JP2011017499A - Planar-structure heating structure for building and method of constructing the planar-structure heating structure - Google Patents

Planar-structure heating structure for building and method of constructing the planar-structure heating structure Download PDF

Info

Publication number
JP2011017499A
JP2011017499A JP2009163024A JP2009163024A JP2011017499A JP 2011017499 A JP2011017499 A JP 2011017499A JP 2009163024 A JP2009163024 A JP 2009163024A JP 2009163024 A JP2009163024 A JP 2009163024A JP 2011017499 A JP2011017499 A JP 2011017499A
Authority
JP
Japan
Prior art keywords
heating
electric heater
surface structure
floor
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009163024A
Other languages
Japanese (ja)
Other versions
JP4981104B2 (en
Inventor
Beji Sasaki
ベジ 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PICOI KK
Original Assignee
PICOI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PICOI KK filed Critical PICOI KK
Priority to JP2009163024A priority Critical patent/JP4981104B2/en
Publication of JP2011017499A publication Critical patent/JP2011017499A/en
Application granted granted Critical
Publication of JP4981104B2 publication Critical patent/JP4981104B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Abstract

PROBLEM TO BE SOLVED: To provide a planar-structure heating structure for a building enabled in stable heating and excellent in execution performance.SOLUTION: The planar-structure heating structure is constituted by installing a heating function in planar structures (floors) of the building and includes a sheet-shaped electric heater 8 attached to back faces of the planar structures 1A, 2A, 3 and a field foamed polyuretane layer 15 sprayed and foamed from the upper side of the electric heater 8 to back faces of the planar structures 1A, 2A, 3. In the heating structure, the field foamed polyuretane layer 15 serving as a heat insulating layer is formed with almost no clearance regardless of irregularities on the back faces of the planar structures 1A, 2A, 3 including the electric heater 8 so as to suppress deterioration in heating efficiency caused by clearances. Thus, the thickness of the field foamed polyuretane layer 15 can be adjusted easily in accordance with a work execution place such as a cold place and a warm place so as to achieve favorable heating efficiency.

Description

本発明は、建造物の床・壁・天井などの面構造体の暖房構造と、その施工方法とに関する。   The present invention relates to a heating structure of a surface structure such as a floor, a wall, or a ceiling of a building, and a construction method thereof.

建造物内の部屋の暖房のために、部屋内に暖房装置を設置したり、部屋外に暖房装置を設置して温風などを部屋内に導入する方法がある。その一方で、部屋を構成する床・壁・天井などの面構造体自体に暖房装置を組み込む場合もある(下記特許文献1及び2など)。このようなものとして、床下に暖房機能を組み付けた床暖房はよく知られている。なお、ここにいう「面構造体」とは、床・壁・天井などの面状の構造を有している部分の全てを含み、建造物の構造強度上の荷重を受け持つ「構造体(例えば、壁式構造における耐力壁・構造壁)」に限られない。また、ここにいう面構造体とは、床板や壁板などの板部材だけでなく、根太や間柱・胴縁などの当該構造を構築する部材をも含めて面構造体という。   In order to heat a room in a building, there is a method of installing a heating device in the room or installing a heating device outside the room and introducing hot air into the room. On the other hand, a heating device may be incorporated into a surface structure itself such as a floor, a wall, or a ceiling constituting the room (Patent Documents 1 and 2 below). As such, floor heating in which a heating function is assembled under the floor is well known. As used herein, the term “surface structure” includes all parts having a planar structure such as a floor, wall, ceiling, etc. It is not limited to “bearing wall / structural wall in wall type structure”. The surface structure referred to here is not only a plate member such as a floor plate or a wall plate, but also a surface structure including members for constructing the structure such as joists, studs, and trunk edges.

従来の暖房構造では、床面の上に、断熱材5、面状電気ヒータ4、捨て張り合板2B、及び、フローリング材1Bを順に載せて暖房機能部が構築されることがある(図6参照)。暖房機能部の縁は枠6で処理される。なお、暖房機能部が床面上に設置される関係上、暖房機能部の高さを抑えるために断熱材5は薄いものが使用される。電気ヒータ4の発熱温度が高くなりすぎると、捨て張り合板やフローリング材の劣化が早まる。また、床面が45℃以上となると低温やけどの危険が急上昇する。   In the conventional heating structure, the heating function unit may be constructed by sequentially placing the heat insulating material 5, the planar electric heater 4, the discarded plywood 2B, and the flooring material 1B on the floor surface (see FIG. 6). ). The edge of the heating function part is processed by the frame 6. In addition, since the heating function part is installed on the floor surface, a thin heat insulating material 5 is used in order to suppress the height of the heating function part. If the heat generation temperature of the electric heater 4 becomes too high, deterioration of the discarded plywood and the flooring material will be accelerated. Moreover, when the floor surface is 45 ° C. or higher, the risk of low-temperature burns increases rapidly.

特開2005−221106号公報JP-A-2005-221106 特許第3872272号公報Japanese Patent No. 3872272

一般的な住宅の床構造の断面図を図5に示す。図5に示されるように、約30cm間隔で配置された根太3の上に、捨て張り合板2Aとフローリング材1Aが敷設されている。図5に示されるような床構造に対して後から暖房機能を付加させようとした場合、高価なフローリング材1Aを剥がして再利用したくても、フローリング材1Aが捨て張り合板2Aに接着されているので引き剥がせない場合がある。このため、図6に示されるように、フローリング材1Aの上に、断熱材5、シート状電気ヒータ4、捨て張り合板2B、及び、フローリング材1Bを順に載せて暖房機能を付設させる。このように、電気ヒータ4の上にさらに、家具などの荷重を受けるための捨て張り合板2Bとフローリング材1Bとをさらに敷設する必要があり、コスト高となる。   A sectional view of a typical residential floor structure is shown in FIG. As shown in FIG. 5, the discarded plywood 2 </ b> A and the flooring material 1 </ b> A are laid on the joists 3 arranged at intervals of about 30 cm. When it is intended to add a heating function to the floor structure as shown in FIG. 5 later, even if it is desired to peel off the expensive flooring material 1A and reuse it, the flooring material 1A is discarded and adhered to the laminated plywood 2A. It may not be peeled off. For this reason, as FIG. 6 shows, the heat insulating material 5, the sheet-like electric heater 4, the discarded plywood 2B, and the flooring material 1B are mounted in order on the flooring material 1A, and a heating function is provided. In this way, it is necessary to further lay the waste plywood 2B and the flooring material 1B for receiving a load of furniture or the like on the electric heater 4, which increases the cost.

また、上述したように、既存の床構造に後から暖房機能を付設させようとした場合、既存の床構造上に暖房機能部を設置するため、隣接する部屋や廊下よりも床面が高くなってしまう。高齢化社会を迎え、バリアフリーが求められている昨今、このような段差は好ましくない。なお、捨て張り合板2B及びフローリング材1Bは家具の重量や歩行に耐える必要があるので厚さを薄くすることは困難であり、暖房機能部の高さを抑制するために断熱材5の厚さを薄くしているのが現状である。しかし、断熱材5の厚さを薄くすると電気ヒータ4の発した熱の床下への放熱量が増えてしまうため、少ない面積で大きな発熱量を得るために発熱温度60〜80℃の電気ヒータ4を用いて放熱分を補う必要がある。   In addition, as described above, when a heating function is to be added to an existing floor structure later, the heating function unit is installed on the existing floor structure, so that the floor surface is higher than the adjacent room or hallway. End up. Such a step is not desirable nowadays in an aging society where barrier-free is required. It is difficult to reduce the thickness of the discarded plywood 2B and the flooring material 1B because it is necessary to withstand the weight of the furniture and walking, and the thickness of the heat insulating material 5 is required to suppress the height of the heating function unit. The current situation is that the thickness is reduced. However, if the thickness of the heat insulating material 5 is reduced, the amount of heat generated by the electric heater 4 to the floor is increased. Therefore, in order to obtain a large amount of heat generation in a small area, the electric heater 4 having a heat generation temperature of 60 to 80 ° C. It is necessary to supplement the heat dissipation using

しかし、電気ヒータ4の発熱温度を10℃上げると化学反応は2倍の速さで進行するので、上述したように捨て張り合板2B及びフローリング材1Bの劣化が早くなってしまう。さらに、図6に示されるように、床上に暖房工事を行う場合には、その部屋の家具などを一旦撤去し、工事後に元に戻す手間が掛かり、コスト低減の障害になっている。また、部屋の住人は工事中は他の場所での生活が強いられるため、不便でもある。   However, if the heat generation temperature of the electric heater 4 is increased by 10 ° C., the chemical reaction proceeds twice as fast, and therefore the deterioration of the discarded plywood 2B and the flooring material 1B is accelerated as described above. Furthermore, as shown in FIG. 6, when heating work is performed on the floor, it takes time and effort to remove furniture in the room and return it to the original state after the work, which is an obstacle to cost reduction. Also, the residents of the room are inconvenient because they are forced to live in other places during the construction.

