JP2011016333A - Method for manufacturing fiber reinforced resin molded article - Google Patents

Method for manufacturing fiber reinforced resin molded article Download PDF

Info

Publication number
JP2011016333A
JP2011016333A JP2009164011A JP2009164011A JP2011016333A JP 2011016333 A JP2011016333 A JP 2011016333A JP 2009164011 A JP2009164011 A JP 2009164011A JP 2009164011 A JP2009164011 A JP 2009164011A JP 2011016333 A JP2011016333 A JP 2011016333A
Authority
JP
Japan
Prior art keywords
fiber
resin
reinforced resin
resin molded
molded product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009164011A
Other languages
Japanese (ja)
Other versions
JP5584437B2 (en
Inventor
Hidefumi Nagara
英史 長良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2009164011A priority Critical patent/JP5584437B2/en
Publication of JP2011016333A publication Critical patent/JP2011016333A/en
Application granted granted Critical
Publication of JP5584437B2 publication Critical patent/JP5584437B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel method for manufacturing by which a fiber reinforced resin molded article with a continuous cross sectional shape can be manufactured with stable physical property and good precision and which does not cause deterioration in a work environment.SOLUTION: In the method for manufacturing the fiber reinforced resin molded article, a composite fiber intermediate body 10 in which resin fiber 101 constituted by making matrix resin of a thermoplastic object in a fibrous form and reinforcing fiber 102 are pulled and aligned are introduced in a molding mold 3 and a resin fiber 101 is melted by heating the same in the molding mold 3. Further, the composite fiber intermediate body is continuously taken out from the molding mold 3 and solidified by cooling. The composite fiber intermediate body 10 is introduced while heating the molding mold 3 at a temperature at least a melting point of the matrix resin. It is preferable that the resin fiber 101 is arranged along the inner peripheral face of the passage 31 of the molding mold 3 at a high containing ratio.

Description

本発明は、連続した同一断面形状を有する繊維強化樹脂成形品の製造方法に関する。   The present invention relates to a method for producing a fiber-reinforced resin molded article having a continuous identical cross-sectional shape.

従来から、連続した同一断面形状の製品で、複雑な形状のものを成形する場合には、異形押出成形法により製造されることが多かった。異形押出成形法は、押出機の先端に希望の形状を賦形するための金型を取付け、可塑化された樹脂を押出機でこの金型を通して押し出し、溶融形態の樹脂を冷却固化することにより成形品を得る方法である。   Conventionally, when a product having a complicated shape with a continuous product having the same cross-sectional shape is molded, it is often manufactured by a profile extrusion molding method. In the profile extrusion molding method, a mold for shaping a desired shape is attached to the tip of the extruder, a plasticized resin is extruded through the mold with an extruder, and the molten resin is cooled and solidified. This is a method for obtaining a molded product.

また、繊維強化複合材料としては、繊維強化樹脂材(FRP)、繊維強化金属材(FRM)、繊維強化セラミックス材(FRC)などがあり、中でも、繊維強化樹脂材は、軽量で強度があり、多様な形状の製品を作ることができるという利点から幅広い用途で用いられている。繊維強化樹脂材の成形は、製品の形状に応じて、ハンドレイアップ法等の手作業で行うものから、機械成形によるもの、連続成形によるもの等があるが、同一の断面形状を有する成形品を連続させて得る場合、連続成形法が用いられている。   Further, as the fiber reinforced composite material, there are a fiber reinforced resin material (FRP), a fiber reinforced metal material (FRM), a fiber reinforced ceramic material (FRC), etc. Among them, the fiber reinforced resin material is lightweight and strong, It is used in a wide range of applications due to the advantage that products of various shapes can be made. Depending on the shape of the product, the fiber reinforced resin material may be molded manually, such as by hand lay-up method, by mechanical molding, by continuous molding, etc., but molded products having the same cross-sectional shape Is obtained continuously, a continuous molding method is used.

例えば特許文献1に開示される押出成形法では、ガラス繊維などの補強繊維の束(ロービング)を樹脂で固め、金型内に導き、異形断面に配置し、長手方向の剛性を高めて繊維強化樹脂材が製造されている。   For example, in the extrusion molding method disclosed in Patent Document 1, a bundle of reinforcing fibers such as glass fibers (roving) is hardened with a resin, guided into a mold, arranged in a deformed cross section, and the longitudinal rigidity is increased to strengthen the fiber. Resin material is manufactured.

また、異形断面の成形品には引抜き成形法(プルトルージョン法)も用いられ、補強繊維を要求する強度特性に合わせて引き揃え、樹脂に含浸させたのち、所定の断面形状を有する金型に通過させ、連続的に引き抜きつつ硬化させて成形品を得るものである。   In addition, the pultrusion method is also used for molded products with irregular cross-sections, and the reinforcing fibers are aligned according to the required strength characteristics, impregnated with resin, and then formed into a mold having a predetermined cross-sectional shape. It is allowed to pass through and is cured while being continuously drawn to obtain a molded product.

例えば特許文献2には、熱可塑性樹脂を含浸させた繊維束を加熱し、ダイスでほぼ最終形状の異形断面材まで成形し、次いで冷えたダイス中を通過させて形を固定する方法が記載されている。また、特許文献3には、マトリックス樹脂と補強繊維とを金型に導いて引抜き、所定の形状となった熱可塑性樹脂ロッドを引き取り、切断刃の着いたペレタイザーで所定の長さに切断して成形品を得ることが記載されている。   For example, Patent Document 2 describes a method in which a fiber bundle impregnated with a thermoplastic resin is heated, molded to a final cross-section having a final shape with a die, and then passed through a cooled die to fix the shape. ing. In Patent Document 3, the matrix resin and the reinforcing fiber are drawn into a mold and pulled out, and a thermoplastic resin rod having a predetermined shape is taken out and cut into a predetermined length by a pelletizer with a cutting blade. It is described that a molded product is obtained.

特開平10−323878号公報Japanese Patent Laid-Open No. 10-323878 特許第2634184号公報Japanese Patent No. 2634184 特開2004−267811号公報JP 2004-267811 A

しかしながら、前記従来の押出成形法では、押出機内及び金型内で加熱された樹脂が、冷却された際に収縮変形して固化することから、特に、複雑な異形断面形状の製品を精度よく成形することは難しく、金型や冷却装置を長くしたり、押出量を少なくしたりしなければならないという問題点があった。また、結晶性のポリオレフィン系樹脂を母材樹脂に用いると、収縮量が大きく、精度のよい成形品を得ることが困難でもあった。   However, in the conventional extrusion molding method, the resin heated in the extruder and in the mold is shrunk, deformed and solidified when it is cooled. It was difficult to do this, and there was a problem that the mold and the cooling device had to be lengthened or the amount of extrusion had to be reduced. In addition, when a crystalline polyolefin-based resin is used as a base material resin, the amount of shrinkage is large, and it is difficult to obtain an accurate molded product.

また、前記従来の引抜き成形法では、補強繊維材を要求する強度特性に合わせて引き揃え、この引き揃えた補強繊維束を液状樹脂槽に浸漬してから金型に引き込む必要がある。また、引き揃えつつ連続的に進行する長繊維束状に、液状の熱硬化性樹脂原料を混合部で混合して得た液状混合原料を吐出機から吐出させ、長繊維束に液状混合原料を含浸させている。このように液状樹脂材を含浸させる工程を経る成形法では、含浸工程から成形金型へ至る移送経路中に、未硬化の液状樹脂材が垂れてしまうおそれがあり、樹脂充填不足となって、硬化後の物性が制御できず不安定な状態となるという問題点があった。また、垂れてしまった液状樹脂材が、経路中の各種設備や、壁面、床等に付着してしまう可能性もあり、製造工程の作業環境を悪化させるという問題点もあった。   In the conventional pultrusion molding method, it is necessary to align the reinforcing fiber material in accordance with the required strength characteristics, and immerse the aligned reinforcing fiber bundle in a liquid resin tank, and then draw it into the mold. In addition, the liquid mixed raw material obtained by mixing the liquid thermosetting resin raw material in the mixing section in the form of a continuous long fiber bundle while being aligned is discharged from a discharger, and the liquid mixed raw material is discharged into the long fiber bundle. Impregnated. In the molding method through the step of impregnating the liquid resin material in this way, there is a possibility that the uncured liquid resin material may drip in the transfer path from the impregnation step to the molding die, and the resin filling is insufficient. There was a problem that the physical properties after curing could not be controlled and became unstable. In addition, the liquid resin material that has dripped may adhere to various facilities, wall surfaces, floors, and the like in the path, and there is a problem that the working environment of the manufacturing process is deteriorated.

そこで本発明は、上記のような問題点にかんがみてなされたものであり、連続した断面形状の繊維強化樹脂成形品を、安定した物性で精度よく製造し、作業環境の悪化を招くことのない新規な製造方法とすることを主な目的としている。   Therefore, the present invention has been made in view of the above problems, and a fiber-reinforced resin molded article having a continuous cross-sectional shape is accurately manufactured with stable physical properties without causing deterioration of the working environment. Its main purpose is to make it a new manufacturing method.

上記した目的を達成するため、本発明に係る繊維強化樹脂成形品の製造方法は、熱可塑性物の母材樹脂を繊維形態とした樹脂繊維と、補強繊維とが引き揃えられた複合繊維中間体を成形金型に導入する導入工程と、導入した複合繊維中間体を成形金型内で加熱し前記樹脂繊維を溶融する加熱工程と、加熱工程を経た複合繊維中間体を成形金型から連続的に引き出し、冷却して固化する固化工程とを含み、前記成形金型を母材樹脂の溶融温度以上に加熱した状態で複合繊維中間体を導入することを特徴とする。   In order to achieve the above-mentioned object, a method for producing a fiber-reinforced resin molded article according to the present invention includes a composite fiber intermediate in which resin fibers in the form of a thermoplastic base material resin and reinforcing fibers are aligned. A step of introducing the composite fiber intermediate into the molding die, a heating step in which the introduced composite fiber intermediate is heated in the molding die to melt the resin fiber, and the composite fiber intermediate that has undergone the heating step is continuously removed from the molding die. The composite fiber intermediate is introduced in a state in which the molding die is heated to a temperature equal to or higher than the melting temperature of the base resin.

このような構成により、母材樹脂の熱可塑性樹脂は繊維形態であらかじめ補強繊維に混合されているので、予熱工程及び導入工程に至る過程で液垂れを生じるおそれがない。したがって、母材樹脂と補強繊維との適正な含有比率が全行程にわたって維持されるので、必要強度や物性を容易に得ることが可能となり、安定した品質を確保することができる。また、作業環境を汚染するおそれもなく、好適に繊維強化樹脂成形品を得ることができる。   With such a configuration, since the thermoplastic resin of the base material resin is mixed in advance with the reinforcing fibers in a fiber form, there is no possibility of dripping in the process leading to the preheating step and the introduction step. Therefore, since an appropriate content ratio between the base material resin and the reinforcing fiber is maintained throughout the entire process, the required strength and physical properties can be easily obtained, and stable quality can be ensured. Moreover, there is no possibility of contaminating the work environment, and a fiber-reinforced resin molded product can be suitably obtained.

また、前記構成の繊維強化樹脂成形品の製造方法において、導入工程の前に、前記複合繊維中間体を、熱風を発生させた予熱室を通過させて予熱処理する予熱工程を経るようにしてもよい。   Further, in the method for manufacturing a fiber-reinforced resin molded article having the above-described configuration, the composite fiber intermediate may be subjected to a preheating step in which the composite fiber intermediate is preheated by passing through a preheating chamber in which hot air is generated. Good.

これにより、比較的短時間で複合繊維中間体の内部まで予熱処理を行うことができ、以降の工程で、樹脂繊維の溶融を十分に行うことができ、安定した品質を確保しつつラインスピードを向上させることが可能となる。   As a result, pre-heat treatment can be performed to the inside of the composite fiber intermediate in a relatively short time, and the resin fibers can be sufficiently melted in the subsequent steps, and the line speed can be increased while ensuring stable quality. It becomes possible to improve.

また、前記複合繊維中間体において、熱可塑性樹脂である樹脂繊維の割合が補強繊維に比して少ないと成形品がもろくなり、逆に樹脂繊維の割合が多いと賦形性が悪くなる。そこで、複合繊維中間体には、樹脂繊維と補強繊維とが異なる割合で含有されていることが好ましく、さらには、前記樹脂繊維が、成形金型の通路内周面に沿って高い含有比率で配置されることが好ましい。これにより、良好な形態で精度よく成形品を得ることができる。   Moreover, in the composite fiber intermediate, if the ratio of the resin fiber that is a thermoplastic resin is smaller than that of the reinforcing fiber, the molded product becomes fragile, and conversely if the ratio of the resin fiber is large, the formability deteriorates. Therefore, it is preferable that the resin fiber and the reinforcing fiber are contained in the composite fiber intermediate in different proportions, and further, the resin fiber is contained in a high content ratio along the inner peripheral surface of the molding die. Preferably they are arranged. Thereby, a molded article can be obtained with a good shape and high accuracy.

