JP2011017675A - Film measuring method - Google Patents

Film measuring method Download PDF

Info

Publication number
JP2011017675A
JP2011017675A JP2009163949A JP2009163949A JP2011017675A JP 2011017675 A JP2011017675 A JP 2011017675A JP 2009163949 A JP2009163949 A JP 2009163949A JP 2009163949 A JP2009163949 A JP 2009163949A JP 2011017675 A JP2011017675 A JP 2011017675A
Authority
JP
Japan
Prior art keywords
film
measured
measurement
sample
film thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009163949A
Other languages
Japanese (ja)
Inventor
Toru Koike
徹 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009163949A priority Critical patent/JP2011017675A/en
Publication of JP2011017675A publication Critical patent/JP2011017675A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a film measuring method that facilitates performing high-throughput and highly-accurate film measurement at low cost.SOLUTION: Film quality information 3A acquired when measuring a film quality by irradiating with light, a sample film A formed on a first substrate is compared with film quality information 3B acquired when measuring the film quality by irradiating with light, a sample film B having the same kind of film material as the sample film A, and formed on a second substrate, and light having a wavelength wherein a difference of each film quality measurement result becomes smaller than a prescribed value is selected as light in a wavelength domain to be used for film thickness measurement. A measuring object film having the same kind of film material as the sample films A, B is irradiated with the light in the selected wavelength domain, thereby measuring the film thickness of the measuring object film.

Description

本発明は、膜測定方法に関する。   The present invention relates to a film measuring method.

基板上に半導体装置を形成する際の検査工程の1つとして、基板上に成膜した材料の膜質、膜厚等を光学的手法によって膜測定する工程がある。この光学的手法は、大きく分けて2つの方法に分類される。光学的手法による膜測定の1つは、分光反射率計測と呼ばれる方法であり、この方法では単純にサンプルからの反射強度のみを計測して膜測定している。光学的手法による膜測定のもう一方は、分光エリプソメトリと呼ばれる方法であり、この方法では光を偏光させ、厳密に光の変化の様子を捉えて膜測定している(例えば、非特許文献1参照)。   As one of inspection processes when forming a semiconductor device on a substrate, there is a process of measuring the film quality, film thickness, etc. of the material deposited on the substrate by an optical technique. This optical method is roughly classified into two methods. One of the film measurements by an optical method is a method called spectral reflectance measurement. In this method, the film is measured by simply measuring only the reflection intensity from the sample. The other method of film measurement by an optical method is a method called spectroscopic ellipsometry. In this method, light is polarized and the film is measured by strictly capturing the change of light (for example, Non-Patent Document 1). reference).

分光エリプソメトリは、膜測定の精度面では非常に優れており、特に膜質等の解析には必須な技術といえる。一方、分光反射率計測は、装置構成が簡易で安価であるが、膜測定の精度は分光エリプソメトリよりも劣るので、単純な膜測定にのみ使用されることが一般的である。このため、高精度な膜測定が要求される場合には、分光エリプソメトリが用いられる。   Spectroscopic ellipsometry is very excellent in terms of film measurement accuracy, and can be said to be an indispensable technique especially for analysis of film quality and the like. On the other hand, spectral reflectance measurement is simple and inexpensive, but the accuracy of film measurement is inferior to that of spectroscopic ellipsometry, so it is generally used only for simple film measurement. For this reason, spectroscopic ellipsometry is used when highly accurate film measurement is required.

しかしながら、分光エリプソメトリは、光を偏光させる必要があるので装置構成が複雑になり、その結果、装置コストが高くなる。また、偏光子を回転させる必要などがあるので、分光反射率計測よりも膜測定に長時間を要し、スループットが低くなる。さらには、膜に照射する光を斜めに照射する必要があるので、膜へ照射する光のスポットサイズを小さくすることが困難である。   However, spectroscopic ellipsometry requires that the light be polarized, which complicates the device configuration, resulting in high device costs. In addition, since it is necessary to rotate the polarizer, the film measurement takes a longer time than the spectral reflectance measurement, and the throughput is lowered. Furthermore, since it is necessary to irradiate light irradiating the film obliquely, it is difficult to reduce the spot size of the light irradiating the film.

Nadine BLAYO, PhD Jobin Yvon S. A.著,「技術情報誌”Readout”」,'分光エリプソメトリによる屈折率計測'(Full Automatic Spectroscopic Ellipsometer UT-300 Part 2 Basic Principles of Ellipsometry and PEM),Readout No.21 September 2000,HORIBA Technical ReportsNadine BLAYO, PhD Jobin Yvon SA, "Technical Information Magazine" Readout "", 'Refractometry by Spectroscopic Ellipsometry' (Full Automatic Spectroscopic Ellipsometer UT-300 Part 2 Basic Principles of Ellipsometry and PEM), Readout No.21 September 2000, HORIBA Technical Reports

本発明は、上記に鑑みてなされたものであって、高スループットかつ高精度な膜測定を安価で容易に行なうことができる膜測定方法を提供することを目的とする。   The present invention has been made in view of the above, and an object of the present invention is to provide a film measurement method capable of easily and inexpensively performing high-throughput and high-accuracy film measurement.

本願発明の一態様によれば、第1の基板上に形成された第1のサンプル膜に光を照射して膜質測定した場合の第1の膜質と、第2の基板上に形成され前記第1のサンプル膜と同じ種類の膜材である第2のサンプル膜に前記光を照射して膜質測定した場合の第2の膜質と、で膜質測定結果の差が所定値よりも小さくなる波長の光を、膜厚測定に用いる波長領域の光として選択する波長選択ステップと、前記第1および前記第2のサンプル膜と同じ種類の膜材である測定対象膜に、選択した前記波長領域の光を照射して、前記測定対象膜の膜厚を測定する膜厚測定ステップと、を含むことを特徴とする膜測定方法が提供される。   According to one aspect of the present invention, the first film quality when the first sample film formed on the first substrate is irradiated with light and the film quality is measured, and the first film quality formed on the second substrate and the first film are measured. The second sample film, which is a film material of the same type as that of the first sample film, is irradiated with the light, and the second film quality when the film quality is measured. The wavelength selection step of selecting light as light in the wavelength region used for film thickness measurement, and the light in the wavelength region selected on the measurement target film that is the same type of film material as the first and second sample films A film thickness measuring step of measuring the film thickness of the film to be measured.

本発明によれば、高スループットかつ高精度な膜測定を安価で容易に行なうことが可能になるという効果を奏する。   According to the present invention, it is possible to easily perform film measurement with high throughput and high accuracy at low cost.

図1は、第1の実施の形態に係る分光反射率計測装置の構成を示す図である。FIG. 1 is a diagram illustrating the configuration of the spectral reflectance measuring apparatus according to the first embodiment. 図2は、分光エリプソメトリの構成を示す図である。FIG. 2 is a diagram showing the configuration of spectroscopic ellipsometry. 図3は、分光反射率計測装置や分光エリプソメトリが測定する膜を説明するための図である。FIG. 3 is a diagram for explaining a film measured by a spectral reflectance measuring device or a spectroscopic ellipsometer. 図4は、第1の実施の形態に係る膜厚測定方法の処理手順を示すフローチャートである。FIG. 4 is a flowchart showing a processing procedure of the film thickness measuring method according to the first embodiment. 図5は、サンプル膜から得られる反射光の特性例を示す図である。FIG. 5 is a diagram illustrating a characteristic example of reflected light obtained from the sample film. 図6は、反射光の特性から算出された膜質を示す図である。FIG. 6 is a diagram showing the film quality calculated from the characteristics of the reflected light. 図7は、サンプル膜の比較処理を説明するための図である。FIG. 7 is a diagram for explaining sample film comparison processing. 図8は、従来の方法でサンプル膜の膜厚を測定した場合の膜厚測定結果を示す図である。FIG. 8 is a diagram showing a film thickness measurement result when the film thickness of the sample film is measured by a conventional method. 図9は、第1の実施の形態に係る膜厚測定方法でサンプル膜を測定した場合の膜厚測定結果を示す図である。FIG. 9 is a diagram illustrating a film thickness measurement result when a sample film is measured by the film thickness measurement method according to the first embodiment. 図10は、第2の実施の形態に係る膜厚測定方法の処理手順を示すフローチャートである。FIG. 10 is a flowchart showing a processing procedure of the film thickness measuring method according to the second embodiment. 図11は、分光反射率計測で得られる光強度を示す図である。FIG. 11 is a diagram showing light intensity obtained by spectral reflectance measurement. 図12は、分光反射率計測装置で測定した膜厚の測定結果を示す図である。FIG. 12 is a diagram showing the measurement results of the film thickness measured with the spectral reflectance measuring device. 図13は、既知の膜厚を用いて算出した屈折率の算出結果を示す図である。FIG. 13 is a diagram illustrating a calculation result of a refractive index calculated using a known film thickness. 図14は、従来の分光反射率計測方法で測定した膜厚と屈折率の測定結果を示す図である。FIG. 14 is a diagram showing measurement results of film thickness and refractive index measured by a conventional spectral reflectance measurement method. 図15は、分光エリプソメトリのみを用いて測定した膜質の測定結果を示す図である。FIG. 15 is a diagram showing measurement results of film quality measured using only spectroscopic ellipsometry. 図16は、分光エリプソメトリのみを用いて測定した膜厚と屈折率の測定結果を示す図である。FIG. 16 is a diagram showing measurement results of film thickness and refractive index measured using only spectroscopic ellipsometry. 図17は、第1の実施の形態に係る分光反射率計測装置が備える情報処理装置のハードウェア構成を示す図である。FIG. 17 is a diagram illustrating a hardware configuration of the information processing apparatus included in the spectral reflectance measurement apparatus according to the first embodiment.

以下に添付図面を参照して、本発明の実施の形態に係る膜厚測定方法を詳細に説明する。なお、これらの実施の形態により本発明が限定されるものではない。   Hereinafter, a film thickness measuring method according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to these embodiments.

(第1の実施の形態)
図1は、第1の実施の形態に係る分光反射率計測装置の構成を示す図である。本実施の形態では、後述する分光エリプソメトリ2を用いて、測定対象となる膜材(後述するサンプル膜A,B)の膜質を測定しておく。そして、分光反射率計測装置1は、分光エリプソメトリ2が測定した膜質を用いて、製品となる基板上などに形成された測定対象膜(被測定膜C)の膜厚を測定する際に用いる光の波長(以下、製品測定用波長という)を決定する。そして、分光反射率計測装置1は、決定した製品測定用波長を用いて、被測定膜Cの膜厚を測定する。分光エリプソメトリ2が測定する膜質は、光学定数であり、例えば屈折率や消衰係数などである。また、サンプル膜A,Bや被測定膜Cは、同一種類の膜材(例えばシリコン窒化膜)である。したがって、分光反射率計測装置1は、分光エリプソメトリ2が膜質を測定した膜材と同じ種類の膜材の膜厚を測定する。
(First embodiment)
FIG. 1 is a diagram illustrating the configuration of the spectral reflectance measuring apparatus according to the first embodiment. In the present embodiment, the film quality of a film material (sample films A and B described later) to be measured is measured using a spectroscopic ellipsometry 2 described later. The spectral reflectance measuring apparatus 1 is used when measuring the film thickness of a measurement target film (measurement film C) formed on a substrate to be a product using the film quality measured by the spectroscopic ellipsometry 2. The wavelength of light (hereinafter referred to as a product measurement wavelength) is determined. And the spectral reflectance measuring device 1 measures the film thickness of the film C to be measured using the determined wavelength for product measurement. The film quality measured by the spectroscopic ellipsometry 2 is an optical constant, such as a refractive index or an extinction coefficient. The sample films A and B and the film C to be measured are the same type of film material (for example, silicon nitride film). Therefore, the spectral reflectance measuring apparatus 1 measures the film thickness of the same type of film material as the film material whose spectral ellipsometry 2 has measured the film quality.

分光反射率計測装置1は、光学系10と情報処理装置20を備えている。光学系10は、被測定膜Cに光を照射して、被測定膜Cからの反射光を検出する機能を有している。被測定膜Cは、例えばウエハなどの半導体基板上に積層(成膜)された膜である。   The spectral reflectance measuring device 1 includes an optical system 10 and an information processing device 20. The optical system 10 has a function of irradiating the film to be measured C with light and detecting reflected light from the film to be measured C. The film C to be measured is a film laminated (deposited) on a semiconductor substrate such as a wafer.

光学系10は、光源11、分光器15、検出器16を含んで構成されている。光源11は、白色光などの光を発する。光源11が発した白色光は、入射光12として被測定膜Cに送られ、被測定膜C上で反射される。被測定膜Cで反射した反射光14は、分光器15に送られる。   The optical system 10 includes a light source 11, a spectroscope 15, and a detector 16. The light source 11 emits light such as white light. White light emitted from the light source 11 is sent to the film to be measured C as incident light 12 and reflected on the film to be measured C. The reflected light 14 reflected by the film to be measured C is sent to the spectrometer 15.

分光器15は、反射光14を分光させて検出器16に送る。検出器16は、分光器15から送られてくる分光光を検出する装置である。検出器16は、検出した分光光に応じた検出信号を情報処理装置20に送る。   The spectroscope 15 splits the reflected light 14 and sends it to the detector 16. The detector 16 is a device that detects the spectral light transmitted from the spectroscope 15. The detector 16 sends a detection signal corresponding to the detected spectral light to the information processing apparatus 20.

情報処理装置20は、検出器16からの検出信号を用いて被測定膜Cの膜厚や膜質を算出するコンピュータなどの装置である。情報処理装置20は、制御部21、記憶部22、計算部23、入力部24、出力部25を備えている。   The information processing apparatus 20 is an apparatus such as a computer that calculates the film thickness and film quality of the film C to be measured using the detection signal from the detector 16. The information processing apparatus 20 includes a control unit 21, a storage unit 22, a calculation unit 23, an input unit 24, and an output unit 25.

入力部24は、分光エリプソメトリ2が測定したサンプル膜A,Bの膜質に関する情報(サンプル膜情報)、分光反射率計測装置1が測定する膜の種類に関する情報(被測定膜Cの膜材を指定する情報)などを入力し、計算部23に送る。記憶部22は、検出器16からの検出信号や計算部23の計算結果(被測定膜Cの膜厚)などを記憶するメモリなどである。   The input unit 24 includes information on the film quality of the sample films A and B (sample film information) measured by the spectroscopic ellipsometry 2 and information on the type of film measured by the spectral reflectance measuring device 1 (the film material of the film C to be measured). The information to be designated) is input and sent to the calculation unit 23. The storage unit 22 is a memory that stores a detection signal from the detector 16 and a calculation result of the calculation unit 23 (film thickness of the film C to be measured).

制御部21は、光源11を制御するとともに、計算部23を制御する。制御部21は、膜厚測定に用いる膜厚測定レシピを記憶する。計算部23は、入力部24から送られてくるサンプル膜情報、記憶部22が記憶する検出信号、制御部21が記憶している膜厚測定レシピを用いて、被測定膜Cの膜厚を算出する。出力部25は、計算部23が算出した被測定膜Cの膜厚を、膜厚の測定結果として出力する。   The control unit 21 controls the light source 11 and the calculation unit 23. The control unit 21 stores a film thickness measurement recipe used for film thickness measurement. The calculation unit 23 calculates the film thickness of the film C to be measured using the sample film information sent from the input unit 24, the detection signal stored in the storage unit 22, and the film thickness measurement recipe stored in the control unit 21. calculate. The output unit 25 outputs the film thickness of the film C to be measured calculated by the calculation unit 23 as a film thickness measurement result.

つぎに、サンプル膜A,Bの膜質を測定する分光エリプソメトリ2の構成について説明する。図2は、分光エリプソメトリの構成を示す図である。分光エリプソメトリ2は、光学系40と情報処理装置50を備えている。光学系40は、サンプル膜A,Bに光を照射して、サンプル膜A,Bからの反射光を検出する機能を有している。サンプル膜A,Bは、例えばウエハなどの半導体基板上に成膜された膜である。   Next, the configuration of the spectroscopic ellipsometry 2 for measuring the film quality of the sample films A and B will be described. FIG. 2 is a diagram showing the configuration of spectroscopic ellipsometry. The spectroscopic ellipsometry 2 includes an optical system 40 and an information processing device 50. The optical system 40 has a function of irradiating the sample films A and B with light and detecting reflected light from the sample films A and B. The sample films A and B are films formed on a semiconductor substrate such as a wafer.

光学系40は、光源41、偏光子42、検光子45、検出器46を含んで構成されている。光源41は、白色光などの光を発する。偏光子42は、光源41が発した白色光を例えば直交する2方向に偏光し、振幅や波長を揃える。偏光子42を出た光は、入射光43として入射角度θでサンプル膜Aやサンプル膜Bに送られ、サンプル膜A,B上で反射される。サンプル膜A,Bで反射した反射光44は、検光子45に送られる。   The optical system 40 includes a light source 41, a polarizer 42, an analyzer 45, and a detector 46. The light source 41 emits light such as white light. The polarizer 42 polarizes white light emitted from the light source 41 in, for example, two orthogonal directions, and aligns the amplitude and wavelength. Light exiting the polarizer 42 is sent as incident light 43 to the sample film A or sample film B at an incident angle θ, and is reflected on the sample films A and B. The reflected light 44 reflected by the sample films A and B is sent to the analyzer 45.

検光子45は、直交する2方向に偏光されてサンプル膜A,Bで反射された光の中から検光子45の配置方向に応じた振動成分を取り出して検出器46に送る。検出器46は、検光子45から送られてくる光の振動成分を検出する装置である。検出器46は、検出した振動成分に応じた検出信号を情報処理装置50に送る。   The analyzer 45 extracts vibration components corresponding to the arrangement direction of the analyzer 45 from light polarized in two orthogonal directions and reflected by the sample films A and B, and sends the vibration component to the detector 46. The detector 46 is a device that detects a vibration component of light transmitted from the analyzer 45. The detector 46 sends a detection signal corresponding to the detected vibration component to the information processing apparatus 50.

情報処理装置50は、検出器46からの検出信号を用いてサンプル膜A,Bの膜質を算出するコンピュータなどの装置である。情報処理装置50は、制御部51、記憶部52、計算部53、入力部54、出力部55を備えている。   The information processing apparatus 50 is an apparatus such as a computer that calculates the film quality of the sample films A and B using the detection signal from the detector 46. The information processing apparatus 50 includes a control unit 51, a storage unit 52, a calculation unit 53, an input unit 54, and an output unit 55.

入力部54は、分光エリプソメトリ2が測定する膜の種類に関する情報(サンプル膜A,Bの膜材を指定する情報)などを入力し、計算部53に送る。記憶部52は、検出器46からの検出信号や計算部53の計算結果(サンプル膜A,Bの膜質)などを記憶するメモリなどである。   The input unit 54 inputs information on the type of film measured by the spectroscopic ellipsometry 2 (information specifying the film material of the sample films A and B) and the like, and sends the information to the calculation unit 53. The storage unit 52 is a memory that stores a detection signal from the detector 46, a calculation result of the calculation unit 53 (film quality of the sample films A and B), and the like.

制御部51は、光源41を制御するとともに、計算部53を制御する。制御部51は、膜質測定に用いる膜質測定レシピを記憶する。計算部53は、入力部54から送られてくるサンプル膜A,Bの膜材を指定する情報、記憶部52が記憶する検出信号、制御部51が記憶している膜質測定レシピを用いて、サンプル膜A,Bの膜質を算出する。出力部55は、計算部53が算出したサンプル膜A,Bの膜質を、膜質の測定結果として出力する。   The control unit 51 controls the light source 41 and the calculation unit 53. The control unit 51 stores a film quality measurement recipe used for film quality measurement. The calculation unit 53 uses the information specifying the film materials of the sample films A and B sent from the input unit 54, the detection signal stored in the storage unit 52, and the film quality measurement recipe stored in the control unit 51, The film quality of the sample films A and B is calculated. The output unit 55 outputs the film quality of the sample films A and B calculated by the calculation unit 53 as a film quality measurement result.

