JP2011015643A - Culture solution for measuring membrane potential of cell, culture method using the same, and method for measuring membrane potential - Google Patents

Culture solution for measuring membrane potential of cell, culture method using the same, and method for measuring membrane potential Download PDF

Info

Publication number
JP2011015643A
JP2011015643A JP2009162753A JP2009162753A JP2011015643A JP 2011015643 A JP2011015643 A JP 2011015643A JP 2009162753 A JP2009162753 A JP 2009162753A JP 2009162753 A JP2009162753 A JP 2009162753A JP 2011015643 A JP2011015643 A JP 2011015643A
Authority
JP
Japan
Prior art keywords
culture solution
membrane potential
cells
cell
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009162753A
Other languages
Japanese (ja)
Other versions
JP5492477B2 (en
Inventor
Yasuyuki Asai
康行 淺井
Tsunayoshi Saito
経義 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reprocell Inc
Original Assignee
Reprocell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reprocell Inc filed Critical Reprocell Inc
Priority to JP2009162753A priority Critical patent/JP5492477B2/en
Publication of JP2011015643A publication Critical patent/JP2011015643A/en
Application granted granted Critical
Publication of JP5492477B2 publication Critical patent/JP5492477B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve such a problem that interaction or adsorption frequently occurs among substances such as amino acids and proteins and a test compound for evaluating pharmaceutical effects, and the pharmaceutical effects cannot accurately be evaluated because a conventional culture solution contains large amounts of the substances.SOLUTION: Accurate measurement can be carried out without inhibiting a fluorescent label and without causing the interaction or adsorption among the substances and the test compound for evaluating the pharmaceutical effects during a test for evaluating the pharmaceutical effects by including selenium and/or nitrate ions and iron ions without adding the amino acids and proteins in the culture solution for measuring the membrane potential of a cell. Furthermore, the membrane potential can be measured, particularly in a cardiomyocyte derived from a human induced pluripotent stem (iPS) cell over a long period of time by including the selenium and/or nitrate ions and iron ions in the culture solution.

Description

本発明は、細胞の膜電位測定用の培養液、及びそれを用いた培養方法、膜電位測定方法に係り、特に、ヒトiPS細胞由来の心筋細胞の膜電位測定用の培養液、及びそれを用いた培養方法、膜電位測定方法に関する。   The present invention relates to a culture solution for measuring membrane potential of cells, a culture method using the same, and a membrane potential measurement method, and in particular, a culture solution for measuring membrane potential of cardiomyocytes derived from human iPS cells, and The present invention relates to a culture method and a membrane potential measurement method used.

新規薬物開発においては、薬物の効能や毒性について迅速且つ適切に評価することが求められている。
そして、細胞の膜に存在する電位依存性のイオンチャンネル(細胞表面に存在する膜貫通タンパク質で、特定のイオンを選択的に通過させるもの)は、生理的に重要な機能を有しており、薬物開発の効能や毒性についての評価の標的となる。
例えば、イオンチャンネルに作用することで患者に重篤な不整脈を引き起こす疾患として薬物誘発性(後天性)QT延長症候群がある。薬物誘発性QT延長症候群は、薬物の投与後に心電図上のQT間隔の延長が起こり、TdP(Torsades de pointes、トルサード・ド・ポアンツ=非持続性多形性心室頻拍)から、しばしば心室細動が起こり、失神、突然死をきたす重篤な疾患である。この薬物誘発性QT延長症候群の誘発原因としては、薬物が心筋細胞のイオンチャネルに作用することで、調和のとれた心臓の拍動を阻害し、QT間隔の延長を引き起こすことが知られている(非特許文献1)。
In the development of new drugs, it is required to quickly and appropriately evaluate the efficacy and toxicity of drugs.
And the voltage-gated ion channel (a transmembrane protein existing on the cell surface that allows specific ions to selectively pass) present in the cell membrane has a physiologically important function, It is a target for evaluation of efficacy and toxicity of drug development.
For example, a drug-induced (acquired) QT prolongation syndrome is a disease that causes severe arrhythmia in a patient by acting on an ion channel. Drug-induced long QT syndrome is a prolongation of the electrocardiogram QT interval after drug administration, often due to TdP (Torsades de points, non-persistent polymorphic ventricular tachycardia) Is a serious disease that causes fainting, fainting, and sudden death. The cause of this drug-induced QT prolongation syndrome is known to be that the drug acts on the ion channels of cardiomyocytes to inhibit harmonious heart pulsation and prolong the QT interval. (Non-Patent Document 1).

薬物が、薬物誘発性QT延長症候群を引き起こすかどうかを評価する方法の1例として細胞の膜電位測定方法がある。非特許文献2を参照すると、膜電位測定方法の1例として、パッチクランプ法や蛍光膜電位測定法が記載されている。
ここで、蛍光膜電位測定法は、蛍光カルシウムプローブ、Bis−oxonolのような膜透過性で陰イオン性の蛍光色素がイオンの移動に応じて細胞膜内外に移動することにより、この蛍光色素の蛍光を測定することで細胞の膜電位を計測する方法である。蛍光膜電位測定法は、非常に高いスループット性を有するという特徴がある。
蛍光膜電位測定法は、上述の細胞に被検化合物である薬物を与えたときに、蛍光を測定することで、薬物誘発性QT延長症候群の薬効評価として利用することができる。具体的には、毒性ある薬物によりhERGチャンネルの活動が阻害されると、所定の波長の電磁波を照射したときの蛍光光度が変化するため、これを検出することで膜電位の変化が検出できる。これにより、被検化合物である薬物が薬物誘発性QT延長症候群を引き起こすかについて検査できる。
One example of a method for evaluating whether a drug causes drug-induced long QT syndrome is a method for measuring a membrane potential of a cell. Referring to Non-Patent Document 2, a patch clamp method and a fluorescent membrane potential measurement method are described as an example of a membrane potential measurement method.
Here, the fluorescent membrane potential measurement method uses a fluorescent calcium probe, Bis-oxonol, and the membrane-permeable and anionic fluorescent dye moves in and out of the cell membrane in accordance with the movement of ions. This is a method for measuring the membrane potential of a cell by measuring. The fluorescent membrane potential measurement method is characterized by extremely high throughput.
The fluorescent membrane potential measurement method can be used as a drug efficacy evaluation of drug-induced QT prolongation syndrome by measuring fluorescence when a test compound drug is given to the above-described cells. Specifically, when the hERG channel activity is inhibited by a toxic drug, the fluorescence intensity changes when an electromagnetic wave of a predetermined wavelength is irradiated. Therefore, a change in membrane potential can be detected by detecting this. Thereby, it can test | inspect whether the drug which is a test compound causes the drug-induced QT prolongation syndrome.

薬理雑誌121号、384〜392、2003年Pharmacology Journal 121, 384-392, 2003 薬理雑誌126号、321〜327、2005年Pharmacological Journal 126, 321-327, 2005

しかしながら、従来の細胞の膜電位測定に用いる培養液では、その培養液自体が蛍光を持つもしくは所定の波長の電磁波を照射する場合、蛍光を発するため、蛍光標識を検出する蛍光膜電位測定法等には適用できなかった。これは、基礎培地の成分や血清由来のタンパク質等、蛍光を発する物質を多く含むためであった。また、従来の培養液には多くのアミノ酸やタンパク質等の物質を含むため、薬効を評価する被検化合物との間で相互作用や吸着が多く起こり、正確な薬効評価ができなかった。   However, in the conventional culture solution used for measuring the membrane potential of cells, the culture solution itself has fluorescence or emits fluorescence when irradiated with electromagnetic waves of a predetermined wavelength. Could not be applied. This is because it contains a lot of fluorescent substances such as basal medium components and serum-derived proteins. In addition, since conventional culture solutions contain many substances such as amino acids and proteins, many interactions and adsorptions occur with test compounds for which the drug efficacy is evaluated, and accurate drug efficacy evaluation cannot be performed.

本発明はこのような状況に鑑みてなされたものであり、上記問題点を解決できる培養液を提供することを目的とする。   This invention is made | formed in view of such a condition, and it aims at providing the culture solution which can solve the said problem.

本発明の細胞の膜電位測定用の培養液は、細胞由来でないアミノ酸及びタンパク質を添加せずに、セレン並びに/又は硝酸イオン及び鉄イオンを含むことを特徴とする。
本発明の細胞の膜電位測定用の培養液は、前記セレンは亜セレン酸ナトリウムの濃度0.001〜0.1μMで供給され、並びに/又は前記硝酸イオン及び鉄イオンは硝酸鉄(III)の濃度0.1〜9μMで供給されることを特徴とする。
本発明の細胞の膜電位測定用の培養液は、前記細胞は、ヒトiPS細胞由来の心筋細胞であることを特徴とする。
本発明の細胞の培養方法は、本発明の培養液を用いることを特徴とする。
本発明の細胞の膜電位測定方法は、本発明の培養液を用いることを特徴とする。
The culture solution for measuring the membrane potential of cells of the present invention is characterized by containing selenium and / or nitrate ions and iron ions without adding amino acids and proteins that are not derived from cells.
In the culture solution for measuring the membrane potential of cells of the present invention, the selenium is supplied at a sodium selenite concentration of 0.001 to 0.1 μM, and / or the nitrate ions and iron ions are iron nitrate (III). It is characterized by being supplied at a concentration of 0.1 to 9 μM.
The culture solution for measuring the membrane potential of cells of the present invention is characterized in that the cells are human iPS cell-derived cardiomyocytes.
The cell culture method of the present invention is characterized by using the culture solution of the present invention.
The cell membrane potential measurement method of the present invention is characterized by using the culture solution of the present invention.

本発明の細胞の膜電位測定用の培養液は、タンパク質等の蛍光を発する物質を含まず、ほぼ無蛍光であるため、蛍光カルシウムプローブ、又は蛍光膜感受性色素のような蛍光色素等を使用する際にも蛍光標識が阻害されずに好適な測定結果を得ることができる。また、本発明の細胞の膜電位測定用の培養液は、アミノ酸及びタンパク質の濃度が蛍光膜電位測定法の測定可能濃度及び/又はアミノ酸及びタンパク質の濃度が被検化合物との相互作用や吸着を起こさない濃度以下であるため、薬効を評価する試験の際に薬効を評価する被検化合物との相互作用や吸着が起こらず正確な測定をすることができる。これにより、新規薬物の効能や毒性について迅速且つ適切に評価することができる。   Since the culture solution for measuring the membrane potential of cells of the present invention does not contain a fluorescent substance such as protein and is almost non-fluorescent, a fluorescent calcium probe or a fluorescent dye such as a fluorescent film-sensitive dye is used. In particular, a suitable measurement result can be obtained without inhibiting the fluorescent label. In the culture solution for measuring the membrane potential of cells of the present invention, the amino acid and protein concentrations can be measured by the fluorescent membrane potential measurement method and / or the amino acid and protein concentrations can interact with or adsorb the test compound. Since the concentration is less than the concentration at which it does not occur, accurate measurement can be performed without interaction or adsorption with the test compound for evaluating drug efficacy during the test for evaluating drug efficacy. This makes it possible to quickly and appropriately evaluate the efficacy and toxicity of the new drug.

本発明の実施の形態に係る培養液の組成例を示した図である。It is the figure which showed the example of a composition of the culture solution which concerns on embodiment of this invention. (a)本発明の実施の形態に係る培養液と(b)一般的な緩衝液との間で波形変化の比較例を示した図である。It is the figure which showed the comparative example of the waveform change between the culture solution which concerns on embodiment of (a) embodiment of this invention, and (b) general buffer solution. (a)本発明の実施の形態に係る培養液と(b)従来の培養液との間でノイズの比較例を示した図である。(A) It is the figure which showed the comparative example of the noise between the culture solution which concerns on embodiment of this invention, and the (b) conventional culture solution. 本発明の実施の形態に係る培養液にQT間隔を延長する試薬(アステミゾール)の構造式を示した図である。It is the figure which showed the structural formula of the reagent (astemisol) which extends QT space | interval to the culture solution which concerns on embodiment of this invention. 本発明の実施の形態に係る培養液にQT間隔を延長する試薬(アステミゾール)のQT間隔の延長に対する濃度依存性曲線を示した図である。It is the figure which showed the density | concentration dependence curve with respect to the extension of QT interval of the reagent (astemisol) which extends QT interval to the culture solution which concerns on embodiment of this invention. 本発明の実施の形態に係る培養液にQT間隔を延長する試薬(アステミゾール)を添加した際の波形変化を詳細に示した図である。It is the figure which showed in detail the waveform change at the time of adding the reagent (astemisol) which extends QT space | interval to the culture solution which concerns on embodiment of this invention. 本発明の実施の形態に係る培養液にQT間隔を延長する試薬(アステミゾール)を添加した際の波形変化を詳細に示した図である。It is the figure which showed in detail the waveform change at the time of adding the reagent (astemisol) which extends QT space | interval to the culture solution which concerns on embodiment of this invention. 本発明の実施の形態に係る培養液にQT間隔を延長する試薬(アステミゾール)を添加した際の波形変化を詳細に示した図である。It is the figure which showed in detail the waveform change at the time of adding the reagent (astemisol) which extends QT space | interval to the culture solution which concerns on embodiment of this invention. 本発明の実施の形態に係る培養液にQT間隔に影響しないと判断される(±5%以内)試薬(アスピリン)のQT間隔の変動を示した図である。It is the figure which showed the fluctuation | variation of the QT interval of a reagent (aspirin) judged that it does not influence the QT interval (within +/- 5%) in the culture solution which concerns on embodiment of this invention. 本発明の実施の形態に係る培養液にQT間隔に影響しないと判断される(±5%以内)試薬(アスピリン)のQT間隔の変動に対する濃度依存性曲線を示した図である。It is the figure which showed the density | concentration dependence curve with respect to the fluctuation | variation of the QT interval of the reagent (aspirin) judged that it does not influence the QT interval to the culture solution which concerns on embodiment of this invention (within +/- 5%). 本発明の実施の形態に係る培養液にQT間隔に影響しないと判断される(±5%以内)試薬(アスピリン)を添加した際の波形変化を詳細に示した図である。It is the figure which showed in detail the waveform change at the time of adding the reagent (aspirin) judged to have no influence on QT space | interval (within +/- 5%) to the culture solution which concerns on embodiment of this invention. 本発明の実施の形態に係る培養液のみでは同一実験環境下ではQT間隔に影響を与えないことを示した図である。It is the figure which showed that only the culture solution which concerns on embodiment of this invention does not affect a QT space | interval under the same experiment environment.

上述のように、従来の細胞の膜電位測定に用いる培養液は、培養液自身が蛍光を発していたため、顕微鏡下での蛍光観察には適していなかった。したがって、本発明の発明者は、従来の培養液に代えて、より正確に膜電位測定及び蛍光標識を検出するための培養液を模索していた。
ここで当業者にとっては、細胞の膜電位測定用培養液として、細胞が正常に拍動を維持するために種々イオン、糖、必須アミノ酸、アルブミン等のタンパク質が常識的に必要と考えられており、これらの物質について最適濃度の調整を図ることで培養液の改良が図られてきた。
As described above, the conventional culture solution used for measuring the membrane potential of cells is not suitable for fluorescence observation under a microscope because the culture solution itself emits fluorescence. Therefore, the inventor of the present invention has been searching for a culture solution for more accurately detecting the membrane potential and detecting the fluorescent label in place of the conventional culture solution.
Here, for those skilled in the art, it is thought that proteins such as various ions, sugars, essential amino acids, and albumin are commonly required as a culture solution for measuring the membrane potential of cells in order for the cells to maintain normal pulsation. The culture solution has been improved by adjusting the optimum concentration of these substances.

ところが、本発明の発明者は、従来の培養液に多く含まれているアミノ酸やタンパク質等の物質は、蛍光を発し、薬効を検査する化合物と相互作用や吸着等をすることを見いだした。しかし、これらの物質を除くと、細胞を拍動したまま培養することが困難であり、そもそも蛍光観察を行うこと自体ができなかった。
これに対して、本発明の発明者は、アミノ酸やタンパク質を除いて蛍光や相互作用や吸着に係る物質を除去した状態でも、セレン並びに/又は硝酸イオン及び鉄イオンを添加することで、細胞を拍動したまま培養し、相互作用や吸着を抑えて蛍光観察を行うことができる顕著な効果が得られることを見いだし、本実施形態で例示した本発明に係る培養液を発明するに至った。
However, the inventor of the present invention has found that substances such as amino acids and proteins that are abundantly contained in the conventional culture medium emit fluorescence and interact with or adsorb compounds with which the drug efficacy is examined. However, if these substances were removed, it was difficult to culture the cells while pulsating, and fluorescence observation itself could not be performed in the first place.
On the other hand, the inventor of the present invention adds selenium and / or nitrate ions and iron ions to remove cells even in a state in which substances related to fluorescence, interaction, and adsorption are removed except for amino acids and proteins. It has been found that a remarkable effect can be obtained in which fluorescence can be observed while suppressing the interaction and adsorption while pulsing, and the culture solution according to the present invention exemplified in the present embodiment has been invented.

すなわち、本発明の細胞の膜電位測定用培養液を用いることによって、細胞を長期間正常な状態で維持することができる。また、本発明の培養液は、無蛍光であるため、蛍光法による細胞の膜電位測定あるいは蛍光法や発光法を用いて観察する際にも検出系が妨害されずに好適な結果を得ることができる。また、本発明の培養液は、アミノ酸及びタンパク質の濃度が蛍光膜電位測定法の測定可能濃度及び/又はアミノ酸及びタンパク質の濃度が被検化合物との相互作用や吸着を起こさない濃度以下であるため、薬効を評価する試験の際に薬効を評価する被検化合物との相互作用や吸着が起こらず正確な測定をすることができる。さらに、本発明の培養液は、グルコースレベルおよび各種イオン強度を最適化しているため、心筋細胞等の正常な拍動を長時間観察することができる。   That is, the cells can be maintained in a normal state for a long period of time by using the cell membrane potential measuring medium of the present invention. In addition, since the culture solution of the present invention is non-fluorescent, a suitable result can be obtained without disturbing the detection system even when the cell membrane potential is measured by a fluorescence method or observed using a fluorescence method or a luminescence method. Can do. In the culture solution of the present invention, the concentration of amino acids and proteins is less than the concentration that can be measured by the fluorescent membrane potential measurement method and / or the concentration of amino acids and proteins does not cause interaction or adsorption with the test compound. In the test for evaluating the drug efficacy, accurate measurement can be performed without causing interaction or adsorption with the test compound for which the drug efficacy is evaluated. Furthermore, since the culture solution of the present invention optimizes the glucose level and various ionic strengths, normal pulsations such as cardiomyocytes can be observed for a long time.

(培養液の組成)
図1を示して、本発明の実施の形態に係る培養液の組成について説明する。
図1に示すように、本発明の実施の形態に係る培養液の成分は、主にナトリウム、カリウム、マグネシウム、カルシウム等の各イオン、糖、緩衝液、pH調整試薬から構成される。図1に示された各物質の濃度は、最終濃度を示す。以下、具体的に説明する。
(Composition of culture solution)
With reference to FIG. 1, the composition of the culture solution according to the embodiment of the present invention will be described.
As shown in FIG. 1, the components of the culture solution according to the embodiment of the present invention are mainly composed of each ion such as sodium, potassium, magnesium, calcium, sugar, buffer solution, and pH adjusting reagent. The concentration of each substance shown in FIG. 1 indicates the final concentration. This will be specifically described below.

各イオンの濃度は、細胞の膜電位測定の最適化を図る上で適宜変更することができる。例えば、図1に示したように140mMの塩化ナトリウム(NaCl)、4.8mMの塩化カリウム(KCl)、0.8mMの硫酸マグネシウム(MgSO)、2.8mMの塩化カルシウム(CaCl)を用いることができる。また、他のイオンについても各細胞の特性や膜電位測定の目的等によって適宜添加することができる。 The concentration of each ion can be appropriately changed in order to optimize the measurement of the membrane potential of the cell. For example, as shown in FIG. 1, 140 mM sodium chloride (NaCl), 4.8 mM potassium chloride (KCl), 0.8 mM magnesium sulfate (MgSO 4 ), 2.8 mM calcium chloride (CaCl 2 ) are used. be able to. Other ions can also be added as appropriate depending on the characteristics of each cell, the purpose of measuring the membrane potential, and the like.