また、前記構成の繊維強化樹脂成形品の製造方法において、前記母材樹脂は所定の軟化温度を有する結晶性樹脂であることが好ましい。かかる母材樹脂は、補強繊維との複合により耐熱性や剛性などが向上するが、さらに成形収縮率が小さく、靱性のある粘り強い成形品を得ることが可能となる。   Moreover, in the manufacturing method of the fiber reinforced resin molded article of the said structure, it is preferable that the said base material resin is crystalline resin which has a predetermined softening temperature. Such a matrix resin improves heat resistance, rigidity, and the like by being combined with reinforcing fibers, but it is possible to obtain a tough and tenacious molded product with a smaller molding shrinkage rate.

また、前記構成の繊維強化樹脂成形品の製造方法において、成形金型は、金型入口の開口面積を、金型出口の開口面積よりも大きく形成してあることが好ましい。これにより、円滑な成形工程が可能となり、効率よく成形品を得ることができる。   Moreover, in the manufacturing method of the fiber reinforced resin molded article of the said structure, it is preferable that the shaping die has formed the opening area of a metal mold entrance larger than the opening area of a metal mold exit. Thereby, a smooth molding process becomes possible and a molded product can be obtained efficiently.

上述のように構成される本発明の繊維強化樹脂成形品の製造方法によれば、安定した物性で精度よく製造し、連続した断面形状で表面平滑性の高い好適な成形品を得ることが可能となる。また、成形経路中の各種設備や、壁面、床等に原料樹脂が付着して作業環境を悪化させるという問題点も解消することができる。   According to the method for producing a fiber-reinforced resin molded article of the present invention configured as described above, it is possible to produce a suitable molded article having stable physical properties and high accuracy and having a continuous cross-sectional shape and high surface smoothness. It becomes. Moreover, the problem that raw material resin adheres to various facilities in a shaping | molding path | route, a wall surface, a floor | bed, etc. and a working environment is deteriorated can also be eliminated.

本発明の好適な実施形態に係る繊維強化樹脂成形品の製造方法を概略的に示す説明図である。It is explanatory drawing which shows roughly the manufacturing method of the fiber reinforced resin molded product which concerns on suitable embodiment of this invention. 本発明の実施の形態に係る製造方法における複合繊維中間体の一例を示す概念図である。It is a conceptual diagram which shows an example of the composite fiber intermediate body in the manufacturing method which concerns on embodiment of this invention. 導入治具の一例を示す正面図である。It is a front view which shows an example of an introduction jig | tool. 図3の導入治具の拡大図であり、図4(a)は部分拡大正面図、図4(b)は部分拡大断面図である。4 is an enlarged view of the introduction jig of FIG. 3, FIG. 4 (a) is a partially enlarged front view, and FIG. 4 (b) is a partially enlarged sectional view. 導入治具の配置例を示す説明図である。It is explanatory drawing which shows the example of arrangement | positioning of an introduction jig | tool. 実施例における成形金型の断面形状を示す説明図である。It is explanatory drawing which shows the cross-sectional shape of the shaping die in an Example. 実施例1の繊維配置形態を示す説明図である。It is explanatory drawing which shows the fiber arrangement | positioning form of Example 1. FIG. 実施例2の繊維配置形態を示す説明図である。It is explanatory drawing which shows the fiber arrangement | positioning form of Example 2. FIG.

以下、本発明の実施の形態に係る繊維強化樹脂成形品の製造方法を実施するための形態について、図面を参照しつつ説明する。   Hereinafter, the form for implementing the manufacturing method of the fiber reinforced resin molded product which concerns on embodiment of this invention is demonstrated, referring drawings.

図1は本発明の好適な実施形態に係る繊維強化樹脂成形品の製造方法を概略的に示す説明図であり、図2は本製造方法における複合繊維中間体の一例を示す概念図である。   FIG. 1 is an explanatory view schematically showing a method for producing a fiber-reinforced resin molded article according to a preferred embodiment of the present invention, and FIG. 2 is a conceptual diagram showing an example of a composite fiber intermediate in the production method.

図示するように、成形に用いられる複合繊維中間体10は、熱可塑性物の母材樹脂を繊維形態とした樹脂繊維101と補強繊維102とが引き揃えられて形成されている。図1に示す繊維供給部1には、熱可塑性樹脂繊維101と補強繊維102とがそれぞれ巻かれたリール11…11がセットされている。各リール11から巻き出された繊維は、ガイド12を通して引き合わせられて、次工程へ送られる。   As shown in the figure, the composite fiber intermediate 10 used for molding is formed by aligning resin fibers 101 and reinforcing fibers 102 in the form of a thermoplastic base material resin. In the fiber supply unit 1 shown in FIG. 1, reels 11... 11 around which thermoplastic resin fibers 101 and reinforcing fibers 102 are wound are set. The fibers unwound from each reel 11 are drawn together through the guide 12 and sent to the next process.

ここで、熱可塑性樹脂繊維101の母材樹脂には、所定の軟化温度を示し耐熱性及び耐衝撃性を有する結晶性樹脂が用いられる。また、結晶性樹脂のうち、ポリオレフィン系樹脂が好適であり、例えばポリエチレン、ポリプロピレン、及びポリエステル等を用いることが好ましい。一般には、密度が高いものほど結晶化度が高く、剛性や強度が高く耐熱性にも優れており、母材樹脂として好ましい。このほかにも、母材樹脂として、ポリアミド、ポリアセタール、ポリフェニレンスルフィド等の結晶性の熱可塑性樹脂も、成形品の用途に応じて用いることができる。   Here, as the base resin of the thermoplastic resin fiber 101, a crystalline resin having a predetermined softening temperature and having heat resistance and impact resistance is used. Of the crystalline resins, polyolefin resins are suitable. For example, polyethylene, polypropylene, polyester, and the like are preferably used. In general, the higher the density, the higher the crystallinity, the higher the rigidity and strength, and the better the heat resistance, and the better the base resin. In addition, crystalline thermoplastic resins such as polyamide, polyacetal, and polyphenylene sulfide can also be used as the base material resin depending on the use of the molded product.

また、補強繊維102には、例えばガラス繊維、炭素繊維、芳香族ポリアミド繊維等の高融点繊維等がいずれも使用することができる。中でも、得られる繊維強化樹脂成形品の強度や価格などを考慮すると、ガラス繊維が最も好ましい。また、補強繊維102の繊維径としては、3〜25μmが好ましく、5〜20μmが強度面及び価格面から、より好ましい。   For the reinforcing fiber 102, any of high-melting fibers such as glass fiber, carbon fiber, and aromatic polyamide fiber can be used. Among these, glass fibers are most preferable in view of the strength and price of the obtained fiber-reinforced resin molded product. Moreover, as a fiber diameter of the reinforcing fiber 102, 3-25 micrometers is preferable and 5-20 micrometers is more preferable from a strength surface and a price surface.

本製造方法において、補強繊維102は、繊維形態としては、ヤーン、ストランド、ガラスクロス、ロービングクロス、ステッチなどがあげられる。また、母材樹脂との接着性を高めるため、シランカップリング剤等で前処理してあることが好ましい。繊維束とする場合、50〜2,000本集束させた形態であることが好ましい。より好ましくは、100〜1,600本集束させた繊維束とすることである。   In the present manufacturing method, the reinforcing fiber 102 may be yarn, strand, glass cloth, roving cloth, stitch or the like as a fiber form. Moreover, in order to improve adhesiveness with base material resin, it is preferable to pre-process with a silane coupling agent etc. When a fiber bundle is used, it is preferable that 50 to 2,000 fibers are bundled. More preferably, a bundle of 100 to 1,600 fibers is bundled.

複合繊維中間体10において、樹脂繊維101と補強繊維102とは異なる割合で含有されおり、熱可塑性樹脂である樹脂繊維101の割合が補強繊維102に比して少ないと成形品がもろくなり、逆に樹脂繊維101の割合が多いと賦形性が悪くなる。好ましい含有比率は、樹脂繊維101と補強繊維102とが、重量比で20:80〜80:20の割合とされることである。かかる含有比率の調整により、樹脂繊維101の割合を高くすると、成形品の割れを防いだり、耐水性を高めたりすることも可能となる。   In the composite fiber intermediate 10, the resin fiber 101 and the reinforcing fiber 102 are contained in different proportions. If the proportion of the resin fiber 101 that is a thermoplastic resin is smaller than that of the reinforcing fiber 102, the molded product becomes brittle. If the ratio of the resin fiber 101 is too large, the formability deteriorates. A preferable content ratio is that the resin fiber 101 and the reinforcing fiber 102 are 20:80 to 80:20 in weight ratio. When the ratio of the resin fiber 101 is increased by adjusting the content ratio, it is possible to prevent the molded product from cracking and to improve water resistance.

また、複合繊維中間体10は、樹脂繊維101と補強繊維102とが前記の含有比率でランダムに配置される形態であってもよいが、成形金型3に導入されたとき、通路31の内周面に沿って樹脂繊維101が高い含有比率で配置されるとより好ましい。これにより、成形品の表層部において母材樹脂である熱可塑性樹脂の割合が高くなり、内部に補強繊維が比較的多く配置されることになる。   The composite fiber intermediate 10 may have a form in which the resin fibers 101 and the reinforcing fibers 102 are randomly arranged at the above-described content ratio. However, when the composite fiber intermediate 10 is introduced into the molding die 3, It is more preferable that the resin fibers 101 are arranged at a high content ratio along the peripheral surface. Thereby, the ratio of the thermoplastic resin that is the base material resin in the surface layer portion of the molded product is increased, and a relatively large amount of reinforcing fibers are disposed inside.

前記のように引き揃えられた樹脂繊維101と補強繊維102は、複合繊維中間体10として次工程へ移送される。樹脂繊維101と補強繊維102とは成形金型3の通路31の軸線に対して略平行に揃えて送られる。例示の形態では、成形金型3へ複合繊維中間体10が導入される前に、予備工程として、予熱室2が設けられている。   The resin fibers 101 and the reinforcing fibers 102 aligned as described above are transferred to the next process as the composite fiber intermediate 10. The resin fibers 101 and the reinforcing fibers 102 are sent so as to be substantially parallel to the axis of the passage 31 of the molding die 3. In the illustrated embodiment, the preheating chamber 2 is provided as a preliminary process before the composite fiber intermediate 10 is introduced into the molding die 3.

予熱室2は、例えば内部に熱風発生器を備え、複合繊維中間体10が通過する入口孔と、入口孔に対向させて出口孔が設けられ、通過する複合繊維中間体10を予備加熱する。熱風発生器としては、特に限定はなく電熱線加熱式ブロア、ガス加熱式ブロア、赤外線ヒーター等を用いることができる。   The preheating chamber 2 includes, for example, a hot air generator inside, and is provided with an inlet hole through which the composite fiber intermediate 10 passes and an outlet hole facing the inlet hole, and preheats the composite fiber intermediate 10 that passes therethrough. There is no limitation in particular as a hot air generator, A heating wire heating type blower, a gas heating type blower, an infrared heater etc. can be used.

予熱室2では、複合繊維中間体10に熱風を吹き付けて予熱処理する(予熱工程)。予熱室2により、比較的短時間で複合繊維中間体10の内部まで予熱処理を行うことができ、以降の工程で、樹脂繊維101の溶融を十分に行うことができ、安定した品質を確保しつつラインスピードを向上させることが可能となる。   In the preheating chamber 2, the composite fiber intermediate 10 is preheated by blowing hot air (preheating process). The preheating chamber 2 can preheat the composite fiber intermediate 10 within a relatively short time, and the resin fibers 101 can be sufficiently melted in the subsequent steps to ensure stable quality. However, it becomes possible to improve the line speed.

続いて、予熱工程を経た複合繊維中間体10を、所定の断面形状の通路31を備えた成形金型3に導入する(導入工程)。導入に際しては、複合繊維中間体10の補強繊維102の繊維方向を、成形金型3の通路31の軸線と一致させていることが好ましい。成形金型3は、通路31の導入口(金型入口)32の開口面積を、引抜口(金型出口)33の開口面積よりも大きく形成してある。また、導入口32と引抜口33の間の通路31は、漸減した先細のテーパ形状とされている。導入口32の開口面積は、小さすぎると複合繊維中間体10を引き揃えた形態で導入することが困難となり、逆に、大きすぎると成形金型3そのものを必要以上に大きくしなければならず、加熱効率に影響を及ぼす。そこで、好ましくは、導入口32の開口面積は、引抜口33の開口面積の約1.1〜3.0倍とされることである。   Subsequently, the composite fiber intermediate 10 that has undergone the preheating process is introduced into the molding die 3 having the passage 31 having a predetermined cross-sectional shape (introduction process). At the time of introduction, it is preferable that the fiber direction of the reinforcing fiber 102 of the composite fiber intermediate 10 is made to coincide with the axis of the passage 31 of the molding die 3. The molding die 3 is formed such that the opening area of the introduction port (mold inlet) 32 of the passage 31 is larger than the opening area of the extraction port (mold outlet) 33. The passage 31 between the introduction port 32 and the extraction port 33 has a tapered shape that is gradually reduced. If the opening area of the introduction port 32 is too small, it is difficult to introduce the composite fiber intermediate 10 in an aligned form. Conversely, if the opening area is too large, the molding die 3 itself must be made larger than necessary. Affects the heating efficiency. Therefore, the opening area of the introduction port 32 is preferably about 1.1 to 3.0 times the opening area of the extraction port 33.

導入した複合繊維中間体10は、成形金型3内で加熱し、樹脂繊維101を溶融する(加熱工程)。成形金型3における加熱手段は、通路31の周囲をバンドヒーターで加熱する方法や、ヒーターを鋳込む方法が好ましい。これにより、成形金型3の通路31内を所定温度に保持する。金型温度は、母材樹脂の種類によっても異なるが、母材樹脂の溶融温度以上に加熱した状態とされている。金型温度が母材樹脂の溶融温度未満であると、熱可塑性樹脂の反応率が悪くなり、加熱時間を長時間要するため、長い通過時間が必要となって、好ましくない。そのため、金型温度は、例えば、母材樹脂が低密度ポリエチレンであれば、130〜150℃程度とし、ポリプロピレンであれば200℃前後とすることが好ましい。   The introduced composite fiber intermediate 10 is heated in the molding die 3 to melt the resin fibers 101 (heating process). The heating means in the molding die 3 is preferably a method of heating the periphery of the passage 31 with a band heater or a method of casting a heater. Thereby, the inside of the passage 31 of the molding die 3 is maintained at a predetermined temperature. The mold temperature varies depending on the type of the base resin, but is heated to a temperature higher than the melting temperature of the base resin. When the mold temperature is lower than the melting temperature of the base resin, the reaction rate of the thermoplastic resin is deteriorated, and the heating time is required for a long time. Therefore, for example, the mold temperature is preferably about 130 to 150 ° C. if the base resin is low-density polyethylene, and is preferably about 200 ° C. if polypropylene.

加熱により溶融した複合繊維中間体10は、成形金型3から連続的に引き出して冷却装置4へ移送され、冷却される(固化工程)。冷却装置4では、成形金型3により所定の断面形状に成形された複合繊維中間体10を冷却して固化させる。冷却手段としては、冷風を吹き付けたり(空冷)、水槽を通したり、水を噴霧したり(水冷)する方法があげられる。また、これらの冷却手段を組み合わせてもよく、図1に例示する形態では、冷却装置4は、水噴霧器41により冷却効率のよい水冷を先に行い、続いて冷風発生器42により空冷する手段を備えている。水噴霧器41及び冷風発生器42は、経路の上下又は左右に配置されている。   The composite fiber intermediate 10 melted by heating is continuously drawn out from the molding die 3 and transferred to the cooling device 4 to be cooled (solidification step). In the cooling device 4, the composite fiber intermediate body 10 formed into a predetermined cross-sectional shape by the molding die 3 is cooled and solidified. Examples of the cooling means include a method of blowing cold air (air cooling), passing through a water tank, or spraying water (water cooling). Further, these cooling means may be combined. In the embodiment illustrated in FIG. 1, the cooling device 4 includes a means for first performing water cooling with good cooling efficiency by the water sprayer 41 and then air-cooling by the cold air generator 42. I have. The water sprayer 41 and the cold air generator 42 are arranged above and below or on the left and right of the path.

冷却工程を経て冷却固化し、所定の断面形状とされた成形品100は、引抜装置5により引き取られて切断機6により必要長さに形成され、あるいはそのまま巻き取られて長尺成形品を得る。   The molded product 100 that has been cooled and solidified through the cooling process and has a predetermined cross-sectional shape is taken up by the drawing device 5 and formed into a required length by the cutting machine 6, or is wound up as it is to obtain a long molded product. .

このように本製造方法によれば、母材樹脂の熱可塑性樹脂は繊維形態であらかじめ補強繊維102に混合されているので、予熱工程及び導入工程に至る過程で液垂れを生じるおそれがなく、したがって、母材樹脂と補強繊維との適正な含有比率が全行程にわたって維持されるので、必要強度や物性を容易に得ることが可能となり、安定した品質を確保することができる。また、作業環境を汚染するおそれもなく、好適に繊維強化樹脂成形品を得ることができる。   As described above, according to the present manufacturing method, the thermoplastic resin of the base material resin is preliminarily mixed with the reinforcing fiber 102 in a fiber form, so there is no risk of dripping in the process leading to the preheating step and the introduction step, and therefore Since an appropriate content ratio between the base material resin and the reinforcing fiber is maintained throughout the entire process, the required strength and physical properties can be easily obtained, and stable quality can be ensured. Moreover, there is no possibility of contaminating the work environment, and a fiber-reinforced resin molded product can be suitably obtained.

なお、上記の導入工程において、複合繊維中間体10を成形金型3に対して、成形品の表層部となる箇所に樹脂繊維101の割合を高く導入し、その内部に補強繊維102を比較的多くなるように導入する方法として、図3〜図5に例示するような導入治具7を設けるとよい。図3は、導入治具の正面図、図4(a)は導入治具の部分拡大図、図4(b)は導入治具の部分拡大断面図であり、また図5は、導入治具の設置例を示す説明図である。   In the introduction step, the composite fiber intermediate 10 is introduced into the molding die 3 at a high ratio of the resin fibers 101 to the portion that becomes the surface layer portion of the molded product, and the reinforcing fibers 102 are relatively placed therein. As a method of introducing a large number, an introduction jig 7 illustrated in FIGS. 3 to 5 may be provided. 3 is a front view of the introducing jig, FIG. 4A is a partially enlarged view of the introducing jig, FIG. 4B is a partially enlarged sectional view of the introducing jig, and FIG. 5 is an introducing jig. It is explanatory drawing which shows the example of installation.

導入治具7は、所望の成形品の外形状に対応させて形成されている。例示の形態では、成形金型3の通路31の導入口32の断面形状に対応させて、複合繊維中間体10を好ましい配置形態となるように、複数個の繊維案内路71(71a、71b)が設けられている。すなわち、成形品の表層部に母材樹脂である熱可塑性樹脂の割合を多く配置し、その内側に補強繊維を配置させるため、図3に示すように、樹脂繊維101の繊維案内路71a(実線)を外側に多く設け、補強繊維102の繊維案内路71b(破線)をその内側に多く設けてある。   The introduction jig 7 is formed corresponding to the outer shape of a desired molded product. In the illustrated form, a plurality of fiber guide paths 71 (71a, 71b) are formed so that the composite fiber intermediate 10 is in a preferred arrangement form corresponding to the cross-sectional shape of the introduction port 32 of the passage 31 of the molding die 3. Is provided. That is, in order to arrange a large proportion of the thermoplastic resin, which is the base material resin, in the surface layer portion of the molded product and arrange reinforcing fibers inside thereof, as shown in FIG. 3, the fiber guide path 71a of the resin fiber 101 (solid line) ) Are provided on the outside, and fiber guide paths 71b (broken lines) for the reinforcing fibers 102 are provided on the inside.

これらの繊維案内路71a、71bは、樹脂繊維101又は補強繊維102を挿通させる丸孔が設けられており、樹脂繊維101及び補強繊維102を所望の配置形態に引き揃えることができるようになっている。図3に示すように、各繊維案内路71a、71bには、個別の符号が付されており、いずれの繊維案内路71a、71bも個別に特定可能とされている。例示の場合、1〜7の7行と、A〜Zまでの26列で特定され、一つの繊維案内路71a、71bごとに樹脂繊維101を挿通させるか、あるいは補強繊維102を挿通させるかが、規定されている。   These fiber guide paths 71a and 71b are provided with round holes through which the resin fibers 101 or the reinforcing fibers 102 are inserted, so that the resin fibers 101 and the reinforcing fibers 102 can be arranged in a desired arrangement form. Yes. As shown in FIG. 3, each fiber guide path 71a, 71b is assigned with an individual symbol, and any fiber guide path 71a, 71b can be specified individually. In the case of illustration, it is specified by 7 rows of 1 to 7 and 26 columns from A to Z, and whether to insert the resin fiber 101 for each of the fiber guide paths 71a and 71b or to insert the reinforcing fiber 102 Stipulated.

各繊維案内路71a、71bは、図4(a)及び図4(b)に示すように、繊維径よりも大きい開口径で丸孔72が形成されている。樹脂繊維101の繊維案内路71aと、補強繊維102の繊維案内路71bとは、行番号×列記号の符号で特定されるほか、縁部73が異なる色彩で形成される等により視覚的にも特定可能とされていることが好ましい。これにより、決められた繊維案内路71a、71bに特定される樹脂繊維101又は補強繊維102を挿通させ、所望の配置形態に複数本の樹脂繊維101及び補強繊維102を配置させることが可能となる。   As shown in FIGS. 4A and 4B, each fiber guide path 71a, 71b has a round hole 72 formed with an opening diameter larger than the fiber diameter. The fiber guide path 71a of the resin fiber 101 and the fiber guide path 71b of the reinforcing fiber 102 are specified not only by the row number × column symbol code but also by the edge 73 being formed in different colors. It is preferable that identification is possible. As a result, the resin fibers 101 or the reinforcing fibers 102 specified in the determined fiber guide paths 71a and 71b can be inserted, and a plurality of resin fibers 101 and the reinforcing fibers 102 can be arranged in a desired arrangement form. .

かかる導入治具7は、加熱工程の前に配置されていればよく、成形金型3の手前に設けられる。図5に示す形態では、予熱室2の前後に配置されている。このように導入治具7は、工程の複数箇所に配置されてもよく、また、加熱工程の前であれば1箇所に配置される形態であってもよい。複合繊維中間体10は、導入治具7を通過することによって、樹脂繊維101と補強繊維102とが、成形金型3に導入されたとき、通路31の内周面に沿って樹脂繊維101が高い含有比率で配置される。そして、成形品の表層部において母材樹脂である熱可塑性樹脂の割合が高くなり、内部に補強繊維が比較的多く配置され、好ましい表面平滑性と強度とを確保することが可能になる。   The introduction jig 7 only needs to be disposed before the heating step, and is provided in front of the molding die 3. In the form shown in FIG. 5, they are arranged before and after the preheating chamber 2. As described above, the introduction jig 7 may be disposed at a plurality of locations in the process, or may be disposed at one location before the heating step. The composite fiber intermediate 10 passes through the introduction jig 7 so that when the resin fibers 101 and the reinforcing fibers 102 are introduced into the molding die 3, the resin fibers 101 are aligned along the inner peripheral surface of the passage 31. Arranged at a high content ratio. And the ratio of the thermoplastic resin which is base material resin becomes high in the surface layer part of a molded article, a comparatively many reinforcement fiber is arrange | positioned inside, and it becomes possible to ensure favorable surface smoothness and intensity | strength.

次に、本発明の実施例に係る繊維強化樹脂成形品の製造方法について説明する。   Next, the manufacturing method of the fiber reinforced resin molded product which concerns on the Example of this invention is demonstrated.

実施例1,2及び比較例1,2では、図6に示すような通路31を備えた成形金型3を用いて、異形断面形状を有する繊維強化樹脂成形品をそれぞれ得た。   In Examples 1 and 2 and Comparative Examples 1 and 2, fiber reinforced resin molded products having irregular cross-sectional shapes were obtained using a molding die 3 having a passage 31 as shown in FIG.

成形金型3は、通路31が略門型の異形断面形状を有し、通路A寸法よりも通路C寸法の方が小さい幅で形成されている。また、通路A寸法と通路B寸法とは同一であり、通路Cの下端部に通路Cより幅広の通路Dが設けられている。このような異形断面形状の成形金型3を用いて、表1に記載する各条件で得た成形品を、実施例1,2と比較例1,2とで表2に記載するように各部の厚み及び入隅部の角度を測定し、評価を行った。   In the molding die 3, the passage 31 has a substantially gate-shaped modified cross-sectional shape, and the passage C dimension is smaller in width than the passage A dimension. Further, the dimension of the passage A is the same as the dimension of the passage B, and a passage D wider than the passage C is provided at the lower end portion of the passage C. Using the molding die 3 having such an irregular cross-sectional shape, the molded product obtained under each condition described in Table 1 is divided into each part as described in Table 2 in Examples 1 and 2 and Comparative Examples 1 and 2. The thickness and the angle of the corners were measured and evaluated.

<実施例1>
実施例1では、樹脂繊維101としてポリプロピレン繊維(30μmのストランド)を用いた。また、補強繊維102には、シランカップリング剤により前処理を行ったガラス繊維(18μmのストランド)を用いた。
<Example 1>
In Example 1, polypropylene fiber (30 μm strand) was used as the resin fiber 101. For the reinforcing fiber 102, glass fiber (18 μm strand) pretreated with a silane coupling agent was used.

複合繊維中間体10としての各繊維の含有比率は、ポリプロピレン繊維とガラス繊維とが重量比で40:60とした。また、樹脂繊維101と補強繊維102との配置形態は、ランダムに分散させて配置した。成形方法は、図1に示した引抜成形法による。このように、樹脂繊維101と補強繊維102との配置形態をランダムとした場合、成形金型3の通路31においては、複合繊維中間体10は図7に例示するような配置形態となる。   The content ratio of each fiber as the composite fiber intermediate 10 was 40:60 by weight of the polypropylene fiber and the glass fiber. Moreover, the arrangement | positioning form of the resin fiber 101 and the reinforcement fiber 102 was disperse | distributed and arrange | positioned at random. The molding method is based on the pultrusion method shown in FIG. As described above, when the arrangement form of the resin fibers 101 and the reinforcing fibers 102 is random, the composite fiber intermediate 10 is arranged as illustrated in FIG. 7 in the passage 31 of the molding die 3.

<実施例2>
実施例2では、樹脂繊維101及び補強繊維102は実施例1と同様とし、含有比率も実施例1と同様である。ただし、複合繊維中間体10として、樹脂繊維101と補強繊維102との配置形態を、図8に例示するように、樹脂繊維101を通路31の内周面に沿う表層部において高い含有比率で配置し、その内側に補強繊維102を多く配置する形態とした。
<Example 2>
In Example 2, the resin fiber 101 and the reinforcing fiber 102 are the same as in Example 1, and the content ratio is also the same as in Example 1. However, the arrangement form of the resin fibers 101 and the reinforcing fibers 102 as the composite fiber intermediate 10 is arranged at a high content ratio in the surface layer portion along the inner peripheral surface of the passage 31 as illustrated in FIG. In addition, a large number of reinforcing fibers 102 are arranged inside.

Figure 2011016333
<比較例1>
比較例1では、母材樹脂にポリプロピレンを用い、滑剤(ステアリン酸亜鉛)を表1に示す割合で用いて、押出成形により異形断面形状の成形品を得た。
Figure 2011016333
<Comparative Example 1>
In Comparative Example 1, a molded article having an irregular cross-sectional shape was obtained by extrusion molding using polypropylene as the base material resin and a lubricant (zinc stearate) in the ratio shown in Table 1.

<比較例2>
比較例2では、母材樹脂にポリプロピレンを、また補強繊維にガラス繊維(チョップドストランド)を用い、滑剤(ステアリン酸亜鉛)を表1に示す割合で用いて、押出成形により異形断面形状の成形品を得た。
<Comparative Example 2>
In Comparative Example 2, a molded article having an irregular cross-sectional shape by extrusion molding using polypropylene as a base material resin, glass fibers (chopped strands) as reinforcing fibers, and a lubricant (zinc stearate) in the ratio shown in Table 1. Got.

Figure 2011016333
得られた成形品は、図6に示す各部の厚み寸法及び角度のほか、目視により、表面の平滑性について、非常に平滑(◎)、平滑(○)、又は部分的に凹凸有り(×)の3段階で評価した。
Figure 2011016333
In addition to the thickness dimension and angle of each part shown in FIG. 6, the obtained molded product is very smooth (◎), smooth (◯), or partially uneven (×) in terms of surface smoothness. It was evaluated in three stages.

実施例1,2による成形品、及び比較例1,2による成形品の評価を表2にまとめる。成形の結果、成形品は、実施例1及び2で寸法安定性が高く、ほぼ所定の厚み寸法が得られ、入隅部の角度も良好であった。また、実施例1と2では、表面平滑性において実施例2の方が良好であり、非常に平滑な表面の成形品を得た。なお、比較例1,2では、成形品の寸法が安定せず、比較例2では押し出し困難となって異形断面形状の成形品を得ることができなかった。   Table 2 summarizes the evaluation of the molded products according to Examples 1 and 2 and the molded products according to Comparative Examples 1 and 2. As a result of the molding, the molded product had high dimensional stability in Examples 1 and 2, an almost predetermined thickness dimension was obtained, and the angle of the corner was good. In Examples 1 and 2, Example 2 was better in surface smoothness, and a molded article having a very smooth surface was obtained. In Comparative Examples 1 and 2, the dimension of the molded product was not stable, and in Comparative Example 2, it was difficult to extrude and a molded product having an irregular cross-section could not be obtained.

本発明は、幅広い分野における繊維強化樹脂成形品の製造方法に好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be suitably used for manufacturing methods for fiber-reinforced resin molded products in a wide range of fields.

1 繊維供給部
2 予熱室
3 成形金型
31 通路
32 金型入口
33 金型出口
4 冷却装置
5 引抜装置
6 切断機
7 導入治具
10 複合繊維中間体
101 樹脂繊維
102 補強繊維
DESCRIPTION OF SYMBOLS 1 Fiber supply part 2 Preheating chamber 3 Molding die 31 Passage 32 Mold inlet 33 Mold outlet 4 Cooling device 5 Pull-out device 6 Cutting machine 7 Introducing jig 10 Composite fiber intermediate 101 Resin fiber 102 Reinforcing fiber

Claims (6)

熱可塑性物の母材樹脂を繊維形態とした樹脂繊維と、補強繊維とが引き揃えられた複合繊維中間体を成形金型に導入する導入工程と、導入した複合繊維中間体を成形金型内で加熱し前記樹脂繊維を溶融する加熱工程と、加熱工程を経た複合繊維中間体を成形金型から連続的に引き出し、冷却して固化する固化工程とを含み、前記成形金型を母材樹脂の溶融温度以上に加熱した状態で複合繊維中間体を導入することを特徴とする繊維強化樹脂成形品の製造方法。   An introducing step of introducing a composite fiber intermediate in which resin fibers in the form of a thermoplastic base material resin into fibers and reinforcing fibers are introduced into the mold, and the introduced composite fiber intermediate in the mold A heating step in which the resin fiber is melted by heating, and a solidification step in which the composite fiber intermediate that has undergone the heating step is continuously drawn out from the molding die and cooled to be solidified, and the molding die is used as a base resin. A method for producing a fiber-reinforced resin molded article, wherein the composite fiber intermediate is introduced in a state of being heated to a melting temperature or higher. 請求項1に記載の繊維強化樹脂成形品の製造方法において、
導入工程の前に、前記複合繊維中間体を、熱風を発生させた予熱室を通過させて予熱処理する予熱工程を経ることを特徴とする繊維強化樹脂成形品の製造方法。
In the manufacturing method of the fiber reinforced resin molded product of Claim 1,
A method for producing a fiber-reinforced resin molded article, wherein a preheating step is performed in which the composite fiber intermediate is preheated by passing through a preheating chamber in which hot air is generated before the introducing step.
請求項1又は2に記載の繊維強化樹脂成形品の製造方法において、
前記複合繊維中間体には、樹脂繊維と補強繊維とが異なる割合で含有されていることを特徴とする繊維強化樹脂成形品の製造方法。
In the manufacturing method of the fiber reinforced resin molded product of Claim 1 or 2,
The method for producing a fiber-reinforced resin molded article, wherein the composite fiber intermediate contains resin fibers and reinforcing fibers in different proportions.
請求項3に記載の繊維強化樹脂成形品の製造方法において、
前記樹脂繊維は成形金型の通路内周面に沿って高い含有比率で配置されることを特徴とする繊維強化樹脂成形品の製造方法。
In the manufacturing method of the fiber reinforced resin molded product of Claim 3,
The method for producing a fiber-reinforced resin molded product, wherein the resin fibers are arranged at a high content ratio along the inner peripheral surface of the passage of the molding die.
請求項1〜4のいずれか一つの請求項に記載の繊維強化樹脂成形品の製造方法において、
前記母材樹脂が所定の軟化温度を有する結晶性樹脂であることを特徴とする繊維強化樹脂成形品の製造方法。
In the manufacturing method of the fiber reinforced resin molded product according to any one of claims 1 to 4,
A method for producing a fiber-reinforced resin molded product, wherein the base material resin is a crystalline resin having a predetermined softening temperature.
請求項1〜5のいずれか一つの請求項に記載の繊維強化樹脂成形品の製造方法において、
前記成形金型は、金型入口の開口面積を、金型出口の開口面積よりも大きく形成してあることを特徴とする繊維強化樹脂成形品の製造方法。
In the manufacturing method of the fiber reinforced resin molded product according to any one of claims 1 to 5,
The method for producing a fiber-reinforced resin molded product, wherein the molding die has an opening area at a mold inlet larger than an opening area at a mold outlet.
JP2009164011A 2009-07-10 2009-07-10 Manufacturing method of fiber reinforced resin molded product Active JP5584437B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009164011A JP5584437B2 (en) 2009-07-10 2009-07-10 Manufacturing method of fiber reinforced resin molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009164011A JP5584437B2 (en) 2009-07-10 2009-07-10 Manufacturing method of fiber reinforced resin molded product

Publications (2)

Publication Number Publication Date
JP2011016333A true JP2011016333A (en) 2011-01-27
JP5584437B2 JP5584437B2 (en) 2014-09-03

Family

ID=43594513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009164011A Active JP5584437B2 (en) 2009-07-10 2009-07-10 Manufacturing method of fiber reinforced resin molded product

Country Status (1)

Country Link
JP (1) JP5584437B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145118A (en) * 1983-02-09 1984-08-20 Nitto Electric Ind Co Ltd Manufacture of fiber reinforced resin formed product
JPS6319230A (en) * 1986-07-11 1988-01-27 Shimizu Constr Co Ltd Frp member
JPH02308824A (en) * 1989-05-24 1990-12-21 Toyobo Co Ltd Material for thermoplastic composite
JPH0359131A (en) * 1989-07-25 1991-03-14 Toyobo Co Ltd Composite precursor for producing formed article
JPH0811222A (en) * 1994-06-30 1996-01-16 Sekisui Chem Co Ltd Manufacturing device of extraction-molded product
JP2007038599A (en) * 2005-08-05 2007-02-15 Owens Corning Seizo Kk Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material
JP2008030443A (en) * 2006-07-03 2008-02-14 Houmu:Kk Method of manufacturing building member
JP2008302540A (en) * 2007-06-06 2008-12-18 Toray Ind Inc Method of forming support bar made of fiber-reinforced plastic

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145118A (en) * 1983-02-09 1984-08-20 Nitto Electric Ind Co Ltd Manufacture of fiber reinforced resin formed product
JPS6319230A (en) * 1986-07-11 1988-01-27 Shimizu Constr Co Ltd Frp member
JPH02308824A (en) * 1989-05-24 1990-12-21 Toyobo Co Ltd Material for thermoplastic composite
JPH0359131A (en) * 1989-07-25 1991-03-14 Toyobo Co Ltd Composite precursor for producing formed article
JPH0811222A (en) * 1994-06-30 1996-01-16 Sekisui Chem Co Ltd Manufacturing device of extraction-molded product
JP2007038599A (en) * 2005-08-05 2007-02-15 Owens Corning Seizo Kk Manufacturing method and manufacturing apparatus for long fiber reinforced thermoplastic resin molding material
WO2007018130A1 (en) * 2005-08-05 2007-02-15 Ocv Intellectual Capital, Llc Process for production of long fiber-reinforced thermoplastic resin molding material and apparatus for the production
JP2008030443A (en) * 2006-07-03 2008-02-14 Houmu:Kk Method of manufacturing building member
JP2008302540A (en) * 2007-06-06 2008-12-18 Toray Ind Inc Method of forming support bar made of fiber-reinforced plastic

Also Published As

Publication number Publication date
JP5584437B2 (en) 2014-09-03

Similar Documents

Publication Publication Date Title
US5520867A (en) Method of manufaturing a resin structure reinforced with long fibers
US10988603B2 (en) Molded resin strand
JP2013530855A (en) Method for forming reinforced pultruded profile
KR20130112710A (en) Reinforced hollow profiles
EP0269197B1 (en) Method and means for making pultruded fibre reinforced articles
US11332627B2 (en) Filament resin molded article
CN103732375A (en) Method for manufacturing molded article by low-pressure molding
JP2020528845A (en) Fiber reinforced molding compound and its formation and usage
US20200114544A1 (en) Method and Apparatus for Manufacturing Fiber Composite Parts Utilizing Direct, Continuous Conversion of Raw Materials
JP7383694B2 (en) Filament materials for additive printing
JPH0732495A (en) Manufacture of long fiber-reinforced thermoplastic resin composition
CN114131981A (en) Method for manufacturing steel bar body
JP5608818B2 (en) Carbon fiber composite material, molded product using the same, and production method thereof
JP5584437B2 (en) Manufacturing method of fiber reinforced resin molded product
CN115698146B (en) Method for producing fiber-reinforced molded article
JP5225260B2 (en) Manufacturing apparatus and manufacturing method of long fiber reinforced thermoplastic resin strand
KR102344943B1 (en) Continuous fiber composite manufacturing equipment
JPH0768544A (en) Impregnation of fiber bundle with resin
JP2011245756A (en) Resin-impregnated carbon fiber strand and method for manufacturing pellet
JPH06304924A (en) Production of long fiber reinforced thermoplastic resin composition
JP7351614B2 (en) Resin-impregnated metal long fiber bundle and quality control method in its manufacturing method
KR101203916B1 (en) Reinforced Material Manufacturing Apparatus Using Long Glass Fiber Thermoplastic and Continuous Glass Fiber Thermoplastic and its Manufacturing Method
JP2011246621A (en) Method of producing resin-impregnated strand and pellet of carbon fiber
KR101869514B1 (en) Die structure for manufacturing resin pellet
CN105835252B (en) A kind of scale roving glass fiber composite manufacturing technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140718

R151 Written notification of patent or utility model registration

Ref document number: 5584437

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250