また、上述したように、一般的に発熱温度60〜80℃の面状電気ヒータが使用されているが、この温度では10分から長くても30分で低温やけどを起こし、苦痛を耐えられない乳幼児や感覚の鈍った高齢者はうたた寝も出来ない危険な温度である。低温やけどが起きる温度と時間の関係は、46℃で1.5時間、45℃で約3時間、44℃で約6時間なので、45℃であれば乳幼児や高齢者がうたた寝をしても、3時間以内であれば、低温やけどの心配はない。   In addition, as described above, a sheet electric heater having a heat generation temperature of 60 to 80 ° C. is generally used, but at this temperature, an infant who cannot suffer pain due to low temperature burns in 10 minutes to 30 minutes at the longest. Elderly people with low sensation have dangerous temperatures that can not nap. The relationship between the temperature and time at which low temperature burns occur is as follows: 46 ° C. for 1.5 hours, 45 ° C. for about 3 hours, and 44 ° C. for about 6 hours. If it is within 3 hours, there is no worry of low temperature burns.

さらに、図6のような構造とすると、暖房機能部の下方にも荷重を受ける捨て張り合板2A及びフローリング材1Aが存在する。このため、床面(上方のフローリング材1Bの上面)におかれた家具などの荷重は、電気ヒータ4を圧縮。電気ヒータ4としては、PTC特性(Positive Temperature Coefficienct[正温度係数]特性)を備えたものが使用される場合がある。PTC特性とは、温度が上昇すると電気抵抗が増加し、適切な温度になると温度が一定になる特性である。より詳しくは、温度の上昇に伴って熱膨張し、内部の導電性粒子が離れることで電気抵抗が増加する。電気抵抗が増すと電流が減るために発熱量が制限され、安定したところで温度が一定となる。   Furthermore, if it is set as the structure as shown in FIG. 6, there is a discarded plywood 2 </ b> A and a flooring material 1 </ b> A that receive a load also below the heating function unit. For this reason, the load such as furniture placed on the floor surface (the upper surface of the upper flooring material 1B) compresses the electric heater 4. As the electric heater 4, one having a PTC characteristic (Positive Temperature Coefficient [positive temperature coefficient] characteristic) may be used. The PTC characteristic is a characteristic in which the electrical resistance increases as the temperature rises and becomes constant when the temperature reaches an appropriate temperature. More specifically, the electrical resistance increases due to thermal expansion as the temperature rises and the internal conductive particles are separated. When the electrical resistance increases, the current decreases, so the amount of heat generation is limited, and the temperature becomes constant when stable.

しかし、上述したように、電気ヒータ4には家具などの荷重が作用する。電気ヒータ4の上方に重い家具などが置かれると、温度上昇に伴う熱膨張が抑止されてしまうため、導電性粒子が離れにくくなって電気抵抗が増加しにくくなる。結果として、局部的に温度が高くなってしまう。取り付け直後は電気ヒータ4の上方に重い家具の設置を控えるなど留意するが、何年か経って模様替えなどを行う際には忘れていて重い家具などを置いてしまうと、その部分が局部的に高温となる。温度センサーをいくつか設置して温度制御をしたり、電圧調整により発熱量を押さえる制御機器を使用しても、制御機器の誤作動・故障により温度が暴走する危険は解消できない。   However, as described above, a load such as furniture acts on the electric heater 4. If heavy furniture or the like is placed above the electric heater 4, the thermal expansion accompanying the temperature rise is suppressed, so that the conductive particles are difficult to separate and the electric resistance is difficult to increase. As a result, the temperature is locally increased. Immediately after installation, attention should be paid such as refraining from installing heavy furniture above the electric heater 4, but if you forget to place a heavy piece of furniture for a few years after changing the pattern, that part will be localized. It becomes high temperature. Even if several temperature sensors are installed to control the temperature or use a control device that suppresses the amount of heat generated by adjusting the voltage, the risk of temperature runaway due to malfunction or failure of the control device cannot be resolved.

一方、図5に示されるような床構造に対して、床下に暖房機能を付設することが可能な場合もある。新築時や床下からの施工が容易である場合、後改修で既存の床構造を作り直す場合などである。床下に暖房機能を付設する場合の従来の施工構造を図7及び図8に示す。   On the other hand, it may be possible to attach a heating function under the floor to the floor structure as shown in FIG. This may be the case when it is easy to construct a new building or under the floor, or when the existing floor structure is rebuilt by post-renovation. 7 and 8 show a conventional construction structure when a heating function is provided under the floor.

図7に示されるように、フローリング材1A及び捨て張り合板2Aは、約30cm間隔で並設された根太3により支えられている。このため、電気ヒータ4は、一対の根太3の間の26cmの空間内で、捨て張り合板2Aの裏面に両面粘着テープ7などによって設置される。通常、フローリング材1A及び捨て張り合板2Aの厚さはそれぞれ12mmであり、電気ヒータ4と床上面との距離は24mmとなる。このため、電気ヒータ4と床上面との距離があまり離れないため、電気ヒータ4の発した熱(例えば、45℃であっても)は効率よく床上室内空間に伝達される。   As shown in FIG. 7, the flooring material 1 </ b> A and the discarded plywood 2 </ b> A are supported by joists 3 arranged in parallel at intervals of about 30 cm. For this reason, the electric heater 4 is installed in the space of 26 cm between the pair of joists 3 by the double-sided adhesive tape 7 or the like on the back surface of the discarded plywood 2A. Usually, the thickness of the flooring material 1A and the discarded plywood 2A is 12 mm, and the distance between the electric heater 4 and the floor surface is 24 mm. For this reason, since the distance between the electric heater 4 and the upper surface of the floor is not so large, the heat generated by the electric heater 4 (for example, even at 45 ° C.) is efficiently transmitted to the indoor space on the floor.

ただし、図7の状態であると、電気ヒータ4の発した熱はフローリング材1A及び捨て張り合板2Aを経由して根太3に伝わって放熱されたり、直接下方に放熱されてしまう。このため、下方から電気ヒータ4及び床裏面を覆うように断熱材が配設される。図8に、その一例を示す。   However, in the state of FIG. 7, the heat generated by the electric heater 4 is transferred to the joists 3 via the flooring material 1 </ b> A and the discarded plywood 2 </ b> A, or directly radiated downward. For this reason, a heat insulating material is arrange | positioned so that the electric heater 4 and a floor back surface may be covered from the downward direction. An example is shown in FIG.

図8に示される例では、断熱材として発泡スチロール板9,10が用いられている。この工法では、根太3間の間のスペースを埋める発泡スチロール板9が配置され、さらにその下方から発泡スチロール板10が根太3に対してネジ11によって固定される。しかし、この工法では、発泡スチロール板9を根太3の間の寸法に合わせて切断する手間がかかる。また、電気ヒータ4及び発泡スチロール板9の合計厚さが根太3の高さと一致しないことが多く、根太3の下方に隙間12が形成されてしまう場合がある。   In the example shown in FIG. 8, the foamed polystyrene plates 9 and 10 are used as the heat insulating material. In this construction method, a foamed polystyrene plate 9 that fills the space between the joists 3 is disposed, and further, the foamed polystyrene plate 10 is fixed to the joists 3 with screws 11 from below. However, in this construction method, it takes time and effort to cut the expanded polystyrene plate 9 in accordance with the dimension between the joists 3. In addition, the total thickness of the electric heater 4 and the polystyrene foam plate 9 often does not coincide with the height of the joist 3, and a gap 12 may be formed below the joist 3.

このような隙間12が形成されてしまうと、隣り合う発泡スチロール板10同士の継ぎ目などから隙間12を介して熱が逃げてしまったり、継ぎ目及び隙間12から内部に風が入り込んだりして、断熱効果が落ちてしまう。あるいは、図9に示されるように、電気ヒータ4と発泡スチロール板9との間に隙間13が形成されてしまう場合もある。このような隙間13が形成されてしまうと、電気ヒータ4の床板(捨て張り合板2A裏面)への密着が低下し、熱の伝達効率が落ちてしまう。   If such a gap 12 is formed, heat escapes through the gap 12 from the joints between the adjacent polystyrene foam plates 10 or wind enters the inside from the joints and the gap 12, and the heat insulation effect. Will fall. Alternatively, as shown in FIG. 9, a gap 13 may be formed between the electric heater 4 and the polystyrene foam plate 9. If such a gap 13 is formed, the adhesion of the electric heater 4 to the floor plate (the back surface of the discarded plywood 2A) is lowered, and the heat transfer efficiency is lowered.

根太3の高さに合わせて発泡スチロール板9の厚さを調節するのは困難である。床下などの狭い作業スペースで、発泡スチロール板9の厚さを根太3の高さに合わせて切断するなどの作業は実際的でないし、もしできたとしても作業工数が増えてしまう。このため、図10のような構造とすることも考えられる。図10に示される構造では、上述した隙間12,13が形成されないように、発泡スチロール板9に代えて、軟質発泡断熱材14を用いている。軟質発泡断熱材14は、弾力性があり、ポリエチレンなどで形成され、根太3の高さよりも厚くなるような寸法のものが使用される。取り付け時には、軟質発泡断熱材14が多少圧縮された状態で、発泡スチロール板10がネジ11によって固定される。   It is difficult to adjust the thickness of the polystyrene foam plate 9 in accordance with the height of the joist 3. In a narrow work space such as under the floor, work such as cutting the thickness of the foamed polystyrene plate 9 to match the height of the joist 3 is not practical, and even if it can be done, the number of work steps increases. For this reason, a structure as shown in FIG. 10 may be considered. In the structure shown in FIG. 10, a soft foam heat insulating material 14 is used instead of the foamed polystyrene plate 9 so that the gaps 12 and 13 described above are not formed. The soft foam heat insulating material 14 has elasticity, is formed of polyethylene or the like, and has a size that is thicker than the height of the joist 3. At the time of attachment, the foamed polystyrene board 10 is fixed by the screws 11 in a state where the soft foam heat insulating material 14 is somewhat compressed.

しかし、圧縮状態の軟質発泡断熱材14を押さえるため、ネジ11の固定点を増やさなければならず、施工工数が増えてしまう。また、ネジ11の固定点には、軟質発泡断熱材14の弾性復元力によって応力が作用するので、この固定点で発泡スチロール板10が破損すると断熱性能が低下してしまう。また、軟質発泡断熱材14を圧縮している発泡スチロール板10に電気ヒータ4の発熱が繰り返し負荷されると、発泡スチロール板10が変形してやはり隙間が生じて断熱効果や暖房効率の低下が生じる。発泡スチロール板10としては、電気ヒータの発熱温度を考慮して適切な耐熱性を持つものが選定されるが、図10に示されるような取り付け方をされて、長期間の使用によって熱負荷を繰り返し受けるとやはり隙間を生じさせてしまう。   However, in order to hold down the soft foam heat insulating material 14 in a compressed state, the fixing points of the screw 11 must be increased, and the number of construction steps increases. Moreover, since stress acts on the fixing point of the screw 11 by the elastic restoring force of the soft foam heat insulating material 14, if the foamed polystyrene plate 10 is damaged at this fixing point, the heat insulating performance is deteriorated. Moreover, when the heat generation of the electric heater 4 is repeatedly applied to the foamed polystyrene board 10 compressing the soft foamed heat insulating material 14, the foamed polystyrene board 10 is deformed, and a gap is generated, resulting in a reduction in heat insulation effect and heating efficiency. As the expanded polystyrene plate 10, one having an appropriate heat resistance is selected in consideration of the heat generation temperature of the electric heater. However, it is mounted as shown in FIG. If it receives, it will also cause a gap.

本発明は、上述した問題点を解消し、安定した暖房効率を実現し得ると共に、施工性に優れた面構造体暖房構造、及び、その施工方法を提供することを目的としている。   The object of the present invention is to solve the above-described problems, to realize a stable heating efficiency, and to provide a surface structure heating structure excellent in workability and a construction method thereof.

請求項1に記載の建造物の面構造体暖房構造は、建造物の面構造体に暖房機能を付与したものであり、前記面構造体の裏面に貼り付けられたシート状電気ヒータと、前記電気ヒータの上から前記面構造体の裏面に対して吹き付け発泡された現場発泡ポリウレタン層とを備えていることを特徴としている。   The surface structure heating structure for a building according to claim 1, wherein a heating function is imparted to the surface structure of the building, and the sheet-like electric heater attached to the back surface of the surface structure; And an in-situ foamed polyurethane layer that is blown and foamed from above the electric heater to the back surface of the planar structure.

請求項2に記載の発明は、請求項1に記載の面構造体暖房構造において、前記電気ヒータが、45℃で温度上昇が停止する正温度係数特性(PTC[Positive Temperature Coefficient]特性)を有していることを特徴としている。   According to a second aspect of the present invention, in the surface structure heating structure according to the first aspect, the electric heater has a positive temperature coefficient characteristic (PTC [Positive Temperature Coefficient] characteristic) at which the temperature rise stops at 45 ° C. It is characterized by that.

請求項3に記載の発明は、請求項1又は2に記載の面構造体暖房構造において、一端が前記面構造体の裏面と前記電気ヒータとの間近傍に位置し、他端が前記現場発泡ポリウレタン層の外部に突出されているチューブをさらに備えていることを特徴としている。   The invention according to claim 3 is the surface structure heating structure according to claim 1 or 2, wherein one end is located in the vicinity between the back surface of the surface structure and the electric heater, and the other end is the in-situ foaming. It is further characterized by further comprising a tube protruding outside the polyurethane layer.

請求項4に記載の発明は、請求項1〜3の何れか一項に記載の面構造体暖房構造において、前記面構造体が床であり、前記電気ヒータが床下側に配設されていることを特徴としている。   Invention of Claim 4 is the surface structure heating structure as described in any one of Claims 1-3. WHEREIN: The said surface structure is a floor, The said electric heater is arrange | positioned under the floor. It is characterized by that.

請求項5に記載の建造物の面構造体暖房構造の施工方法は、建造物の面構造体に暖房機能を付与して面構造体暖房構造を構築するもので、シート状電気ヒータを前記面構造体の裏面に貼り付け、前記電気ヒータの上から前記面構造体の裏面に対して、現場発泡ポリウレタン層を吹き付け発泡させることを特徴としている。   The construction method of the building surface structure heating structure according to claim 5 is to construct a surface structure heating structure by imparting a heating function to the building surface structure, wherein the sheet-like electric heater is disposed on the surface. It is affixed on the back surface of the structure, and an in-situ foamed polyurethane layer is blown and foamed from above the electric heater to the back surface of the surface structure.

請求項6に記載の発明は、請求項5に記載の面構造体暖房構造の施工方法において、前記電気ヒータとして45℃で温度上昇が停止する正温度係数特性(PTC[Positive Temperature Coefficient]特性)を有しているものを使用して施工することを特徴としている。   A sixth aspect of the present invention is the construction method of the surface structure heating structure according to the fifth aspect, wherein the electric heater has a positive temperature coefficient characteristic (PTC [Positive Temperature Coefficient] characteristic) at which the temperature rise stops at 45 ° C. It is characterized in that it is constructed using what has

請求項7に記載の発明は、請求項5又は6に記載の面構造体暖房構造の施工方法において、前記現場発泡ポリウレタン層の吹き付けに先立って、一端が前記面構造体の裏面と前記電気ヒータとの間近傍に位置するようにチューブを配置させ、前記チューブの配置後に、該チューブの他端が前記現場発泡ポリウレタン層の外部に突出するように、前記現場発泡ポリウレタン層を吹き付けることを特徴としている。   The invention according to claim 7 is the construction method of the surface structure heating structure according to claim 5 or 6, wherein one end of the surface structure and the electric heater has one end prior to spraying the in-situ foamed polyurethane layer. The tube is disposed so as to be positioned in the vicinity of the tube, and after the tube is disposed, the in-situ foamed polyurethane layer is sprayed so that the other end of the tube protrudes to the outside of the in-situ foamed polyurethane layer. Yes.

請求項8に記載の発明は、請求項5〜7の何れか一項に記載の面構造体暖房構造の施工方法において、前記面構造体が既存の床であり、前記電気ヒータ及び前記現場発泡ポリウレタン層を後改修による暖房機能の付設として施工することを特徴としている。   Invention of Claim 8 is the construction method of the surface structure heating structure as described in any one of Claims 5-7, The said surface structure is an existing floor, The said electric heater and the said on-site foaming It is characterized in that the polyurethane layer is constructed as an additional heating function.

請求項1に記載の建造物の面構造体暖房構造は、面構造体裏側に構築されるため、表側空間に何らの影響も与えないで済む。断熱層となる現場発泡ポリウレタン層は吹き付け発泡で形成されるため、電気ヒータを含めた面構造体の裏面や内面の凹凸によらずにほぼ隙間なく形成することができ、隙間による暖房効率低下を抑止できる。現場発泡ポリウレタン層は吹き付け発泡で形成されるため、設置場所に合わせた断熱材パネルなどの切断工程等は必要なく、施工工数を低減できる。寒冷地や温暖地など、施工場所に応じて現場発泡ポリウレタン層の厚さを容易に調節でき、良好な暖房効率を実現できる。現場発泡ポリウレタン層は吹き付け発泡で形成されるため、施工スペースとして広いスペースを確保できない場合でも施工がしやすい。   Since the surface structure heating structure for a building according to claim 1 is constructed on the back side of the surface structure, it does not have any influence on the front space. The in-situ foamed polyurethane layer, which becomes the heat insulation layer, is formed by blowing foam, so it can be formed almost without gaps regardless of the unevenness of the back and inner surfaces of the surface structure including the electric heater. Can be suppressed. Since the in-situ foamed polyurethane layer is formed by blowing and foaming, there is no need for a cutting process such as a heat insulating material panel according to the installation location, and the number of construction steps can be reduced. The thickness of the polyurethane foam layer can be easily adjusted according to the construction site, such as in cold or warm regions, and good heating efficiency can be realized. Since the in-situ foamed polyurethane layer is formed by spray foaming, construction is easy even when a large space cannot be secured as a construction space.

請求項2に記載の発明によれば、請求項1に記載の面構造体暖房構造による上記効果に加えて、電気ヒータがPTC特性を有しているため、温度センサやサーモスタットを別途設けて温度制御する必要がなく、設置コストを低減できる。また、45℃で温度上昇が停止するため、過度の高温となることはあり得ない。なお、45℃までの発熱温度で十分であるのは、請求項1に記載の暖房効率に優れた構造のためである。45℃までの発熱であるため、面構造体や現場発泡ポリウレタン層の劣化を抑制できる。また、電気ヒータは、PCT特性を有するタイプであるが、面構造体表面から荷重がかけられても(面構造体が床などで、床上に重い家具が乗せられた場合など)、反対側に荷重を受ける面がないため電気ヒータの熱膨張が拘束されないので、安定したPCT特性が維持される。   According to the second aspect of the present invention, in addition to the above-described effect of the surface structure heating structure according to the first aspect, since the electric heater has PTC characteristics, a temperature sensor and a thermostat are separately provided and the temperature is increased. There is no need to control, and the installation cost can be reduced. Moreover, since temperature rise stops at 45 degreeC, it cannot become an excessively high temperature. The exothermic temperature up to 45 ° C. is sufficient because of the structure with excellent heating efficiency according to claim 1. Since it is heat_generation | fever to 45 degreeC, deterioration of a surface structure or an in-situ polyurethane foam layer can be suppressed. In addition, the electric heater is a type having PCT characteristics, but even when a load is applied from the surface of the surface structure (when the surface structure is on the floor and heavy furniture is placed on the floor, etc.) Since there is no surface to receive the load, the thermal expansion of the electric heater is not restricted, so that stable PCT characteristics are maintained.

請求項3に記載の発明によれば、請求項1又は2に記載の面構造体暖房構造による上記効果に加えて、電気ヒータと面構造体の裏面との間に僅かに残る空気をチューブを通して面構造体の裏側に逃がすことで、熱による空気の熱膨張による圧力が現場発泡ポリウレタン層に作用するのが防止される。このため、隙間の形成による暖房効率の低下を抑止でき、かつ、圧力による繰り返し膨張による現場発泡ポリウレタン層の剥離を抑止できる。   According to invention of Claim 3, in addition to the said effect by the surface structure heating structure of Claim 1 or 2, the air which remains slightly between an electric heater and the back surface of a surface structure is passed through a tube. By letting it escape to the back side of the surface structure, it is possible to prevent the pressure caused by the thermal expansion of the air from acting on the in-situ foamed polyurethane layer. For this reason, the fall of the heating efficiency by formation of a clearance gap can be suppressed, and peeling of the in-situ polyurethane foam layer by the repeated expansion by a pressure can be suppressed.

請求項4に記載の発明によれば、請求項1〜3の何れか一項に記載の面構造体暖房構造による上記効果に加えて、上述したように床面に段差などが形成されないため、バリアフリーを実現できる。また、既存の床(面構造体)に対して後改修として暖房機能を付設させる場合でも、床下から電気ヒータ及び現場発泡ポリウレタン層の施工が可能であり、施工コストを低減できる。さらに、施工時に床上の空間には何らの影響を与えることがない。   According to the invention of claim 4, in addition to the above effect by the surface structure heating structure according to any one of claims 1 to 3, as described above, a step or the like is not formed on the floor surface. Barrier-free can be realized. In addition, even when a heating function is added to the existing floor (surface structure) as a post-renovation, it is possible to construct an electric heater and an in-situ foamed polyurethane layer from under the floor, thereby reducing construction costs. In addition, there is no effect on the space on the floor during construction.

請求項5に記載の建造物の面構造体暖房構造の施工方法によれば、面構造体裏側に構築されるため表側に何らの影響も与えないで済む。断熱層となる現場発泡ポリウレタン層は吹き付け発泡で形成されるため、電気ヒータを含めた面構造体の裏面や内面の凹凸によらずにほぼ隙間なく形成することができ、隙間による暖房効率低下を抑止できる。現場発泡ポリウレタン層は吹き付け発泡で形成されるため、設置場所に合わせた断熱材パネルなどの切断工程等は必要なく、施工工数を低減できる。寒冷地や温暖地など、施工場所に応じて現場発泡ポリウレタン層の厚さを容易に調節でき、良好な暖房効率を実現できる。現場発泡ポリウレタン層は吹き付け発泡で形成されるため、施工スペースとして広いスペースを確保できない場合でも施工がしやすい。面構造体上にさらに暖房機能部を設置しないため、面構造体上に段差などが生じずにバリアフリーを実現できる(特に面構造体が床などの場合)。   According to the construction method of the surface structure heating structure for a building according to claim 5, since it is constructed on the back side of the surface structure, there is no influence on the front side. Since the in-situ foamed polyurethane layer, which becomes the heat insulation layer, is formed by spraying foaming, it can be formed almost without gaps regardless of the irregularities on the back and inner surfaces of the surface structure including the electric heater, and the heating efficiency is reduced by the gap Can be suppressed. Since the in-situ polyurethane foam layer is formed by spraying foaming, there is no need for a cutting process such as a heat insulating material panel according to the installation location, and the number of construction steps can be reduced. The thickness of the polyurethane foam layer can be easily adjusted according to the construction site, such as in cold or warm regions, and good heating efficiency can be realized. Since the in-situ foamed polyurethane layer is formed by spray foaming, construction is easy even when a large space cannot be secured as a construction space. Since the heating function unit is not further installed on the surface structure, barrier-free operation can be realized without any step on the surface structure (particularly when the surface structure is a floor or the like).

請求項6に記載の発明によれば、請求項5に記載の面構造体暖房構造の施工方法による上記効果に加えて、PTC特性を有しているため、温度センサやサーモスタットを別途設けて温度制御する必要がなく、設置コストを低減できる。また、45℃で温度上昇が停止するため、過熱しすぎは生じ得ない。なお、45℃までの発熱温度で十分であるのは、請求項1に記載の暖房効率に優れた構造のためである。45℃までの発熱であるため、面構造体や現場発泡ポリウレタン層の劣化を抑止できる。また、PCT特性を持つ電気ヒータであるが、面構造体表面から荷重がかけられても(面構造体が床などで、床上に重い家具が乗せられた場合など)、反対側に荷重を受ける面がないため電気ヒータが潰されることがなく、安定したPCT特性が維持される。   According to the sixth aspect of the present invention, in addition to the above-described effect of the construction method of the surface structure heating structure according to the fifth aspect, since the PTC characteristic is provided, a temperature sensor and a thermostat are separately provided and the temperature is increased. There is no need to control, and the installation cost can be reduced. Further, since the temperature rise stops at 45 ° C., overheating cannot occur. The exothermic temperature up to 45 ° C. is sufficient because of the structure with excellent heating efficiency according to claim 1. Since the heat generation is up to 45 ° C., the deterioration of the surface structure and the in-situ foamed polyurethane layer can be suppressed. In addition, although it is an electric heater having PCT characteristics, even if a load is applied from the surface of the surface structure (when the surface structure is on the floor and heavy furniture is placed on the floor, etc.), the load is applied to the opposite side. Since there is no surface, the electric heater is not crushed and stable PCT characteristics are maintained.

請求項7に記載の発明によれば、請求項5又は6に記載の面構造体暖房構造の施工方法による上記効果に加えて、電気ヒータと面構造体の裏面との間に僅かに残る空気をチューブを通して面構造体の裏側に逃がすことで、熱による空気の熱膨張による圧力が現場発泡ポリウレタン層に作用するのが防止される。このため、隙間の形成による暖房効率の低下を抑止でき、かつ、圧力による繰り返し膨張による現場発泡ポリウレタン層の剥離を抑止できる。   According to the seventh aspect of the present invention, in addition to the above effect by the construction method for the surface structure heating structure according to the fifth or sixth aspect, the air remaining slightly between the electric heater and the back surface of the surface structure. Is allowed to escape to the back side of the surface structure through the tube, so that pressure due to thermal expansion of air due to heat is prevented from acting on the in-situ foamed polyurethane layer. For this reason, the fall of the heating efficiency by formation of a clearance gap can be suppressed, and peeling of the in-situ polyurethane foam layer by the repeated expansion by a pressure can be suppressed.

請求項8に記載の発明によれば、請求項5〜7の何れか一項に記載の面構造体暖房構造の施工方法による上記効果に加えて、上述したように床面に段差などが形成されないため、バリアフリーを実現できる。また、既存の床(面構造体)に対して後改修として暖房機能部を付設させる場合でも、床下から電気ヒータ及び現場発泡ポリウレタン層の施工が可能であり、施工コストを低減できる。さらに、施工時に床上の空間には何らの影響を与えることがない。   According to invention of Claim 8, in addition to the said effect by the construction method of the surface structure heating structure as described in any one of Claims 5-7, a level | step difference etc. are formed in a floor surface as mentioned above. Therefore, barrier-free can be realized. Moreover, even when attaching a heating function part as an after-renovation with respect to the existing floor (surface structure), construction of an electric heater and an in-situ polyurethane foam layer is possible from under the floor, and construction cost can be reduced. In addition, there is no effect on the space on the floor during construction.

本発明の建造物の面構造体暖房構造の一実施形態の断面図である。It is sectional drawing of one Embodiment of the surface structure heating structure of the building of this invention. 図1の構造における内部空気膨張を説明する断面図である。It is sectional drawing explaining the internal air expansion | swelling in the structure of FIG. 図1の構造におけるチューブ配置部での断面図である。It is sectional drawing in the tube arrangement | positioning part in the structure of FIG. チューブ配置の他の形態を示す分解斜視図である。It is a disassembled perspective view which shows the other form of tube arrangement | positioning. 暖房機能を有しない一般的な床構造(面構造体)の断面図である。It is sectional drawing of the common floor structure (surface structure) which does not have a heating function. 床上に暖房機能部を有する従来の面構造体暖房構造の断面図である。It is sectional drawing of the conventional surface structure heating structure which has a heating function part on a floor. 床下に暖房機能部を有する面構造体暖房構造の施工手順を説明する断面図である。It is sectional drawing explaining the construction procedure of the surface structure heating structure which has a heating function part under a floor. 床下に暖房機能部を有する従来の面構造体暖房構造の断面図である。It is sectional drawing of the conventional surface structure heating structure which has a heating function part under a floor. 床下に暖房機能部を有する従来の面構造体暖房構造の他の形態を示す断面図である。It is sectional drawing which shows the other form of the conventional surface structure heating structure which has a heating function part under a floor. 床下に暖房機能部を有する従来の面構造体暖房構造のさらに他の形態を示す断面図である。It is sectional drawing which shows the further another form of the conventional surface structure heating structure which has a heating function part under a floor.

図1に本発明の建造物の面構造体暖房構造の一実施形態の断面図を示す。なお、本実施形態では、面構造体が床である場合を例にして説明するが、面構造体は床に限られない。ただし、床であった場合の利点については追って説明を加える。また、本実施形態の面構造体自体は、図5に示した従来の面構造体と変わりなく、根太3の上に敷設された捨て張り合板2A及びフローリング材1Aによって構成されている。このため、面構造体の概略構造についてはその説明を省略する。なお、面構造体の詳細について必要な説明はその都度加える。   FIG. 1 shows a cross-sectional view of an embodiment of a building surface structure heating structure of the present invention. In the present embodiment, the case where the surface structure is a floor will be described as an example, but the surface structure is not limited to the floor. However, the advantages of using the floor will be explained later. Further, the surface structure itself of the present embodiment is the same as the conventional surface structure shown in FIG. 5, and is constituted by a discarded plywood 2 </ b> A and a flooring material 1 </ b> A laid on the joists 3. For this reason, the description of the schematic structure of the surface structure is omitted. It should be noted that a detailed explanation of the details of the surface structure is added each time.

以下、本実施形態の面構造体暖房構造の特徴的な構造を、その施工方法と併せて以下に説明する。まず、上述した面構造体の一対の根太3の間の捨て張り合板2A裏面に、両面粘着テープ7によってシート状の電気ヒータ8を取り付ける。電気ヒータ8は、床面の暖房エリア内に複数枚取り付けられる(この実施形態では複数枚であるが、1枚の場合もある)。なお、電気ヒータ8の捨て張り合板2A裏面への取り付けは、両面粘着テープ7以外のものを用いて行っても良い。例えば、電気ヒータ8を覆っている絶縁フィルムを捨て張り合板2A裏面にネジ留めしても良い。   Hereinafter, the characteristic structure of the surface structure heating structure of this embodiment is demonstrated below with the construction method. First, the sheet-like electric heater 8 is attached by the double-sided adhesive tape 7 to the back surface of the discarded laminated plywood 2 </ b> A between the pair of joists 3 of the surface structure described above. A plurality of electric heaters 8 are attached in the heating area on the floor (in this embodiment, a plurality of electric heaters 8 are provided, but there may be one). Note that the electric heater 8 may be attached to the rear surface of the discarded plywood 2 </ b> A by using something other than the double-sided adhesive tape 7. For example, the insulating film covering the electric heater 8 may be discarded and screwed to the back surface of the plywood 2A.

電気ヒータ8は、45℃で温度上昇が停止するPTC特性を有する発熱シートである。電気ヒータ8の発熱部分は、ポリエチレンなどの樹脂に、カーボンブラック・黒鉛・金属粉末などの導電性粒子を分散させて、両端に導線を配置することで構成されている。通電によって発熱部が発熱するが、温度上昇に伴って樹脂が熱膨張し、互いに接触していた導電性粒子が離れて発熱部の電気抵抗が増加する。電気抵抗が増加することで電流値が低下して発熱量が減る。本実施形態の電気ヒータ8は、温度が45℃となると電気抵抗が急激に増大してほぼ絶縁状態となるように、導線間隔や発熱部厚さ、導電性粒子の配合比率が調整されている。   The electric heater 8 is a heat generating sheet having PTC characteristics in which the temperature rise stops at 45 ° C. The heat generating portion of the electric heater 8 is configured by dispersing conductive particles such as carbon black, graphite, and metal powder in a resin such as polyethylene and arranging conductive wires at both ends. Although the heat generating part generates heat by energization, the resin thermally expands as the temperature rises, and the conductive particles that are in contact with each other are separated to increase the electrical resistance of the heat generating part. As the electrical resistance increases, the current value decreases and the amount of heat generation decreases. In the electric heater 8 of the present embodiment, the conductive wire interval, the heating portion thickness, and the blending ratio of the conductive particles are adjusted so that when the temperature reaches 45 ° C., the electric resistance suddenly increases and becomes almost insulated. .

上述した電気ヒータ8のPTC特性を利用するため、発熱温度の調整は基本的には通電のオン・オフのみで済む。また、電気ヒータ8のスイッチの配線を部屋内に通す必要はあるが、温度センサやサーモスタットなどの高価な温度制御機器は必要としない。なお、複数配置される電気ヒータ8の一部のみを通電し、残りを非通電として発熱エリアを制御することは容易に行える。また、本実施形態の電気ヒータ8は、45℃以上の発熱を行わないため、暖めすぎてしまうようなこともなく快適な暖房温度を維持できる。   Since the above-described PTC characteristic of the electric heater 8 is used, the adjustment of the heat generation temperature basically requires only energization on / off. Moreover, although it is necessary to let the switch wiring of the electric heater 8 pass in the room, expensive temperature control devices such as a temperature sensor and a thermostat are not required. Note that it is easy to control the heat generation area by energizing only a part of the plurality of electric heaters 8 and de-energizing the rest. Moreover, since the electric heater 8 of this embodiment does not generate heat of 45 ° C. or higher, it can maintain a comfortable heating temperature without being overheated.

電気ヒータ8の発熱温度が高いと(上述したように、従来は60〜80℃のものが用いられている)、捨て張り合板2A及びフローリング材1Aの電気ヒータ8に接している部分は熱膨張が大きくなる。その一方で、捨て張り合板2A及びフローリング材1Aの電気ヒータ8に接していない部分は熱膨張があまり大きくなく、この二つの部分の膨張差が大きくなる。捨て張り合板2A及びフローリング材1Aに熱負荷が繰り返されることで、熱膨張差による劣化や疲労破壊が促進されやすいが、本実施形態の電気ヒータ8は45℃で発熱が停止するため、膨張差が防止されてこのような劣化や疲労破壊が抑制される。また、本実施形態の電気ヒータ8は発熱温度が高くないため、消費電力が少く、省エネルギー化に寄与する。   When the heating temperature of the electric heater 8 is high (as described above, conventionally, the one having a temperature of 60 to 80 ° C. is used), the portions of the discarded plywood 2A and the flooring material 1A that are in contact with the electric heater 8 are thermally expanded. Becomes larger. On the other hand, the portion of the discarded plywood 2A and the flooring material 1A that is not in contact with the electric heater 8 does not have a large thermal expansion, and the expansion difference between the two portions is large. Deterioration due to thermal expansion difference and fatigue failure are easily promoted by repeated thermal loads on the discarded plywood 2A and flooring material 1A. However, the electric heater 8 of this embodiment stops heat generation at 45 ° C. Is prevented and such deterioration and fatigue failure are suppressed. Moreover, since the electric heater 8 of this embodiment does not have a high heat generation temperature, it consumes less power and contributes to energy saving.

電気ヒータ8を捨て張り合板2A裏面への取り付け後、吹き付け発泡によって現場発泡ポリウレタン層15が形成されるが、それに先だってチューブ17を配置しておく(図3参照)。各電気ヒータ8毎に少なくとも一つのチューブ17が配置される。本実施形態のチューブ17は、内径5mm程度のもので、L型形状に曲げられて設置され、その一端が電気ヒータ8と捨て張り合板2Aとの間(内部又は縁部)に配置される。チューブ17は、その一端側が捨て張り合板2Aの裏面に接して配置され、他端側がまっすぐ下方に向けて伸ばされた状態で、ホチキス,サドル,テープなどの固定具を用いて捨て張り合板2Aの裏面に固定される。チューブ17は、金属製でも樹脂製でも良いし、その形状を保持し得るものでも良いし、柔軟性を有するものでも良い。ただし、捨て張り合板2Aの裏面への固定状態を維持でき、電気ヒータ8の発熱に対する耐熱性を有することが求められる。チューブ17の機能については後述する。   After the electric heater 8 is discarded and attached to the back surface of the laminated plywood 2A, the in-situ foamed polyurethane layer 15 is formed by blowing and foaming, and the tube 17 is disposed prior to that (see FIG. 3). At least one tube 17 is arranged for each electric heater 8. The tube 17 of the present embodiment has an inner diameter of about 5 mm, is bent and installed in an L shape, and one end of the tube 17 is disposed between the electric heater 8 and the discarded plywood 2A (inside or edge). The tube 17 is disposed so that one end thereof is in contact with the back surface of the discard plywood 2A and the other end is straightly extended downward using a fixing tool such as a staple, saddle, or tape. Fixed to the back. The tube 17 may be made of metal or resin, may hold its shape, or may have flexibility. However, it is required to be able to maintain the fixed state of the discarded plywood 2A on the back surface and to have heat resistance against the heat generated by the electric heater 8. The function of the tube 17 will be described later.

チューブ17の配設後、現場にて現場発泡ポリウレタン層15の原料を吹き付け発泡させて断熱材層を形成する。吹き付けには、既存のスプレーガンを用いることができる。スプレーガンによって原料となる二液を攪拌混合させつつ空気圧で吹き出して吹き付け面に塗布すると、塗布物が吹き付け後に発泡・固化して現場発泡ポリウレタン層15が形成される。原料となる二液を攪拌混合させ、かつ、「エアを混入させつつ」吹き付けを行うスプレーガンを用いて吹き付けを行うことも可能である。しかし、エアレスタイプのスプレーガンを用いた場合の方が、塗布物が周りに飛び散るロスが少なく、エアーの圧力が低く塗布面を平滑に仕上げ易い。「エアを混入させつつ」吹き付けを行うスプレーガンであると、塗布物がやや飛び散る傾向があった。   After disposing the tube 17, the material of the in-situ foamed polyurethane layer 15 is sprayed and foamed on site to form a heat insulating material layer. An existing spray gun can be used for spraying. When the two liquids as raw materials are stirred and mixed by a spray gun and blown by air pressure and applied to the spraying surface, the applied material is foamed and solidified after spraying to form the in-situ foamed polyurethane layer 15. It is also possible to perform spraying using a spray gun that stirs and mixes the two liquids as raw materials and sprays “mixing air”. However, when the airless type spray gun is used, there is less loss that the coated material scatters around, and the air pressure is low and the coated surface is easy to finish. In the case of a spray gun that sprays “while mixing air”, there was a tendency for the applied material to scatter slightly.

上述したように設置された暖房構造においては、僅かではあるが電気ヒータ8と捨て張り合板2Aとの間に空気が残留する。この空気は電気ヒータ8の発熱によって、図2に示されるように膨張して隙間16を形成させてしまう(図2では、分かりやすいように膨張状態を誇張して表現してある)。なお、隙間16の空気層は、断熱材の役目をして電気ヒータ18から室内への伝熱を妨げる。現場発泡ポリウレタン層15は隙間なく形成されるため、図2の状態となると膨張空気は逃げ場がなく、現場発泡ポリウレタン層15を変形させる。捨て張り合板2Aやフローリング材1Aの継ぎ目に僅かでも隙間があれば、この部分から膨張空気が逃げるが、高気密高断熱の観点から床面に僅かな隙間も残さない施工が行われる。また、床板の軋み音を防止したり、床上にこぼれた液体の床内への浸透を防止するために、ボンドやシリコーンコーキング剤を用いて捨て張り合板2Aやフローリング材1Aを根太3に隙間が生じないように固定する。このため、図2のような状態になる。   In the heating structure installed as described above, a small amount of air remains between the electric heater 8 and the discarded plywood 2A. The air expands as shown in FIG. 2 due to heat generated by the electric heater 8 to form a gap 16 (in FIG. 2, the expanded state is exaggerated for easy understanding). Note that the air layer in the gap 16 serves as a heat insulating material to prevent heat transfer from the electric heater 18 to the room. Since the in-situ foamed polyurethane layer 15 is formed without a gap, the expanded air has no escape space in the state of FIG. 2 and deforms the in-situ foamed polyurethane layer 15. If there is even a gap in the joint between the discarded plywood 2A and the flooring material 1A, the expansion air escapes from this portion, but construction is performed without leaving a slight gap on the floor surface from the viewpoint of high airtightness and high heat insulation. In addition, in order to prevent the squeaking noise of the floor board or to prevent the liquid spilled on the floor from penetrating into the floor, a gap is formed in the joist 3 by discarding the laminated plywood 2A and the flooring material 1A using a bond or a silicone caulking agent. Fix it so that it does not occur. For this reason, it will be in a state like FIG.

なお、熱膨張する空気の量はわずかであり、電気ヒータ8の設置前にフローリング材1A及び捨て張り合板2Aを貫通する小さな孔を設け、空気の通路を設けることにより、電気ヒータ8と捨て張り合板2Aとの間に残留した空気が電気ヒータ8の温度上昇に伴って膨張した体積分の空気を逃がすことができて、圧力が生じることもなくなり、現場発泡ポリウレタン層15を押し剥がすことも解消できたが、床上にこぼした水がこの孔より電気ヒータ8とその電線接続部に浸透して漏電事故を起こす危険も生じた。   The amount of air that thermally expands is small, and a small hole that penetrates the flooring material 1A and the discarding plywood 2A is provided before the electric heater 8 is installed, and an air passage is provided so that the electric heater 8 and the discarding tension are provided. The air remaining between the plywood 2A can escape the volume of air expanded as the temperature of the electric heater 8 rises, no pressure is generated, and the in-situ foamed polyurethane layer 15 is not pushed off. However, there was also a risk that water spilled on the floor penetrated into the electric heater 8 and its electric wire connecting portion through this hole and caused a leakage accident.

また、このような膨張が繰り返し発生すると、空気の熱膨張によって生じる圧力がによって、(圧力)×(面積)の力が現場発泡ポリウレタン層15に作用して現場発泡ポリウレタン層15が剥離する。現場発泡ポリウレタン層15の厚さを厚くして、空気膨張が生じても変形しないようにすることも考えられるが、現場発泡ポリウレタン層15の厚さは断熱性能を考慮して決定されることが暖房効率上必要である。このため、本実施形態では、上述したチューブ17が取り付けられている。図2に示されるような熱による空気膨張による圧力が生じた際は、チューブ17を介して膨張した内部空気による圧力を現場発泡ポリウレタン層15の外部に逃がすことができ、現場発泡ポリウレタン層15の変形を防止できる。チューブ17を用いることで、現場発泡ポリウレタン層15の剥離を確実に防止でき、かつ、暖房効率上適切な厚さの現場発泡ポリウレタン層15を形成することができる。   When such expansion is repeatedly generated, the pressure generated by the thermal expansion of air causes a force of (pressure) × (area) to act on the in-situ foamed polyurethane layer 15 and the in-situ foamed polyurethane layer 15 is peeled off. Although it is conceivable to increase the thickness of the in-situ foamed polyurethane layer 15 so that it does not deform even if air expansion occurs, the thickness of the in-situ foamed polyurethane layer 15 may be determined in consideration of the heat insulating performance. Necessary for heating efficiency. For this reason, in this embodiment, the tube 17 mentioned above is attached. When pressure due to air expansion due to heat as shown in FIG. 2 is generated, the pressure due to the internal air expanded through the tube 17 can be released to the outside of the in-situ foamed polyurethane layer 15. Deformation can be prevented. By using the tube 17, it is possible to reliably prevent the in-situ foamed polyurethane layer 15 from being peeled off, and to form the in-situ foamed polyurethane layer 15 having an appropriate thickness in terms of heating efficiency.

なお、現場発泡ポリウレタン層15の内部から外部へは、電気ヒータ4への導線18も導出する必要もある。そこで、図4に示されるように、導線18をチューブの内部を通して現場発泡ポリウレタン層15の外部に取り出しても良い。このようにすれば、現場発泡ポリウレタン層15の内部から外部に導出されるものがまとめられる。また、繰り返し熱負荷による導線18への繰り返し応力負荷も抑止できる。図4の場合は、導線18の外径を考慮してチューブ17の内径が決定される。   In addition, it is necessary to also lead out the conducting wire 18 to the electric heater 4 from the inside of the in-situ foamed polyurethane layer 15 to the outside. Therefore, as shown in FIG. 4, the conductor 18 may be taken out of the in-situ foamed polyurethane layer 15 through the inside of the tube. If it does in this way, what is derived | led-out from the inside of the in-situ foaming polyurethane layer 15 will be put together. Moreover, the repeated stress load to the conducting wire 18 due to the repeated heat load can also be suppressed. In the case of FIG. 4, the inner diameter of the tube 17 is determined in consideration of the outer diameter of the conducting wire 18.

上述した実施形態の効果を定量的に示すため、図6に示す従来の暖房構造との比較を行った。具体的には、電気ヒータ4,8の放熱ロスの割合を算出した。   In order to quantitatively show the effect of the above-described embodiment, a comparison with the conventional heating structure shown in FIG. 6 was performed. Specifically, the ratio of heat dissipation loss of the electric heaters 4 and 8 was calculated.

まず、図6の従来の暖房構造についてであるが、以下の各数値を用いた。
フローリング材1A,2Aの厚さ,熱伝導率:12mm,0.16W/(m・K)
捨て張り合板2A,2Bの厚さ,熱伝導率:12mm,0.16W/(m・K)
断熱材5の厚さ,熱伝導率:6mm,0.035W/(m・K)
電気ヒータ4の発熱温度:60〜80(平均70)℃
First, regarding the conventional heating structure of FIG. 6, the following numerical values were used.
Flooring material 1A, 2A thickness, thermal conductivity: 12 mm, 0.16 W / (m · K)
Thickness of discarded plywood 2A, 2B, thermal conductivity: 12mm, 0.16W / (m · K)
Thickness of heat insulating material 5, thermal conductivity: 6 mm, 0.035 W / (m · K)
Heat generation temperature of the electric heater 4: 60-80 (average 70) ° C

電気ヒータ4の発熱温度=70℃,室内温度=20℃,床下外気温度=10℃の条件での暖房に用いられる単位面積当たりの熱量を(1)式、床下外気に放熱される単位面積当たりの熱量を(2)式に示す。
(1):(70−20)×0.16/(0.012+0.012)=333.3[W/m
(2):(70−10)/((0.012+0.012)/0.16+0.006/0.035)=186.7[W/m
The amount of heat per unit area used for heating under the conditions that the heating temperature of the electric heater 4 is 70 ° C., the room temperature is 20 ° C., and the outside air temperature is 10 ° C., per unit area radiated to the outside air The amount of heat is shown in equation (2).
(1): (70-20) × 0.16 / (0.012 + 0.012) = 333.3 [W / m 2 ]
(2): (70-10) / ((0.012 + 0.012) /0.16+0.006/0.035) = 186.7 [W / m 2 ]

室内暖房に用いられる単位面積当たりの熱量は全体の(333.3/(333.3+186.7))=64%であり、36%が床下外気への放熱ロスとなっている。   The amount of heat per unit area used for indoor heating is (333.3 / (333.3 + 186.7)) = 64%, and 36% is a heat loss to the outside air under the floor.

一方、図1の上記実施形態の暖房構造についてであるが、以下の各数値を用いた。
フローリング材1A,2Aの厚さ,熱伝導率:12mm,0.16W/(m・K)
現場発泡ポリウレタン層15の厚さ,熱伝導率:50mm,0.035W/(m・K)
電気ヒータ8の発熱温度:45℃
On the other hand, although it is about the heating structure of the said embodiment of FIG. 1, each following numerical value was used.
Flooring material 1A, 2A thickness, thermal conductivity: 12 mm, 0.16 W / (m · K)
In-situ foamed polyurethane layer 15 thickness, thermal conductivity: 50 mm, 0.035 W / (m · K)
Heat generation temperature of electric heater 8: 45 ° C

電気ヒータ8の発熱温度=45℃,室内温度=20℃,床下外気温度=10℃の条件での暖房に用いられる単位面積当たりの熱量を(3)式、床下外気に放熱される単位面積当たりの熱量を(4)式に示す。
(3):(45−20)×0.16/(0.012+0.012)=166.7[W/m
(4):(45−10)×0.035/0.050=24.5[W/m
The amount of heat per unit area used for heating under the conditions of the heating temperature of the electric heater 8 = 45 ° C., the room temperature = 20 ° C., and the under-floor outside air temperature = 10 ° C. per unit area radiated to the under-floor outside air The amount of heat is shown in equation (4).
(3): (45-20) × 0.16 / (0.012 + 0.012) = 166.7 [W / m 2 ]
(4): (45-10) × 0.035 / 0.050 = 24.5 [W / m 2 ]

室内暖房に用いられる単位面積当たりの熱量は全体の(166.7/(166.7+24.5))=87%であり、13%が床下外気への放熱ロスとなっている。本実施形態の暖房構造は、上述した図6の従来の暖房構造より放熱ロスの割合は減少しており暖房効率は向上している。なお、電気ヒータ8の発熱温度自体も下げられているため、絶対的な消費エネルギー自体も低減されている。   The amount of heat per unit area used for room heating is (166.7 / (166.7 + 24.5)) = 87% of the whole, and 13% is a heat radiation loss to the outside air under the floor. In the heating structure of the present embodiment, the rate of heat dissipation loss is reduced and the heating efficiency is improved as compared with the conventional heating structure of FIG. 6 described above. In addition, since the heat generation temperature itself of the electric heater 8 is also lowered, the absolute energy consumption itself is also reduced.

なお、上記実施形態では面構造体が床である場合を例に説明したが、面構造体は床に限定されず、側壁や天井であっても良い。ただし、面構造体が床である場合は、床下に空間がある場合が多く、建造物の一部を解体することなく、上記施工を容易に行うことができる。特に、既存の床に後改修として暖房機能を付設する場合であっても、建造物の一部を解体することなく、かつ、建造物内部(部屋)の建具などを移動することなく施工を行うことができる。暖房機能部の操作パネル(スイッチ)の部屋内の設置と、操作パネルへの配線は必要となるが、基本的に建造物内部に影響を及ぼすことなく施工することができる。   In the above embodiment, the case where the surface structure is a floor has been described as an example. However, the surface structure is not limited to the floor, and may be a side wall or a ceiling. However, when the surface structure is a floor, there is often a space below the floor, and the above construction can be easily performed without dismantling a part of the building. In particular, even when a heating function is added to the existing floor as a post-renovation, construction is performed without disassembling part of the building and without moving the fittings inside the building (room). be able to. Installation of the operation panel (switch) of the heating function unit in the room and wiring to the operation panel are necessary, but it can be basically performed without affecting the inside of the building.

本発明の面構造体暖房構造は、建造物の床・壁・天井などの面構造体に組み付けられ、建造物内部の暖房を行う際に利用できる。また、本発明の面構造体暖房構造の施工方法は、上述した暖房構造の施工に利用できる。   The surface structure heating structure of the present invention is assembled to a surface structure such as a floor, wall, or ceiling of a building and can be used when heating the inside of the building. Moreover, the construction method of the surface structure heating structure of this invention can be utilized for construction of the heating structure mentioned above.

1A,1B フローリング材(面構造体)
2A,2B 捨て張り合板(面構造体)
3 根太(面構造体)
4,8 電気ヒータ
5 断熱材(シート)
6 枠
7 粘着テープ
9,10 断熱材(発泡スチロールパネル)
11 ネジ
12,13,16 隙間
14 軟質発泡断熱材(ポリエチレン)
15 現場発泡ポリウレタン層
17 チューブ
18 導線
1A, 1B Flooring material (surface structure)
2A, 2B Discarded plywood (surface structure)
3 joist (plane structure)
4,8 Electric heater 5 Insulation (sheet)
6 Frame 7 Adhesive tape 9,10 Heat insulation material (Styrofoam panel)
11 Screw 12, 13, 16 Clearance 14 Soft foam insulation (polyethylene)
15 On-site polyurethane foam layer 17 Tube 18 Conductor

Claims (8)

建造物の面構造体に暖房機能を付与して面構造体暖房構造において、
前記面構造体の裏面に貼り付けられたシート状電気ヒータと、
前記電気ヒータの上から前記面構造体の裏面に対して吹き付け発泡された現場発泡ポリウレタン層とを備えていることを特徴とする建造物の面構造体暖房構造。
In the surface structure heating structure by giving a heating function to the surface structure of the building,
A sheet-like electric heater attached to the back surface of the surface structure;
An in-situ foamed polyurethane layer that is blown and foamed from above the electric heater against the back surface of the surface structure.
前記電気ヒータが、45℃で温度上昇が停止する正温度係数特性を有していることを特徴とする請求項1に記載の建造物の面構造体暖房構造。   2. The surface structure heating structure for a building according to claim 1, wherein the electric heater has a positive temperature coefficient characteristic in which the temperature rise stops at 45 ° C. 一端が前記面構造体の裏面と前記電気ヒータとの間近傍に位置し、他端が前記現場発泡ポリウレタン層の外部に突出されているチューブをさらに備えていることを特徴とする請求項1又は2に記載の建造物の面構造体暖房構造。   The tube according to claim 1, further comprising: a tube having one end positioned in the vicinity between the back surface of the surface structure and the electric heater, and the other end protruding outside the in-situ foamed polyurethane layer. 2. A surface structure heating structure of a building according to 2. 前記面構造体が床であり、前記電気ヒータが床下側に配設されていることを特徴とする請求項1〜3の何れか一項に記載の建造物の面構造体暖房構造。   The surface structure heating structure for a building according to any one of claims 1 to 3, wherein the surface structure is a floor, and the electric heater is disposed below the floor. 建造物の面構造体に暖房機能を付与して面構造体暖房構造を構築する、面構造体暖房構造の施工方法において、
シート状電気ヒータを前記面構造体の裏面に貼り付け、
前記電気ヒータの上から前記面構造体の裏面に対して、現場発泡ポリウレタン層を吹き付け発泡させることを特徴とする建造物の面構造体暖房構造の施工方法。
In the construction method of the surface structure heating structure, which provides a heating function to the surface structure of the building to construct the surface structure heating structure,
A sheet-like electric heater is attached to the back surface of the surface structure,
A construction method of a surface structure heating structure for a building, wherein an in-situ foamed polyurethane layer is blown and foamed from above the electric heater to the back surface of the surface structure.
前記電気ヒータとして45℃で温度上昇が停止する正温度係数特性を有しているものを使用して施工する、ことを特徴とする請求項5に記載の建造物の面構造体暖房構造の施工方法。   The construction of the surface structure heating structure for a building according to claim 5, wherein the construction is performed using the electric heater having a positive temperature coefficient characteristic that stops temperature rise at 45 ° C. Method. 前記現場発泡ポリウレタン層の吹き付けに先立って、一端が前記面構造体の裏面と前記電気ヒータとの間近傍に位置するようにチューブを配置させ、
前記チューブの配置後に、該チューブの他端が前記現場発泡ポリウレタン層の外部に突出するように、前記現場発泡ポリウレタン層を吹き付けることを特徴とする請求項5又は6に記載の建造物の面構造体暖房構造の施工方法。
Prior to spraying the in-situ foamed polyurethane layer, the tube is arranged so that one end is located in the vicinity between the back surface of the surface structure and the electric heater,
The surface structure of a building according to claim 5 or 6, wherein after the placement of the tube, the in-situ foamed polyurethane layer is sprayed so that the other end of the tube protrudes outside the in-situ foamed polyurethane layer. Construction method of body heating structure.
前記面構造体が既存の床であり、前記電気ヒータ及び前記現場発泡ポリウレタン層を後改修による暖房機能の付設として施工することを特徴とする請求項5〜7の何れか一項に記載の建造物の面構造体暖房構造の施工方法。   The building according to any one of claims 5 to 7, wherein the surface structure is an existing floor, and the electric heater and the in-situ foamed polyurethane layer are constructed as an additional heating function by post-renovation. Construction method for surface heating structure of objects.
JP2009163024A 2009-07-09 2009-07-09 Construction surface structure heating structure and construction method thereof Expired - Fee Related JP4981104B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163024A JP4981104B2 (en) 2009-07-09 2009-07-09 Construction surface structure heating structure and construction method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163024A JP4981104B2 (en) 2009-07-09 2009-07-09 Construction surface structure heating structure and construction method thereof

Publications (2)

Publication Number Publication Date
JP2011017499A true JP2011017499A (en) 2011-01-27
JP4981104B2 JP4981104B2 (en) 2012-07-18

Family

ID=43595424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163024A Expired - Fee Related JP4981104B2 (en) 2009-07-09 2009-07-09 Construction surface structure heating structure and construction method thereof

Country Status (1)

Country Link
JP (1) JP4981104B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107829538A (en) * 2017-11-15 2018-03-23 周祉彤 A kind of fillet tenon ground heating floor of energy Fast Installation
CN112613182A (en) * 2020-12-29 2021-04-06 嘉兴学院 Calculation method for heat absorption and heat release processes of inner wall surface of large-space layered air-conditioning building
JP7115824B2 (en) 2017-06-27 2022-08-09 アキレス株式会社 raised structure

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267631A (en) * 1990-03-16 1991-11-28 Idemitsu Kosan Co Ltd Panel for heating
JP2002310445A (en) * 2001-04-09 2002-10-23 Mitsubishi Cable Ind Ltd Floor heating panel structure and its manufacturing method
JP2005086897A (en) * 2003-09-08 2005-03-31 Mirai Ind Co Ltd Cable protective cover and cable wiring method
JP2006064288A (en) * 2004-08-26 2006-03-09 Hoshizaki Electric Co Ltd Door structure for storage
JP2007032911A (en) * 2005-07-26 2007-02-08 Eidai Co Ltd Direct-sticking floor heating floor material
JP2007139400A (en) * 2005-11-19 2007-06-07 Misato Kk Method for installing floor heating device in house

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03267631A (en) * 1990-03-16 1991-11-28 Idemitsu Kosan Co Ltd Panel for heating
JP2002310445A (en) * 2001-04-09 2002-10-23 Mitsubishi Cable Ind Ltd Floor heating panel structure and its manufacturing method
JP2005086897A (en) * 2003-09-08 2005-03-31 Mirai Ind Co Ltd Cable protective cover and cable wiring method
JP2006064288A (en) * 2004-08-26 2006-03-09 Hoshizaki Electric Co Ltd Door structure for storage
JP2007032911A (en) * 2005-07-26 2007-02-08 Eidai Co Ltd Direct-sticking floor heating floor material
JP2007139400A (en) * 2005-11-19 2007-06-07 Misato Kk Method for installing floor heating device in house

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115824B2 (en) 2017-06-27 2022-08-09 アキレス株式会社 raised structure
CN107829538A (en) * 2017-11-15 2018-03-23 周祉彤 A kind of fillet tenon ground heating floor of energy Fast Installation
CN112613182A (en) * 2020-12-29 2021-04-06 嘉兴学院 Calculation method for heat absorption and heat release processes of inner wall surface of large-space layered air-conditioning building
CN112613182B (en) * 2020-12-29 2024-02-27 嘉兴学院 Calculation method for heat absorption and heat release process of inner wall surface of large-space layered air conditioner building

Also Published As

Publication number Publication date
JP4981104B2 (en) 2012-07-18

Similar Documents

Publication Publication Date Title
US10273686B2 (en) Thermally broken framing system and method of use
US10458727B2 (en) Heat transfer using flexible fluid conduit
US6188839B1 (en) Radiant floor heating system with reflective layer and honeycomb panel
BR112013005978A2 (en) distributed thermoelectric cord and insulation panel applications for local heating, local cooling, and heat power generation
JP4981104B2 (en) Construction surface structure heating structure and construction method thereof
CN113167483B (en) Panel and electrical terminal connector
KR20240027066A (en) Plasterboard-like building panel radiant heater
CN110691944A (en) Heating panel, heating system and method for installing such a heating system
GB2493013A (en) Electric heating system assembly comprising a thermally conductive panel and a heating wire
US20220333788A1 (en) Radiating panel
WO2019159379A1 (en) Heat transfer panel
JP2006183982A (en) Heating honeycomb core panel member
WO2023275034A1 (en) Plasterboard lookalike building panel radiant heater
JP4520651B2 (en) Floor heating panel material
JPH07103498A (en) Radiation panel and wall-mounted heater
CN214337321U (en) Distribution box for electrothermal film heating system and electrothermal film heating system
JP2995028B2 (en) Indoor heating structure
WO2008136571A1 (en) Assembly unit for electric heating apparatus
WO2013157962A1 (en) A heating module
EP2048447A2 (en) A panel
NZ609624A (en) A heating module
CA2627142C (en) Self-regulating electric heating system
JP2005082999A (en) Free access floor with floor heater
JPH0384889A (en) Heating panel and space heating system
KR20210000099U (en) Wangjak Charcoal biomotar ondol electropanel

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120419

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4981104

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees