JP2011016062A - Method of producing photocatalyst of nonmetallic-element-doped titanium oxide - Google Patents

Method of producing photocatalyst of nonmetallic-element-doped titanium oxide Download PDF

Info

Publication number
JP2011016062A
JP2011016062A JP2009161632A JP2009161632A JP2011016062A JP 2011016062 A JP2011016062 A JP 2011016062A JP 2009161632 A JP2009161632 A JP 2009161632A JP 2009161632 A JP2009161632 A JP 2009161632A JP 2011016062 A JP2011016062 A JP 2011016062A
Authority
JP
Japan
Prior art keywords
titanium
titanium oxide
oxide photocatalyst
photocatalyst
nonmetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009161632A
Other languages
Japanese (ja)
Other versions
JP5364928B2 (en
Inventor
Hisanobu Wakita
久伸 脇田
Keiji Yamada
啓二 山田
Motoki Iwase
元希 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka University
Original Assignee
Fukuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka University filed Critical Fukuoka University
Priority to JP2009161632A priority Critical patent/JP5364928B2/en
Publication of JP2011016062A publication Critical patent/JP2011016062A/en
Application granted granted Critical
Publication of JP5364928B2 publication Critical patent/JP5364928B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a photocatalyst of a nonmetallic-element-doped titanium oxide having the common performance of titanium oxide of decomposing oxidatively organic matter adsorbed on the surface by absorbing UV light which performance is modified so as to also respond to visible light.SOLUTION: The method of manufacturing the titanium oxide photocatalyst comprises mixing a compound of formula TiX (wherein, X is at least one nonmetallic element selected from P, N, Sand C) with a titanium compound in a solvent and heating and crystallizing the mixture to obtain the titanium oxide photocatalyst and enables uniform doping of nonmetallic elements in the resultant titanium oxide photocatalyst. The titanium oxide photocatalyst obtained by the method can respond not only to UV light but to visible light.

Description

この発明は、優れた光触媒機能を持つ非金属元素ドープ酸化チタン光触媒体の製造方法に関する。   The present invention relates to a method for producing a nonmetallic element-doped titanium oxide photocatalyst having an excellent photocatalytic function.

酸化チタン光触媒体は、一般的には、紫外光を吸収して、表面に吸着した有機物を酸化分解するという光触媒能を有している。酸化チタン光触媒体のかかる光触媒能の性能をより一層向上させるために、酸化チタン光触媒体に金属類をドープさせて光吸収後に生成した電子と正孔の分離効率を上げることが試みられてきた。しかし、光触媒反応に用いられる金属類をドープした光触媒体は、一般的には可視光に応答できないという短所がある。そこで、光触媒体に非金属元素(窒素、フッ素、炭素、硫黄等)をドープさせて可視光に応答させる方法も試みられた(例えば、特許文献1、2、3および非特許文献1、2参照)。しかし、非金属元素ドープの光触媒体はそれぞれの元素について特有の合成方法で製造されているとの短所がある。   The titanium oxide photocatalyst generally has a photocatalytic ability to absorb ultraviolet light and oxidatively decompose organic substances adsorbed on the surface. In order to further improve the photocatalytic performance of the titanium oxide photocatalyst, attempts have been made to increase the separation efficiency of electrons and holes generated after light absorption by doping the titanium oxide photocatalyst with metals. However, photocatalysts doped with metals used for photocatalytic reactions generally have a disadvantage that they cannot respond to visible light. Then, the method of making a photocatalyst body dope a nonmetallic element (nitrogen, fluorine, carbon, sulfur, etc.) and making it respond to visible light was also tried (for example, refer patent document 1, 2, 3 and nonpatent literature 1, 2). ). However, the non-metallic element-doped photocatalyst has a disadvantage that it is produced by a specific synthesis method for each element.

そこで、本発明者らは、先行技術のかかる短所を改善すべく、非金属元素を均一にドープした酸化チタン光触媒体ならびにその製造方法を提供した(特許文献4)。この先行文献の方法として、TiX(式中、XはP、N、S2ならびにCから選ばれる少なくとも1種の非金属元素を意味する)化合物と、例えばゾルゲル法で合成された酸化チタン前駆体とを固相で混合して加熱結晶化して酸化チタン光触媒体を得る酸化チタン光触媒体の製造方法がある。しかし、この先行文献に記載の技術にしても、固体同士の混合であるところから、TiX化合物と酸化チタン前駆体とを均一に混合するのに長時間と多大の労力が必要となり、その結果得られる光触媒体の品質にばらつきが生じる可能性があることが判明した。 Therefore, the present inventors have provided a titanium oxide photocatalyst body uniformly doped with a nonmetallic element and a method for producing the same in order to improve the disadvantages of the prior art (Patent Document 4). As a method of this prior art, TiX (wherein X represents at least one nonmetallic element selected from P, N, S 2 and C) and a titanium oxide precursor synthesized by, for example, a sol-gel method There is a method of manufacturing a titanium oxide photocatalyst body in which a titanium oxide photocatalyst body is obtained by mixing and solidifying in a solid phase and heat crystallization. However, even with the technique described in this prior document, since it is a mixture of solids, it takes a long time and a lot of labor to uniformly mix the TiX compound and the titanium oxide precursor. It has been found that the quality of the photocatalyst produced may vary.

特開2005−319423号公報JP 2005-319423 A 特開2004−863号公報JP 2004-863 A 再公表05−14170号公報Republished No. 05-14170 特開2009−28626号公報JP 2009-28626 A

日本化学会講演予稿集Vol. 79, No.1, p.365Proceedings of the Chemical Society of Japan Vol. 79, No.1, p.365 Jpn J Appl Phys, Part 2, Vol. 40,No. 6A, pp. L561-L563Jpn J Appl Phys, Part 2, Vol. 40, No. 6A, pp. L561-L563

したがって、本発明者らは、優れた光触媒機能を有するとともに、非金属元素が均一にドープすることができる酸化チタン光触媒体の製造方法を鋭意検討した結果、TiX(式中、XはP、N、S2、Cなどの非金属元素を意味する)化合物をチタン化合物と液相中で混合した後、加熱処理することによって、非金属元素が実質的に均一にドープされ、かつ、可視光領域においても優れた光触媒機能を持つ酸化チタン光触媒体を得ることができることを見出して、この発明を完成した。 Therefore, as a result of intensive studies on a method for producing a titanium oxide photocatalyst having an excellent photocatalytic function and capable of uniformly doping a nonmetallic element, TiX (where X is P, N This means that non-metallic elements such as S 2 and C are mixed with a titanium compound in a liquid phase and then heat-treated, so that the non-metallic elements are substantially uniformly doped and visible light region. The present inventors have found that a titanium oxide photocatalyst having an excellent photocatalytic function can be obtained.

したがって、この発明は、紫外光領域ばかりではなく、可視光領域でも優れた光触媒機能を持ち、かつ、非金属元素の分散が実質的に均一であることから、改良された光触媒能を有する酸化チタン光触媒体を得ることができる酸化チタン光触媒体の製造方法を提供することを目的としている。   Therefore, the present invention has an excellent photocatalytic function not only in the ultraviolet light region but also in the visible light region, and since the dispersion of nonmetallic elements is substantially uniform, titanium oxide having improved photocatalytic ability It aims at providing the manufacturing method of the titanium oxide photocatalyst body which can obtain a photocatalyst body.

この発明は、TiX(式中、Xは、P、N、S2、Cなどの非金属元素を意味する)化合物をチタン化合物と溶媒中で実質的に均一に混合した後、加熱処理することによって改良された光触媒能を有する酸化チタン光触媒体を得ることからなる酸化チタン光触媒体の製造方法を提供する。この発明に係る酸化チタン光触媒体の製造方法において、TiX化合物と溶媒中で混合するチタン化合物としては、例えば、チタンテトラアルコキシド、チタンテトラハライド、チタンオキシサルフェート(TiOSO4)ならびにチタンオキシアセチルアセトナートから選ばれる少なくとも1種のチタン化合物が使用できる。 In the present invention, a TiX (wherein X represents a nonmetallic element such as P, N, S 2 , or C) compound is substantially uniformly mixed in a solvent with a titanium compound, followed by heat treatment. There is provided a method for producing a titanium oxide photocatalyst comprising obtaining a titanium oxide photocatalyst having improved photocatalytic activity. In the method for producing a titanium oxide photocatalyst according to the present invention, examples of the titanium compound mixed with the TiX compound in a solvent include titanium tetraalkoxide, titanium tetrahalide, titanium oxysulfate (TiOSO 4 ), and titanium oxyacetylacetonate. At least one selected titanium compound can be used.

この発明の好ましい形態として、上記チタンテトラアルコキシドがチタンテトライソプロポキシドもしくはチタンテトラブトキシドまたは前記チタンテトラハライドがチタンテトラクロライドもしくはチタンテトラフルオライドであることからなる酸化チタン光触媒体の製造方法が提供される。   As a preferred embodiment of the present invention, there is provided a method for producing a titanium oxide photocatalyst comprising the titanium tetraalkoxide being titanium tetraisopropoxide or titanium tetrabutoxide or the titanium tetrahalide being titanium tetrachloride or titanium tetrafluoride. The

この発明に係る酸化チタン光触媒体の製造方法は、得られる酸化チタン光触媒体中に実質的に均一に非金属元素がドープされ、その結果光触媒能のばらつきが実質的には無い改良された光触媒性能を有する酸化チタン光触媒体を提供することができるという効果がある。   The method for producing a titanium oxide photocatalyst according to the present invention has an improved photocatalytic performance in which the obtained titanium oxide photocatalyst is substantially uniformly doped with a nonmetallic element, and as a result, there is substantially no variation in photocatalytic performance. There is an effect that it is possible to provide a titanium oxide photocatalyst body having the following.

試料の固体反射スペクトルを示す図。The figure which shows the solid reflection spectrum of a sample. 紫外光照射によるフェノール濃度の時間変化を示す図。The figure which shows the time change of the phenol concentration by ultraviolet light irradiation. 可視光照射によるフェノール濃度の時間変化を示す図。The figure which shows the time change of the phenol concentration by visible light irradiation. 可視光照射によるp−ベンゾキノン濃度の時間変化を示す図。The figure which shows the time change of the p-benzoquinone density | concentration by visible light irradiation.

この発明に係る酸化チタン光触媒体の製造方法は、TiX化合物(式中、XはP、N、S2およびCから選ばれる少なくとも1種の非金属元素を意味する)をチタン化合物と溶媒中で混合したのち、加熱処理することによって非金属元素を実質的に均一にドープした酸化チタン光触媒体を得ることができる。
なお、この発明において、酸化チタン光触媒体とは、バンドギャップ以上のエネルギーを持つ光により光触媒活性を示す酸化チタン化合物を意味する。
The method for producing a titanium oxide photocatalyst according to the present invention comprises a TiX compound (wherein X represents at least one nonmetallic element selected from P, N, S 2 and C) in a titanium compound and a solvent. After mixing, a titanium oxide photocatalyst that is substantially uniformly doped with a nonmetallic element can be obtained by heat treatment.
In addition, in this invention, a titanium oxide photocatalyst body means the titanium oxide compound which shows a photocatalytic activity with the light which has energy more than a band gap.

この発明に使用することができるTiX化合物(式中、XはP、N、S2およびCから選ばれる少なくとも1種の非金属元素を意味する)は、当該技術分野で慣用されているそれ自体公知の方法により製造することができる。使用できるTiX化合物としては、例えば、リン化チタン、窒化チタン、硫化チタン、炭化チタンなどが挙げられる。 TiX compounds that can be used in this invention (wherein X represents at least one non-metallic element selected from P, N, S 2 and C) are themselves commonly used in the art. It can be produced by a known method. Examples of TiX compounds that can be used include titanium phosphide, titanium nitride, titanium sulfide, and titanium carbide.

また、この発明に使用することができるチタン化合物としては、例えば、チタンテトライソプロポキシド、チタンテトラブトキシド等のチタンテトラアルコキシド、チタンテトラクロライド、チタンテトラフルオライド等のチタンテトラハライド、チタンオキシサルフェート(TiOSO4)ならびにチタンオキシアセチルアセトナートから選ばれる少なくとも1種のチタン化合物が使用できる。これらのチタン化合物は、溶媒中でTiX化合物と混合された後、加熱処理してその非金属元素をドープした酸化チタン光触媒体を提供することができる。 Examples of titanium compounds that can be used in the present invention include titanium tetraalkoxides such as titanium tetraisopropoxide and titanium tetrabutoxide, titanium tetrahalides such as titanium tetrachloride and titanium tetrafluoride, titanium oxysulfate ( At least one titanium compound selected from TiOSO 4 ) and titanium oxyacetylacetonate can be used. These titanium compounds can be mixed with a TiX compound in a solvent and then heat-treated to provide a titanium oxide photocatalyst doped with the nonmetallic element.

この発明の酸化チタン光触媒体の製造方法は、TiX化合物とチタン化合物とを混合することができる溶媒中で行うことができ、かかる溶媒としては、例えば、イソプロパノール等のアルコールなどの有機溶媒を使用するのがよい。 The method for producing a titanium oxide photocatalyst of the present invention can be carried out in a solvent in which a TiX compound and a titanium compound can be mixed. As such a solvent, for example, an organic solvent such as an alcohol such as isopropanol is used. It is good.

この発明によって得られる酸化チタン光触媒体は、加熱結晶化温度、加熱時間、混合量の比率等を調整することによって、その特性(光触媒活性、表面積等)を制御することができる。   The characteristics (photocatalytic activity, surface area, etc.) of the titanium oxide photocatalyst obtained by this invention can be controlled by adjusting the heating crystallization temperature, the heating time, the mixing ratio, and the like.

この発明の製造方法における加熱結晶化温度は、TiX化合物とチタン化合物との混合物が加熱結晶化され、その非金属元素が酸化チタン光触媒体にドープされる限り、特に限定されるものではないが、例えば、100〜1000℃、好ましくは300〜700℃の範囲であるのがよい。加熱時間にしても、この発明の酸化チタン光触媒体が加熱結晶化される限り、特に限定されるものではないが、例えば、10分間〜5時間、好ましくは1時間〜3時間の範囲であるのがよい。   The heating crystallization temperature in the production method of the present invention is not particularly limited as long as the mixture of the TiX compound and the titanium compound is heated and crystallized and the nonmetallic element is doped into the titanium oxide photocatalyst, For example, the temperature may be in the range of 100 to 1000 ° C, preferably 300 to 700 ° C. The heating time is not particularly limited as long as the titanium oxide photocatalyst of the present invention is heated and crystallized, but it is, for example, in the range of 10 minutes to 5 hours, preferably 1 hour to 3 hours. Is good.

この発明において、TiX化合物とチタン化合物との混合比率は、得られる光触媒体の用途や特性に応じて適宜変更するのが望ましいが、特に限定されるものではなく、例えば、TiX化合物対チタン化合物の混合比率は、例えば、2対8、好ましくは1対9、より好ましくは1対10の割合であるのがよい。   In the present invention, the mixing ratio of the TiX compound and the titanium compound is preferably appropriately changed according to the use and characteristics of the obtained photocatalyst, but is not particularly limited. The mixing ratio may be, for example, a ratio of 2 to 8, preferably 1 to 9, and more preferably 1 to 10.

一般に、光触媒体を用いて有害物質を分解するには、バンドギャップ以上の光が必要であるが、この発明の酸化チタン光触媒体は、紫外光のほかに可視光も利用することができるので、ブラックライト、ハロゲンランプ、水銀灯のほか、キセノンランプ、タングステンランプ、蛍光灯、太陽光などを用いることもできる。   In general, in order to decompose harmful substances using a photocatalyst, light beyond the band gap is required, but the titanium oxide photocatalyst of the present invention can also use visible light in addition to ultraviolet light. In addition to black light, halogen lamps, mercury lamps, xenon lamps, tungsten lamps, fluorescent lamps, sunlight, and the like can also be used.

この発明においては、得られる酸化チタン光触媒体に、特に金属類(例えば、Cr、V、Fe、Ru、Rh、Zn、Pt、Ni、Cu、Pd、Ag、Auなど)が1種もしくは複数種その内部や表面に含まれていてもよい。また、この発明によって得られる酸化チタン光触媒体は、必要に応じて、溶液(水や水−有機混合溶媒)中に懸濁した状態でも、またはプラスチック、ガラス、金属、陶器、紙、布などの表面に保持された状態でも用いることができる。   In the present invention, the obtained titanium oxide photocatalyst is one or more kinds of metals (for example, Cr, V, Fe, Ru, Rh, Zn, Pt, Ni, Cu, Pd, Ag, Au, etc.). It may be contained inside or on the surface. In addition, the titanium oxide photocatalyst obtained by the present invention can be suspended in a solution (water or a water-organic mixed solvent), or plastic, glass, metal, ceramics, paper, cloth, etc., if necessary. It can be used even when held on the surface.

さらに、この発明によって得られる酸化チタン光触媒体は、酸化チタン、酸化タングステン、チタン酸ストロンチウム等の公知の光触媒体の1種もしくは複数種と組み合わせて用いることもできる。
以下に実施例を示すが、この発明はこれらの実施例に限定されるものではない。
Furthermore, the titanium oxide photocatalyst obtained by the present invention can be used in combination with one or more known photocatalysts such as titanium oxide, tungsten oxide, and strontium titanate.
Examples are shown below, but the present invention is not limited to these examples.

チタンテトライソプロポキシド14.2gをイソプロパノール30mlに添加して混合した溶液に窒化チタン(TiN)粉末0.344gを添加し攪拌した。この溶液に水50mlを少しずつ滴下した。得られた固体を15時間程度放置し、ろ過して回収し、110℃で3時間乾燥した。乾燥した粉末を電気炉に入れ、窒素ガスを流しながら600℃で1時間焼成した。冷却時に300℃に達したときに電気炉の扉を開け、得られた試料を空気に接触させたところ薄黄色の粉末が得られた(試料A)。   To a solution obtained by adding 14.2 g of titanium tetraisopropoxide to 30 ml of isopropanol and mixing, 0.344 g of titanium nitride (TiN) powder was added and stirred. To this solution, 50 ml of water was added dropwise little by little. The obtained solid was left for about 15 hours, collected by filtration, and dried at 110 ° C. for 3 hours. The dried powder was put into an electric furnace and baked at 600 ° C. for 1 hour while flowing nitrogen gas. When the temperature reached 300 ° C. during cooling, the door of the electric furnace was opened, and when the obtained sample was brought into contact with air, a light yellow powder was obtained (Sample A).

実施例1で得られた試料Aおよび市販の高性能の酸化チタンSTO1(石原産業(株)製)を以下の方法で比較した。
(紫外光照射)
光触媒体8mg/5mlのフェノール0.05mM溶液を調製し、この溶液にマグネチックスターラーで攪拌しながらブラツクライト(紫外光300〜400nm)を照射した。光照射に伴うフェノール濃度の変化をHPLC(高速液体クロマトグラフィー)で検出した。その結果、試料AはST01に近い紫外光照射によるフェノールの分解量を示した(図2)。
Sample A obtained in Example 1 and commercially available high performance titanium oxide STO1 (manufactured by Ishihara Sangyo Co., Ltd.) were compared by the following method.
(Ultraviolet light irradiation)
A photocatalyst 8 mg / 5 ml phenol 0.05 mM solution was prepared, and this solution was irradiated with black light (ultraviolet light 300 to 400 nm) while stirring with a magnetic stirrer. Changes in phenol concentration accompanying light irradiation were detected by HPLC (high performance liquid chromatography). As a result, Sample A showed the amount of phenol decomposed by UV light irradiation close to ST01 (FIG. 2).

(可視光照射)
上記と同様に、光触媒体40mg/5mlのフェノール0.05mM溶液を調製し、この溶液にマグネチックスターラーで攪拌しながら、ブラツクライト(紫外光300〜400nm)の代わりに、450ワットタングステンランプとY−45フィルター(東芝製)と硫酸ニッケル水溶液を組み合わせ、可視光(430〜620nm)を照射した。その結果、ST01溶液ではフェノールの分解はほとんど認められなかったのに対し、試料Aの溶液ではフェノール量の減少が認められた(図3)。また、試料Aの溶液では、反応生成物であるp−ベンゾキノンが検出された(図4)。このことは、TiNを含む酸化チタンが可視光に対して応答することを示している。
(Visible light irradiation)
Similarly to the above, a 0.05 mM phenol solution of 40 mg / 5 ml of photocatalyst was prepared, and a 450 watt tungsten lamp and Y were used instead of blacklite (ultraviolet light 300 to 400 nm) while stirring this solution with a magnetic stirrer. A -45 filter (manufactured by Toshiba) and an aqueous nickel sulfate solution were combined and irradiated with visible light (430 to 620 nm). As a result, almost no degradation of phenol was observed in the ST01 solution, whereas a decrease in the amount of phenol was observed in the sample A solution (FIG. 3). In the sample A solution, p-benzoquinone as a reaction product was detected (FIG. 4). This indicates that titanium oxide containing TiN responds to visible light.

この発明に係る酸化チタン光触媒体の製造方法は、紫外光ばかりではなく、可視光に対しても応答できるうえに、非金属元素が実質的に均一に分散した改良された光触媒能を有する酸化チタン光触媒体を提供するのに有用である。   The method for producing a titanium oxide photocatalyst according to the present invention is capable of responding not only to ultraviolet light but also visible light, and has improved photocatalytic ability in which nonmetallic elements are substantially uniformly dispersed. Useful for providing a photocatalyst.

Claims (2)

TiX(式中、XはP、N、S2ならびにCから選ばれる少なくとも1種の非金属元素を意味する)化合物を、チタンテトラアルコキシド、チタンテトラハライド、チタンオキシサルフェート(TiOSO4)ならびにチタンオキシアセチルアセトナートから選ばれる少なくとも1種のチタン化合物と溶媒中で混合した後、加熱処理して非金属元素をドープした酸化チタン光触媒体を得ることを特徴とする酸化チタン光触媒体の製造方法。 TiX (wherein X represents at least one nonmetallic element selected from P, N, S 2 and C), titanium tetraalkoxide, titanium tetrahalide, titanium oxysulfate (TiOSO 4 ) and titanium oxy A method for producing a titanium oxide photocatalyst, comprising: mixing in a solvent with at least one titanium compound selected from acetylacetonate; and heat-treating to obtain a titanium oxide photocatalyst doped with a nonmetallic element. 請求項1に記載の酸化チタン光触媒体の製造方法であって、前記チタンテトラアルコキシドがチタンテトライソプロポキシドもしくはチタンテトラブトキシドまたは前記チタンテトラハライドがチタンテトラクロライドもしくはチタンテトラフルオライドであることを特徴とする酸化チタン光触媒体の製造方法。   The method for producing a titanium oxide photocatalyst according to claim 1, wherein the titanium tetraalkoxide is titanium tetraisopropoxide or titanium tetrabutoxide, or the titanium tetrahalide is titanium tetrachloride or titanium tetrafluoride. A method for producing a titanium oxide photocatalyst body.
JP2009161632A 2009-07-08 2009-07-08 Method for producing non-metallic element-doped titanium oxide photocatalyst Expired - Fee Related JP5364928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009161632A JP5364928B2 (en) 2009-07-08 2009-07-08 Method for producing non-metallic element-doped titanium oxide photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009161632A JP5364928B2 (en) 2009-07-08 2009-07-08 Method for producing non-metallic element-doped titanium oxide photocatalyst

Publications (2)

Publication Number Publication Date
JP2011016062A true JP2011016062A (en) 2011-01-27
JP5364928B2 JP5364928B2 (en) 2013-12-11

Family

ID=43594278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009161632A Expired - Fee Related JP5364928B2 (en) 2009-07-08 2009-07-08 Method for producing non-metallic element-doped titanium oxide photocatalyst

Country Status (1)

Country Link
JP (1) JP5364928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113385192A (en) * 2021-05-31 2021-09-14 中国十七冶集团有限公司 Sulfur-doped TiO for water purification system of construction site2Method for producing thin film
CN114570407A (en) * 2022-03-21 2022-06-03 青海大学 In-situ non-metal element and rare earth element co-doped strontium titanate catalyst, and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152337A (en) * 2003-11-26 2005-06-16 Sekisui Jushi Co Ltd Photocatalyst composition
JP2005213123A (en) * 2004-01-30 2005-08-11 Daicel Chem Ind Ltd Carbon-doped titanium oxide and its producing method, photocatalyst, and method of oxidizing organic compound by using the catalyst
JP2005254174A (en) * 2004-03-12 2005-09-22 Toho Titanium Co Ltd Titanium oxide photocatalyst
JP2006008475A (en) * 2004-06-29 2006-01-12 Sumitomo Chemical Co Ltd Method for manufacturing photocatalyst titanium oxide
JP2009028626A (en) * 2007-07-26 2009-02-12 Univ Fukuoka Nonmetallic element-doped photocatalytic body and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005152337A (en) * 2003-11-26 2005-06-16 Sekisui Jushi Co Ltd Photocatalyst composition
JP2005213123A (en) * 2004-01-30 2005-08-11 Daicel Chem Ind Ltd Carbon-doped titanium oxide and its producing method, photocatalyst, and method of oxidizing organic compound by using the catalyst
JP2005254174A (en) * 2004-03-12 2005-09-22 Toho Titanium Co Ltd Titanium oxide photocatalyst
JP2006008475A (en) * 2004-06-29 2006-01-12 Sumitomo Chemical Co Ltd Method for manufacturing photocatalyst titanium oxide
JP2009028626A (en) * 2007-07-26 2009-02-12 Univ Fukuoka Nonmetallic element-doped photocatalytic body and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113385192A (en) * 2021-05-31 2021-09-14 中国十七冶集团有限公司 Sulfur-doped TiO for water purification system of construction site2Method for producing thin film
CN114570407A (en) * 2022-03-21 2022-06-03 青海大学 In-situ non-metal element and rare earth element co-doped strontium titanate catalyst, and preparation method and application thereof

Also Published As

Publication number Publication date
JP5364928B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
Raza et al. A green approach for degradation of organic pollutants using rare earth metal doped bismuth oxide
Teeparthi et al. Dominating role of crystal structure over defect chemistry in black and white zirconia on visible light photocatalytic activity
Zaleska Doped-TiO2: a review
Guo et al. A new heterojunction Ag3PO4/Cr-SrTiO3 photocatalyst towards efficient elimination of gaseous organic pollutants under visible light irradiation
Song et al. Preparation and photocatalytic activity of alkali titanate nano materials A2TinO2n+ 1 (A= Li, Na and K)
Song et al. Efficient degradation of organic pollutant with WOx modified nano TiO2 under visible irradiation
Li et al. Low temperature synthesis of polyaniline–crystalline TiO2–halloysite composite nanotubes with enhanced visible light photocatalytic activity
JP4576526B2 (en) Ultraviolet and visible light responsive titania photocatalyst
EP2459485B1 (en) Photocatalytic materials and process for producing the same
KR101954792B1 (en) Method of manufacturing metal-loaded TiO2/graphene composites through one-pot hydrothermal synthesis and the TiO2/graphene composites manufactured by the same
Khazaee et al. Synthesis of layered perovskite Ag, F-Bi2MoO6/rGO: A surface plasmon resonance and oxygen vacancy promoted nanocomposite as a visible-light photocatalyst
KR101318743B1 (en) Tungsten oxide photocatalyst and method for producing the same
Hojamberdiev et al. Visible-light-driven N–F-codoped TiO2 powders derived from different ammonium oxofluorotitanate precursors
CN108855131B (en) Preparation and application of silver-nickel bimetal doped titanium dioxide nano composite material
Xue et al. S-doped Sb 2 O 3 nanocrystal: An efficient visible-light catalyst for organic degradation
JP2020157283A (en) Method for producing photocatalyst
Zakaria et al. Visible‐light driven photodegradation of phenol over niobium oxide‐loaded fibrous silica titania composite catalyst
Xie et al. Enhancing visible light photocatalytic activity by transformation of Co3+/Co2+ and formation of oxygen vacancies over rationally Co doped ZnO microspheres
CN114192102B (en) One-step preparation of polyacid modified graphite phase carbon nitride material and application thereof
JP5364928B2 (en) Method for producing non-metallic element-doped titanium oxide photocatalyst
Nawaz et al. Manipulation of the Ti3+/Ti4+ ratio in colored titanium dioxide and its role in photocatalytic degradation of environmental pollutants
JP2007054705A (en) Manufacturing method of visible light response type photocatalyst
Abdulla-Al-Mamun et al. Photocatalytic cancer (HeLa) cell-killing enhanced with Cu–TiO 2 nanocomposite
Chekuri et al. One step synthesis and characterization of copper doped sulfated titania and its enhanced photocatalytic activity in visible light by degradation of methyl orange
CN115569658A (en) CABB/UCNT heterojunction composite photocatalyst and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120628

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees