JP2011017645A - Target acquisition tracking device - Google Patents

Target acquisition tracking device Download PDF

Info

Publication number
JP2011017645A
JP2011017645A JP2009163111A JP2009163111A JP2011017645A JP 2011017645 A JP2011017645 A JP 2011017645A JP 2009163111 A JP2009163111 A JP 2009163111A JP 2009163111 A JP2009163111 A JP 2009163111A JP 2011017645 A JP2011017645 A JP 2011017645A
Authority
JP
Japan
Prior art keywords
target
visual axis
dimensional image
dimensional shape
dimensional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2009163111A
Other languages
Japanese (ja)
Inventor
Masaaki Chiba
政明 千葉
Minoru Kikuchi
稔 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009163111A priority Critical patent/JP2011017645A/en
Publication of JP2011017645A publication Critical patent/JP2011017645A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a target acquisition tracking device capable of tracking a target efficiently by improving visual axis setting and flexibility of an object visual field when acquiring a three-dimensional shape of the target existing in the visual field of a two-dimensional image.SOLUTION: The device has a constitution wherein an infrared imaging unit having a sensor for acquiring two-dimensional image information is separated from a laser radar having a sensor for acquiring three-dimensional shape information, and can set respectively independently a visual axis and a visual field of the two-dimensional image information, and a direction and its scanning range for acquiring the three-dimensional image information. While the visual axis of the infrared imaging unit is allowed to agree with own moving direction, the visual axis of the laser radar is allowed to agree with a direction of the visual axis of the infrared imaging unit when acquiring the target, and the three-dimensional shape information is acquired by scanning uniaxially in an azimuth angle range of the visual field of the infrared imaging unit. Further, when tracking the target, the visual axis is set in the target direction, and the three-dimensional shape of the target is acquired by scanning uniaxially in a range restricted based thereon.

Description

本発明は、目標を捕捉し追尾する目標捕捉追尾装置に係り、特に、飛行する移動体等により上空から地上の2次元及び3次元情報を異なるセンサでそれぞれに取得しながら目標を捜索・捕捉・識別し追尾する目標捕捉追尾装置に関する。   The present invention relates to a target acquisition and tracking device that acquires and tracks a target, and in particular, searches for and captures a target while acquiring two-dimensional and three-dimensional information on the ground from above using different sensors. The present invention relates to a target acquisition and tracking device for identifying and tracking.

従来より、夜間あるいは視界不良の中で、視野内の目標を確実に識別し追尾する装置として、例えば、受動的なセンサとしての赤外線センサと、能動的なセンサとしてのレーザレーダとを組み合わせたリモートセンシングシステムが考案されている。この種の光波を利用したシステムでは、光波センサとして、赤外線撮像センサとレーザレーダ内の受光用センサとを集積一体化したマルチスペクトラムセンサが用いられる(例えば、特許文献1参照。)。   Conventionally, as a device that reliably identifies and tracks a target in the field of view at night or in poor visibility, for example, a remote that combines an infrared sensor as a passive sensor and a laser radar as an active sensor A sensing system has been devised. In a system using this type of light wave, a multi-spectrum sensor in which an infrared imaging sensor and a light receiving sensor in a laser radar are integrated and integrated is used as the light wave sensor (see, for example, Patent Document 1).

この特許文献1に開示された事例では、対象とする赤外線の波長に感度を有するセンサ列と、使用するレーザレーダのレーザ光の波長に感度を有するセンサ列とを同一平面状に配列して集積一体化した複合型のセンサを構成し、入射光をそれぞれの波長に分光してその焦点となる位置に、このセンサを配置している。   In the case disclosed in this Patent Document 1, a sensor array having sensitivity to the target infrared wavelength and a sensor array having sensitivity to the laser light wavelength of the laser radar to be used are arranged in the same plane and integrated. An integrated composite type sensor is configured, and the incident light is split into each wavelength, and this sensor is arranged at the focal point.

米国特許第6882409号明細書(第2ページ、図3)US Pat. No. 6,882,409 (second page, FIG. 3)

ところで、赤外線撮像センサとレーザレーダとを組み合わせて目標を捜索・捕捉・識別し、さらに追尾する目標捕捉追尾装置においては、赤外線撮像センサによる画像からは、その視野内に存在する物体の2次元の画像情報を取得し、また、レーザレーダでは、更に距離情報が加わってその形状等の3次元情報を取得している。そして、それぞれのセンサの視軸や視野、走査範囲などを個別に設定しながら、目標の捜索から追尾に至る一連の機能を実現している。   By the way, in a target acquisition and tracking device that searches, captures and identifies a target by combining an infrared imaging sensor and a laser radar, and further tracks the target, a two-dimensional image of an object existing in the field of view is obtained from an image obtained by the infrared imaging sensor. Image information is acquired, and in the laser radar, distance information is further added to acquire three-dimensional information such as its shape. A series of functions from target search to tracking are realized while individually setting the visual axis, field of view, scanning range, and the like of each sensor.

しかしながら、例えば上述のように赤外線撮像センサとレーザレーダ内の受光用センサとを集積一体化して複合型のセンサとした場合には、それぞれのセンサの視軸を個別に設定して動作させることが困難となる。すなわち、2次元画像情報を取得する赤外線撮像センサの視軸及び視野と、形状等の3次元情報を取得するレーザレーダの視軸となる指向方向及び走査範囲とを、それぞれ独立に、または自由な組み合わせで選択できず、制約を受けることになる。特に、飛行する移動体等により上空から地上の目標を捕捉し追尾する場合には、移動方向の視野内に対象となる目標が同時に複数存在することも考えられる。従って、このような環境においては、例えば、2次元画像情報で視野内全体の目標の捕捉を継続しつつ、それぞれの対象目標に対応した視野内の異なる方向に対して3次元情報を取得するといった自由度を持たせることが困難となり、運用上支障をきたす場合があった。   However, for example, as described above, when the infrared imaging sensor and the light receiving sensor in the laser radar are integrated and integrated into a composite type sensor, the visual axis of each sensor can be individually set and operated. It becomes difficult. That is, the visual axis and field of view of the infrared imaging sensor that acquires the two-dimensional image information and the directing direction and the scanning range that are the visual axis of the laser radar that acquires the three-dimensional information such as the shape are independent or free. It cannot be selected in combination and is subject to restrictions. In particular, when a target on the ground is captured and tracked from the sky by a flying mobile body or the like, there may be a plurality of target targets at the same time in the field of view in the movement direction. Therefore, in such an environment, for example, while capturing the target in the entire field of view with the two-dimensional image information, three-dimensional information is acquired for different directions in the field of view corresponding to each target target. In some cases, it was difficult to give freedom, and this could hinder operations.

本発明は、上述の事情を考慮してなされたものであり、2次元画像の視野内に存在する目標の3次元形状を取得する際の視軸設定及び対象視野の自由度を向上させ、効率よく目標を捕捉・追尾する目標捕捉追尾装置を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances, and improves the visual axis setting and the degree of freedom of the target visual field when acquiring a target three-dimensional shape existing in the visual field of the two-dimensional image, and improves the efficiency. An object of the present invention is to provide a target acquisition / tracking device that often captures and tracks a target.

上記目的を達成するために、本発明の目標捕捉追尾装置は、移動体から目標を捕捉し追尾する目標捕捉追尾装置であって、移動体本体と、前記移動体の移動方向に対して所定の俯角を持たせて視軸が固定され、この視軸の方向に対して所定の方位角範囲及び仰角範囲を視野とする2次元画像情報を取得する2次元画像取得手段と、前記2次元画像取得手段における視野内の任意の方向に視軸を設定し、この視軸に対して直交する方向に一軸走査してその3次元形状情報を取得する3次元形状取得手段と、取得された前記2次元画像情報及び3次元形状情報に基づいて、前記3次元形状取得手段の視軸の方向、及び一軸走査範囲を制御する制御手段とを備え、前記制御手段は、前記目標を捕捉する際には、前記3次元形状取得手段の視軸の方向を前記2次元画像取得手段の視軸の方向に一致させるとともに、前記一軸走査範囲を前記2次元画像取得手段の視野の方位角範囲に相当する範囲に制御し、前記目標を追尾する際には、前記3次元形状取得手段の視軸の方向を、取得された前記2次元画像情報及び3次元形状情報に基づき検出された目標の方向に指向させるとともに、前記一軸走査範囲をこの目標を含む限定された範囲に制御することを特徴とする。   In order to achieve the above object, a target acquisition and tracking device of the present invention is a target acquisition and tracking device that acquires and tracks a target from a moving body, and has a predetermined relationship with respect to the moving body and a moving direction of the moving body. A two-dimensional image acquisition means for acquiring two-dimensional image information in which a visual axis is fixed with a depression angle and a predetermined azimuth angle range and an elevation angle range are viewed with respect to the direction of the visual axis; Three-dimensional shape acquisition means for setting the visual axis in an arbitrary direction within the field of view in the means, uniaxially scanning in a direction orthogonal to the visual axis, and acquiring the three-dimensional shape information, and the acquired two-dimensional Control means for controlling the direction of the visual axis of the three-dimensional shape acquisition means and the uniaxial scanning range based on image information and three-dimensional shape information, and when the control means captures the target, Direction of visual axis of the three-dimensional shape acquisition means When matching the direction of the visual axis of the two-dimensional image acquisition means and controlling the uniaxial scanning range to a range corresponding to the azimuth angle range of the visual field of the two-dimensional image acquisition means, when tracking the target, The direction of the visual axis of the three-dimensional shape acquisition means is directed to the target direction detected based on the acquired two-dimensional image information and three-dimensional shape information, and the uniaxial scanning range is limited to include this target. It is characterized by controlling to a range.

本発明によれば、2次元画像の視野内に存在する目標の3次元形状を取得する際の視軸設定及び対象視野の自由度を向上することができ、効率よく目標を捕捉・追尾することのできる目標捕捉追尾装置を得ることができる。   According to the present invention, it is possible to improve the visual axis setting and the degree of freedom of the target visual field when acquiring the target three-dimensional shape existing in the visual field of the two-dimensional image, and efficiently capture and track the target. A target acquisition and tracking device capable of performing the above can be obtained.

本発明に係る目標捕捉追尾装置の一実施例の構成を示すブロック図。The block diagram which shows the structure of one Example of the target acquisition tracking apparatus which concerns on this invention. レーザレーダ部4の視軸の方向、一軸走査の方向及びフットプリントとの関係の一例を示す説明図。4 is an explanatory diagram showing an example of a relationship between a visual axis direction, a uniaxial scanning direction, and a footprint of the laser radar unit 4. FIG. 図1に例示した目標追尾装置の実施例の動作を説明するためのフローチャート。The flowchart for demonstrating operation | movement of the Example of the target tracking apparatus illustrated in FIG. 目標の捜索・捕捉中における赤外線撮像部3の視野とレーザレーダ部4の走査との関係の一例をモデル化して示す説明図。Explanatory drawing which models and shows an example of the relationship between the visual field of the infrared imaging part 3 during the search and capture | acquisition of the target, and the scanning of the laser radar part 4. FIG. 目標の追尾中におけるレーザレーダ部4の視軸及び一軸走査による追尾視野との関係の一例をモデル化して示す説明図。Explanatory drawing which models and shows an example of the relationship between the visual axis of the laser radar part 4 during tracking of a target, and the tracking visual field by uniaxial scanning.

以下に、本発明に係る目標捕捉追尾装置を実施するための最良の形態について、図1乃至図5を参照して説明する。   The best mode for carrying out the target acquisition and tracking apparatus according to the present invention will be described below with reference to FIGS.

図1は、本発明に係る目標捕捉追尾装置の一実施例の構成を示すブロック図である。図1に例示したように、この目標捕捉追尾装置1は、移動体本体2、2次元画像取得手段としての赤外線撮像部3、3次元形状取得手段としてのレーザレーダ部4、視軸制御部5、及び2つの光学ウィンドウ6a及び6bを備えている。移動体本体2は、例えば上空を飛行する飛行体等であり、後述する各部を備えて目標捕捉追尾装置1を構成する。   FIG. 1 is a block diagram showing the configuration of an embodiment of a target acquisition and tracking apparatus according to the present invention. As illustrated in FIG. 1, the target acquisition and tracking device 1 includes a moving body 2, an infrared imaging unit 3 as a two-dimensional image acquisition unit 3, a laser radar unit 4 as a three-dimensional shape acquisition unit, and a visual axis control unit 5. , And two optical windows 6a and 6b. The mobile body 2 is, for example, a flying object that flies over the sky, and constitutes the target acquisition and tracking device 1 with each unit described later.

赤外線画像撮像部3は、2次元画像取得手段として、視軸の方向に対して所定の方位角範囲及び仰角範囲を視野とする2次元画像情報を取得し、視軸制御部5に送出する。視軸は、移動体本体2の移動方向に対して所定の俯角を持たせて固定されている。本実施例では、取得する2次元画像情報は、対象視野の2次元赤外画像情報としている。ここに、赤外線撮像部3は、光学系31、及び赤外線検知器32を備えている。光学系31は、例えば、光学レンズ等で構成され、視野内からの赤外光を赤外線検知器32に集光する。赤外線検知器32は、例えばFPA(Focal Plane Array)のように、赤外線を検知する画素を同一焦点面上に2次元に配列したイメージセンサであり、2次元赤外画像を取得して視軸制御部5に送出する。   The infrared image capturing unit 3 acquires, as a two-dimensional image acquisition unit, two-dimensional image information having a predetermined azimuth angle range and elevation angle range as a visual field with respect to the direction of the visual axis, and sends the information to the visual axis control unit 5. The visual axis is fixed with a predetermined depression angle with respect to the moving direction of the movable body 2. In this embodiment, the acquired two-dimensional image information is two-dimensional infrared image information of the target visual field. Here, the infrared imaging unit 3 includes an optical system 31 and an infrared detector 32. The optical system 31 is composed of, for example, an optical lens and the like, and condenses infrared light from within the visual field on the infrared detector 32. The infrared detector 32 is an image sensor in which pixels for detecting infrared rays are two-dimensionally arranged on the same focal plane, such as an FPA (Focal Plane Array), and controls the visual axis by acquiring a two-dimensional infrared image. Send to part 5.

レーザレーダ部4は、3次元形状取得手段としてレーザレーダを用い、後述する視軸制御部5からの駆動信号に基づいて視軸を設定し一軸走査を行って、その走査範囲の3次元形状情報を取得するとともに、その取得結果を視軸制御部5に送出する。本実施例においては、一軸走査の方向は、赤外線撮像部3の方位角方向とし、また、この一軸走査に直交する方向、すなわち仰角方向に対して広がりを持ったフットプリントを有するレーザレーダにより3次元形状情報を取得するものとしている。ここに、レーザレーダ部4は、2軸ジンバル41、レーザ光源42、送信光学系43、一軸走査機構44、送受信光学系45、受信光学系46、レーザ検知器47、及び信号処理部48を備えている。   The laser radar unit 4 uses a laser radar as a three-dimensional shape acquisition unit, sets a visual axis based on a driving signal from a visual axis control unit 5 described later, performs uniaxial scanning, and obtains three-dimensional shape information of the scanning range. Is acquired, and the acquisition result is sent to the visual axis control unit 5. In the present embodiment, the direction of uniaxial scanning is the azimuth angle direction of the infrared imaging unit 3 and is 3 by a laser radar having a footprint that is perpendicular to the uniaxial scanning, that is, the elevation angle direction. Dimensional shape information is acquired. The laser radar unit 4 includes a biaxial gimbal 41, a laser light source 42, a transmission optical system 43, a uniaxial scanning mechanism 44, a transmission / reception optical system 45, a reception optical system 46, a laser detector 47, and a signal processing unit 48. ing.

2軸ジンバル41は、視軸制御部5からの駆動信号に基づいて、このレーザレーダ部4の視軸を赤外線撮像部3の視野内の所定の方向に指向させる。レーザ光源42は、信号処理部48からの送信パルスに同期してパルス状のレーザ光を発光し、複数のファイバに導光分配する。分配数は、必要とする3次元形状情報の分解能等に基づき決定される。送信光学系43は、ファイバ端からのレーザ光を一軸走査機構44の光学有効径に合うようにビーム拡がり角を整える。一軸走査機構44は、例えばガルバノミラー等を用いた1自由度のミラーから成り、視軸制御部5からの駆動信号に基づいて、送信光学系43からのレーザ光を所定の範囲に一軸走査して送受信光学系45に送出するとともに、その反射光としての受信レーザ光を送受信光学系44から受けとって受信光学系46に送出する。送受信光学系45は、一軸走査機構44を経たレーザ光を所定のフットプリントに絞り込み、レーザ送信光として照射するとともに、その反射光を送信フットプリント内の分配数と同数の受信レーザ光として受光し、一軸走査機構43に送出する。本実施例においては、レーザ光源42の分配数に応じたレーザ光のスポットを一軸走査に直交する方向に配列した形状に絞り込むことによって、送信レーザ光のフットプリントを一軸走査に直交する方向に対して広がりを持った形状とするとともに、それぞれのスポットに対応した反射光を受光して受信レーザ光としている。   The biaxial gimbal 41 directs the visual axis of the laser radar unit 4 in a predetermined direction within the visual field of the infrared imaging unit 3 based on a drive signal from the visual axis control unit 5. The laser light source 42 emits pulsed laser light in synchronization with the transmission pulse from the signal processing unit 48, and guides and distributes the laser light to a plurality of fibers. The number of distributions is determined based on the required resolution of the three-dimensional shape information. The transmission optical system 43 adjusts the beam divergence angle so that the laser light from the fiber end matches the optical effective diameter of the uniaxial scanning mechanism 44. The uniaxial scanning mechanism 44 is composed of a one-degree-of-freedom mirror using, for example, a galvanometer mirror or the like, and uniaxially scans the laser beam from the transmission optical system 43 within a predetermined range based on a drive signal from the visual axis control unit 5. The received laser beam as reflected light is received from the transmission / reception optical system 44 and sent to the reception optical system 46. The transmission / reception optical system 45 squeezes the laser light that has passed through the uniaxial scanning mechanism 44 into a predetermined footprint, irradiates it as laser transmission light, and receives the reflected light as reception laser light of the same number as the distribution number in the transmission footprint. And sent to the uniaxial scanning mechanism 43. In the present embodiment, the footprint of the laser beam to be transmitted is reduced with respect to the direction orthogonal to the uniaxial scanning by narrowing the laser light spots according to the number of distributions of the laser light sources 42 to the shape arranged in the direction orthogonal to the uniaxial scanning. In addition, the reflected light corresponding to each spot is received and used as received laser light.

レーザレーダ部4の視軸の方向、一軸走査の方向及びフットプリントとの関係を図2に例示する。この図2に示した事例では、2軸ジンバル41により、視軸は上空から地上を見下ろした赤外線撮像部3の視野内の一点に設定され、その点を基準に一軸走査機構44により方位角方向に送信レーザ光を走査している場合を示している。そして、送信レーザ光のフットプリントは、レーザ光源42の分配数に応じたスポットを走査方向と直交する方向、すなわち仰角方向に配列して広がりを持たせたものとするとともに、それぞれのスポットからの反射光を受光して受信レーザ光としている。   The relationship between the direction of the visual axis of the laser radar unit 4, the direction of uniaxial scanning, and the footprint is illustrated in FIG. In the example shown in FIG. 2, the biaxial gimbal 41 sets the visual axis to one point in the field of view of the infrared imaging unit 3 looking down from the sky, and the uniaxial scanning mechanism 44 uses the azimuth direction as a reference. Fig. 6 shows the case where the transmission laser beam is scanned. The footprint of the transmission laser light is such that spots corresponding to the number of distributions of the laser light sources 42 are arranged in the direction orthogonal to the scanning direction, that is, in the elevation angle direction, to have a spread, and from each spot. The reflected light is received and used as received laser light.

受信光学系46は、一軸走査機構44からの受信レーザ光を後段のレーザ検知器47に導光するためのファイバの光学有効径に合うように、受信レーザ光のビーム拡がり角を整える。レーザ検知器47は、レーザ光源42の分配数に応じて複数設けられ、受信レーザ光をそれぞれに光電変換し、受信パルスとして信号処理部48に送出する。信号処理部48は、送信パルスを時間の基準として複数の各々の受信パルスの到来時間から得た距離情報と、そのときの視軸制御部5からの駆動信号によって示される送信レーザ光の指向方向とに基づいて、その走査範囲の3次元形状情報を取得し、視軸制御部5に送出する。   The reception optical system 46 adjusts the beam divergence angle of the reception laser light so as to match the optical effective diameter of the fiber for guiding the reception laser light from the uniaxial scanning mechanism 44 to the laser detector 47 in the subsequent stage. A plurality of laser detectors 47 are provided in accordance with the number of distributions of the laser light sources 42, photoelectrically convert each received laser beam, and send it to the signal processing unit 48 as a received pulse. The signal processing unit 48 uses the transmission pulse as a time reference, distance information obtained from the arrival times of the plurality of reception pulses, and the directing direction of the transmission laser light indicated by the drive signal from the visual axis control unit 5 at that time Based on the above, the three-dimensional shape information of the scanning range is acquired and sent to the visual axis control unit 5.

視軸制御部5は、赤外線撮像部3からの2次元画像情報、及びレーザレーダ部4からの3次元形状情報に基づいて、レーザレーダ部4の視軸の方向及び一軸走査範囲を次のように制御しながら目標の捕捉追尾を継続する。すなわち、目標を捕捉する際には、レーザレーダ部4の視軸の方向を赤外線撮像部3の視軸と一致させ、その上で送信レーザ光が赤外線撮像部3の視野の方位角範囲に相当する範囲を一次元走査するように、レーザレーダ部4の2軸ジンバル41、及び一軸走査機構44のそれぞれを駆動するための駆動信号を生成して送出する。視野内の目標を検出し捕捉するための処理については、例えば2次元画像情報及び3次元形状情報とによるデータ融合処理等が適用できる。   Based on the two-dimensional image information from the infrared imaging unit 3 and the three-dimensional shape information from the laser radar unit 4, the visual axis control unit 5 determines the direction of the visual axis and the uniaxial scanning range of the laser radar unit 4 as follows. Continue to capture and track the target while controlling the That is, when the target is captured, the direction of the visual axis of the laser radar unit 4 is made coincident with the visual axis of the infrared imaging unit 3, and then the transmitted laser beam corresponds to the azimuth range of the visual field of the infrared imaging unit 3. A drive signal for driving each of the two-axis gimbal 41 and the one-axis scanning mechanism 44 of the laser radar unit 4 is generated and transmitted so as to perform one-dimensional scanning of the range to be performed. As processing for detecting and capturing a target in the field of view, for example, data fusion processing using two-dimensional image information and three-dimensional shape information can be applied.

一方、目標を追尾する際には、レーザレーダ部4の視軸の方向を視野内の対象目標の方向に一致させ、その上で送信レーザ光がこの対象目標を含む限定された範囲を一次元走査するように、レーザレーダ部4の2軸ジンバル41、及び一軸走査機構44のそれぞれを駆動するための駆動信号を生成して送出する。捕捉した目標を追尾するための処理については、例えば、対象目標を含む限定領域の3次元形状情報を継続的に取得し、その3次元重心計算により位置を算出する手法等が適用できる。   On the other hand, when tracking the target, the direction of the visual axis of the laser radar unit 4 is made to coincide with the direction of the target target in the field of view, and then the limited range in which the transmitted laser light includes this target target is one-dimensional. A drive signal for driving each of the biaxial gimbal 41 and the uniaxial scanning mechanism 44 of the laser radar unit 4 is generated and transmitted so as to scan. As a process for tracking the captured target, for example, a method of continuously acquiring three-dimensional shape information of a limited region including the target target and calculating a position by calculating the three-dimensional center of gravity can be applied.

光学ウィンドウ6a、及び6bは、移動体本体2に取り付けられ、対象の光波に対して透過性を有するカバーである。光学ウィンドウ6aは、赤外線撮像部3で対象としている赤外光に対して透過性を有しており、赤外線撮像部3は、この光学ウィンドウ6aを通して赤外光を受光する。また光学ウィンドウ6bは、レーザレーダ部4で送受するレーザ光に対して透過性を有しており、レーザレーダ部4は、この光学ウィンドウ6bを通してレーザ光を送受光する。   The optical windows 6a and 6b are covers that are attached to the moving body 2 and have transparency to the target light wave. The optical window 6a is transparent to the infrared light targeted by the infrared imaging unit 3, and the infrared imaging unit 3 receives the infrared light through the optical window 6a. The optical window 6b is transparent to the laser light transmitted and received by the laser radar unit 4, and the laser radar unit 4 transmits and receives the laser light through the optical window 6b.

次に、前出の図1、及び図2、図3のフローチャート、ならびに図4及び図5の説明図を参照して、上述のように構成された本実施例の目標捕捉追尾装置の動作について説明する。なお、以下の説明では、この目標捕捉追尾装置1が上空から地上の目標を捜索・捕捉した後、対象目標を追尾する場合を取りあげている。図3は、図1に例示した目標追尾装置1の実施例の動作を説明するためのフローチャートである。   Next, with reference to the flowcharts of FIGS. 1, 2 and 3 and the explanatory diagrams of FIGS. 4 and 5, the operation of the target acquisition and tracking apparatus of the present embodiment configured as described above will be described. explain. In the following description, the target capturing / tracking apparatus 1 searches for and captures a target on the ground from the sky and then tracks the target target. FIG. 3 is a flowchart for explaining the operation of the embodiment of the target tracking device 1 illustrated in FIG.

まず、この目標捕捉追尾装置1が移動を開始すると、上空から地上の目標を捜索・捕捉すべく、2次元画像情報、及び3次元形状情報の取得が開始される(ST301)。2次元画像情報は、赤外線撮像部3により取得される。赤外線撮像部3は、上空から地上を撮像できるように、移動体の移動方向に対して所定の俯角を持たせて視軸が固定されており、この視軸の方向を基準として所定の方位角及び仰角範囲を視野とする2次元画像情報を取得する。取得された2次元画像情報は、視軸制御部5に継続的に送出される(ST302)。   First, when the target acquisition and tracking device 1 starts moving, acquisition of two-dimensional image information and three-dimensional shape information is started in order to search for and acquire a target on the ground from the sky (ST301). Two-dimensional image information is acquired by the infrared imaging unit 3. The infrared imaging unit 3 has a visual axis fixed with a predetermined depression angle with respect to the moving direction of the moving body so that the ground can be imaged from above, and a predetermined azimuth angle with respect to the direction of the visual axis. And two-dimensional image information with the elevation angle range as the visual field is acquired. The acquired two-dimensional image information is continuously sent to the visual axis control unit 5 (ST302).

また、3次元形状情報は、レーザレーダ部4により取得される。取得開始にあたっては、レーザレーダ部4の視軸を赤外線撮像部3の視軸の方向に一致させるとともに、赤外線撮像部3の視野の方位角に相当する範囲を一軸走査するよう、視軸制御部5からレーザレーダ部4の2軸ジンバル41及び一軸走査機構44に対して駆動信号が送出される(ST303)。レーザレーダ部4は、この設定に基づき走査を行って3次元形状情報を取得する。取得された3次元形状情報は、視軸制御部5に継続的に送出される(ST304)。   The three-dimensional shape information is acquired by the laser radar unit 4. At the start of acquisition, the visual axis control unit is configured so that the visual axis of the laser radar unit 4 coincides with the direction of the visual axis of the infrared imaging unit 3 and the range corresponding to the azimuth angle of the visual field of the infrared imaging unit 3 is uniaxially scanned. 5 sends a drive signal to the biaxial gimbal 41 and the uniaxial scanning mechanism 44 of the laser radar unit 4 (ST303). The laser radar unit 4 performs scanning based on this setting and acquires three-dimensional shape information. The acquired three-dimensional shape information is continuously sent to the visual axis control unit 5 (ST304).

目標の捜索・捕捉中における赤外線撮像部3の視野とレーザレーダ部4の走査との関係を、図4にモデル化して例示する。この図4の事例では、赤外線撮像部3の視野の方位角方向は、捜索・捕捉に必要な刈幅となっており、レーザレーダ部4の視軸は、赤外線撮像部3の視軸と一致させ、その刈幅の中央方向に設定されている。そして、自身の移動に伴い赤外線撮像部3の視野も移動しながら、この視野内を仰角方向に広がりを持ったフットプリントを有するレーザ光を方位角方向に走査して、2次元画像情報、及び3次元形状情報の取得が継続される。視軸制御部5では、これらに対して融合処理等を施して視野内の方向とそれに対応する距離情報とを把握しながら、対象目標を検出し捕捉する(ST305)。   The relationship between the field of view of the infrared imaging unit 3 and the scanning of the laser radar unit 4 during target search / capture is modeled in FIG. In the example of FIG. 4, the azimuth angle direction of the visual field of the infrared imaging unit 3 is a cutting width necessary for search and capture, and the visual axis of the laser radar unit 4 matches the visual axis of the infrared imaging unit 3. And set in the center direction of the cutting width. Then, while moving the field of view of the infrared imaging unit 3 along with the movement of itself, the laser beam having a footprint having a spread in the elevation direction is scanned in the azimuth direction, and two-dimensional image information is obtained. Acquisition of 3D shape information is continued. The visual axis control unit 5 detects and captures the target target while performing fusion processing or the like on these to grasp the direction in the field of view and the distance information corresponding thereto (ST305).

次いで、対象目標が捕捉されると(ST306のY)、この目標を追尾すべく、レーザレーダ部4の視軸をこの目標の方向に指向させるとともに、この目標を含む限定された範囲に対して一軸走査を行うよう、視軸制御部5からレーザレーダ部4の2軸ジンバル41及び一軸走査機構44に対して駆動信号が送出される(ST307)。レーザレーダ部4は、この設定に基づき走査を行って3次元形状情報を取得する。取得された3次元形状情報は、視軸制御部5に送出される(ST308)。   Next, when the target target is captured (Y in ST306), the visual axis of the laser radar unit 4 is directed in the direction of the target in order to track the target, and with respect to a limited range including this target. A drive signal is sent from the visual axis control unit 5 to the biaxial gimbal 41 and the uniaxial scanning mechanism 44 of the laser radar unit 4 so as to perform uniaxial scanning (ST307). The laser radar unit 4 performs scanning based on this setting and acquires three-dimensional shape information. The acquired three-dimensional shape information is sent to the visual axis control unit 5 (ST308).

目標の追尾中におけるレーザレーダ部4の視軸及び一軸走査による追尾視野を、図5にモデル化して例示する。この図5の事例では、レーザレーダ部4の視軸は、2軸ジンバル41によって目標の方向に一致するように駆動されており、一軸走査機構44によって目標を含む限定された方位角範囲が走査されている。また、この時のレーザ光のフットプリントは、捕捉時と同じく仰角方向に対して広がりを持ったものとしている。視軸制御部5では、継続取得される3次元形状情報に対して順次位置算出を繰り返すことによって、レーザレーダ部4の追尾視野も順次更新される(ST309)。そして、対象目標の追尾終了が指示されるまで、ST308のステップからの動作を繰り返す(ST310)。この後は、装置の動作終了が指示されるまで、上記した動作ステップを繰り返す(ST311)。   The visual axis of the laser radar unit 4 during tracking of the target and the tracking visual field by uniaxial scanning are modeled and illustrated in FIG. In the example of FIG. 5, the visual axis of the laser radar unit 4 is driven by the biaxial gimbal 41 so as to coincide with the target direction, and a limited azimuth range including the target is scanned by the uniaxial scanning mechanism 44. Has been. Further, the footprint of the laser beam at this time is assumed to have a spread with respect to the elevation angle direction as in the capture. In the visual axis control unit 5, the tracking field of view of the laser radar unit 4 is also sequentially updated by sequentially calculating the position for the continuously acquired three-dimensional shape information (ST309). Then, the operation from step ST308 is repeated until the target target tracking end is instructed (ST310). Thereafter, the above operation steps are repeated until an instruction to end the operation of the apparatus is given (ST311).

以上説明したように、本実施例においては、2次元画像情報を取得するセンサを有する赤外線撮像部と、3次元形状情報を取得するセンサを有するレーザレーダ部とを分離した構成とし、2次元画像情報の視軸及び視野と、3次元形状情報を取得する方向及びその走査範囲とをそれぞれ独立に設定可能にしている。すなわち、赤外線撮像部の視軸は自身の移動方向に一致させつつ、レーザレーダ部の視軸は、目標を捕捉する際には、赤外線撮像部の視軸の方向に一致させるとともに、赤外線撮像部の視野の方位角範囲に一軸走査してその3次元形状情報を取得している。また、目標を追尾する際には、目標の方向に視軸を設定し、これを基準とする限定された範囲を一軸走査して目標の3次元形状を取得している。従って、2次元画像の視野内に存在する目標の3次元形状を取得する際の視軸設定、及び対象視野の自由度を向上することができ、効率よく目標を捕捉・追尾することのできる目標捕捉追尾装置を得ることができる。   As described above, in this embodiment, the infrared imaging unit having a sensor for acquiring two-dimensional image information and the laser radar unit having a sensor for acquiring three-dimensional shape information are separated from each other. The visual axis and field of information, the direction for acquiring the three-dimensional shape information, and the scanning range thereof can be set independently. That is, while the visual axis of the infrared imaging unit matches the moving direction of itself, the visual axis of the laser radar unit matches the direction of the visual axis of the infrared imaging unit when capturing the target, and the infrared imaging unit The three-dimensional shape information is obtained by uniaxial scanning in the azimuth range of the visual field. Further, when tracking the target, the visual axis is set in the direction of the target, and a limited range based on this is uniaxially scanned to obtain the target three-dimensional shape. Therefore, it is possible to improve the visual axis setting when acquiring the target three-dimensional shape existing in the field of view of the two-dimensional image and the degree of freedom of the target field of view, and the target that can efficiently capture and track the target A capture and tracking device can be obtained.

なお、本発明は、上記した実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiments as they are, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, you may combine suitably the component covering different embodiment.

1 目標捕捉追尾装置
2 移動体本体
3 赤外線撮像部
4 レーザレーダ部
5 視軸制御部
6a、6b 光学ウィンドウ
31 光学系
32 赤外線検知器
41 2軸ジンバル
42 レーザ光源
43 送信光学系
44 一軸走査機構
45 送受信光学系
46 受信光学系
47 レーザ検知器
48 信号処理部
DESCRIPTION OF SYMBOLS 1 Target acquisition tracking apparatus 2 Mobile body 3 Infrared imaging part 4 Laser radar part 5 Visual axis control part 6a, 6b Optical window 31 Optical system 32 Infrared detector 41 Two axis gimbal 42 Laser light source 43 Transmission optical system 44 Uniaxial scanning mechanism 45 Transmission / reception optical system 46 Reception optical system 47 Laser detector 48 Signal processing unit

Claims (3)

移動体から目標を捕捉し追尾する目標捕捉追尾装置であって、
移動体本体と、
前記移動体の移動方向に対して所定の俯角を持たせて視軸が固定され、この視軸の方向に対して所定の方位角範囲及び仰角範囲を視野とする2次元画像情報を取得する2次元画像取得手段と、
前記2次元画像取得手段における視野内の任意の方向に視軸を設定し、この視軸に対して直交する方向に一軸走査してその3次元形状情報を取得する3次元形状取得手段と、
取得された前記2次元画像情報及び3次元形状情報に基づいて、前記3次元形状取得手段の視軸の方向、及び一軸走査範囲を制御する制御手段とを備え、
前記制御手段は、
前記目標を捕捉する際には、
前記3次元形状取得手段の視軸の方向を前記2次元画像取得手段の視軸の方向に一致させるとともに、前記一軸走査範囲を前記2次元画像取得手段の視野の方位角範囲に相当する範囲に制御し、
前記目標を追尾する際には、
前記3次元形状取得手段の視軸の方向を、取得された前記2次元画像情報及び3次元形状情報に基づき検出された目標の方向に指向させるとともに、前記一軸走査範囲をこの目標を含む限定された範囲に制御することを特徴とする目標捕捉追尾装置。
A target capturing and tracking device that captures and tracks a target from a moving object,
A mobile body,
A visual axis is fixed with a predetermined depression angle with respect to the moving direction of the moving body, and two-dimensional image information with a predetermined azimuth angle range and elevation angle range as a field of view is acquired with respect to the direction of the visual axis 2 Dimensional image acquisition means;
A three-dimensional shape acquisition unit that sets a visual axis in an arbitrary direction within a visual field in the two-dimensional image acquisition unit, and acquires the three-dimensional shape information by uniaxial scanning in a direction orthogonal to the visual axis;
Control means for controlling the direction of the visual axis of the three-dimensional shape acquisition means and the uniaxial scanning range based on the acquired two-dimensional image information and three-dimensional shape information;
The control means includes
When capturing the target,
The direction of the visual axis of the three-dimensional shape acquisition unit is matched with the direction of the visual axis of the two-dimensional image acquisition unit, and the uniaxial scanning range is set to a range corresponding to the azimuth range of the visual field of the two-dimensional image acquisition unit. Control
When tracking the target,
The direction of the visual axis of the three-dimensional shape acquisition means is directed to the target direction detected based on the acquired two-dimensional image information and three-dimensional shape information, and the uniaxial scanning range is limited to include this target. A target acquisition and tracking device characterized by controlling to a range.
前記2次元画像取得手段において取得する2次元画像情報は、前記視野の2次元赤外画像情報であることを特徴とする請求項1の目標捕捉追尾装置。   The target acquisition and tracking device according to claim 1, wherein the two-dimensional image information acquired by the two-dimensional image acquisition means is two-dimensional infrared image information of the visual field. 前記3次元形状取得手段は、前記一軸走査に直交する方向に対して広がりを持ったフットプリントを有するレーザレーダにより取得することを特徴とする請求項1または請求項2に記載の目標捕捉追尾装置。   3. The target acquisition and tracking device according to claim 1, wherein the three-dimensional shape acquisition unit is acquired by a laser radar having a footprint having a spread in a direction orthogonal to the uniaxial scanning. .
JP2009163111A 2009-07-09 2009-07-09 Target acquisition tracking device Abandoned JP2011017645A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163111A JP2011017645A (en) 2009-07-09 2009-07-09 Target acquisition tracking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163111A JP2011017645A (en) 2009-07-09 2009-07-09 Target acquisition tracking device

Publications (1)

Publication Number Publication Date
JP2011017645A true JP2011017645A (en) 2011-01-27

Family

ID=43595541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163111A Abandoned JP2011017645A (en) 2009-07-09 2009-07-09 Target acquisition tracking device

Country Status (1)

Country Link
JP (1) JP2011017645A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154863A (en) * 2011-01-28 2012-08-16 Tohoku Univ Laser radar apparatus and laser synthetic aperture radar apparatus
JP2012208370A (en) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd Oriented energy system
CN102830391A (en) * 2011-06-16 2012-12-19 中国科学院沈阳自动化研究所 Accuracy index calculating method of infrared search and track system
KR101790595B1 (en) * 2016-12-28 2017-10-26 한화시스템(주) Integrated Processing System for Seeker Operation Mode
CN110207743A (en) * 2019-06-16 2019-09-06 西安应用光学研究所 A kind of online school shaft device and method for seeing system of taking aim at suitable for airborne photoelectric

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251067A (en) * 1996-03-14 1997-09-22 Mitsubishi Electric Corp Infrared image sensor
JPH10325873A (en) * 1997-05-01 1998-12-08 Lockheed Martin Corp Method for improving ladar data resolution, method for obtaining data, and method for doubling ladar data resolution
JP2001186513A (en) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp Image pickup device
JP2001317899A (en) * 2000-05-01 2001-11-16 Kawasaki Heavy Ind Ltd Apparatus for inferring target position
JP2005114588A (en) * 2003-10-08 2005-04-28 Mitsubishi Heavy Ind Ltd Tracking device
JP2006292657A (en) * 2005-04-14 2006-10-26 Mitsubishi Electric Corp Infrared image guide device
JP2007078569A (en) * 2005-09-15 2007-03-29 Toshiba Corp Target acquisition tracking device of light wave interference device
JP2007278642A (en) * 2006-04-10 2007-10-25 Toshiba Corp Light wave interference system and its light wave interference method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251067A (en) * 1996-03-14 1997-09-22 Mitsubishi Electric Corp Infrared image sensor
JPH10325873A (en) * 1997-05-01 1998-12-08 Lockheed Martin Corp Method for improving ladar data resolution, method for obtaining data, and method for doubling ladar data resolution
JP2001186513A (en) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp Image pickup device
JP2001317899A (en) * 2000-05-01 2001-11-16 Kawasaki Heavy Ind Ltd Apparatus for inferring target position
JP2005114588A (en) * 2003-10-08 2005-04-28 Mitsubishi Heavy Ind Ltd Tracking device
JP2006292657A (en) * 2005-04-14 2006-10-26 Mitsubishi Electric Corp Infrared image guide device
JP2007078569A (en) * 2005-09-15 2007-03-29 Toshiba Corp Target acquisition tracking device of light wave interference device
JP2007278642A (en) * 2006-04-10 2007-10-25 Toshiba Corp Light wave interference system and its light wave interference method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154863A (en) * 2011-01-28 2012-08-16 Tohoku Univ Laser radar apparatus and laser synthetic aperture radar apparatus
JP2012208370A (en) * 2011-03-30 2012-10-25 Mitsubishi Heavy Ind Ltd Oriented energy system
CN102830391A (en) * 2011-06-16 2012-12-19 中国科学院沈阳自动化研究所 Accuracy index calculating method of infrared search and track system
KR101790595B1 (en) * 2016-12-28 2017-10-26 한화시스템(주) Integrated Processing System for Seeker Operation Mode
CN110207743A (en) * 2019-06-16 2019-09-06 西安应用光学研究所 A kind of online school shaft device and method for seeing system of taking aim at suitable for airborne photoelectric
CN110207743B (en) * 2019-06-16 2021-07-16 西安应用光学研究所 Online shaft correcting device and method suitable for airborne photoelectric viewing and aiming system

Similar Documents

Publication Publication Date Title
CN108957478B (en) Multi-sensor synchronous sampling system, control method thereof and vehicle
US20170176596A1 (en) Time-of-flight detector with single-axis scan
US8994819B2 (en) Integrated optical detection system
CN111751842B (en) Oversampling and transmitter photographing modes for light detection and ranging (LIDAR) systems
KR102135177B1 (en) Method and apparatus for implemeting active imaging system
KR102140307B1 (en) Laser lader system
US9568583B2 (en) Asynchronous pulse detection through sequential time sampling of optically spread signals
JP6233606B2 (en) Target identification laser observation system
US11561287B2 (en) LIDAR sensors and methods for the same
JP2011017645A (en) Target acquisition tracking device
KR102059258B1 (en) LiDAR scanning device
CN104603635B (en) Utilize the laser tracker mixing formation method for extending measurement scope
CN113042881A (en) Laser processing apparatus
EP3205972A1 (en) Metasurface optics for dual-mode seeker
KR102438071B1 (en) Lidar scanning device capable of front and rear measurement
US8547531B2 (en) Imaging device
JP2021067540A (en) Surveying device
US11822021B2 (en) System and method for analyzing quality criteria of a radiation spot
CN112269181A (en) Laser active detection device and laser active detection processing system
US20210231945A1 (en) Hybrid lidar system
JP2021170033A (en) Scanner
JP2012107944A (en) Target identification device and target identification method
JP2022012504A (en) measuring device
WO2017176410A1 (en) Time-of-flight detector with single-axis scan
JP2009244192A (en) Device, method, and program for measuring moving body position

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130125

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20130322