ここで、分光反射率計測装置1や分光エリプソメトリ2が測定する膜(サンプル膜A,Bや被測定膜C)について説明する。図3は、分光反射率計測装置や分光エリプソメトリが測定する膜を説明するための図である。図3では、分光反射率計測装置1や分光エリプソメトリ2によって測定される膜の断面構成を示している。分光反射率計測装置1や分光エリプソメトリ2が測定する膜は、サンプル膜A,Bや被測定膜Cであり、例えばシリコン31上に形成された膜(図3では測定膜32として図示)である。例えば、サンプル膜Aは第1の基板上に成膜され、サンプル膜Bは第2の基板上に成膜され、被測定膜Cは、製品基板(第3の基板)上に成膜される。   Here, films (sample films A and B and film to be measured C) measured by the spectral reflectance measuring apparatus 1 and the spectral ellipsometry 2 will be described. FIG. 3 is a diagram for explaining a film measured by a spectral reflectance measuring device or a spectroscopic ellipsometer. In FIG. 3, the cross-sectional structure of the film | membrane measured by the spectral reflectance measuring device 1 or the spectroscopic ellipsometry 2 is shown. The films measured by the spectral reflectance measuring device 1 and the spectral ellipsometry 2 are sample films A and B and a film C to be measured, for example, a film formed on the silicon 31 (shown as a measurement film 32 in FIG. 3). is there. For example, the sample film A is formed on the first substrate, the sample film B is formed on the second substrate, and the measured film C is formed on the product substrate (third substrate). .

サンプル膜A,Bや被測定膜Cは、例えばシリコン窒化膜(SiN)などの同一の膜材で成膜されている。サンプル膜Aは、例えばプロセス条件の許容上限値で作製された膜であり、サンプル膜Bは、例えばプロセス条件の許容下限値で作製された膜である。これにより、プロセス条件の許容上限値から許容下限値で形成された膜の膜質(サンプル膜情報)を用いて、被測定膜Cの膜厚が測定されることとなる。なお、本実施の形態では、膜質の測定に用いるサンプル膜がサンプル膜A,Bの2種類である場合について説明するが、サンプル膜は3種類以上であってもよい。また、サンプル膜A,Bは、異なるプロセス条件で成膜させる場合に限らず、異なる装置で成膜させてもよい。   The sample films A and B and the measured film C are formed of the same film material such as a silicon nitride film (SiN). The sample film A is, for example, a film manufactured with an allowable upper limit value of the process conditions, and the sample film B is, for example, a film manufactured with an allowable lower limit value of the process conditions. Thereby, the film thickness of the film C to be measured is measured using the film quality (sample film information) of the film formed from the allowable upper limit value to the allowable lower limit value of the process conditions. In this embodiment, the case where there are two types of sample films A and B used for measuring the film quality will be described. However, three or more types of sample films may be used. The sample films A and B are not limited to being formed under different process conditions, and may be formed with different apparatuses.

つぎに、第1の実施の形態に係る膜厚測定方法の処理手順について説明する。図4は、第1の実施の形態に係る膜厚測定方法の処理手順を示すフローチャートである。まず、分光エリプソメトリ2によってサンプル膜A,Bの膜質を測定する。具体的には、まず分光エリプソメトリ2にサンプル膜A,Bをセットし、サンプル膜A,Bからの反射光44の特性を測定する。   Next, a processing procedure of the film thickness measurement method according to the first embodiment will be described. FIG. 4 is a flowchart showing a processing procedure of the film thickness measuring method according to the first embodiment. First, the film quality of the sample films A and B is measured by spectroscopic ellipsometry 2. Specifically, first, the sample films A and B are set in the spectroscopic ellipsometry 2, and the characteristics of the reflected light 44 from the sample films A and B are measured.

図5は、サンプル膜から得られる反射光の特性例を示す図である。サンプル膜A,Bに入射光43を照射すると、情報処理装置50へは、反射光44に応じた検出信号が送られる。この検出信号は、計算部53によって反射光44の特性を示す情報に変換される。図5の(a)は、入射光43の波長と、反射光44の直交する光の強度比を示す情報(強度比情報)と、の対応関係(特性情報101)を示している。また、図5の(b)は、入射光43の波長と、反射光44の直交する光の位相差と、の対応関係(特性情報102)を示している。   FIG. 5 is a diagram illustrating a characteristic example of reflected light obtained from the sample film. When the sample films A and B are irradiated with the incident light 43, a detection signal corresponding to the reflected light 44 is sent to the information processing apparatus 50. This detection signal is converted into information indicating the characteristic of the reflected light 44 by the calculation unit 53. FIG. 5A shows the correspondence (characteristic information 101) between the wavelength of the incident light 43 and information (intensity ratio information) indicating the intensity ratio of the reflected light 44 orthogonal to each other. FIG. 5B shows a correspondence relationship (characteristic information 102) between the wavelength of the incident light 43 and the phase difference of the orthogonal light of the reflected light 44.

図5の(a)に示す特性情報101は、横軸が入射光43の波長であり、縦軸が強度比情報である。また、図5の(b)に示す特性情報102は、横軸が入射光43の波長であり、縦軸が位相差である。特性情報101の強度比情報や特性情報102の位相差は、偏光された後の入射光43がサンプル膜A,Bへの照射前後でどのように変化したかを規格化したものである。   In the characteristic information 101 shown in FIG. 5A, the horizontal axis is the wavelength of the incident light 43, and the vertical axis is intensity ratio information. In the characteristic information 102 shown in FIG. 5B, the horizontal axis represents the wavelength of the incident light 43, and the vertical axis represents the phase difference. The intensity ratio information of the characteristic information 101 and the phase difference of the characteristic information 102 standardize how the incident light 43 after being polarized changes before and after the sample films A and B are irradiated.

計算部53は、図5に示した特性情報101の波形や特性情報102の波形を解析し、サンプル膜A,Bの膜質が算出される。図6は、反射光の特性から算出された膜質を示す図である。計算部53は、サンプル膜A,Bの膜質を定義するためのモデルとして、例えばハーモニックオシレータを用いる。なお、計算部53は、サンプル膜A,Bの膜質を定義するためのモデルとして、ハーモニックオシレータ以外の他のモデルを用いてもよい。このように、計算部53は、ハーモニックオシレータを用いてサンプル膜A,Bの特性を解析し、サンプル膜A,Bの膜質を算出(定義)する。   The calculation unit 53 analyzes the waveform of the characteristic information 101 and the waveform of the characteristic information 102 shown in FIG. 5, and calculates the film quality of the sample films A and B. FIG. 6 is a diagram showing the film quality calculated from the characteristics of the reflected light. The calculation unit 53 uses, for example, a harmonic oscillator as a model for defining the film quality of the sample films A and B. The calculation unit 53 may use a model other than the harmonic oscillator as a model for defining the film quality of the sample films A and B. As described above, the calculation unit 53 analyzes the characteristics of the sample films A and B using the harmonic oscillator, and calculates (defines) the film quality of the sample films A and B.

図6の(a)は、入射光43の波長と屈折率との対応関係(屈折率情報201)を示している。また、図6の(b)は、入射光43の波長と消衰係数との対応関係(屈折率情報201)を示している。なお、本実施の形態では、膜質が屈折率と消衰係数である場合について説明するが、膜質は屈折率だけで定義してもよいし、屈折率や消衰係数以外の要素を用いて定義してもよい。   FIG. 6A shows a correspondence relationship (refractive index information 201) between the wavelength of the incident light 43 and the refractive index. FIG. 6B shows the correspondence (refractive index information 201) between the wavelength of the incident light 43 and the extinction coefficient. In this embodiment, the case where the film quality is the refractive index and the extinction coefficient will be described. However, the film quality may be defined only by the refractive index, or may be defined using elements other than the refractive index and the extinction coefficient. May be.

図6の(a)に示す屈折率情報201は、横軸が入射光43の波長であり、縦軸が屈折率である。また、図6の(b)に示す消衰係数情報202は、横軸が入射光43の波長であり、縦軸が消衰係数である。計算部53は、特性情報101の波形や特性情報102を用い、制御部51内の膜質測定レシピにリンクすることによって、屈折率情報201、消衰係数情報202を算出する。計算部53は、サンプル膜A,Bの膜質として、サンプル膜A,B毎に屈折率情報201、消衰係数情報202を算出する(ステップS10)。   In the refractive index information 201 shown in FIG. 6A, the horizontal axis is the wavelength of the incident light 43, and the vertical axis is the refractive index. In the extinction coefficient information 202 shown in FIG. 6B, the horizontal axis is the wavelength of the incident light 43, and the vertical axis is the extinction coefficient. The calculation unit 53 calculates the refractive index information 201 and the extinction coefficient information 202 by linking to the film quality measurement recipe in the control unit 51 using the waveform of the characteristic information 101 and the characteristic information 102. The calculation unit 53 calculates the refractive index information 201 and the extinction coefficient information 202 for each of the sample films A and B as the film quality of the sample films A and B (step S10).

本実施の形態では、算出したサンプル膜Aの膜質とサンプル膜Bの膜質を比較することによって、被測定膜Cの膜厚を測定する際に用いる製品測定用波長を算出する。製品測定用波長は、分光エリプソメトリ2、分光反射率計測装置1、これら以外の他の装置の何れが算出してもよい。本実施の形態では、分光反射率計測装置1が製品測定用波長を算出する場合について説明する。計算部53が算出したサンプル膜A,B毎の屈折率情報201、消衰係数情報202は、出力部55から出力され、分光反射率計測装置1の入力部24に入力される。   In this embodiment, by comparing the calculated film quality of the sample film A and the film quality of the sample film B, the wavelength for product measurement used when measuring the film thickness of the film C to be measured is calculated. The product measurement wavelength may be calculated by any one of the spectroscopic ellipsometry 2, the spectroscopic reflectance measuring device 1, and other devices. In the present embodiment, a case where the spectral reflectance measurement apparatus 1 calculates a product measurement wavelength will be described. The refractive index information 201 and extinction coefficient information 202 for each of the sample films A and B calculated by the calculation unit 53 are output from the output unit 55 and input to the input unit 24 of the spectral reflectance measurement apparatus 1.

サンプル膜A,B毎の屈折率情報201、消衰係数情報202は、記憶部22によって記憶される。計算部23は、サンプル膜Aの膜質とサンプル膜Bの膜質を比較する。図7は、サンプル膜の比較処理を説明するための図である。図7の(a)では、サンプル膜Aの膜質を膜質情報3Aで示し、図7の(b)では、サンプル膜Bの膜質を膜質情報3Bで示している。また、図7の(c)では、サンプル膜A,Bの比較結果(波形の重ね合わせ)を比較情報3Xで示している。   Refractive index information 201 and extinction coefficient information 202 for each of the sample films A and B are stored in the storage unit 22. The calculation unit 23 compares the film quality of the sample film A with the film quality of the sample film B. FIG. 7 is a diagram for explaining sample film comparison processing. In FIG. 7A, the film quality of the sample film A is indicated by film quality information 3A, and in FIG. 7B, the film quality of the sample film B is indicated by film quality information 3B. Further, in FIG. 7C, the comparison result (waveform superposition) of the sample films A and B is indicated by comparison information 3X.

膜質情報3Aは、サンプル膜Aの屈折率情報301Aと消衰係数情報302Aを有している。膜質情報3Bは、サンプル膜Bの屈折率情報301Bと消衰係数情報302Bを有している。また、比較情報3Xは、屈折率情報301Aと屈折率情報301Bとの比較結果を示す屈折率比較情報301Xと、消衰係数情報302Aと消衰係数情報302Bとの比較結果を示す消衰係数比較情報302Xと、を有している。   The film quality information 3A includes refractive index information 301A and extinction coefficient information 302A of the sample film A. The film quality information 3B includes refractive index information 301B and extinction coefficient information 302B of the sample film B. The comparison information 3X includes refractive index comparison information 301X indicating a comparison result between the refractive index information 301A and the refractive index information 301B, and an extinction coefficient comparison indicating a comparison result between the extinction coefficient information 302A and the extinction coefficient information 302B. Information 302X.

屈折率情報301A,301Bは、屈折率情報201と同様に、入射光43の波長と屈折率との対応関係を示す情報であり、横軸が入射光43の波長で縦軸が屈折率である。消衰係数情報302A,302Bは、消衰係数情報202と同様に、入射光43の波長と消衰係数との対応関係を示す情報であり、横軸が入射光43の波長で縦軸が消衰係数である。   Similar to the refractive index information 201, the refractive index information 301A and 301B is information indicating the correspondence between the wavelength of the incident light 43 and the refractive index, the horizontal axis is the wavelength of the incident light 43, and the vertical axis is the refractive index. . Similarly to the extinction coefficient information 202, the extinction coefficient information 302A and 302B is information indicating the correspondence between the wavelength of the incident light 43 and the extinction coefficient. The horizontal axis is the wavelength of the incident light 43 and the vertical axis is the extinction coefficient. Decay coefficient.

計算部53は、サンプル膜Aとサンプル膜Bの屈折率の比較処理として、屈折率情報301Aと屈折率情報301Bとを用いて屈折率比較情報301Xを算出する(ステップS20)。また、計算部53は、サンプル膜Aとサンプル膜Bの消衰係数の比較処理として、消衰係数情報302Aと消衰係数情報302Bを用いて消衰係数比較情報302Xを算出する(ステップS30)。   The calculation unit 53 calculates the refractive index comparison information 301X using the refractive index information 301A and the refractive index information 301B as a comparison process of the refractive indexes of the sample film A and the sample film B (step S20). Further, the calculation unit 53 calculates the extinction coefficient comparison information 302X using the extinction coefficient information 302A and the extinction coefficient information 302B as a comparison process of the extinction coefficients of the sample film A and the sample film B (step S30). .

屈折率比較情報301Xに示すように、屈折率情報301Aの波形と屈折率情報301Bの波形を重ね合わせると、同一の波長で同一の屈折率を示す箇所(クロスポイントP1など)がある。また、消衰係数比較情報302Xに示すように、消衰係数情報302Aの波形と消衰係数情報302Bの波形を重ね合わせると、同一の波長で同一の消衰係数を示す箇所(クロスポイントP2など)がある。   As shown in the refractive index comparison information 301X, when the waveform of the refractive index information 301A and the waveform of the refractive index information 301B are overlapped, there is a portion (cross point P1 or the like) that shows the same refractive index at the same wavelength. Further, as shown in the extinction coefficient comparison information 302X, when the waveform of the extinction coefficient information 302A and the waveform of the extinction coefficient information 302B are overlapped, a portion that shows the same extinction coefficient at the same wavelength (cross point P2 or the like) )

略同一の波長で略同一の屈折率を示す波長帯であって、且つ略同一の波長で略同一の消衰係数を示す波長帯で、サンプル膜A,Bの膜質を測定した場合、サンプル膜A,Bの膜質に光学的な違いは存在していないこととなる。従って、この波長帯の光学定数を用いて被測定膜Cの膜厚を測定すれば、被測定膜Cは膜質の変化の影響を受けることなく正確に膜厚が測定される。   When the film quality of the sample films A and B is measured in a wavelength band showing substantially the same refractive index at substantially the same wavelength and showing substantially the same extinction coefficient at the substantially same wavelength, the sample film This means that there is no optical difference between the film quality of A and B. Therefore, if the film thickness of the film C to be measured is measured using the optical constant in this wavelength band, the film thickness of the film C to be measured can be accurately measured without being affected by the change in film quality.

本実施の形態では、略同一の波長で略同一の屈折率を示す波長であって、且つ略同一の波長で略同一の消衰係数を示す波長が、被測定膜Cの測定波長である製品測定用波長に決定される。換言すると、屈折率比較情報301X内の測定波長のうちサンプル膜Aを測定した場合の屈折率とサンプル膜Bを測定した場合の屈折率との差が所定値よりも小さくなる測定波長であって、且つ、消衰係数比較情報302X内の測定波長のうちサンプル膜Aを測定した場合の消衰係数とサンプル膜Bを測定した場合の消衰係数との差が所定値よりも小さくなる測定波長を、製品測定用波長とする。   In the present embodiment, a product having a wavelength that exhibits substantially the same refractive index at approximately the same wavelength and that exhibits approximately the same extinction coefficient at approximately the same wavelength is a measurement wavelength of the film C to be measured. It is determined as a wavelength for measurement. In other words, the measurement wavelength in the refractive index comparison information 301X is a measurement wavelength in which the difference between the refractive index when the sample film A is measured and the refractive index when the sample film B is measured is smaller than a predetermined value. And the measurement wavelength in which the difference between the extinction coefficient when measuring the sample film A and the extinction coefficient when measuring the sample film B out of the measurement wavelengths in the extinction coefficient comparison information 302X becomes smaller than a predetermined value. Is the wavelength for product measurement.

これにより、計算部53は、クロスポイントP1とクロスポイントP2の両方に近い波長(波長領域)を製品測定用波長に決定する(ステップS40)。例えば、被測定膜Cがシリコン窒化膜である場合、計算部53は、製品測定用波長を500nm〜600nmに決定する。なお、計算部53は、製品測定用波長を500nm〜600nmを含む波長領域としてもよい。   Thereby, the calculation part 53 determines the wavelength (wavelength area | region) close | similar to both the cross point P1 and the cross point P2 to a product measurement wavelength (step S40). For example, when the measurement target film C is a silicon nitride film, the calculation unit 53 determines the product measurement wavelength to be 500 nm to 600 nm. In addition, the calculation part 53 is good also considering the wavelength for product measurement as a wavelength range containing 500 nm-600 nm.

この後、分光反射率計測装置1には、サンプル膜A,Bの膜質、シリコン31の膜質が入力される。分光反射率計測装置1は、製品測定用波長(膜厚測定用の波長領域)、サンプル膜A,Bの膜質、シリコン31の膜質を用いて、被測定膜Cの膜厚を測定する(ステップS50)。なお、サンプル膜A,Bの膜質やシリコン31の膜質は、分光エリプソメトリ2が測定した値を用いてもよいし、文献値などであってもよい。   Thereafter, the film quality of the sample films A and B and the film quality of the silicon 31 are input to the spectral reflectance measuring apparatus 1. The spectral reflectance measuring apparatus 1 measures the film thickness of the film C to be measured using the product measurement wavelength (wavelength region for film thickness measurement), the film quality of the sample films A and B, and the film quality of the silicon 31 (step S50). The film quality of the sample films A and B and the film quality of the silicon 31 may be values measured by the spectroscopic ellipsometry 2, or may be literature values.

つぎに、計算部53が決定した製品測定用波長の光を用いてサンプル膜A,Bの膜厚を測定した場合の膜厚測定結果と、従来の方法でサンプル膜A,Bの膜厚を測定した場合の膜厚測定結果との違いについて説明する。図8は、従来の方法でサンプル膜の膜厚を測定した場合の膜厚測定結果を示す図であり、図9は、第1の実施の形態に係る膜厚測定方法でサンプル膜を測定した場合の膜厚測定結果を示す図である。図8および図9では、サンプル膜A,Bがシリコン窒化膜である場合の膜厚測定結果を示している。   Next, the film thickness measurement results when the film thicknesses of the sample films A and B are measured using the light of the product measurement wavelength determined by the calculation unit 53, and the film thicknesses of the sample films A and B by the conventional method are obtained. The difference from the film thickness measurement result when measured is described. FIG. 8 is a diagram showing a film thickness measurement result when the film thickness of the sample film is measured by a conventional method, and FIG. 9 shows the sample film measured by the film thickness measurement method according to the first embodiment. It is a figure which shows the film thickness measurement result in a case. 8 and 9 show the film thickness measurement results when the sample films A and B are silicon nitride films.

まず、サンプル膜A,Bをウエハ上に成膜し、成膜したサンプル膜A,Bの断面をSEM(Scanning Electron Microscope)などで観察する。例えば、サンプル膜A,Bのウエハ断面をそれぞれ面内で4箇所ずつ観察して、サンプル膜A,Bの膜厚を測定する。また、従来方法での膜厚測定として、サンプル膜A,Bをウエハ面内で4箇所ずつ、分光反射率計測装置1を用いて種々の波長で測定する。また、第1の実施の形態に係る膜厚測定方法として、サンプル膜A,Bをウエハ面内で4箇所ずつ、分光反射率計測装置1を用いて製品測定用波長(520nm〜525nm)で測定する。   First, sample films A and B are formed on a wafer, and cross sections of the formed sample films A and B are observed with a scanning electron microscope (SEM) or the like. For example, the wafer cross sections of the sample films A and B are observed at four points in the plane, and the film thicknesses of the sample films A and B are measured. Further, as the film thickness measurement by the conventional method, the sample films A and B are measured at various wavelengths using the spectral reflectance measuring apparatus 1 at four locations on the wafer surface. Further, as a film thickness measuring method according to the first embodiment, sample films A and B are measured at four locations on the wafer surface at the product measurement wavelength (520 nm to 525 nm) using the spectral reflectance measuring apparatus 1. To do.

図8に示すように、従来の方法でサンプル膜A,Bの膜厚を測定した場合、断面観察から求めた膜厚と、分光反射率計測装置1を用いて測定した膜厚と、の膜厚差(△)は、サンプル膜Aとサンプル膜Bとで、大きな違いが生じている。具体的には、サンプル膜Bでは△は約10Aであり、この値は膜厚の約3%であるので膜厚の管理としては許容することはできない。このような膜厚のばらつきは、例えば図7の(c)に示したように、サンプル膜Aとサンプル膜Bとで、膜厚を測定する波長によって測定される膜質間に変化が生じるからである。換言すると、膜厚を測定する波長によっては、サンプル膜Aとサンプル膜Bとで、異なる膜質が測定されてしまう。この膜質の違いは、プロセスの安定性等によるものと推測される。   As shown in FIG. 8, when the film thicknesses of the sample films A and B are measured by the conventional method, the film thickness obtained from the cross-sectional observation and the film thickness measured using the spectral reflectance measuring apparatus 1 There is a large difference in thickness difference (Δ) between sample film A and sample film B. Specifically, in the sample film B, Δ is about 10 A, and this value is about 3% of the film thickness. For example, as shown in FIG. 7C, such a variation in film thickness is caused by a change in the film quality measured by the wavelength for measuring the film thickness between the sample film A and the sample film B. is there. In other words, depending on the wavelength at which the film thickness is measured, different film qualities are measured for the sample film A and the sample film B. This difference in film quality is presumed to be due to the stability of the process.

一方、第1の実施の形態に係る膜厚測定方法でサンプル膜A,Bの膜厚を測定した場合、断面観察から求めた膜厚と、分光反射率計測装置1を用いて測定した膜厚と、の膜厚差(△)は、サンプル膜Aとサンプル膜Bとで、小さな違いしか生じていない。具体的には、第1の実施の形態に係る膜厚測定方法でサンプル膜A,Bの膜厚を測定した場合、サンプル膜A,Bの全ての測定点において△は膜厚の1%以下となっている。このように、第1の実施の形態に係る膜厚測定方法でサンプル膜A,Bを測定した膜厚と、断面観察から求めた実際の膜厚との差が小さくなっており、膜厚の計測が正確に実行されていることが確認できた。   On the other hand, when the film thicknesses of the sample films A and B are measured by the film thickness measuring method according to the first embodiment, the film thickness obtained from the cross-sectional observation and the film thickness measured using the spectral reflectance measuring apparatus 1 The difference in film thickness (Δ) between the sample film A and the sample film B is only a small difference. Specifically, when the film thicknesses of the sample films A and B are measured by the film thickness measurement method according to the first embodiment, Δ is 1% or less of the film thickness at all measurement points of the sample films A and B. It has become. Thus, the difference between the film thickness obtained by measuring the sample films A and B by the film thickness measuring method according to the first embodiment and the actual film thickness obtained from the cross-sectional observation is small. It was confirmed that the measurement was performed correctly.

このように、簡易な分光反射率計測手法においても高精度な膜厚測定を実現できるよう、膜質と光の波長との関係を予め調べ、膜厚測定の際の波長領域を適切に選択することによって高精度な膜厚測定を行なっている。すなわち、被測定膜Cの膜質に着目し、膜質を測定した場合に光学的に変化の少ない波長領域を選択して膜厚測定を実行している。これにより、安価な分光反射率計測装置1であっても、膜質変化の影響を受けること無く高精度な膜厚測定を実現することが可能となる。   In this way, in order to realize highly accurate film thickness measurement even with a simple spectral reflectance measurement method, the relationship between the film quality and the wavelength of light should be examined in advance, and the wavelength region for film thickness measurement should be selected appropriately. The film thickness is measured with high accuracy. That is, paying attention to the film quality of the film C to be measured, the film thickness measurement is performed by selecting a wavelength region with little optical change when the film quality is measured. Thereby, even if it is an inexpensive spectral reflectance measuring apparatus 1, it becomes possible to implement | achieve highly accurate film thickness measurement, without receiving to the influence of a film quality change.

第1の実施の形態に係る膜厚測定方法で測定された被測定膜Cの膜厚値は、予め設定しておいた膜厚許容値と比較される。そして、被測定膜Cの膜厚値が膜厚許容値の範囲内であれば、被測定膜Cが成膜されているウエハは次の工程での処理が行なわれる。これにより、被測定膜Cを用いて半導体デバイスなどの半導体装置(半導体集積回路)が製造される。具体的には、露光装置がウエハの露光処理を行い、その後、ウエハの現像処理、エッチング処理を行う。換言すると、リソグラフィ工程で転写により形成したレジストパターンでマスク材を加工し、さらにパターンニングされたマスク材を使用して被加工膜(被測定膜Cなど)をエッチングによりパターンニングする。半導体装置を製造する際には、上述した被測定膜Cの成膜処理、被測定膜Cの膜厚測定処理、露光処理、現像処理、エッチング処理などがレイヤ毎に繰り返される。   The film thickness value of the film C to be measured measured by the film thickness measuring method according to the first embodiment is compared with a film thickness allowable value set in advance. If the film thickness value of the film to be measured C is within the allowable film thickness range, the wafer on which the film to be measured C is formed is processed in the next step. Thus, a semiconductor device (semiconductor integrated circuit) such as a semiconductor device is manufactured using the film C to be measured. Specifically, the exposure apparatus performs wafer exposure processing, and then performs wafer development processing and etching processing. In other words, the mask material is processed with the resist pattern formed by transfer in the lithography process, and the film to be processed (measurement film C or the like) is patterned by etching using the patterned mask material. When manufacturing a semiconductor device, the film forming process of the film to be measured C, the film thickness measuring process of the film to be measured C, the exposure process, the developing process, the etching process, and the like are repeated for each layer.

なお、本実施の形態では、サンプル膜A,Bの膜質を分光エリプソメトリ2によって測定したが、サンプル膜A,Bの膜質は分光エリプソメトリ2以外の装置によって測定してもよい。また、被測定膜Cの膜厚は、分光反射率計測装置1以外の装置によって測定してもよい。また、製品測定用波長によって測定する膜は被測定膜Cに限らず、サンプル膜A,Bと同種の膜材であれば何れの膜を測定してもよい。また、分光エリプソメトリ2によって測定したサンプル膜A,Bの膜質を用いて製品測定用波長を算出したが、サンプル膜A,Bの膜質として文献値を用いて製品測定用波長を算出してもよい。   In this embodiment, the film quality of the sample films A and B is measured by the spectroscopic ellipsometry 2, but the film quality of the sample films A and B may be measured by an apparatus other than the spectroscopic ellipsometry 2. Further, the film thickness of the film C to be measured may be measured by an apparatus other than the spectral reflectance measuring apparatus 1. Further, the film to be measured by the product measurement wavelength is not limited to the film C to be measured, and any film may be measured as long as it is the same type of film material as the sample films A and B. Moreover, although the product measurement wavelength was calculated using the film quality of the sample films A and B measured by the spectroscopic ellipsometry 2, the product measurement wavelength was calculated using the literature values as the film quality of the sample films A and B. Good.

このように第1の実施の形態によれば、サンプル膜A,Bで膜質測定を行なった場合に、サンプル膜A,Bで膜質の測定結果に差が生じにくい製品測定用波長を選択し、この製品測定用波長で被測定膜Cの膜厚を測定するので、分光反射率計測装置1を用いて高精度に被測定膜Cの膜厚を測定することが可能となる。また、分光反射率計測装置1を用いて被測定膜Cの膜厚を測定できるので、高スループットな膜厚測定を安価で容易に行なうことができる。   As described above, according to the first embodiment, when film quality measurement is performed on the sample films A and B, the wavelength for product measurement that is unlikely to cause a difference in the film quality measurement results between the sample films A and B is selected. Since the film thickness of the film to be measured C is measured at this product measurement wavelength, the film thickness of the film to be measured C can be measured with high accuracy using the spectral reflectance measuring apparatus 1. Moreover, since the film thickness of the film C to be measured can be measured using the spectral reflectance measuring apparatus 1, high-throughput film thickness measurement can be easily performed at low cost.

また、被測定膜Cがシリコン窒化膜である場合に、被測定膜Cを500nm〜600nmの製品測定用波長で膜厚測定するので、被測定膜Cの膜厚を精度良く測定することが可能となる。   In addition, when the film C to be measured is a silicon nitride film, the film thickness of the film C to be measured is measured at a product measurement wavelength of 500 nm to 600 nm, so that the film thickness of the film C to be measured can be accurately measured. It becomes.

また、分光エリプソメトリ2を用いてサンプル膜A,Bの膜質を測定しておくので、サンプル膜A,Bの膜質を正確に測定することが可能となる。したがって、被測定膜Cの膜厚を精度良く測定できる製品測定用波長を正確に決定することが可能となる。   Further, since the film qualities of the sample films A and B are measured using the spectroscopic ellipsometry 2, the film qualities of the sample films A and B can be accurately measured. Therefore, it is possible to accurately determine the product measurement wavelength capable of accurately measuring the film thickness of the film C to be measured.

(第2の実施の形態)
つぎに、図10〜図17を用いてこの発明の第2の実施の形態について説明する。第2の実施の形態では、第1の実施の形態で算出した膜厚を用いて、分光反射率計測装置1が被測定膜Cの膜質を算出する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. In the second embodiment, the spectral reflectance measuring device 1 calculates the film quality of the film C to be measured using the film thickness calculated in the first embodiment.

図10は、第2の実施の形態に係る膜厚測定方法の処理手順を示すフローチャートである。本実施の形態でも、第1の実施の形態と同様に、分光反射率計測装置1内に被測定膜Cと同じ材質で作製されたサンプル膜A,Bの膜質(サンプル膜情報)を入力しておく。なお、分光反射率計測装置1内に入力しておくサンプル膜A,Bの膜質は、暫定的なものであり、最終的には膜質そのものがパラメータ化されて変化することになる。この点が膜厚のみを測定する場合との大きな違いである。本実施の形態では、安価な分光反射率計測装置1を用いて高精度な膜厚測定と高精度な膜質測定を同時に行なう。   FIG. 10 is a flowchart showing a processing procedure of the film thickness measuring method according to the second embodiment. Also in the present embodiment, as in the first embodiment, the film quality (sample film information) of the sample films A and B made of the same material as the film to be measured C is input into the spectral reflectance measurement apparatus 1. Keep it. Note that the film quality of the sample films A and B input into the spectral reflectance measuring apparatus 1 is provisional, and eventually the film quality itself changes as a parameter. This is a significant difference from the case where only the film thickness is measured. In the present embodiment, high-accuracy film thickness measurement and high-accuracy film quality measurement are simultaneously performed using an inexpensive spectral reflectance measurement apparatus 1.

まず、第1の実施の形態の膜厚測定方法と同じ方法で被測定膜Cの膜厚を測定する。具体的には、分光エリプソメトリ2が、サンプル膜A,Bの膜質を算出し、この膜質を用いて製品測定用波長を決定する。そして、分光反射率計測装置1が製品測定用波長で被測定膜Cの膜厚を測定する(ステップS110)。例えば、本実施の形態では、545nm〜555nmの波長帯を選択して被測定膜Cの膜厚を測定する。具体的には、545nm〜555nmの波長を有した光を被測定膜Cに照射し、図11に示す反射信号の情報(光の強度比)を取得する。   First, the film thickness of the film C to be measured is measured by the same method as the film thickness measurement method of the first embodiment. Specifically, the spectroscopic ellipsometry 2 calculates the film quality of the sample films A and B, and determines the product measurement wavelength using the film quality. Then, the spectral reflectance measuring device 1 measures the film thickness of the film C to be measured at the product measurement wavelength (step S110). For example, in the present embodiment, the wavelength band of 545 nm to 555 nm is selected and the film thickness of the film C to be measured is measured. Specifically, the film C to be measured is irradiated with light having a wavelength of 545 nm to 555 nm, and information of reflected signals (light intensity ratio) shown in FIG. 11 is acquired.

図11は、分光反射率計測で得られる光強度を示す図である。図11では、横軸が測定波長を示し、縦軸がサンプル膜A,Bと基準サンプルとの光の強度比を示している。基準サンプルは、例えば分光反射率計測装置1にセットされているベアシリコンなどである。サンプル膜A,Bを測定する際には、基準サンプルの光強度を測定しておき、基準サンプルの光強度をベースとしてサンプル膜A,Bと基準サンプルとの強度比が測定される。図11に示すように、分光反射率計測で得られる情報は、測定波長と光の強度比との対応関係(以下、強度比波形という)である。計算部23は、545nm〜555nmの波長帯で測定した被測定膜Cの強度比波形を、シミュレーション生成された他の強度比波形とフィッテングさせる。具体的には、545nm〜555nmの波長帯で測定した場合の膜質を用いて、種々の膜厚毎に545nm〜555nmの波長帯での強度比波形をシミュレーション予測しておく。これにより、種々の強度比波形は、それぞれ膜厚に対応付けされる。そして、種々の膜厚毎にシミュレーション予測された強度比波形の中から、被測定膜Cを用いて測定した強度比波形と略同じ波形を有する強度比波形を抽出する。抽出した強度比波形に対応する膜厚が、被測定膜Cの膜厚となる。   FIG. 11 is a diagram showing light intensity obtained by spectral reflectance measurement. In FIG. 11, the horizontal axis indicates the measurement wavelength, and the vertical axis indicates the light intensity ratio between the sample films A and B and the reference sample. The reference sample is, for example, bare silicon set in the spectral reflectance measuring device 1. When measuring the sample films A and B, the light intensity of the reference sample is measured, and the intensity ratio between the sample films A and B and the reference sample is measured based on the light intensity of the reference sample. As shown in FIG. 11, information obtained by spectral reflectance measurement is a correspondence relationship between the measurement wavelength and the light intensity ratio (hereinafter referred to as an intensity ratio waveform). The calculation unit 23 fits the intensity ratio waveform of the film C to be measured measured in the wavelength band of 545 nm to 555 nm with another intensity ratio waveform generated by simulation. Specifically, the intensity ratio waveform in the wavelength band of 545 nm to 555 nm is predicted by simulation using the film quality when measured in the wavelength band of 545 nm to 555 nm. Thereby, various intensity ratio waveforms are associated with film thicknesses. And the intensity ratio waveform which has a waveform substantially the same as the intensity ratio waveform measured using the to-be-measured film C is extracted from the intensity ratio waveforms predicted by simulation for various film thicknesses. The film thickness corresponding to the extracted intensity ratio waveform is the film thickness of the film C to be measured.

そして、分光反射率計測装置1は、測定した膜厚を用いて被測定膜Cの膜質を算出する(ステップS120)。図12は、分光反射率計測装置で測定した膜厚の測定結果を示す図である。図12では、選択した製品測定用波長で膜厚のみを測定した場合の測定結果を示している。図12の横軸は被測定膜Cのウエハ面内での膜厚測定ポイントであり、縦軸は被測定膜Cの膜厚測定結果である。この膜厚測定結果(膜厚T1の波形)は、後述する従来の膜厚測定結果(従来の分光反射率計測方法での測定結果)と比べて各膜厚測定ポイントで安定した値を示している。   Then, the spectral reflectance measurement apparatus 1 calculates the film quality of the film C to be measured using the measured film thickness (step S120). FIG. 12 is a diagram showing the measurement results of the film thickness measured with the spectral reflectance measuring device. FIG. 12 shows the measurement results when only the film thickness is measured at the selected product measurement wavelength. The horizontal axis of FIG. 12 is the film thickness measurement point in the wafer surface of the film C to be measured, and the vertical axis is the film thickness measurement result of the film C to be measured. This film thickness measurement result (waveform of film thickness T1) shows a stable value at each film thickness measurement point compared to a conventional film thickness measurement result (measurement result by a conventional spectral reflectance measurement method) described later. Yes.

次いで、分光反射率計測装置1の計算部23は、測定した膜厚を既知の値に設定し、この膜厚の値を用いて、被測定膜Cの全波長帯(本実施の形態のでは200nm〜840nm)での膜質(屈折率などの光学定数)を算出(定義)する。図13は、既知の膜厚を用いて算出した屈折率の算出結果を示す図である。図13では、633nmの製品測定用波長で被測定膜Cの膜質を測定(算出)した場合の屈折率を示している。図13の横軸は被測定膜Cのウエハ面内での膜質測定ポイントであり、縦軸は被測定膜Cの屈折率算出結果である。この膜質測定結果(膜質N1の波形)は、後述する分光エリプソメトリ2のみを用いた膜質測定結果と同様に各膜質測定ポイントで安定した値を示している。   Next, the calculation unit 23 of the spectral reflectance measurement apparatus 1 sets the measured film thickness to a known value, and uses this film thickness value to determine the entire wavelength band of the film C to be measured (in the present embodiment). The film quality (optical constant such as refractive index) at 200 nm to 840 nm) is calculated (defined). FIG. 13 is a diagram illustrating a calculation result of a refractive index calculated using a known film thickness. FIG. 13 shows the refractive index when the film quality of the film C to be measured is measured (calculated) at a product measurement wavelength of 633 nm. The horizontal axis of FIG. 13 is a film quality measurement point in the wafer surface of the film C to be measured, and the vertical axis is a refractive index calculation result of the film C to be measured. This film quality measurement result (the waveform of the film quality N1) shows a stable value at each film quality measurement point as in the film quality measurement result using only the spectroscopic ellipsometry 2 described later.

このように、本実施の形態では、第1の実施の形態と同様に、膜質測定結果がサンプル膜A,Bの膜質によって変化しないかまたは変化が少ない波長帯を用いて被測定膜Cの膜厚を測定する。そして、この膜厚を用いて、種々の波長で膜質を測定した場合の膜質を算出する。このように、被測定膜Cの膜厚、膜質を測定する場合に、膜厚測定と膜質測定の2段階で測定を行なっているので、装置構成が簡易な分光反射型計測装置1であっても高精度な膜厚、膜質測定が可能となる。   As described above, in the present embodiment, as in the first embodiment, the film thickness of the film C to be measured using the wavelength band in which the film quality measurement result does not change or changes little depending on the film quality of the sample films A and B. Measure the thickness. Then, using this film thickness, the film quality when the film quality is measured at various wavelengths is calculated. As described above, when measuring the film thickness and film quality of the film C to be measured, the measurement is performed in two stages of film thickness measurement and film quality measurement. Highly accurate film thickness and film quality can be measured.

ここで、従来の分光反射率計測方法での膜厚および膜質の測定結果と、従来のように分光エリプソメトリ2のみを用いた場合の膜質測定結果について説明する。図14は、従来の分光反射率計測方法で測定した膜厚と屈折率の測定結果を示す図である。従来の分光反射率計測方法では、例えば分光反射率計測装置1が、被測定膜Cの膜厚と膜質とを同時に測定する。図14の横軸は被測定膜Cのウエハ面内での膜厚測定ポイントである。また、左側の縦軸は被測定膜Cの膜厚測定結果であり、右側の縦軸は被測定膜Cの膜質測定結果である。膜厚測定結果(膜厚T2の波形)は、図12に示した本実施の形態の膜厚測定方法で測定した膜厚と比べてばらつきが大きい。また、膜質測定結果(膜質N2の波形)は、図13に示した本実施の形態の膜質測定方法で算出した膜質と比べてばらつきが大きい。   Here, the measurement result of the film thickness and the film quality by the conventional spectral reflectance measurement method and the film quality measurement result in the case where only the spectral ellipsometry 2 is used as in the prior art will be described. FIG. 14 is a diagram showing measurement results of film thickness and refractive index measured by a conventional spectral reflectance measurement method. In the conventional spectral reflectance measurement method, for example, the spectral reflectance measurement apparatus 1 measures the film thickness and film quality of the film C to be measured at the same time. The horizontal axis in FIG. 14 is the film thickness measurement point in the wafer surface of the film C to be measured. The vertical axis on the left is the film thickness measurement result of the film C to be measured, and the vertical axis on the right is the film quality measurement result of the film C to be measured. The film thickness measurement result (waveform of the film thickness T2) has a large variation compared to the film thickness measured by the film thickness measurement method of the present embodiment shown in FIG. Further, the film quality measurement result (the waveform of the film quality N2) has a large variation compared to the film quality calculated by the film quality measurement method of the present embodiment shown in FIG.

このように、従来の方法で膜厚や膜質を測定した場合に測定結果がばらつく原因としては、分光反射率計測の場合、サンプル膜A,Bに照射した光の強度比(基準サンプルから得られる強度と比べた値)のみを検出しているにすぎないからである。   As described above, when the film thickness and the film quality are measured by the conventional method, the measurement result varies. In the case of the spectral reflectance measurement, the intensity ratio of the light applied to the sample films A and B (obtained from the reference sample). This is because only the value (compared to the intensity) is detected.

図15は、分光エリプソメトリのみを用いて測定した膜質の測定結果を示す図である。図15の(a)では、横軸が測定波長を示し、縦軸が屈折率を示している。また、図15の(b)では、横軸が測定波長を示し、縦軸が消衰係数を示している。図15に示すように分光エリプソメトリ2を用いた測定で得られる情報は、測定波長と屈折率の対応関係と、測定波長と消衰係数との対応関係と、の2つである。この2つの対応関係は、分光エリプソメトリ2によって測定された図5の特性情報101,102を解析することによって得ることができる。このように、分光反射率計測で得られる情報は、図14に示した1つのグラフであるのに対し、分光エリプソメトリ2を用いた測定で得られる情報は、図5(図15)に示した2つのグラフである。したがって、分光反射率計測で得られる情報量と分光エリプソメトリ2を用いた測定で得られる情報量とでは、2倍の情報量差があり、この情報量の差が測定精度の差としてあらわれる。   FIG. 15 is a diagram showing measurement results of film quality measured using only spectroscopic ellipsometry. In FIG. 15A, the horizontal axis represents the measurement wavelength, and the vertical axis represents the refractive index. In FIG. 15B, the horizontal axis indicates the measurement wavelength, and the vertical axis indicates the extinction coefficient. As shown in FIG. 15, the information obtained by the measurement using the spectroscopic ellipsometry 2 is two, that is, the correspondence relationship between the measurement wavelength and the refractive index, and the correspondence relationship between the measurement wavelength and the extinction coefficient. These two correspondences can be obtained by analyzing the characteristic information 101 and 102 of FIG. 5 measured by the spectroscopic ellipsometry 2. As described above, the information obtained by the spectral reflectance measurement is the one graph shown in FIG. 14, whereas the information obtained by the measurement using the spectral ellipsometry 2 is shown in FIG. 5 (FIG. 15). These are two graphs. Therefore, the information amount obtained by the spectral reflectance measurement and the information amount obtained by the measurement using the spectroscopic ellipsometry 2 have a double information amount difference, and this information amount difference appears as a difference in measurement accuracy.

分光エリプソメトリ2のみを用いて被測定膜Cの膜厚および膜質を測定する場合には、図15に示した膜質を記憶部52に入力し、膜厚を制御部51内の膜厚測定レシピ、膜質測定レシピとリンクさせて膜厚測定、膜質測定を実行する。その際、パラメータ(測定対象)には、膜厚に加えて膜質を定義している関数も加える。このようにして、被測定膜Cの膜厚と膜質を測定すると、図16に示す測定結果を得ることができる。   When measuring the film thickness and film quality of the film C to be measured using only the spectroscopic ellipsometry 2, the film quality shown in FIG. 15 is input to the storage unit 52, and the film thickness is measured in the control unit 51. The film thickness measurement and the film quality measurement are executed by linking with the film quality measurement recipe. At that time, in addition to the film thickness, a function defining the film quality is also added to the parameter (measurement target). Thus, if the film thickness and film quality of the to-be-measured film C are measured, the measurement result shown in FIG. 16 can be obtained.

本実施の形態では、製品測定用波長で測定した被測定膜Cの膜厚を用いて、被測定膜Cの全波長帯での膜質を算出することによって、図15に示す分光エリプソメトリ2による膜質測定結果と同様の測定結果を得ることができる。   In the present embodiment, by using the film thickness of the film to be measured C measured at the product measurement wavelength, the film quality in the entire wavelength band of the film to be measured C is calculated, so that the spectroscopic ellipsometry 2 shown in FIG. Measurement results similar to the film quality measurement results can be obtained.

図16は、分光エリプソメトリのみを用いて測定した膜厚と屈折率の測定結果を示す図である。図16では、膜質として633nmの波長で測定された屈折率の値を膜質の代表値として図示している。なお、他の波長を用いて測定した屈折率を算出して表示することもできる。   FIG. 16 is a diagram showing measurement results of film thickness and refractive index measured using only spectroscopic ellipsometry. In FIG. 16, the value of the refractive index measured at a wavelength of 633 nm as the film quality is shown as a representative value of the film quality. In addition, the refractive index measured using another wavelength can also be calculated and displayed.

分光エリプソメトリ2を用いた膜厚や膜質の測定では、例えば分光エリプソメトリ2が、被測定膜Cの膜厚と膜質とを同時に測定する。図16の横軸は被測定膜Cのウエハ面内での膜厚測定ポイントである。また、左側の縦軸は被測定膜Cの膜厚測定結果であり、右側の縦軸は被測定膜Cの膜質測定結果(屈折率)である。膜厚測定結果(膜厚T3の波形)は、図12に示した本実施の形態の膜厚測定方法で測定した膜厚とほぼ同様に各膜厚測定ポイントで安定した値を示している。また、屈折率(膜質N3の波形)は、図13に示した本実施の形態の膜質測定方法で算出した屈折率とほぼ同様に各膜質測定ポイントで安定した値を示している。   In the measurement of film thickness and film quality using the spectroscopic ellipsometry 2, for example, the spectroscopic ellipsometry 2 simultaneously measures the film thickness and film quality of the film C to be measured. The horizontal axis in FIG. 16 is a film thickness measurement point within the wafer surface of the film C to be measured. The left vertical axis is the film thickness measurement result of the film C to be measured, and the right vertical axis is the film quality measurement result (refractive index) of the film C to be measured. The film thickness measurement result (waveform of the film thickness T3) shows a stable value at each film thickness measurement point in substantially the same manner as the film thickness measured by the film thickness measurement method of the present embodiment shown in FIG. Further, the refractive index (waveform of the film quality N3) shows a stable value at each film quality measurement point in substantially the same manner as the refractive index calculated by the film quality measurement method of the present embodiment shown in FIG.

換言すると、本実施の形態の膜厚測定方法で測定した膜厚は、分光エリプソメトリ2のみを用いて測定した膜厚と同様に、各膜厚測定ポイントで安定した値として測定することができる。また、本実施の形態の膜質測定方法で測定した膜質は、分光エリプソメトリ2のみを用いて測定した膜質と同様に、各膜質測定ポイントで安定した値として測定することができる。このように、本実施の形態では、分光反射型計測装置1を用いて被測定膜Cの膜厚、膜質を測定するので、簡易な構成の装置で膜厚、膜質の同時計測を精度良く行える。したがって、装置コストの大幅削減が可能となる。   In other words, the film thickness measured by the film thickness measurement method of the present embodiment can be measured as a stable value at each film thickness measurement point, similarly to the film thickness measured using only the spectroscopic ellipsometry 2. . In addition, the film quality measured by the film quality measurement method of the present embodiment can be measured as a stable value at each film quality measurement point, similar to the film quality measured using only the spectroscopic ellipsometry 2. As described above, in the present embodiment, since the film thickness and film quality of the film C to be measured are measured using the spectral reflection measurement apparatus 1, simultaneous measurement of the film thickness and film quality can be accurately performed with a simple configuration apparatus. . Therefore, the apparatus cost can be greatly reduced.

図12、図13、図15のような膜厚測定結果、膜質測定結果を得た後、膜厚測定結果、膜質測定結果をこれまでに得た測定結果などと比較して、被測定膜Cの膜厚判定や膜質判定が行われる。例えば、図12や図13に示す測定結果や測定結果のばらつきが許容範囲内の値であるか否かなどに基づいて被測定膜Cの膜厚判定や膜質判定が行われる。また、図15のような被測定膜Cの波形を、これまでに得た波形などと比較して、被測定膜Cの膜質が所望の膜質を有しているか否かが判定される。そして、被測定膜Cの膜厚や膜質が許容範囲内であれば、被測定膜Cが成膜されているウエハは次の工程での処理が行なわれる。これにより、被測定膜Cを用いて半導体デバイスなどの半導体装置が製造される。   After obtaining the film thickness measurement results and film quality measurement results as shown in FIG. 12, FIG. 13 and FIG. 15, the film thickness measurement results and film quality measurement results are compared with the measurement results obtained so far. Film thickness determination and film quality determination are performed. For example, the film thickness determination and the film quality determination of the film C to be measured are performed based on the measurement results shown in FIGS. 12 and 13 and whether or not the variation in the measurement results is a value within an allowable range. Further, the waveform of the film C to be measured as shown in FIG. 15 is compared with the waveforms obtained so far, and it is determined whether or not the film quality of the film C to be measured has a desired film quality. If the film thickness or film quality of the film to be measured C is within an allowable range, the wafer on which the film to be measured C is formed is processed in the next step. Thereby, a semiconductor device such as a semiconductor device is manufactured using the film C to be measured.

図17は、第1の実施の形態に係る分光反射率計測装置が備える情報処理装置のハードウェア構成を示す図である。情報処理装置20は、被測定膜Cの膜厚測定に用いる製品測定用波長を算出するとともに、製品測定用波長を用いて測定した被測定膜Cの膜厚を用いて被測定膜Cの膜質を算出するコンピュータなどの装置であり、CPU(Central Processing Unit)91、ROM(Read Only Memory)92、RAM(Random Access Memory)93、表示部94、入力部95を有している。情報処理装置20では、これらのCPU91、ROM92、RAM93、表示部94、入力部95がバスラインを介して接続されている。   FIG. 17 is a diagram illustrating a hardware configuration of the information processing apparatus included in the spectral reflectance measurement apparatus according to the first embodiment. The information processing apparatus 20 calculates the product measurement wavelength used to measure the film thickness of the film C to be measured, and uses the film thickness of the film C to be measured measured using the product measurement wavelength. And a CPU (Central Processing Unit) 91, a ROM (Read Only Memory) 92, a RAM (Random Access Memory) 93, a display unit 94, and an input unit 95. In the information processing apparatus 20, the CPU 91, the ROM 92, the RAM 93, the display unit 94, and the input unit 95 are connected via a bus line.

CPU91は、製品測定用波長を決定するコンピュータプログラムである測定波長算出プログラム97Aを用いて、被測定膜Cの膜厚測定に用いる製品測定用波長を算出する。また、CPU91は、コンピュータプログラムである膜質算出プログラム97Bと、被測定膜Cの膜厚測定結果を用いて被測定膜Cの膜質を算出する。   The CPU 91 calculates the product measurement wavelength used for the film thickness measurement of the film C to be measured using the measurement wavelength calculation program 97A which is a computer program for determining the product measurement wavelength. Further, the CPU 91 calculates the film quality of the film C to be measured using the film quality calculation program 97B, which is a computer program, and the film thickness measurement result of the film C to be measured.

表示部94は、液晶モニタなどの表示装置であり、CPU91からの指示に基づいて、サンプル膜A,Bの膜質の測定結果、サンプル膜A,Bの比較結果、製品測定用波長(測定波長の算出結果)、被測定膜Cの膜厚測定結果、被測定膜Cの膜質測定結果などを表示する。入力部95は、マウスやキーボードを備えて構成され、使用者から外部入力される指示情報(製品測定用波長の算出に必要なパラメータ、被測定膜Cの膜質の算出に必要なパラメータ等)を入力する。入力部95へ入力された指示情報は、CPU91へ送られる。   The display unit 94 is a display device such as a liquid crystal monitor. Based on an instruction from the CPU 91, the film quality measurement results of the sample films A and B, the comparison results of the sample films A and B, the product measurement wavelength (measurement wavelength Calculation result), the film thickness measurement result of the film C to be measured, the film quality measurement result of the film C to be measured, and the like are displayed. The input unit 95 includes a mouse and a keyboard, and receives instruction information (parameters necessary for calculating the product measurement wavelength, parameters necessary for calculating the film quality of the film C to be measured, etc.) externally input from the user. input. The instruction information input to the input unit 95 is sent to the CPU 91.

測定波長算出プログラム97A、膜質算出プログラム97Bは、ROM92内に格納されており、バスラインを介してRAM93へロードされる。CPU91はRAM93内にロードされた測定波長算出プログラム97A、膜質算出プログラム97Bを実行する。具体的には、情報処理装置20では、使用者による入力部95からの指示入力に従って、CPU91がROM92内から測定波長算出プログラム97A、膜質算出プログラム97Bを読み出してRAM93内のプログラム格納領域に展開して各種処理を実行する。CPU91は、この各種処理に際して生じる各種データをRAM93内に形成されるデータ格納領域に一時的に記憶させておく。   The measurement wavelength calculation program 97A and the film quality calculation program 97B are stored in the ROM 92 and loaded into the RAM 93 via the bus line. The CPU 91 executes a measurement wavelength calculation program 97A and a film quality calculation program 97B loaded in the RAM 93. Specifically, in the information processing apparatus 20, the CPU 91 reads the measurement wavelength calculation program 97 </ b> A and the film quality calculation program 97 </ b> B from the ROM 92 and expands them in the program storage area in the RAM 93 in accordance with an instruction input from the input unit 95 by the user. Various processes. The CPU 91 temporarily stores various data generated during the various processes in a data storage area formed in the RAM 93.

このように第2の実施の形態によれば、製品測定用波長で被測定膜Cの膜厚を測定するとともに、この測定結果である膜厚を用いて被測定膜Cの膜質を算出するので被測定膜Cの膜質を高精度に測定することが可能となる。また、分光反射率計測装置1を用いて被測定膜Cの膜厚を測定できるので、高スループットな膜質測定を安価で容易に行なうことができる。   Thus, according to the second embodiment, the film thickness of the film to be measured C is measured at the product measurement wavelength, and the film quality of the film to be measured C is calculated using the film thickness that is the measurement result. It becomes possible to measure the film quality of the film C to be measured with high accuracy. In addition, since the film thickness of the film C to be measured can be measured using the spectral reflectance measuring apparatus 1, high-throughput film quality measurement can be easily performed at low cost.

また、被測定膜Cがシリコン窒化膜である場合に、被測定膜Cを500nm〜600nmの製品測定用波長で膜厚測定、膜質測定するので、被測定膜Cの膜質を精度良く測定することが可能となる。   Further, when the film C to be measured is a silicon nitride film, the film thickness of the film to be measured C is measured at a product measurement wavelength of 500 nm to 600 nm, and the film quality is measured. Is possible.

1 分光反射率計測装置、2 分光エリプソメトリ、3A,3B 膜質情報、3X 比較情報、20 情報処理装置、23 計算部、32 測定膜、A,B サンプル膜、C 被測定膜。   DESCRIPTION OF SYMBOLS 1 Spectral reflectance measuring device, 2 Spectral ellipsometry, 3A, 3B Film quality information, 3X comparison information, 20 Information processing apparatus, 23 Calculation part, 32 Measurement film, A, B Sample film, C Film to be measured

Claims (5)

第1の基板上に形成された第1のサンプル膜に光を照射して膜質測定した場合の第1の膜質と、第2の基板上に形成され前記第1のサンプル膜と同じ種類の膜材である第2のサンプル膜に前記光を照射して膜質測定した場合の第2の膜質と、で膜質測定結果の差が所定値よりも小さくなる波長の光を、膜厚測定に用いる波長領域の光として選択する波長選択ステップと、
前記第1および前記第2のサンプル膜と同じ種類の膜材である測定対象膜に、選択した前記波長領域の光を照射して、前記測定対象膜の膜厚を測定する膜厚測定ステップと、
を含むことを特徴とする膜測定方法。
A first film quality when the first sample film formed on the first substrate is irradiated with light to measure the film quality, and a film of the same type as the first sample film formed on the second substrate The wavelength used for the film thickness measurement is the light having a wavelength at which the difference between the film quality measurement results is smaller than a predetermined value when the film quality is measured by irradiating the light to the second sample film as a material. A wavelength selection step to select as the region light;
A film thickness measurement step of measuring the film thickness of the measurement target film by irradiating the measurement target film, which is the same type of film material as the first and second sample films, with light of the selected wavelength region; ,
A film measurement method comprising:
測定された前記測定対象膜の膜厚を用いて、選択した前記波長領域以外の波長領域における前記測定対象膜の膜質を算出することを特徴とする請求項1に記載の膜測定方法。   The film measurement method according to claim 1, wherein the film quality of the measurement target film in a wavelength region other than the selected wavelength region is calculated using the measured film thickness of the measurement target film. 前記第1のサンプル膜、前記第2のサンプル膜および前記測定対象膜の膜材は、シリコン窒化膜であり、選択する前記波長領域は、500nmから600nmであることを特徴とする請求項1または2に記載の膜測定方法。   The film material of the first sample film, the second sample film, and the measurement target film is a silicon nitride film, and the wavelength region to be selected is 500 nm to 600 nm. 2. The film measuring method according to 2. 前記測定対象膜の膜厚は分光反射率計測装置によって測定し、前記測定対象膜の膜質は分光反射率計測装置によって算出することを特徴とする請求項1〜3のいずれか1つに記載の膜測定方法。   The film thickness of the measurement target film is measured by a spectral reflectance measurement device, and the film quality of the measurement target film is calculated by a spectral reflectance measurement device. Membrane measurement method. 前記第1のサンプル膜の第1の膜質および前記第2のサンプル膜の第2の膜質は、それぞれ分光反射率計測装置によって測定することを特徴とする請求項1〜4のいずれか1つに記載の膜測定方法。   The first film quality of the first sample film and the second film quality of the second sample film are measured by a spectral reflectance measuring device, respectively. The film | membrane measuring method of description.
JP2009163949A 2009-07-10 2009-07-10 Film measuring method Pending JP2011017675A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163949A JP2011017675A (en) 2009-07-10 2009-07-10 Film measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163949A JP2011017675A (en) 2009-07-10 2009-07-10 Film measuring method

Publications (1)

Publication Number Publication Date
JP2011017675A true JP2011017675A (en) 2011-01-27

Family

ID=43595568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163949A Pending JP2011017675A (en) 2009-07-10 2009-07-10 Film measuring method

Country Status (1)

Country Link
JP (1) JP2011017675A (en)

Similar Documents

Publication Publication Date Title
US10365163B2 (en) Optical critical dimension metrology
US8227265B2 (en) Method of measuring pattern shape, method of manufacturing semiconductor device, and process control system
KR102254033B1 (en) Optical measuring methods and system
US7505148B2 (en) Matching optical metrology tools using spectra enhancement
NL2010211A (en) Inspection apparatus and method.
KR20150012509A (en) A method and apparatus for measuring thickness of object to be measured
US9243886B1 (en) Optical metrology of periodic targets in presence of multiple diffraction orders
US11946875B2 (en) Optical phase measurement system and method
US20170328771A1 (en) Method of calibrating and using a measuring apparatus that performs measurements using a spectrum of light
US20160097677A1 (en) Deconvolution to reduce the effective spot size of a spectroscopic optical metrology device
JP5055518B2 (en) Characterization of ultra-small electronic circuits
JP2009236900A (en) Spectroscopic ellipsometer
JP3712481B2 (en) Manufacturing method of semiconductor device
US10761036B2 (en) Method and system for optical metrology in patterned structures
US20180202942A1 (en) Method for measuring semiconductor device
JP2011017675A (en) Film measuring method
JP3762784B2 (en) Measuring method, measuring apparatus and quality control method
KR20220032922A (en) Apparatus and method for pupil ellipsometry, and method for fabricating semiconductor device using the method
KR102515267B1 (en) High-aspect-ratio sample inspection apparatus based on a near-normal-incidence ellipsometer
JP2013200180A (en) Pattern shape measurement instrument and pattern shape measurement method
JP3725538B2 (en) Manufacturing method of semiconductor device
TW202334612A (en) System, method and non-transitory computer readable medium to characterize a first film layer of a sample
JP3698266B2 (en) Semiconductor device manufacturing method and semiconductor device manufacturing apparatus
US20100219340A1 (en) Apparatus and method for measuring semiconductor device
KR20130058965A (en) Method of analyzing a sample