糖の濃度は、膜電位測定の最適化を図る上で適宜変更できる。好ましくは、糖は、グルコース(Glucose)を用いる。例えば、11.2mMのグルコースを用いることができる。   The sugar concentration can be changed as appropriate in optimizing membrane potential measurement. Preferably, glucose is glucose. For example, 11.2 mM glucose can be used.

緩衝液は、膜電位測定の最適化を図る上で適宜変更することができる。好ましくは、緩衝液は、Hepes(C18S)を用いて作製する。緩衝液は、長期間の細胞培養中における培養液のアシドーシス等によるpHの変化を防ぐ目的もある。
なお、緩衝液としては、最適なpHを得るために任意の緩衝剤を用いることができ、例えば、PBS等を用いることもできる。
The buffer solution can be appropriately changed in order to optimize the membrane potential measurement. Preferably, the buffer is made using Hepes (C 8 H 18 N 2 O 4 S). The buffer also has the purpose of preventing pH changes due to acidosis of the culture medium during long-term cell culture.
In addition, as a buffer solution, in order to obtain optimal pH, arbitrary buffering agents can be used, for example, PBS etc. can also be used.

pH調整試薬は、pHが調整できれば任意の物質を用いることができる。例えば、NaOH、HCl等の酸塩基物質を用いてpHを調整する。好ましくは、細胞培養の最適pHとなるように調整し、心筋細胞の培養の場合にはpH=7.2〜7.4の範囲で調整する。なお、各細胞の特性や膜電位測定の目的等によって適宜pHを任意に変化させて用いることができる。   As the pH adjusting reagent, any substance can be used as long as the pH can be adjusted. For example, the pH is adjusted using an acid-base substance such as NaOH or HCl. Preferably, the pH is adjusted to an optimum pH for cell culture, and in the case of cardiomyocyte culture, the pH is adjusted in the range of 7.2 to 7.4. It should be noted that the pH can be arbitrarily changed as appropriate depending on the characteristics of each cell, the purpose of measuring the membrane potential, and the like.

本発明の実施の形態に係る培養液では、必須アミノ酸や非必須アミノ酸といったアミノ酸、アルブミンといったタンパク質、ビタミン類、酵母エキス等といった従来の培養液で含有されている物質の濃度は、蛍光膜電位測定法の測定可能濃度及び/又は被検化合物と相互作用や吸着を起こさない濃度以下である。特に、アミノ酸及びタンパク質の濃度が、蛍光膜電位測定法の測定可能濃度及び/又はアミノ酸及びタンパク質の濃度が被検化合物との相互作用や吸着を起こさない濃度以下である。ここで、アミノ酸及びタンパク質の濃度とは、アミノ酸及びタンパク質を合わせた濃度のことを示す。そして、好ましくは、細胞由来でないアミノ酸及びタンパク質は全く添加されず含有されない。
このアミノ酸、タンパク質、ビタミン類、酵母エキス等の物質を含む培養液では、培養液自身が蛍光を有するようになり、高感度蛍光検出機器を使用する細胞の膜電位の正確な測定をすることが困難である。また、蛍光膜電位測定に用いる蛍光物質や薬効を評価する被検化合物が、これらの物質に相互作用や吸着するため、正確な測定結果が担保されない。
これに対して、本発明の実施の形態に係る培養液では、このアミノ酸、タンパク質、ビタミン類、酵母エキス等の物質といった培養液自身の蛍光に関与したり、被検化合物と相互作用や吸着するような物質を除いているため、従来の培養液が有していた正確な測定結果が担保されないといった不利益が克服される。
In the culture solution according to the embodiment of the present invention, the concentration of substances contained in the conventional culture solution such as amino acids such as essential amino acids and non-essential amino acids, proteins such as albumin, vitamins, yeast extract, etc. is measured by fluorescent membrane potential. It is below the measurable concentration of the method and / or the concentration at which no interaction or adsorption occurs with the test compound. In particular, the amino acid and protein concentrations are measurable concentrations of the fluorescent membrane potential measurement method and / or the amino acid and protein concentrations are below the concentration at which no interaction or adsorption with the test compound occurs. Here, the amino acid and protein concentrations indicate the concentration of amino acids and proteins combined. Preferably, amino acids and proteins that are not derived from cells are not added or contained at all.
In a culture solution containing substances such as amino acids, proteins, vitamins, and yeast extract, the culture solution itself becomes fluorescent, and it is possible to accurately measure the membrane potential of cells using a highly sensitive fluorescence detection device. Have difficulty. Moreover, since the fluorescent substance used for fluorescent membrane potential measurement and the test compound for evaluating the drug effect interact and adsorb to these substances, accurate measurement results cannot be guaranteed.
On the other hand, in the culture solution according to the embodiment of the present invention, it is involved in the fluorescence of the culture solution itself such as amino acids, proteins, vitamins, yeast extract and the like, or interacts with or adsorbs the test compound. Since such a substance is excluded, the disadvantage that the accurate measurement result which the conventional culture solution had is not ensured is overcome.

さらに、本発明の実施の形態に係る培養液は、適切な濃度のセレンを含むことで細胞の蛍光膜電位測定を良好に行うことができる。これは、特にヒトiPS細胞由来の心筋細胞の測定において、長期間正常な膜電位測定を行うことができるという顕著な効果を奏する。
好ましくは、セレンは、NaSeO(亜セレン酸ナトリウム)によって提供する。さらに好ましくは、NaSeOの濃度は、0.001〜0.1μMで変動させることができる。
Furthermore, the culture solution according to the embodiment of the present invention can appropriately measure the fluorescent membrane potential of cells by containing an appropriate concentration of selenium. This has a remarkable effect that normal membrane potential measurement can be performed for a long period of time, particularly in the measurement of cardiomyocytes derived from human iPS cells.
Preferably, the selenium is provided by Na 2 SeO 3 (sodium selenite). More preferably, the concentration of Na 2 SeO 3 can be varied from 0.001 to 0.1 μM.

さらに、本発明の実施の形態に係る培養液は、適切な濃度の硝酸イオン及び鉄イオンを含むことで細胞の蛍光膜電位測定を良好に行うことができる。これは、特にヒトiPS細胞由来の心筋細胞の測定において、長期間正常な膜電位測定を行うことができるという顕著な効果を奏する。
好ましくは、硝酸イオン及び鉄イオンは、Fe(NO・9HO(硝酸鉄(III)水和物)によって提供する。さらに好ましくは、Fe(NO・9HOの濃度は、0.1〜9μMで変動させることができる。
Furthermore, the culture solution according to the embodiment of the present invention can appropriately measure the fluorescent membrane potential of cells by containing appropriate concentrations of nitrate ions and iron ions. This has a remarkable effect that normal membrane potential measurement can be performed for a long period of time, particularly in the measurement of cardiomyocytes derived from human iPS cells.
Preferably, nitrate ions and iron ions are provided by a Fe (NO 3) 3 · 9H 2 O ( iron (III) nitrate hydrate). More preferably, Fe (NO 3) 3 · 9H 2 O concentration can be varied in 0.1~9MyuM.

本発明の実施の形態に係る培養液は、当業者が使用することができる通常の方法で調製が可能である。例えば、予め調製した液に、各成分を添加調製して最終濃度とする方法などがある。被検物質は、任意の濃度から使用することができ、例えばDMSO等の適当な溶媒に溶かすか、測定用培地等の測定液に直接溶かしてもよい。
なお、図1で示した培養液の組成及び濃度は、あくまで各物質の濃度を最適化した一例であって、各物質の濃度は電位測定の最適化を図る上で適宜変更できる。例えば、使用する細胞の由来や細胞の種類等によって、培養液の組成を調整することが可能である。例えば、性質の異なる心筋細胞等では、培養液の組成について適宜調整することが必要である。
The culture solution according to the embodiment of the present invention can be prepared by an ordinary method that can be used by those skilled in the art. For example, there is a method of adding each component to a liquid prepared in advance to obtain a final concentration. The test substance can be used from any concentration, and may be dissolved in a suitable solvent such as DMSO or directly in a measurement solution such as a measurement medium.
Note that the composition and concentration of the culture solution shown in FIG. 1 are merely examples in which the concentration of each substance is optimized, and the concentration of each substance can be changed as appropriate in order to optimize potential measurement. For example, the composition of the culture solution can be adjusted depending on the origin of the cells to be used, the type of the cells, and the like. For example, in the case of cardiomyocytes having different properties, it is necessary to appropriately adjust the composition of the culture solution.

本発明の実施の形態に係る試験培養液を用いることによって、例えば1日以上といった長期間において細胞の培養ができるようになる。この際に、細胞が拍動した状態を保つことができる。このように、細胞の膜電位測定用の培養液として最適化されているので、より細胞の機能を安定させて膜電位を長時間観察することができる。したがって、心筋細胞等の拍動運動する細胞の薬効評価に用いる測定を行うのに適した培養液であるといえる。
なお、培養液の組成が好ましく無い場合には、細胞の拍動停止、ひいては死滅が誘導される。拍動停止や死滅した細胞は、もはや観察に適切ではない。このため、本発明の実施の形態に係る培養液のように、拍動細胞の培養液をアミノ酸やタンパク質等を除いた状態で実現することは、困難であった。
By using the test culture solution according to the embodiment of the present invention, cells can be cultured for a long period of time such as one day or longer. At this time, it is possible to maintain the state in which the cells are beating. Thus, since it is optimized as a culture solution for measuring the membrane potential of cells, it is possible to observe the membrane potential for a long time with more stable cell functions. Therefore, it can be said that it is a culture solution suitable for performing measurement used for evaluating the drug efficacy of pulsatile cells such as cardiomyocytes.
In addition, when the composition of the culture solution is not preferred, cell pulsation is stopped and eventually killed. Paused or dead cells are no longer suitable for observation. For this reason, it has been difficult to realize a pulsating cell culture solution in a state in which amino acids, proteins, and the like are removed as in the culture solution according to the embodiment of the present invention.

(本発明の培養液を用いた膜電位測定方法)
本発明の実施の形態に係る培養液を用いた膜電位測定方法の実際について、以下のプロトコルの例を示しながら説明する。なお、具体的な膜電位測定方法については、非特許文献2の記載を参照されたい。
(Membrane potential measurement method using the culture solution of the present invention)
The actual membrane potential measurement method using the culture solution according to the embodiment of the present invention will be described with reference to the following protocol examples. For specific membrane potential measurement methods, see the description in Non-Patent Document 2.

(1)まず、測定対象の細胞又は細胞のコロニーを適当な大きさ(約10μm〜1mm程度)に、例えばDMEMといった適当な培養液中で調製する。
測定対象の細胞としては、神経細胞、肝細胞、心筋細胞等の任意の細胞を用いることができる。また、これらの細胞は、単一で又は複数用いることができる。また、複数の細胞は、細胞塊(コロニー)であってもよい。より具体的な測定対象の細胞としては、幹細胞由来あるいは初代培養細胞拍動心筋塊があげられる。
(1) First, a cell to be measured or a colony of cells is prepared to an appropriate size (about 10 μm to 1 mm) in an appropriate culture solution such as DMEM.
Arbitrary cells, such as a nerve cell, a hepatocyte, and a cardiac muscle cell, can be used as a measurement object cell. Moreover, these cells can be used singly or in plural. The plurality of cells may be cell clusters (colony). More specific cells to be measured include stem cell-derived or primary cultured cell beating myocardial mass.

(2)次に、調製した細胞を、例えばDMEMといった適当な培養液の入った測定容器の中にピペット等を用いて移動する。
培養液中に移動された細胞は、自重により培養液中を測定容器の底面まで沈降する。また、遠心機を用いて遠心力を加えて測定容器の底面に沈降させてもよい。
(2) Next, the prepared cells are moved using a pipette or the like into a measurement container containing an appropriate culture solution such as DMEM.
The cells that have moved into the culture solution settle down to the bottom of the measurement vessel in the culture solution due to their own weight. Alternatively, centrifugal force may be applied using a centrifuge to settle on the bottom surface of the measurement container.

(3)次に、測定容器中の電極上等の好ましい位置に細胞を配置し、そのまま細胞が接着するまで静置する。この静置は、細胞により最適な所定期間行う。ヒトiPS細胞由来の心筋細胞では、1時間〜1日程度の静置を行うのが普通である。
ここで、膜電位測定を行う測定容器は、任意の形状であってもよい。例えば、培養皿の中心に複数個の電極を高密度に集積させて備える多電極シングルディッシュや、容器の底がすり鉢状になっていて自然に沈降した細胞が測定電極上で確実に接着する細胞測定容器(PCT/JP2009/059359参照)等を用いて行うことができる。
(3) Next, the cells are arranged at a preferred position such as on the electrode in the measurement container, and left to stand until the cells adhere. This standing is performed for an optimum predetermined period depending on the cells. In the case of cardiomyocytes derived from human iPS cells, it is common to leave them for about 1 hour to 1 day.
Here, the measurement container for measuring the membrane potential may have any shape. For example, a multi-electrode single dish with a plurality of electrodes accumulated in the center of a culture dish or a cell in which the bottom of the container has a mortar shape and naturally settled cells adhere securely on the measurement electrode It can be performed using a measurement container (see PCT / JP2009 / 059359) or the like.

(4)次に、細胞が電極等に接着した後、本発明の実施の形態に係る培養液に置換する。
ここでいう接着とは、電位を測定するのに適当な距離をもって固定されることをいう。このような作業を、細胞の配置及び培養液の置換の各作業毎に行う。
この際に、細胞が本発明の実施の形態に係る培養液に適応するまで、1日程度、そのまま培養することが可能である。また、この培養の際に、本発明の実施の形態に係る培養液を、通常の接着細胞の培養方法のように取り換えることも可能である。このように、本発明の実施の形態に係る培養液を用いると、長期の培養を行っても、拍動状態を保つことができる。
(4) Next, after the cell adheres to the electrode or the like, it is replaced with the culture solution according to the embodiment of the present invention.
The term “adhesion” as used herein means fixing at an appropriate distance for measuring the potential. Such an operation is performed for each operation of cell placement and culture medium replacement.
At this time, the cells can be cultured as they are for about one day until the cells are adapted to the culture solution according to the embodiment of the present invention. Further, at the time of this culture, the culture solution according to the embodiment of the present invention can be replaced like a normal method for culturing adherent cells. As described above, when the culture solution according to the embodiment of the present invention is used, the pulsation state can be maintained even if long-term culture is performed.

(5)そして、膜電位測定に供する。
被検化合物等がある場合には、本発明の培養液に化合物を溶解して添加する。必要に応じて、被検化合物を供給した後に振動させる等して、培養液中に被検化合物を拡散させることもできる。細胞の接着後にこの作業を行うことにより、振動等の影響で電極等から細胞が剥がれるのを防止することができる。被検化合物が供給されると、細胞の膜電位の計測値が変化するので、被検化合物の供給前後での計測値の変化の状態から、各化合物が細胞に与える影響を評価することにより、薬効評価を行う。この薬効評価には多電極システムを用いることができる。
(5) Then, it is used for membrane potential measurement.
When there is a test compound or the like, the compound is dissolved and added to the culture medium of the present invention. If necessary, the test compound can be diffused in the culture solution by, for example, vibrating after supplying the test compound. By performing this operation after the cells are adhered, it is possible to prevent the cells from being detached from the electrodes or the like due to the influence of vibration or the like. When the test compound is supplied, the measured value of the membrane potential of the cell changes, so from the state of change in the measured value before and after the supply of the test compound, by evaluating the effect of each compound on the cell, Evaluate drug efficacy. A multi-electrode system can be used for this medicinal evaluation.

以下の実施例によって本発明の実施の形態に係る培養液をさらに具体的に説明する。この実施例は一例にすぎず、これに限定されるものではない。   The culture medium which concerns on embodiment of this invention is demonstrated further more concretely with the following example. This embodiment is only an example, and the present invention is not limited to this.

(心筋細胞の測定例)
本発明の実施の形態に係る培養液を用いて、測定対象の細胞として拍動を行うヒトiPS細胞由来で、公知の方法にて分化させた心筋細胞を蛍光膜電位測定法を用いて膜電位測定を行った実施例を示す。
(Measurement example of cardiomyocytes)
Using a culture solution according to an embodiment of the present invention, cardiomyocytes derived from human iPS cells that pulsate as cells to be measured and differentiated by a known method are used to measure the membrane potential using a fluorescent membrane potential measurement method. The Example which measured was shown.

図2を用いて、心筋細胞の膜電位測定における拍動の比較例を示す。図2(a)は本発明の実施の形態に係る培養液を用いて膜電位測定を行った結果を示し、図2(b)は一般的な緩衝液のひとつである(11.2mMのグルコース含有PBS)を用いて膜電位測定を行った結果を示す。矢印で示した時間は2分間を示す。縦のスパイク状の信号が心筋細胞の拍動の発生を示す。
これらの実験結果から、本発明の実施の形態に係る培養液では、心筋細胞から継続的に規則正しく拍動が観察されるが、一般的な緩衝液では、心筋細胞からの拍動は断続的になり規則正しくなく安定しない拍動が観察される。
このように本発明の実施の形態に係る培養液では、より正確な拍動が観察される膜電位測定をすることができることが示される。
FIG. 2 shows a comparative example of pulsation in the measurement of the membrane potential of cardiomyocytes. FIG. 2 (a) shows the result of membrane potential measurement using the culture solution according to the embodiment of the present invention, and FIG. 2 (b) is one of common buffer solutions (11.2 mM glucose). The result of having measured the membrane potential using (containing PBS) is shown. The time indicated by the arrow indicates 2 minutes. A vertical spike-like signal indicates the occurrence of heartbeat pulsation.
From these experimental results, in the culture solution according to the embodiment of the present invention, pulsation is regularly and continuously observed from the cardiomyocytes, but pulsation from the cardiomyocytes is intermittently observed in a general buffer solution. A regular and unstable beat is observed.
As described above, the culture solution according to the embodiment of the present invention can be used to measure membrane potential at which more accurate pulsation is observed.

次に、図3を用いて、心筋細胞の膜電位測定におけるノイズの比較例を示す。図3(a)は本発明の実施の形態に係る培養液を用いて膜電位測定を行った結果を示し、図3(b)は従来の培養液を用いて膜電位測定を行った結果を示す。ここで従来の培養液とは、DMEM(ギブコ社製等)にウシ血清(ギブコ社製等、10〜20%)を加えたものである。
これらの実験結果から、本発明の実施の形態に係る培養液を用いた場合には、明確な鋭いNaピーク(Naカレントピーク:QRS波様波形)と共に、矢印で示したようにKピーク(Kカレントピーク:T波様波形)と考えられる波形が確認できる。また、本発明の実施の形態に係る培養液を用いることによってノイズが少なくなるため、薬効評価の詳細パラメータの観察も容易な膜電位波形の測定ができる。それに対して、従来の培養液では、ノイズが多い波形となり、NaピークとNaピークの間隔は不規則であり、電位波形の振幅も不均一であった。また、本発明の実施の形態に係る培養液で確認されたようなKピーク様の波形は確認できなかった。
このように本発明の実施の形態に係る培養液では、よりノイズの少ない正確な細胞の膜電位測定をすることができるため、Kピーク様の波形も検出することが可能であり、被検化合物の薬効評価に供することができる培養液であることが示される。
Next, FIG. 3 shows a comparative example of noise in the measurement of the membrane potential of cardiomyocytes. FIG. 3 (a) shows the result of measuring the membrane potential using the culture solution according to the embodiment of the present invention, and FIG. 3 (b) shows the result of measuring the membrane potential using the conventional culture solution. Show. Here, the conventional culture solution is obtained by adding bovine serum (10-20%, manufactured by Gibco) to DMEM (manufactured by Gibco, etc.).
From these experimental results, when the culture solution according to the embodiment of the present invention is used, K + as indicated by an arrow together with a clear sharp Na + peak (Na + current peak: QRS wave-like waveform). A waveform considered to be a peak (K + current peak: T-wave like waveform) can be confirmed. In addition, since the noise is reduced by using the culture solution according to the embodiment of the present invention, it is possible to easily measure the membrane potential waveform by observing the detailed parameters of drug efficacy evaluation. On the other hand, in the conventional culture solution, the waveform was noisy, the interval between the Na + peak and the Na + peak was irregular, and the amplitude of the potential waveform was also nonuniform. Further, a K + peak-like waveform as confirmed in the culture solution according to the embodiment of the present invention could not be confirmed.
As described above, the culture solution according to the embodiment of the present invention can accurately measure the membrane potential of a cell with less noise, and thus can detect a K + peak-like waveform. It is shown that it is a culture solution that can be used for evaluating the efficacy of the compound.

次に、図4A〜Eを用いて、QT間隔を延長する試薬(アステミゾール、和光純薬)を用いたポジティブコントロールとしての測定例を示す。図4Aは、アステミゾールの構造式を示す。図4Bは、アステミゾールを濃度0.10nMから、0.01Mの濃度で加えた際の、QT間隔の延長(norm QT−Interval)に対する濃度依存性曲線を示す。図4C〜Eは、アステミゾールを添加した際の時間経過毎(Time[ms])の電位変化(FP[μV])を詳細に示し、図4C、図4D、図4Eになるにつれて図が拡大されている。
これらの実験結果から、図4Bに示すように、アステミゾールを用いてQT間隔を測定した場合には、濃度に依存してQT間隔が延長していることが分かる。また、図4C、図4D、図4Eに示すように、アステミゾールを添加した場合には、無添加、添加低濃度領域、高濃度領域までNaピーク及びKピークが検出されて良好に測定が可能であることが分かる。
Next, a measurement example as a positive control using a reagent (astemizole, Wako Pure Chemical Industries) that extends the QT interval is shown using FIGS. FIG. 4A shows the structural formula of astemizole. FIG. 4B shows a concentration-dependent curve for QT interval (norm QT-Interval) when astemizole was added from a concentration of 0.10 nM to a concentration of 0.01 M. FIGS. 4C to E show in detail the potential change (FP [μV]) for each time course (Time [ms]) when astemizole was added, and the figures are enlarged as it becomes FIGS. 4C, 4D, and 4E. ing.
From these experimental results, as shown in FIG. 4B, it can be seen that when the QT interval is measured using astemizole, the QT interval is extended depending on the concentration. Moreover, as shown in FIG. 4C, FIG. 4D, and FIG. 4E, when astemizole is added, Na + peak and K + peak are detected in the non-added, added low concentration region, and high concentration region, and measurement is good. It turns out that it is possible.

次に、図5A〜Cを用いて、QT間隔に影響を与えない(±5%以内)試薬(アスピリン、Cayman chemical company)を用いたネガティブコントロールとしての測定例を示す。図5Aは、アスピリンのQT間隔に影響を与えない(±5%以内)ことを示したものである。図5Bは、アスピリンを濃度0.10nMから、0.10Mの濃度で加えた際のQT間隔(norm QT−Interval)に対する濃度依存性曲線を示す。図5Cは、アスピリンを添加した際の時間経過毎(Time[ms])の電位変化(FP[μV])を詳細に示す。
これらの実験結果から、図5Aに示すように、アスピリンを用いてQT間隔を測定した場合には、試験濃度域においてQT間隔が変化していないことが分かる。また、図5Bに示すように、アスピリンを用いてQT間隔を測定した場合には、試験濃度域においてQT間隔が変化していないことが分かる。また、図5Cに示すように、アスピリンを添加した場合には無添加、添加低濃度領域から高濃度領域までNaピーク及びKピークが検出され良好に測定が可能であることが分かる。
Next, a measurement example as a negative control using a reagent (aspirin, Cayman chemical company) that does not affect the QT interval (within ± 5%) is shown using FIGS. FIG. 5A shows that the QT interval of aspirin is not affected (within ± 5%). FIG. 5B shows a concentration dependence curve with respect to the QT interval (norm QT-Interval) when aspirin was added at a concentration of 0.10 nM to 0.10 M. FIG. 5C shows in detail the potential change (FP [μV]) over time (Time [ms]) when aspirin was added.
From these experimental results, as shown in FIG. 5A, it can be seen that when the QT interval is measured using aspirin, the QT interval does not change in the test concentration range. In addition, as shown in FIG. 5B, it can be seen that when the QT interval is measured using aspirin, the QT interval does not change in the test concentration range. Further, as shown in FIG. 5C, it can be seen that when aspirin is added, Na + peak and K + peak are detected from the added low concentration region to the high concentration region without addition, and good measurement is possible.

次に、図6を用いて、QT間隔に影響を与えない本発明の実施の形態に係る培地をアステミゾールおよびアスピリンを実験したときと同じ手順で測定した例を示す。
この実験結果から、図6に示すように、本発明の実施の形態に係る培地を用いてQT間隔を測定した場合には、濃度に依存してQT間隔は変化しないことが分かる。
Next, FIG. 6 shows an example in which the culture medium according to the embodiment of the present invention that does not affect the QT interval is measured by the same procedure as when astemizole and aspirin were experimented.
From this experimental result, as shown in FIG. 6, it can be seen that when the QT interval is measured using the medium according to the embodiment of the present invention, the QT interval does not change depending on the concentration.

このように本発明の実施の形態に係る培養液を用いて膜電位測定を行った場合には、QT間隔への影響の有無に関係なく任意の化合物を用いても、詳細なノイズの少ない膜電位波形を検出することができた。これは、まさに本発明の実施の形態に係る培養液が、イオンチャンネルに影響を与えるような被検化合物の薬効評価に適したものであることが示されたものである。   As described above, when the membrane potential is measured using the culture solution according to the embodiment of the present invention, even if any compound is used regardless of whether or not there is an influence on the QT interval, a membrane with less detailed noise. A potential waveform could be detected. This shows that the culture solution according to the embodiment of the present invention is suitable for evaluating the efficacy of a test compound that affects the ion channel.

また、従来から、蛍光膜電位測定法は、非常に高いスループット性を有していたが、擬陽性の割合も高いという難点があった。しかし、本発明の実施の形態に係る培養液を用いることによって、詳細な膜電位波形を検出することができるようになるため、擬陽性の割合を低減させることができることによる正確な被検化合物の薬効評価が期待される。これにより薬効評価を早め、新規薬物の開発を迅速化、効率化することができる。   Conventionally, the fluorescent membrane potential measurement method has a very high throughput, but has a problem that the ratio of false positives is also high. However, since the detailed membrane potential waveform can be detected by using the culture solution according to the embodiment of the present invention, the accurate efficacy of the test compound can be reduced by reducing the false positive ratio. Evaluation is expected. As a result, the efficacy evaluation can be accelerated, and the development of new drugs can be speeded up and made efficient.

本発明によれば、蛍光がなく被検化合物との相互作用や吸着を起こさない拍動細胞用の培養液を提供することで、新規薬物の薬効評価を迅速にしてコストを低減することができる。   According to the present invention, by providing a culture solution for beating cells that does not have fluorescence and does not cause interaction or adsorption with a test compound, it is possible to quickly evaluate the efficacy of a new drug and reduce costs. .

Claims (5)

細胞由来でないアミノ酸及びタンパク質を添加せずに、セレン並びに/又は硝酸イオン及び鉄イオンを含むことを特徴とする細胞の膜電位測定用の培養液。   A culture solution for measuring the membrane potential of a cell, comprising selenium and / or nitrate ions and iron ions without adding amino acids and proteins not derived from cells. 前記セレンは亜セレン酸ナトリウムの濃度0.001〜0.1μMで供給され、並びに/又は前記硝酸イオン及び鉄イオンは硝酸鉄(III)の濃度0.1〜9μMで供給されることを特徴とする請求項1に記載の培養液。   The selenium is supplied at a sodium selenite concentration of 0.001 to 0.1 μM, and / or the nitrate ions and iron ions are supplied at a concentration of iron (III) nitrate of 0.1 to 9 μM. The culture solution according to claim 1. 前記細胞は、ヒトiPS細胞由来の心筋細胞であることを特徴とする請求項1又は2に記載の培養液。   The culture medium according to claim 1 or 2, wherein the cells are human iPS cell-derived cardiomyocytes. 請求項1から3のいずれか1項に記載の培養液を用いた細胞の培養方法。   A method for culturing cells using the culture solution according to any one of claims 1 to 3. 請求項1から3のいずれか1項に記載の培養液を用いた細胞の膜電位測定方法。   A method for measuring a membrane potential of a cell using the culture solution according to any one of claims 1 to 3.
JP2009162753A 2009-07-09 2009-07-09 Culture solution for measuring membrane potential of cells, culture method using the same, and membrane potential measurement method Expired - Fee Related JP5492477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009162753A JP5492477B2 (en) 2009-07-09 2009-07-09 Culture solution for measuring membrane potential of cells, culture method using the same, and membrane potential measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009162753A JP5492477B2 (en) 2009-07-09 2009-07-09 Culture solution for measuring membrane potential of cells, culture method using the same, and membrane potential measurement method

Publications (2)

Publication Number Publication Date
JP2011015643A true JP2011015643A (en) 2011-01-27
JP5492477B2 JP5492477B2 (en) 2014-05-14

Family

ID=43593948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009162753A Expired - Fee Related JP5492477B2 (en) 2009-07-09 2009-07-09 Culture solution for measuring membrane potential of cells, culture method using the same, and membrane potential measurement method

Country Status (1)

Country Link
JP (1) JP5492477B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008086588A (en) * 2006-10-03 2008-04-17 Kyoto Univ Apparatus and system for evaluating risk of arrhythmia
JP2008532522A (en) * 2005-03-08 2008-08-21 モレキュラー プローブス, インコーポレイテッド Monitoring and manipulating cell membrane potential differences using nanostructures
WO2009038079A1 (en) * 2007-09-18 2009-03-26 Biotec Co., Ltd. Cell measuring vessel, extracellular potential measuring method, and chemical testing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008532522A (en) * 2005-03-08 2008-08-21 モレキュラー プローブス, インコーポレイテッド Monitoring and manipulating cell membrane potential differences using nanostructures
JP2008086588A (en) * 2006-10-03 2008-04-17 Kyoto Univ Apparatus and system for evaluating risk of arrhythmia
WO2009038079A1 (en) * 2007-09-18 2009-03-26 Biotec Co., Ltd. Cell measuring vessel, extracellular potential measuring method, and chemical testing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014004682; The FASEB Journal vol. 16 no. 1 111-113 , 2002 *

Also Published As

Publication number Publication date
JP5492477B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
Kolossov et al. Identification and characterization of embryonic stem cell‐derived pacemaker and atrial cardiomyocytes
Birket et al. Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function
Jonsson et al. Quantified proarrhythmic potential of selected human embryonic stem cell-derived cardiomyocytes
Chan et al. Electrical stimulation promotes maturation of cardiomyocytes derived from human embryonic stem cells
Eder et al. Human engineered heart tissue as a model system for drug testing
Willis et al. Impaired oxidative metabolism and calcium mishandling underlie cardiac dysfunction in a rat model of post-acute isoproterenol-induced cardiomyopathy
Rafacho et al. Tobacco smoke induces ventricular remodeling associated with an increase in NADPH oxidase activity
JP7341478B2 (en) Method for testing drug responsiveness of cardiomyocytes
JP5555248B2 (en) Method for measuring fluorescence intensity of potential-sensitive fluorescent dye
KR20230167143A (en) Generating atrial and ventricular cardiomyocyte lineages from human pluripotent stem cells
Li et al. The antiproliferative effect of sildenafil on pulmonary artery smooth muscle cells is mediated via upregulation of mitogen-activated protein kinase phosphatase-1 and degradation of extracellular signal-regulated kinase 1/2 phosphorylation
Pla et al. Calcium influx, arachidonic acid, and control of endothelialcell proliferation
Di Virgilio et al. Role of calcium in neutrophil activation
Li et al. Chiral analysis of lactate during direct contact coculture by single-cell on-probe enzymatic dehydrogenation derivatization: unraveling metabolic changes caused by d-Lactate
Xie et al. CYLD deubiquitinates plakoglobin to promote Cx43 membrane targeting and gap junction assembly in the heart
Thanabalasundaram et al. Methods to assess pericyte-endothelial cell interactions in a coculture model
SG192305A1 (en) Induced pluripotent stem cell (ipsc)-derived cardiomyocyte-like cells and uses thereof in screening for agents
WO2018124210A1 (en) Ring-shaped cardiac muscle cell mass
JP5492477B2 (en) Culture solution for measuring membrane potential of cells, culture method using the same, and membrane potential measurement method
JP2017536557A (en) System for concomitant assessment of drug dissolution, absorption and permeation and method of using the system
Zhang et al. Aconitine alters connexin43 phosphorylation status and [Ca2+] oscillation patterns in cultured ventricular myocytes of neonatal rats
Izumi et al. Negative inotropic effect of endothelin-1 in the mouse right ventricle
Miao et al. Atrial natriuretic peptide regulates Ca2+ channel in early developmental cardiomyocytes
Bernard et al. Determination of free cisplatin in medium by differential pulse polarography after ultrasound and cisplatin treatment of a cancer cell culture
Feng et al. Elevated SLC40A1 impairs cardiac function and exacerbates mitochondrial dysfunction, oxidative stress, and apoptosis in ischemic myocardia

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140303

R150 Certificate of patent or registration of utility model

Ref document number: 5492477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees