線板の作製
次に、電気回路パターンを有するFPC(基材:カプトンEN、12.5μm、銅回路厚さ:5μm)の所定の箇所に接着剤層付き光導波路を、紫外線露光機((株)大日本スクリーン製,MAP−1200−L)付随のマスクアライナー機構を利用して位置決めし、上述の真空加圧式ラミネータを用い、500Pa以下にて30秒間真空引きした後、圧力0.4MPa、温度100℃、加圧時間30秒の条件にて圧着した後、クリンオーブン中で180℃、1時間加熱しフレキシブル光導波路とFPCを接着して、光電気複合配線板を得た。
得られた光電気複合配線板の端部における柔軟性を、上記の屈曲耐久性試験により評価したところ、10万回経過後においても光導波路の断線はなく、良好な柔軟性を示した。
(4-3) Production of opto-electric composite wiring board Next, an optical waveguide with an adhesive layer at a predetermined location of an FPC (base material: Kapton EN, 12.5 μm, copper circuit thickness: 5 μm) having an electric circuit pattern Was positioned using a mask aligner mechanism attached to an ultraviolet exposure machine (manufactured by Dainippon Screen Co., Ltd., MAP-1200-L), and evacuated at 500 Pa or less for 30 seconds using the above-described vacuum pressure laminator. Then, after pressure bonding under the conditions of pressure 0.4 MPa, temperature 100 ° C., pressurization time 30 seconds, heated in a clean oven 180 ° C. for 1 hour to bond the flexible optical waveguide and the FPC, and the photoelectric composite wiring board Got.
When the flexibility at the end portion of the obtained photoelectric composite wiring board was evaluated by the above bending durability test, the optical waveguide was not broken even after 100,000 times had elapsed and showed good flexibility.
比較例1
実施例1において、コア形状としてダミーコア9を有さないものとしたこと、及び上部クラッドフィルムとして樹脂層の厚さを硬化後に79μmとなるように調整したものを用いたこと以外は実施例1と同様にして、光導波路を作製した。その結果、端部と中間部の膜厚はほぼ同じであった(第2表参照)。
実施例1と同様にして挿入損失を測定したところ、0.6dBであった。また、実施例1と同様にして光電気複合配線板を作製し、屈曲耐久性試験を行った。その結果、4万回で光導波路が破断した。
Comparative Example 1
In Example 1, except that the dummy core 9 was not used as the core shape and that the thickness of the resin layer was adjusted to 79 μm after curing was used as the upper clad film. Similarly, an optical waveguide was produced. As a result, the film thickness of the end portion and the intermediate portion was almost the same (see Table 2).
When the insertion loss was measured in the same manner as in Example 1, it was 0.6 dB. In addition, a photoelectric composite wiring board was produced in the same manner as in Example 1, and a bending durability test was performed. As a result, the optical waveguide was broken after 40,000 times.
ここで、Lは領域長さ(μm)、Ncoはコア数、Narはアレイ数、Pcoはコアのピッチ(μm)、Parはアレイピッチ(μm)、Wcoはコア幅(μm)、Hcoはコアの厚さ(μm)、Hocは第2のクラッド(上部クラッド)の厚さ(コア上面から第2のクラッド層上面までの厚さ)(μm)、をそれぞれ表わす。 Where L is the region length (μm), N co is the number of cores, N ar is the number of arrays, P co is the core pitch (μm), P ar is the array pitch (μm), and W co is the core width (μm). ), H co represents the thickness of the core (μm), and H oc represents the thickness of the second cladding (upper cladding) (thickness from the upper surface of the core to the upper surface of the second cladding layer) (μm).
本発明によれば、簡便に厚さを制御し得る光導波路の構造を提供することによって、特定部分の剛性や柔軟性に優れ、光損失の少ない光導波路、及び該光導波路を電気配線板に積層した光電気複合配線板を提供することができる。このため、光インタコネクション等の幅広い分野に適用できる。 According to the present invention, by providing a structure of an optical waveguide whose thickness can be easily controlled, an optical waveguide having excellent rigidity and flexibility at a specific portion and less optical loss, and the optical waveguide as an electric wiring board. A laminated photoelectric composite wiring board can be provided. Therefore, it can be applied to a wide range of fields such as optical interconnection.
1;支持基材
2;第1のクラッド層(下部クラッド層)
3;コア層
4:コア部
5;マスキング用フィルム(ネガマスクパターン)
6;コアパターン
7;第2のクラッド層(上部クラッド層)
8;支持基材
9;ダミーコア
10;クラッド層形成用樹脂フィルム
11;基材フィルム(クラッド層形成用)
12;クラッド層形成用樹脂
13;保護フィルム
20;コア層形成用樹脂フィルム
21;基材フィルム(コア層形成用)
22;コア層形成用樹脂
23;保護フィルム
1;
3; Core layer 4: Core portion 5; Film for masking (negative mask pattern)
6;
8; Support base material 9;
12; Cladding layer forming resin 13;
22; Core
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009163931A JP2011017992A (en) | 2009-07-10 | 2009-07-10 | Optical waveguide and optoelectric compound wiring board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009163931A JP2011017992A (en) | 2009-07-10 | 2009-07-10 | Optical waveguide and optoelectric compound wiring board |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2011017992A true JP2011017992A (en) | 2011-01-27 |
Family
ID=43595805
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009163931A Withdrawn JP2011017992A (en) | 2009-07-10 | 2009-07-10 | Optical waveguide and optoelectric compound wiring board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2011017992A (en) |
-
2009
- 2009-07-10 JP JP2009163931A patent/JP2011017992A/en not_active Withdrawn
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2159262B1 (en) | Optical waveguide comprising a resin film | |
US9069128B2 (en) | Opto-electric combined circuit board and electronic devices | |
JP4265695B2 (en) | Flexible optical waveguide, manufacturing method thereof, and optical module | |
WO2009096067A1 (en) | Opto-electric hybrid board and electronic device | |
JP4894348B2 (en) | Flexible optical waveguide and manufacturing method thereof | |
JPWO2007091596A1 (en) | Flexible optical waveguide and optical module | |
JP5212141B2 (en) | Method for manufacturing flexible optical waveguide | |
US8787722B2 (en) | Optical waveguide | |
KR101665740B1 (en) | Method for producing optical waveguide, optical waveguide, and photoelectric composite wiring board | |
JP2007293244A (en) | Multilayer optical waveguide | |
JP5228947B2 (en) | Flexible optical waveguide and manufacturing method thereof | |
JP5109934B2 (en) | Flexible opto-electric hybrid board and electronic device | |
JP2010197985A (en) | Method of manufacturing optical waveguide, optical waveguide, and photoelectric composite wiring board | |
JP2011017993A (en) | Optical waveguide and optoelectric compound wiring board | |
JP2010164654A (en) | Composite optical waveguide | |
JP2010271371A (en) | Flexible optical waveguide | |
JP2010286674A (en) | Optical waveguide and photoelectric composite wiring board | |
JP5458682B2 (en) | Optical waveguide forming resin film, optical waveguide using the same, manufacturing method thereof, and photoelectric composite wiring board | |
WO2009125735A1 (en) | Electronic device | |
JP2010072463A (en) | Method for manufacturing of optical waveguide | |
JP2010271370A (en) | Flexible optical waveguide | |
JP2010271369A (en) | Flexible optical waveguide | |
JP2011017992A (en) | Optical waveguide and optoelectric compound wiring board | |
JP2008122898A (en) | Manufacturing method of flexible optical waveguide | |
JP2010079058A (en) | Method of manufacturing opto-electro circuit board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20121002 |